IQS621 [ETC]

Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities;
IQS621
型号: IQS621
厂家: ETC    ETC
描述:

Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities

文件: 总79页 (文件大小:2203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IQ Switch  
ProxFusion® Series  
IQS621 Datasheet  
Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Hall-  
effect sensor & inductive sensing capabilities  
The IQS621 ProxFusion® IC is a multifunctional, ambient light sensing (ALS), capacitive, Hall-effect  
& inductive sensor designed for applications where any or all of the technologies may be required.  
The IQS621 is an ultra-low power solution designed for short or long term activations through any of  
the sensing channels. The IQS621 is fully I2C compatible.  
Features  
mobile platforms:  
Unique combination of sensing  
technologies:  
o
o
Proximity / Touch  
Proximity wake-up  
o
o
o
o
Capacitive sensing  
Ambient light sensing (ALS)  
Hall-effect sensing  
Automatic Tuning  
Implementation (ATI) –  
performance  
Inductive sensing  
Capacitive sensing  
enhancement (10bit)  
o
o
Full auto-tuning with adjustable sensitivity  
2pF to 200pF external capacitive load  
capability  
Minimal  
external  
UOLG 2.8 x 2.5 x 0.6  
9-pin  
components  
Standard I2C interface  
Representations only  
o
Enhanced temperature stability  
Optional RDY indication for event mode  
operation  
Ambient light sensing (ALS)  
o
o
o
o
Absolute lux output  
Human eye response compensated  
4-bit ALS range output (0 - 10)  
Dual threshold detection for day/night  
indication with hysteresis  
Low power consumption:  
o
o
o
o
o
o
o
o
o
75uA (100Hz response, 1ch inductive)  
95uA (100Hz response, 2ch Hall)  
75uA (100Hz response, 3ch capacitive)  
60uA (100Hz response, ALS)  
25uA (20Hz response, 1ch inductive)  
25uA (20Hz response, 2ch Hall)  
20uA (20Hz response, 3ch capacitive)  
18uA (20Hz response, ALS)  
Hall-effect sensing  
o
o
o
o
On-chip Hall-effect measurement plates  
Dual direction Hall switch sensor UI  
2 level detection (widely variable)  
Detection range 10mT 200mT  
2.5uA (4Hz response, 1ch cap. wake-up)  
Inductive sensing  
Supply voltage: 1.8V to 3.3V  
o
2 Level detection and hysteresis for inductive  
sensing  
Low profile UOLG - 2.8 x 2.5 x 0.6 - 9-pin  
package  
o
Only external sense coil required (PCB trace)  
Multiple integrated UI options based on  
years of experience in sensing on fixed and  
Applications  
Mobile electronics (phones/tablets)  
Home automation & lighting control  
White goods and appliances  
Wearable devices  
Human Interface Devices  
Aftermarket automotive1  
Available Packages  
UOLG-2.8 x 2.5 x 0.69N  
TA  
-20°C to +85°C  
IQS621  
1 The part is not automotive qualified.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 1 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Table of Contents  
LIST OF ABBREVIATIONS ............................................................................................................................................. 4  
1
2
3
4
5
6
INTRODUCTION.................................................................................................................................................. 5  
®
PROXFUSION ....................................................................................................................................................... 5  
PACKAGING AND PIN-OUT ....................................................................................................................................... 6  
REFERENCE SCHEMATIC ........................................................................................................................................... 7  
SENSOR CHANNEL COMBINATIONS ............................................................................................................................. 8  
®
PROXFUSION SENSITIVITY ....................................................................................................................................... 9  
CAPACITIVE SENSING ........................................................................................................................................10  
®
INTRODUCTION TO PROXSENSE .............................................................................................................................. 10  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 10  
HARDWARE CONFIGURATION.................................................................................................................................. 11  
SOFTWARE CONFIGURATION................................................................................................................................... 12  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 13  
INDUCTIVE SENSING..........................................................................................................................................14  
INTRODUCTION TO INDUCTIVE SENSING..................................................................................................................... 14  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 14  
HARDWARE CONFIGURATION.................................................................................................................................. 15  
SOFTWARE CONFIGURATION................................................................................................................................... 15  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 17  
AMBIENT LIGHT SENSING (ALS) .........................................................................................................................18  
INTRODUCTION TO AMBIENT LIGHT SENSING .............................................................................................................. 18  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 18  
HARDWARE CONFIGURATION.................................................................................................................................. 18  
SOFTWARE CONFIGURATION................................................................................................................................... 19  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 20  
HALL-EFFECT SENSING.......................................................................................................................................21  
INTRODUCTION TO HALL-EFFECT SENSING ................................................................................................................. 21  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 21  
HARDWARE CONFIGURATION.................................................................................................................................. 22  
SOFTWARE CONFIGURATION................................................................................................................................... 23  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 24  
TEMPERATURE MONITORING ...........................................................................................................................25  
INTRODUCTION TO TEMPERATURE MONITORING......................................................................................................... 25  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 25  
HARDWARE CONFIGURATION.................................................................................................................................. 25  
SOFTWARE CONFIGURATION................................................................................................................................... 25  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 26  
7
8
DEVICE CLOCK, POWER MANAGEMENT AND MODE OPERATION......................................................................27  
DEVICE MAIN OSCILLATOR...................................................................................................................................... 27  
DEVICE MODES .................................................................................................................................................... 27  
SYSTEM RESET ..................................................................................................................................................... 28  
COMMUNICATION ............................................................................................................................................29  
I2C MODULE SPECIFICATION.................................................................................................................................... 29  
I2C READ ........................................................................................................................................................... 29  
I2C WRITE .......................................................................................................................................................... 29  
STOP-BIT DISABLE OPTION...................................................................................................................................... 30  
DEVICE ADDRESS AND SUB-ADDRESSES ..................................................................................................................... 31  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 2 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ADDITIONAL OTP OPTIONS .................................................................................................................................... 31  
RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM................................................................................ 32  
9
MEMORY MAP ..................................................................................................................................................33  
DEVICE INFORMATION DATA .................................................................................................................................. 35  
FLAGS AND USER INTERFACE DATA ........................................................................................................................... 36  
CHANNEL COUNTS (RAW DATA)............................................................................................................................... 41  
LTA VALUES (FILTERED DATA)................................................................................................................................. 41  
PROXFUSION SENSOR SETTINGS BLOCK 1................................................................................................................... 42  
PROXFUSION UI SETTINGS ..................................................................................................................................... 48  
HYSTERESIS UI SETTINGS........................................................................................................................................ 49  
ALS SENSOR SETTINGS........................................................................................................................................... 51  
ALS UI SETTINGS ................................................................................................................................................. 53  
HALL-EFFECT SENSOR SETTINGS............................................................................................................................... 54  
HALL-EFFECT SWITCH UI SETTINGS........................................................................................................................... 56  
TEMPERATURE MONITORING UI SETTINGS................................................................................................................. 57  
DEVICE AND POWER MODE SETTINGS ....................................................................................................................... 59  
10 ELECTRICAL CHARACTERISTICS ..........................................................................................................................64  
ABSOLUTE MAXIMUM SPECIFICATIONS..................................................................................................................... 64  
VOLTAGE REGULATION SPECIFICATIONS..................................................................................................................... 64  
RESET CONDITIONS ............................................................................................................................................... 64  
I2C MODULE OUTPUT LOGIC FALL TIME LIMITS ............................................................................................................ 65  
I2C MODULE SLEW RATES ....................................................................................................................................... 66  
I2C PINS (SCL & SDA) INPUT/OUTPUT LOGIC LEVELS.................................................................................................. 67  
GENERAL PURPOSE DIGITAL OUTPUT PINS (GPIO0 & GPIO3) LOGIC LEVELS.................................................................... 67  
CURRENT CONSUMPTIONS ..................................................................................................................................... 68  
START-UP TIMING SPECIFICATIONS........................................................................................................................... 70  
ALS SPECIFICATIONS......................................................................................................................................... 71  
11 PACKAGE INFORMATION ..................................................................................................................................72  
UOLG-2.8 X 2.5 X 0.6 9-PIN PACKAGE AND FOOTPRINT SPECIFICATIONS..................................................................... 72  
DEVICE MARKING AND ORDERING INFORMATION ........................................................................................................ 73  
BULK PACKAGING SPECIFICATION ............................................................................................................................. 74  
MSL LEVEL ......................................................................................................................................................... 76  
12 DATASHEET REVISIONS .....................................................................................................................................77  
REVISION HISTORY ................................................................................................................................................ 77  
ERRATA.............................................................................................................................................................. 77  
APPENDIX A. CONTACT INFORMATION .....................................................................................................................78  
APPENDIX B: HALL ATI ...............................................................................................................................................79  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 3 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
List of abbreviations  
AC  
Alternating Current  
ACK  
ALS  
ATI  
I2C Acknowledge condition  
Ambient Light Sensing  
Automatic Tuning Implementation  
Brown Out Detection  
Sampling Capacitor  
Digital Signal Processing  
Electrostatic Discharge  
Main Clock Frequency Oscillator  
Ground  
BOD  
CS  
DSP  
ESD  
FOSC  
GND  
GPIO  
I2C  
General Purpose Input Output  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LP  
Low Power  
LPOSC  
LTA  
LTX  
MCU  
MSL  
MOQ  
NACK  
NC  
Low Power Oscillator  
Long Term Average  
Inductive Transmitting electrode  
Microcontroller unit  
Moisture Sensitive Level  
Minimum Order Quantity  
I2C Not Acknowledge condition  
Not Connect  
NP  
Normal Power  
OTP  
PMU  
POR  
PWM  
QRD  
RDY  
RX  
One Time Programmable  
Power Management Unit  
Power On Reset  
Pulse Width Modulation  
Quick Release Detection  
Ready Interrupt Signal  
Receiving electrode  
Specific Absorption Rate  
I2C Clock  
SAR  
SCL  
SDA  
SR  
I2C Data  
Slew rate  
THR  
UI  
Threshold  
User Interface  
ULP  
Ultra Low Power  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 4 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
1 Introduction  
ProxFusion®  
The ProxFusion® sensor series provide all the proven ProxSense® engine capabilities with additional  
sensors types. A combined sensor solution is available within a single platform.  
VREG  
VDDHI  
VREG  
Non-  
volatile  
memory  
HALL  
effect  
plates  
Temperature  
Digital output  
GPIO / Inductive  
circuit  
VDDHI  
VDDHI  
VREG  
VDDHI  
VDDHI  
VDDHI  
Internal  
regulator  
(VREG)  
Reset  
circuit  
VREG  
16 MHz MCU  
VREG  
VREG  
VDDHI  
VSS  
SDA  
Analog  
ProxFusion Engine  
Analog  
Photosensitive  
substrate, ALS  
Capacitive,HALL,Inductive  
I2C  
HW  
SCL  
RDY  
MCU  
(Master)  
VREG  
Analog - Capacitive  
offset calibration (ATI)  
RX0 RX1  
IQS621  
IQS621 functional block diagram  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 5 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Packaging and Pin-Out  
VREG LTX  
RX0 RX1  
VSS  
IQS621  
VDDHI SCL  
RDY  
SDA  
IQS621 pin-out (UOLG-2.8x2.5x0.69-pin package top view; appearance may  
differ)  
Table 1.1  
Pin-out description  
IQS621 in UOLG-2.8 x 2.5 x 0.6 9-pin  
Name  
Type  
Function  
Pin  
Connect to conductive area intended for  
sensor receiving  
1
RX0  
Analogue receiving electrode  
Connect to conductive area intended for  
sensor receiving  
2
3
4
RX1  
Analogue receiving electrode  
Regulates the system’s internal voltage  
VREG Voltage regulator output  
Requires external capacitors to ground  
Connect to conductive area intended for  
sensor transmitting  
LTX  
Transmitter electrode  
5
6
7
8
9
RDY  
SDA  
SCL  
Digital Input / Output  
Digital Input / Output  
Digital Input / Output  
RDY (I2C Ready interrupt signal)  
SDA (I2C Data signal)  
SCL (I2C Clock signal)  
VDDHI Supply Input  
VSS Signal GND  
Supply: 1.8V 3.3V  
Common ground reference  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 6 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Reference schematic  
IQS621 reference schematic  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 7 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Sensor channel combinations  
The table below summarizes the IQS621 sensor and channel associations.  
Table 1.2 Sensor - channel allocation  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
Sensor / UI type  
Self capacitive  
ͦ
ͦ
ͦ
Hysteresis UI  
Mutual inductive  
Hysteresis UI  
ͦ
ͦ
Ambient light  
sensing  
Hall-effect  
switch UI  
Positive Negative  
Temperature  
trip and output  
Key:  
o - Optional implementation  
- Fixed use for UI  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 8 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion® Sensitivity  
The measurement circuitry uses a temperature stable internal sample capacitor (CS) and internal  
regulated voltage (VREG). Internal regulation provides for more accurate measurements over  
temperature variation. The size CS can be decreased to increase sensitivity on the capacitive  
channels of the IQS621.  
1
푆푒푛푠푖푡푖푣푖푡푦 ∝  
ꢀ  
The Automatic Tuning Implementation (ATI) is a sophisticated technology implemented on the  
ProxFusion® series devices. It allows for optimal performance of the devices for a wide range of  
sense electrode capacitances, without modification or addition of external components. The ATI  
functionality ensures that sensor sensitivity is not affected by external influences such as temperate,  
parasitic capacitance and ground reference changes.  
The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two  
parameters (ATI base and ATI target) as inputs. A 10-bit compensation value ensures that an  
accurate target is reached. The base value influences the overall sensitivity of the channel and  
establishes a base count from where the ATI algorithm starts executing. A rough estimation of  
sensitivity can be calculated as:  
푇푎푟푔푒푡  
푆푒푛푠푖푡푖푣푖푡푦 ∝  
퐵푎푠푒  
As seen from this equation, the sensitivity can be increased by either increasing the Target value or  
decreasing the Base value. A lower base value will typically result in lower multipliers and more  
compensation would be required. It should, however, be noted that a higher sensitivity will yield a  
higher noise susceptibility. Refer to Appendix B: Hall ATI for more information on Hall ATI.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 9 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
2 Capacitive sensing  
Introduction to ProxSense®  
Building on the previous successes from the ProxSense® range of capacitive sensors, the same  
fundamental sensor engine has been implemented in the ProxFusion® series.  
The capacitive sensing capabilities of the IQS621 include:  
Self capacitive sensing.  
Maximum of 2 capacitive channels to be individually configured.  
o Prox and touch adjustable thresholds  
o Individual sensitivity setups  
o Alternative ATI modes  
Discreet button UI (always enabled):  
o Fully configurable 2 level threshold setups for prox & touch activation levels.  
o Customizable filter halt time.  
Hysteresis UI:  
o 4 Optional prox and touch activation hysteresis selections  
o Fully configurable 2 level threshold setups for prox & touch activation levels.  
o Configurable filter halt threshold.  
Channel specifications  
The IQS621 provides a maximum of 2 channels available to be configured for capacitive sensing.  
Each channel can be setup separately according to the channel’s associated settings registers.  
There are two distinct capacitive user interfaces available to be used.  
a) Discreet proximity/touch UI (always enabled)  
b) Hysteresis UI (fixed use of channel 1)  
Table 2.1  
CH0  
Capacitive sensing - channel allocation  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
Sensor/UI type  
Self capacitive  
ͦ
ͦ
Hysteresis UI  
Key:  
o - Optional implementation  
- Fixed use for UI  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 10 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hardware configuration  
In the table below are multiple options of configuring sensing (RX) and transmitting (LTX) electrodes  
to realize different implementations (combinations not shown).  
Table 2.2  
Capacitive sensing hardware description  
Self capacitive  
RX0  
RX1  
1
button  
LTX  
RX0  
RX1  
2
buttons  
LTX  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 11 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Software configuration  
Registers to configure for capacitive sensing:  
Table 2.3  
Name  
Capacitive sensing settings registers  
Recommended setting  
Description  
Address  
ProxFusion Settings 0 Sensor mode and  
configuration of each  
Sensor mode should be set to  
capacitive mode  
0x40  
0x41  
channel.  
An appropriate RX and TX  
should be chosen  
ProxFusion Settings 1 Channel settings for the  
ProxSense sensors  
Full ATI is recommended for  
fully automated sensor tuning.  
0x42  
0x43  
ProxFusion Settings 2 ATI settings for ProxSense  
sensors  
ATI target should be more  
than ATI base to achieve an  
ATI  
0x44  
0x45  
ProxFusion Settings 3 Additional Global settings for None  
ProxSense sensors  
0x46  
0x47  
ProxFusion Settings 4 Filter settings  
Keep AC filter enabled  
0x48  
0x49  
ProxFusion Settings 5 Advance sensor settings  
None  
Proximity threshold  
Touch threshold  
Proximity Thresholds for all  
capacitive channels (except  
for SAR active on channel 0)  
Preferably more than touch  
threshold  
0x50  
0x52  
Touch Thresholds for all  
capacitive channels  
None  
None  
0x51  
0x53  
ProxFusion discrete  
UI halt time  
Halt timeout setting for all  
capacitive channels  
0x54  
Registers to configure for the hysteresis UI:  
Table 2.4 Hysteresis UI settings registers  
Name Description  
Address  
0x48  
ProxFusion settings 4  
Hysteresis UI Settings  
Hysteresis UI enable command  
Hysteresis settings for the prox and touch thresholds  
Threshold setting to trigger a filter halt for on channel 1  
0x60  
Hysteresis UI filter  
halt threshold  
0x61  
0x62  
0x63  
Hysteresis UI  
proximity threshold  
Proximity threshold used for hysteresis UI detections on  
channel 1  
Hysteresis UI touch  
threshold  
Touch threshold used for hysteresis UI detections on channel 1  
Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 12 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Sensor data output and flags  
The following registers should be monitored by the master to detect capacitive sensor activations:  
a) The Global events register (0x11) will show the IQS621’s main events. Bit0 is dedicated to  
the ProxFusion activations.  
Global events (0x11)  
Bit  
Number  
Data  
7
-
6
5
R
4
R
3
2
1
0
R
R
R
R
R
Access  
POWER  
MODE  
EVENT  
HYSTE-  
RESIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
TEMP  
ALS  
EVENT  
HALL  
EVENT  
Name  
-
EVENT EVENT  
b) The ProxFusion UI flags (0x12) provide more detail regarding the capacitive sensor outputs.  
An individual prox and touch output bit for channel 0 and 1 is provided in the ProxFusion UI  
flags register.  
ProxFusion UI flags (0x12)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
-
-
-
-
R
R
-
-
-
-
R
R
Access  
Name  
CH1_T  
CH0_T  
CH1_P  
CH0_P  
c) The Hysteresis UI flags (0x12) provide more detail regarding the capacitive sensor outputs  
for the Hysteresis UI. An individual prox and touch output bit for channel 1 is provided in the  
Hysteresis UI flags register.  
Hysteresis UI flags (0x13)  
Bit  
Number  
7
6
5
4
3
2
1
R
0
R
Data  
Access  
-
-
-
-
-
R
Signed  
output  
Name  
-
-
-
-
-
TOUCH  
PROX  
a) The Hysteresis UI output (0x14 & 0x15) provide the exact Hysteresis UI output value.  
Hysteresis UI output (0x14/0x15)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Hysteresis UI output low byte  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Hysteresis UI output high byte  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 13 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
3 Inductive sensing  
Introduction to inductive sensing  
The IQS621 provides inductive sensing capabilities in order to detect the presence of metal/metal-  
type objects. Prox and touch thresholds are widely adjustable and individual hysteresis settings are  
definable for each using the Hysteresis UI.  
Channel specifications  
The IQS621 requires both Rx sensing pins as well as the Tx pin for mutual inductive sensing.  
Channel 1 is dedicated to the Hysteresis UI.  
There are two distinct inductive user interfaces available to be used.  
Discreet button UI (always enabled):  
o Fully configurable 2 level threshold Prox & Touch activation.  
o Customizable UI halt time.  
Hysteresis UI:  
o Fully configurable 2 level threshold Prox & Touch activation.  
o 4 Hysteresis selection options  
o Customizable UI halt time.  
o Configurable filter halt threshold.  
Table 3.1  
CH0  
Mutual inductive sensor channel allocation  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
Mode  
Mutual  
inductive  
ͦ
ͦ
Hysteresis UI  
Key:  
o - Optional implementation  
- Fixed use for UI  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 14 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hardware configuration  
Table 3.2  
Mutual inductive hardware description  
Mutual inductive  
Software configuration  
Registers to configure for inductive sensing:  
Table 3.3  
Inductive sensing settings registers  
Recommended setting  
Name  
Description  
Address  
0x41  
ProxFusion Settings 0  
Sensor mode and  
configuration of channel 1.  
Sensor mode should be set to  
inductive mode  
Both RX0 and RX1 should be  
active on channel 1  
ProxFusion Settings 1  
ProxFusion Settings 2  
ProxFusion Settings 3  
ProxFusion Settings 4  
Channel 1 settings for the  
inductive sensor  
Full ATI is recommended for  
fully automated sensor tuning.  
0x43  
0x45  
0x47  
0x48  
ATI settings for the  
inductive sensor  
ATI target should be more than  
ATI base to achieve an ATI  
Additional settings for the  
inductive sensor  
None  
UI enable command and  
filter settings  
Enable the Hysteresis UI.  
Filter according to application.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 15 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Registers to configure for the hysteresis UI:  
Table 3.4  
Name  
Hysteresis UI settings registers  
Description  
Address  
0x48  
ProxFusion settings 4  
Hysteresis UI Settings  
Hysteresis UI enable command  
Hysteresis settings for the prox and touch thresholds  
Threshold setting to trigger a filter halt for on channel 1  
0x60  
Hysteresis UI filter halt  
threshold  
0x61  
0x62  
0x63  
Hysteresis UI proximity  
threshold  
Proximity threshold used for hysteresis UI detections on  
channel 1  
Hysteresis UI touch  
threshold  
Touch threshold used for hysteresis UI detections on  
channel 1  
Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 16 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Sensor data output and flags  
The following registers can be monitored by the master to detect inductive sensor related events.  
a) Global events (0x11) to prompt for inductive sensor activation. Bit3 denoted as  
HYSTERESIS UI EVENT will indicate the detection of a metal object using the inductive  
sensing.  
Global events (0x11)  
Bit  
Number  
Data  
Access  
7
-
6
5
4
3
2
R
1
R
0
R
R
R
R
R
POWER  
MODE  
EVENT  
HYSTE-  
RESIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
EVENT  
TEMP  
EVENT  
ALS  
HALL  
Name  
-
EVENT EVENT  
b) The Hysteresis UI flags (0x13) register provides the classic prox/touch two level activation  
outputs as well as a signed output bit to distinguish between whether the counts have risen  
or fallen below the LTA (direction of counts).  
Hysteresis UI flags (0x13)  
Bit  
Number  
7
6
5
4
3
2
1
R
0
R
Data  
Access  
-
-
-
-
-
R
Signed  
output  
Name  
-
-
-
-
-
TOUCH  
PROX  
c) Hysteresis UI output (0x14 - 0x15) registers will provide a combined 16-bit value to acquire  
the magnitude of the inductive sensed object.  
Hysteresis UI output (0x14 - 0x15)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Hysteresis UI output low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
Hysteresis UI output high byte  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 17 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
4 Ambient light sensing (ALS)  
Introduction to ambient light sensing  
The IQS621 employs two light sensitive semi-conductor areas on chip to realise an ambient light  
sensor. The sensor capabilities include:  
Absolute Lux output value  
4-bit ALS range output (0 10)  
Human eye response and IR compensated  
Dual threshold detection for day/night indication with hysteresis  
o 8-bit individual definable light and dark trigger thresholds  
o Dark threshold range: 0 1020 Lux in steps of 4 Lux.  
o Light threshold range: 0 4080 Lux in steps of 16 Lux.  
CS size, multipliers and charge frequency fully adjustable.  
Ch3 ALS channel 1:  
o Assigned to Wide spectrum ALS.  
Ch4 ALS channel 2:  
o Assigned to narrow spectrum ALS.  
Channel specifications  
The IQS621 provides 2 dedicated channels to ALS conversions.  
Table 4.1  
CH0  
Ambient light sensing - channel allocation  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
Sensor/UI type  
ALS  
Key:  
o - Optional implementation  
- Fixed use for UI  
Hardware configuration  
No external hardware required. Package placement and lens clearance required.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 18 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Software configuration  
Registers to configure for ALS sensing:  
Table 4.2 ALS sensing settings registers  
Name  
Description  
Recommended setting  
Address  
0x70  
ALS Settings 0  
ALS conversion settings and  
filter configuration settings  
None  
ALS Settings 1  
ALS channel ATI target and  
multiplier calibration value  
None  
0x71  
Registers to configure for the ALS UI:  
Table 4.3 ALS UI settings registers  
Description  
Name  
Address  
0x80  
ALS dark threshold Threshold setting value to detect a dark condition  
ALS light threshold Threshold setting value to detect a light condition  
0x81  
ALS to Lux divider  
Calibration value used to provide an absolute Lux output from  
ALS measurements  
0x82  
0x83  
ALS IR divider  
Calibration value used to compensate for the influence of IR  
spectrum radiation in ALS measurements  
Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 19 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Sensor data output and flags  
The following registers can be monitored by the master to detect ALS related events.  
a) The ALS EVENT (bit 2) in the Global events (0x11) register are dedicated to ALS related  
events. This bit will toggle when any change in ALS flags occurs and is automatically cleared  
after reading the registers.  
Global events (0x11)  
Bit  
Number  
Data  
Access  
7
-
6
5
R
4
R
3
2
1
0
R
R
R
R
R
POWER  
MODE  
EVENT  
HYSTE-  
RESIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
TEMP  
ALS  
EVENT  
HALL  
EVENT  
Name  
-
EVENT EVENT  
b) The ALS UI flags (0x16) register provides a 4-bit ALS Range value to indicate the current  
ALS reading (ALS range value bit 0-3). An additional LIGHT/DARK bit (bit 7) is used to  
indicate the ALS sensor status measured against the two-configurable light/dark threshold  
values in registers 0x80 and 0x81. The user can thus setup his own triggering thresholds for  
light and dark perceived readings and incorporate a hysteresis using this UI.  
ALS UI flags (0x16)  
Bit  
Number  
Data  
Access  
7
6
-
5
4
-
3
2
1
0
R
-
R
R
R
R
LIGHT/  
DARK  
Name  
Reserved  
ALS range value  
c) The ALS UI output (0x17 - 0x18) registers provide a 16-bit value of the ALS amplitude in  
units of Lux as obtained by the current sensor measurement.  
ALS UI output (0x17 - 0x18)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
Name  
R
R
R
R
R
R
R
R
ALS UI output low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
ALS UI output high byte  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 20 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
5 Hall-effect sensing  
Introduction to Hall-effect sensing  
The IQS621 has two internal Hall-effect sensing plates (on chip). No external sensing hardware is  
required for Hall-effect sensing.  
The Hall-effect measurement is essentially a current measurement of the induced current through  
the Hall-effect-sensor plates produced by the magnetic field passing perpendicular through each  
plate.  
Advanced digital signal processing is performed to provide sensible output data.  
Two threshold levels are provided (proximity & touch).  
Hall-effect output is linearized by inverting signals.  
North/South field direction indication provided.  
Differential Hall-effect sensing:  
o Removes common mode disturbances  
o North-South field indication  
Channel specifications  
Channels 5 and 6 are dedicated to Hall-effect sensing. Channel 5 performs the positive direction  
measurements and channel 6 will handle all measurements in the negative direction. These two  
channels are used in conjunction to acquire differential Hall-effect data and will always be used as  
input data to the Hall-effect UI’s.  
There is a dedicated Hall-effect user interface:  
a) Hall-effect switch UI  
Table 5.1  
CH0  
Hall-effect sensor channel allocation  
CH1 CH2 CH3 CH4  
CH5  
CH6  
Sensor/UI type  
Hall-effect  
switch UI  
Positive Negative  
Key:  
o - Optional implementation  
- Fixed use for UI  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 21 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hardware configuration  
Rudimentary hardware configurations.  
Axially polarized magnet (linear movement or magnet presence detection)  
Hall-effect  
push  
switch  
Smart  
cover  
Bar magnet (linear movement and magnet field detection)  
Slide  
switch  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 22 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Software configuration  
Registers to configure for Hall-effect sensing:  
Table 5.2  
Name  
Hall-effect sensing settings registers  
Description  
Recommended setting  
Address  
0x90  
Hall-effect settings 0 Charge frequency divider  
and ATI mode settings  
Charge frequency adjusts the  
conversion rate of the Hall-  
effect channels. Faster  
conversions consume less  
current.  
Full ATI is recommended for  
fully automated sensor tuning.  
Hall-effect settings 1 ATI base and target  
selections  
ATI target should be more than  
ATI base to achieve an ATI  
0x91  
0xA0  
0xA1  
0xA2  
Hall-effect switch UI  
settings  
Various settings for the  
Hall-effect switch UI  
None  
Hall-effect switch UI  
proximity threshold  
Proximity Threshold for UI Less than touch threshold  
Touch Threshold for UI None  
Hall-effect switch UI  
touch threshold  
Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 23 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Sensor data output and flags  
The following registers can be monitored by the master to detect Hall-effect related events.  
d) The HALL_EVENT (bit 1) in the Global events (0x11) register are dedicated to Hall-effect  
related events. This bit will toggle when either one of the three Hall flags is set and is  
automatically cleared after reading the registers.  
Global events (0x11)  
Bit  
Number  
Data  
Access  
7
-
6
5
R
4
R
3
2
1
0
R
R
R
R
R
POWER  
MODE  
EVENT  
HYSTE-  
REISIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
TEMP  
ALS  
EVENT  
HALL  
EVENT  
Name  
-
EVENT EVENT  
e) The Hall UI flags (0x19) register provides the standard two level activation output (prox and  
touch) as well as a HALL_N/S bit to indicate the magnet polarity orientation.  
Hall-effect UI flags (0x19)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
-
-
-
-
-
R
R
R
Access  
HALL  
TOUT  
HALL  
POUT  
HALL  
N/S  
Name  
-
-
-
-
-
f) The Hall UI output (0x1A - 0x1B) registers provide a 16-bit value of the Hall-effect amplitude  
detected by the sensor.  
Hall-effect UI output (0x1A - 0x1B)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
R
R
R
R
R
R
R
R
Access  
Name  
Hall-effect UI output low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
Hall-effect UI output high byte  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 24 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
6 Temperature monitoring  
Introduction to temperature monitoring  
The IQS621 provides temperature monitoring capabilities which can be used for temperature change  
detection in order to ensure the integrity of other sensing technology. The use of the temperature  
sensor is primarily to reseed other sensor channels to account for sudden changes in environmental  
conditions.  
The IQS621 uses a linearly proportional to absolute temperature sensor for temperature data. The  
temperature output data is given by,  
푎. 2ꢁ9  
푇 =  
+ 푐  
푏. 퐶퐻ꢂ  
Where 푎, 푏 and are constants that can be determined to provide a required output data as a function  
of device temperature. Additionally, the channel setup must be calculated during a testing process.  
Table 6.1  
Temperature calibration setting registers and ranges  
IQS621  
Parameter  
Description  
Register  
Higher nibble  
Lower nibble  
0xC3  
Range  
1 16  
1 16  
0 255  
Name  
푀푢푙푡푖푝푙푖푒푟  
퐷푖푣푖푑푒푟  
푂푓푓푠푒푡  
0xC2  
Channel specifications  
The IQS621 requires only external passive components to do temperature monitoring (no additional  
circuitry/components required). The temperature UI will be executed using data from channel 2.  
Table 6.2  
CH0  
Temperature monitoring channel allocation  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
Sensor / UI type  
Temperature  
trip and output  
Key:  
o - Optional implementation  
- Fixed use for UI  
Hardware configuration  
No additional hardware required. Temperature monitoring is realized on-chip.  
Software configuration  
Registers to configure for temperature sensing:  
Table 6.3  
Temperature sensing settings registers  
Name  
Description  
Recommended setting  
Address  
0xC0  
Temperature UI settings  
Channel reseed settings  
Reseed enable should be  
set  
Multipliers channel 2  
Temperature sensor channel  
multiplier selection  
Dependent on calibration  
step  
0xC1  
0xC2  
0xC3  
Temperature calibration  
data 0  
4-bit Multiplier (+1) and  
divider (+1) calibration  
values  
Requires sample  
calibration  
Temperature calibration  
data 1  
8-bit Offset () calibration  
Requires sample  
calibration  
value  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 25 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
Sensor data output and flags  
The following registers can be monitored by the master to detect temperature sensor related events.  
a) Global events (0x11) to prompt for temperature sensor activation. Bit4 denoted as  
TEMP_EVENT will indicate the detection of a temperature threshold trigger using the  
temperature sensing.  
Global events (0x11)  
Bit  
Number  
Data  
Access  
7
-
6
5
R
4
R
3
2
1
0
R
R
R
R
R
POWER  
MODE  
EVENT  
HYSTE-  
RESIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
TEMP  
ALS  
EVENT  
HALL  
EVENT  
Name  
-
EVENT EVENT  
b) The Temperature UI flags (0x1C) register provides a single bit for temperature trip  
indication.  
Temperature UI flags (0x1C)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Temp  
Trip  
Name  
Reserved  
c) The Temperature UI output (0x1D - 0x1E) registers will provide a combined 16-bit value to  
acquire the magnitude of the temperature sensed.  
Temperature UI Output (0x1D - 0x1E)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
R
R
R
R
R
R
R
R
Access  
Name  
Temperature UI output low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
Temperature UI output high byte  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 26 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
7 Device clock, power management and mode operation  
Device main oscillator  
The IQS621 has a 16MHz main oscillator (default enabled) to clock all system functionality.  
An option exists to reduce the main oscillator to 8MHz. This will result in all system timings, charge  
transfers and sample rates to be slower by half of the default implementations.  
To set this option this:  
o As a software setting Set the System_settings: bit4 = 1, via an I2C command.  
o As a permanent setting Set the OTP option in OTP Bank 0: bit2 = 1, using Azoteq USBProg  
program.  
Device modes  
The IQS621 supports the following modes of operation;  
Normal mode (Fixed report rate)  
Low power mode (Reduced report rate, no UI execution)  
Ultra-low power mode (Only channel 0 is sensed for a prox)  
Halt mode (Suspended/disabled)  
Note: Auto modes must be disabled to enter or exit halt mode.  
The device will automatically switch between the different operating modes by default. However, this  
Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit (Power_mode_settings  
0xD2: bit5) to confine device operation to a specific power mode. The POWER_MODE bits  
(Power_mode_settings 0xD2: bit4-3) can then be used to specify the desired mode of operation.  
Normal mode  
Normal mode is the fully active sensing mode to function at a fixed report rate specified in the Normal  
mode report rate (0xD3) register. This 8-bit value is adjustable from 0ms 255ms in intervals of 1ms.  
Note: The device’s low power oscillator has an accuracy as specified in section 9.  
Low power mode  
Low power mode is a reduced sensing mode where all channels are sensed but at a reduced  
oscillator speed. The sample rate can be specified in the Low Power mode report rate (0xD4)  
register. The 8-bit value is adjustable from 0ms 255ms in intervals of 1ms. Reduced report rates  
also reduce the current consumed by the sensor.  
Note: The device’s low power oscillator has an accuracy as specified in section 9.  
Ultra-low power mode  
Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed and no other  
channels or UI code are executed. Set the EN_ULP_MDE bit (Power_mode_settings: bit6) to enable  
use of the ultra-low power mode. The sample rate can be specified in the Low Power mode report  
rate (0xD5) register. The 8-bit value is adjustable from 0ms 4sec in intervals of 16ms.  
Wake up will occur on prox detection on channel 0.  
Halt mode  
Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The device  
requires an I2C command from a master to explicitly change the power mode out of the halt state  
before any sensor functionality can continue.  
Mode time  
The mode time is specified in the Auto mode timer (0xD6) register. The 8-bit value is adjustable from  
0ms 2 min in intervals of 500ms.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 27 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
System reset  
The IQS621 device monitor’s system resets and events.  
a) Every device power-on and reset event will set the Show Reset bit (System flags 0x10: bit7)  
and the master should explicitly clear this bit by writing it active to acknowledge a valid reset.  
b) The system events will also be indicated with the Global events register’s SYS_EVENT bit  
(Global events 0x11: bit4) if any system event occur such as a reset. This event will  
continuously trigger until the reset has been acknowledged.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 28 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
8 Communication  
I2C module specification  
The device supports a standard two wire I2C interface with the addition of an RDY (ready interrupt)  
line. The communications interface of the IQS621 supports the following:  
Fast-mode (Fm) standard I2C up to 400kHz.  
Streaming data as well as event mode.  
The master may address the device at any time. If the IQS621 is not in a communication  
window, the device will return an ACK after which clock stretching may be induced until a  
communication window is entered. Additional communication checks are included in the  
main loop in order to reduce the average clock stretching time.  
The provided interrupt line (RDY) is an open-drain active low implementation and indicates  
a communication window.  
I2C Read  
To read from the device a current address read can be performed. This assumes that the address-  
command is already setup as desired.  
Current Address Read  
Start  
Control byte  
Data n  
Data n+1  
Stop  
S
Addr + READ  
ACK  
ACK  
NACK  
S
Current Address Read  
If the address-command must first be specified, then a random read must be performed. In this  
case, a WRITE is initially performed to setup the address-command, and then a repeated start is  
used to initiate the READ section.  
Random Read  
Address-  
command  
Start  
Control byte  
Start  
Control byte  
Data n  
Stop  
S
Addr + WRITE ACK  
ACK  
S
Addr + READ  
ACK  
NACK  
S
Random Read  
I2C Write  
To write settings to the device a Data Write is performed. Here the Address-Command is always  
required, followed by the relevant data bytes to write to the device.  
Data Write  
Address-  
Command  
Start  
Control byte  
Data n  
Data n+1  
Stop  
S
Addr + WRITE ACK  
ACK  
ACK  
ACK  
S
I2C Data Write  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 29 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Stop-bit disable option  
The IQS621 offer:  
an additional I2C settings register (0xD9) specifically added for stop-bit disable functionality,  
as well as a RDY timeout period register (0xD8) in order to set the required timeout period  
for termination of any communication windows (RDY = Low) if no I2C activity is present on  
SDA and SCL pins.  
Customers using a MCU with a binary serial-encoder peripheral which is not fully I2C compatible (but  
provide some crude serial communication functions) can use this option to configure the IQS621 so  
that any auto generated stop command from the serial peripheral can be ignored by the IQS621 I2C  
hardware. This will restrict the IQS621 from immediately exiting a communication window during  
event mode (reduced communication only for events) until all required communication has been  
completed and a stop command can correctly be transmitted. Please refer to the figures below for  
serial data transmission examples.  
Please note:  
1. Stop-bit disable and enable must be performed at the beginning and end of a communication  
window. The first and last I2C register to be written to ensure no unwanted communication  
window termination.  
2. Leaving the Stop-bit disabled will result in successful reading of registers but will not execute  
any commands written over I2C in a communication window being terminated after a RDY  
timeout and with no IQS recognised stop command.  
3. The default RDY timeout period for IQS621 is purposefully long (10.24ms) for slow  
responding MCU hardware architectures. Please set this register according to your  
requirements/preference.  
Stop-bit Disable  
Communication  
window open  
Address-  
Command  
Disable  
stop-bit  
Ignored Continue with  
Start  
Control byte  
stop  
reads / writes  
RDY = LOW  
S
Addr + WRITE ACK  
0xD9  
ACK  
0x81  
ACK  
S
I2C Stop-bit Disable  
Stop-bit Enable  
Reads / Writes  
Finished  
Address-  
Command  
Enable  
stop-bit  
Communication  
window closed  
Start  
Control byte  
Stop  
S
Addr + WRITE ACK  
0xD9  
ACK  
0x01  
ACK  
S
RDY = HIGH  
I2C Stop-bit Enable  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 30 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
Device address and sub-addresses  
The default device address is 0x44 = DEFAULT_ADDR.  
Alternative sub-address options are definable in the following one-time programmable bits:  
OTP Bank0 (bit3; 0; bit1; bit0) = SUB_ADDR_0 to SUB_ADDR_7  
a) Default address:  
b) Sub-address:  
c) Sub-address:  
d) Sub-address:  
e) Sub-address:  
f) Sub-address:  
g) Sub-address:  
h) Sub-address:  
0x44 = DEFAULT_ADDR (0x44)  
0x45 = DEFAULT_ADDR (0x44)  
0x46 = DEFAULT_ADDR (0x44)  
0x47 = DEFAULT_ADDR (0x44)  
0x4C = DEFAULT_ADDR (0x44)  
0x4D = DEFAULT_ADDR (0x44)  
0x4E = DEFAULT_ADDR (0x44)  
0x4F = DEFAULT_ADDR (0x44)  
OR  
OR  
OR  
OR  
OR  
OR  
OR  
OR  
SUB_ADDR_0 (0000b)  
SUB_ADDR_1 (0001b)  
SUB_ADDR_2 (0010b)  
SUB_ADDR_3 (0011b)  
SUB_ADDR_4 (1000b)  
SUB_ADDR_5 (1001b)  
SUB_ADDR_6 (1010b)  
SUB_ADDR_7 (1011b)  
Additional OTP options  
All one-time-programmable device options are located in OTP bank 0.  
OTP Bank0  
Bit  
Number  
7
-
6
5
4
3
2
1
0
COMMS  
ATI  
SUB  
ADR 2  
Name  
Internal use  
8MHz  
SUB ADR 0_1  
Bit definitions:  
Bit 6: Communication during ATI  
o 0: No streaming events are generated during ATI  
o 1: Communication continues as setup regardless of ATI state.  
Bit4-5: Internal use  
o Do not configure  
Bit 2: Main Clock frequency selection  
o 0: Run FOSC at 16MHz  
o 1: Run FOSC at 8MHz  
Bit 3,1,0: I2C sub-address  
o I2C address = 0x44 OR SUB_ADDR  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 31 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Recommended communication and runtime flow diagram  
The following is a basic master program flow diagram to communicate and handle the device. It  
addresses possible device events such as output events, ATI and system events (resets).  
POR  
Reset  
occured  
Clear  
Show_Reset  
Show Reset?  
Setup &  
Initialization  
No  
Yes  
ATI  
IN ATI?  
Yes  
Runtime  
No  
No  
Global Event?  
System Event?  
Yes  
Valid event?  
Yes  
Retrieve  
event data  
Master command structure and runtime event handling flow diagram  
It is recommended that the master verifies the status of the System_Flags0 bits to identify events  
and resets. Detecting either one of these should prompt the master to the next steps of handling the  
IQS621.  
Streaming mode communication is used for detail sensor evaluation during prototyping and/or  
development phases.  
Event mode communication is recommended for runtime use of the IQS621. This reduce the  
communication on the I2C bus and report only triggered events.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 32 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
9 Memory map  
The full memory map is summarized below. Register groups are explained in the latter subsections.  
Table 9.1  
IQS621 Memory map index  
Item Name  
Full  
Address  
0x00  
0x01  
0x02  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x30  
0x31  
0x32  
0x33  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
Group Name  
Data Access  
Product number  
Software number  
Hardware number  
System flags  
Global events  
ProxFusion UI flags  
Hysteresis UI flags  
Hysteresis UI output 0  
Hysteresis UI output 1  
ALS flags  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Only  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Device information data  
Flags and user interface data  
ALS output low  
ALS output high  
Hall-effect UI flags  
Hall-effect UI output 0  
Hall-effect UI output 1  
Temperature UI flags  
Temperature output low  
Temperature output high  
Channel 0 counts low  
Channel 0 counts high  
Channel 1 counts low  
Channel 1 counts high  
Channel 2 counts low  
Channel 2 counts high  
Channel 3 counts low  
Channel 3 counts high  
Channel 4 counts low  
Channel 4 counts high  
Channel 5 counts low  
Channel 5 counts high  
Channel 6 counts low  
Channel 6 counts high  
Channel 0 LTA low  
Channel 0 LTA high  
Channel 1 LTA low  
Channel 1 LTA high  
ProxFusion settings 0_0  
ProxFusion settings 0_1  
ProxFusion settings 1_0  
ProxFusion settings 1_1  
ProxFusion settings 2_0  
ProxFusion settings 2_1  
ProxFusion settings 3_0  
ProxFusion settings 3_1  
ProxFusion settings 4  
ProxFusion settings 5  
Compensation Ch0  
Compensation Ch1  
Multipliers Ch0  
Channel counts (raw data)  
LTA values (filtered data)  
ProxFusion sensor settings  
Multipliers Ch1  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 33 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
0x50  
0x51  
0x52  
0x53  
0x54  
0x60  
0x61  
0x62  
0x63  
0x70  
0x71  
0x72  
0x73  
0x80  
0x81  
0x82  
0x83  
0x90  
0x91  
0x92  
0x93  
0xA0  
0xA1  
0xA2  
0xC0  
0xC1  
0xC2  
0xC3  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
Prox threshold Ch0  
Touch threshold Ch0  
Prox threshold Ch1  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
Read-Write  
ProxFusion UI settings  
Touch threshold Ch1  
ProxFusion UI halt time  
Hysteresis UI settings  
Hysteresis UI filter halt threshold  
Hysteresis UI prox threshold  
Hysteresis UI touch threshold  
ALS settings 0  
Hysteresis UI settings  
ALS sensor settings  
ALS UI settings  
ALS settings 1  
ALS filter speed  
Multipliers Ch3 Ch4  
ALS dark threshold  
ALS light threshold  
ALS to Lux divider  
ALS IR divider  
Hall-effect settings 0  
Hall-effect settings 1  
Hall sensor settings  
Hall switch UI settings  
Temperature UI settings  
Compensation Ch4 and Ch5  
Multipliers Ch4 and Ch5  
Hall-effect switch UI settings  
Hall-effect switch UI prox threshold  
Hall-effect switch UI touch threshold  
Temperature UI settings  
Multipliers Ch2  
Temperature calibration 0  
Temperature calibration 1  
System settings  
Active channels  
Power mode settings  
Normal power mode report rate  
Low power mode report rate  
Ultra-low power mode report rate  
Auto mode time  
Device and power mode  
settings  
Global event mask  
RDY timeout period  
I2C settings  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 34 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Device Information Data  
Product number  
Product number (0x00)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Device product number  
Bit definitions:  
Bit 7-0: Device product number  
o 0x46 = D’70’: IQS621 product number  
Software number  
Software number (0x01)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Access  
Name  
Device software number  
Bit definitions:  
Bit 7-0: Device software number  
o 0x09 = D’09’: IQS621 production software number  
Hardware number  
Hardware number (0x02)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Device hardware number  
Bit definitions:  
Bit 7-0: Device hardware number  
o 0x82 = D’130’: IQS621 hardware number  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 35 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Flags and user interface data  
System flags  
System flags (0x10)  
Bit  
Number  
Data  
Access  
7
6
-
5
-
4
3
2
R
1
R
0
R
R
R
R
SHOW  
RESET  
NP SEG  
ACTIVE  
Name  
-
-
POWER MODE  
IN ATI  
EVENT  
Bit definitions:  
Bit 7: Reset indicator  
o 0: No reset event  
o 1: A device reset has occurred and needs to be acknowledged.  
Bit 4-3: Current power-mode indicator  
o 00: Normal mode  
o 01: Low power mode  
o 10: Ultra-low power mode  
o 11: Halt Mode  
Bit 2: ATI busy indicator  
o 0: No channels are in ATI  
o 1: One or more channels are in ATI  
Bit 1: Global event indicator  
o 0: No new event to service  
o 1: An event has occurred and should be serviced  
Bit 0: Normal power segment indicator  
o 0: Not performing a normal power update  
o 1: Busy performing a normal power update  
Global events  
Global events (0x11)  
Bit  
Number  
Data  
7
-
6
5
R
4
R
3
2
1
0
R
R
R
R
R
Access  
POWER  
MODE  
EVENT  
HYSTE-  
RESIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
TEMP  
ALS  
EVENT  
HALL  
EVENT  
Name  
-
EVENT EVENT  
Bit definitions:  
Bit 6: Power mode event flag  
o 0: No event to report  
o 1: A power mode event has occurred and should be handled  
Bit 5: System event flag  
o 0: No event to report  
o 1: A System event has occurred and should be handled  
Bit 4: Temperature event flag  
o 0: No event to report  
o 1: A Temperature event has occurred and should be handled  
Bit 3: Hysteresis UI event flag  
o 0: No event to report  
o 1: A Hysteresis event has occurred and should be handled  
Bit 2: ALS event flag  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 36 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
o 0: No event to report  
o 1: An ALS event has occurred and should be handled  
Bit 1: Hall-effect event flag  
o 0: No event to report  
o 1: A Hall-effect event has occurred and should be handled  
Bit 0: ProxSense event flag  
o 0: No event to report  
o 1: A capacitive key event has occurred and should be handled  
ProxFusion UI flags  
ProxFusion UI flags (0x12)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
Name  
-
-
-
-
R
R
-
-
-
-
R
R
CH1_T  
CH0_T  
CH1_P  
CH0_P  
Bit definitions:  
Bit 5: Ch1 touch indicator  
o 0: Delta below touch threshold  
o 1: Delta above touch threshold  
Bit 4: Ch0 touch indicator  
o 0: Delta below touch threshold  
o 1: Delta above touch threshold  
Bit 1: Ch1 proximity indicator  
o 0: Delta below proximity threshold  
o 1: Delta above proximity threshold  
Bit 0: Ch0 proximity indicator  
o 0: Delta below proximity threshold  
o 1: Delta above proximity threshold.  
Hysteresis UI flags  
Hysteresis UI flags (0x13)  
Bit  
Number  
Data  
7
-
6
-
5
-
4
-
3
-
2
1
R
0
R
R
Access  
Signed  
output  
Name  
-
-
-
-
-
TOUCH  
PROX  
Bit definitions:  
Bit 2: Delta direction signed output  
o 0: Counts rise above the LTA  
o 1: Counts fall below the LTA  
Bit 1: Hysteresis UI touch indicator  
o 0: Delta below touch threshold  
o 1: Delta above touch threshold  
Bit 0: Hysteresis proximity indicator  
o 0: Delta below prox threshold  
o 1: Delta above prox threshold  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 37 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hysteresis UI output  
Hysteresis UI output (0x14/0x15)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Hysteresis UI output low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
Hysteresis UI output high byte  
Bit definitions:  
Bit 15-0: Hysteresis UI output  
o 0-65 535: Hysteresis UI output value  
ALS UI flags  
ALS UI flags (0x16)  
Bit  
Number  
Data  
7
6
-
5
4
3
2
1
0
R
-
-
R
R
R
R
Access  
LIGHT /  
DARK  
Name  
Reserved  
ALS Range Value  
Bit definitions:  
Bit 7: Light/Dark  
o 0: Light indication  
o 1: Dark indication  
Bit 3-0: ALS Range value  
o 0-10 range value of ALS measurement  
ALS UI output  
ALS UI output (0x17/0x18)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Bit  
Number  
Data  
ALS UI Output Low Byte  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Access  
Name  
ALS UI Output High Byte  
Bit definitions:  
Bit 15-0: ALS UI output  
o 0-65 535: ALS UI output value in Lux  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 38 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hall-effect UI flags  
Hall-effect UI flags (0x19)  
Bit  
Number  
Data  
Access  
7
-
6
5
-
4
-
3
-
2
R
1
R
0
-
-
R
HALL  
N/S  
Name  
-
-
-
-
TOUCH  
PROX  
Bit definitions:  
Bit 2: Hall-effect touch indicator  
o 0: Field strength below touch level  
o 1: Field strength above touch level  
Bit 1: Hall-effect proximity indicator  
o 0: Field strength below proximity level  
o 1: Field strength above proximity level  
Bit 0: Hall-effect North South Field indication  
o 0: North field present  
o 1: South field present  
Hall-effect UI output  
Hall-effect UI output (0x1A/0x1B)  
Bit  
Number  
Data  
Access  
Name  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Hall-effect UI output low byte  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Access  
Name  
Hall-effect UI output high byte  
Bit definitions:  
Bit 15-0: Hall-effect UI output  
o 0-65 535: Hall-effect UI output value  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 39 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Temperature UI flags  
Temperature UI flags (0x1C)  
Bit  
Number  
Data  
Access  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
R
TEMP  
TRIP  
Name  
-
-
-
-
-
-
-
Bit definitions:  
Bit 7: Temperature trip indicator  
o 0: Temperature below trip level  
o 1: Temperature above trip level  
Temperature output  
Temperature output (0x1D/0x1E)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
Temperature output low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
Temperature output high byte  
Bit definitions:  
Bit 15-0: Temperature output  
o 0-65 535: Temperature output value  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 40 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Channel counts (raw data)  
Channel counts Ch0/1/2/3/4/5/6 (0x20/0x21-0x2C/0x2D)  
Bit  
Number  
Data  
Access  
Name  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Channel data low byte  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Access  
Name  
Channel data high byte  
Bit definitions:  
Bit 15-0: AC filter or raw count value  
LTA values (filtered data)  
LTA Ch0/1 (0x30/0x31-0x32/0x33)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R
R
R
R
R
R
R
R
Name  
LTA low byte  
Bit  
Number  
Data  
Access  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
Name  
LTA high byte  
Bit definitions:  
Bit 15-0: LTA filter value  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 41 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion sensor settings block 1  
ProxFusion settings 0  
9.6.1.1 Capacitive sensing  
ProxFusion settings 0_0/1 (0x40-0x41)  
Bit  
Number  
Data  
7
6
5
-
4
-
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Capacitive sensor  
mode  
Internal Internal  
Name  
TX SELECT  
RX SELECT  
use  
use  
Fixed  
value  
0
0
0
0
0
0
0
1
Bit definitions:  
Bit 6-7: Sensor mode  
o 00: Capacitive sensing mode  
Bit 3-2: TX Select  
o 00: TX 0 and TX 1 is disabled  
Bit 0-1: RX select  
o 00: RX 0 and RX 1 is disabled  
o 01: RX 0 is enabled  
o 10: RX 1 is enabled  
o 11: RX 0 and RX 1 is enabled  
9.6.1.2 Inductive sensing  
ProxFusion settings 0_1 (0x41)  
Bit  
Number  
Data  
7
6
5
-
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Inductive sensor  
mode  
Internal Multiplier  
Name  
TX SELECT  
RX SELECT  
use  
range  
Fixed  
value  
1
0
0
0
0
1
1
Bit definitions:  
Bit 7-6: Sensor mode  
o 10: Inductive sensor mode  
Bit 4: Multiplier range  
o 0: Large  
Bit 3-2: TX Select  
o 1: Small  
o 00: TX 0 and TX 1 is disabled  
Bit 1-0: RX Select  
o 11: RX 0 and RX 1 is enabled  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 42 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion settings 1  
9.6.2.1 Capacitive sensing  
ProxFusion settings 1_0/1 (0x42-0x43)  
Bit  
Number  
Data  
Access  
7
6
5
4
3
-
2
-
1
0
-
-
R/W  
CSz  
R/W  
R/W  
R/W  
R/W  
Name  
CHARGE FREQ  
0x67  
Internal use  
AUTO ATI MODE  
Default  
0
1
1
0
0
1
1
1
Bit definitions:  
Bit 6: CS size  
o 0: Prox storage capacitor size is 15 pF  
o 1: Prox storage capacitor size is 60 pF  
Bit 5-4: Charge frequency divider  
o 00: 1/2  
o 10: 1/8  
o 11: 1/16  
o 01: 1/4  
Bit 1-0: Auto ATI Mode  
o 00: ATI disabled  
o 01: Partial ATI (all multipliers are fixed)  
o 10: Semi-partial ATI (coarse multipliers are fixed)  
o 11: Full-ATI  
9.6.2.2 Inductive sensing  
ProxFusion settings 1_1 (0x43)  
Bit  
Number  
Data  
Access  
Name  
7
6
5
4
3
2
1
0
-
-
R/W  
CSz  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CHARGE FREQ  
0x4F  
PROJ BIAS  
AUTO ATI MODE  
Fixed  
use  
0
1
0
0
1
1
1
1
Bit definitions:  
Bit 6: CS size  
o 0: Prox storage capacitor size is 15pF  
o 1: Prox storage capacitor size is 60pF  
Bit 5-4: Charge frequency divider  
o 00: 1/2  
o 10: 1/8  
o 11: 1/16  
o 01: 1/4  
Bit 3-2: Projected bias / Internal resistor (all modes except prox)  
o 00: 2.5µA / 88kΩ  
o 01: 5µA / 66kΩ  
Bit 1-0: Auto ATI Mode  
o 10: 10µA / 44kΩ  
o 11: 20µA / 22kΩ  
o 00: ATI disabled  
o 01: Partial ATI (all multipliers are fixed)  
o 10: Semi-Partial ATI (coarse multipliers are fixed)  
o 11: Full-ATI  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 43 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion settings 2  
9.6.3.1 Capacitive sensing  
ProxFusion settings 2_0/1 (0x44 - 0x45)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
ATI BASE  
ATI TARGET (x32)  
0xD0  
Default  
1
1
0
1
0
0
0
0
Bit definitions:  
Bit 7-6: Auto ATI base value  
o 00: 75  
o 10: 150  
o 11: 200  
o 01: 100  
Bit 5-0: Auto ATI Target  
o ATI Target is 6-bit value x 32  
9.6.3.2 Inductive sensing  
ProxFusion settings 2_1 (0x45)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
ATI BASE  
ATI TARGET (x32)  
0xD0  
Default  
1
1
0
1
0
0
0
0
Bit definitions:  
Bit 7-6: Auto ATI base value  
o 00: 75  
o 01: 100  
o 10: 150  
o 11: 200  
Bit 5-0: Auto ATI Target  
o ATI Target is 6-bit value x 32  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 44 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion settings 3  
9.6.4.1 Capacitive sensing  
ProxFusion settings 3_0/1 (0x46-0x47)  
Bit  
Number  
Data  
Access  
7
6
5
4
-
3
2
1
0
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UP  
LENGTH  
EN  
UP LENGTH  
SELECT  
Internal  
use  
Name  
CS DIV  
0
PASS LENGTH  
-
0x06  
Default  
0
0
0
0
1
1
0
Bit definitions:  
Bit 7-6: Up Length Select (requires UP_LENGTH_EN = 1 for use)  
o 00: Up length = 0010  
o 01: Up length = 0110  
Bit 5: CS divider  
o 0: Normal CS cap size  
Bit 3: Up length select enable  
o 0: Up length select is disabled  
o 10: Up length = 1010  
o 11: Up length = 1110  
o 1: CS cap size 5 times smaller  
o 1: Up length select is enabled (value in bit 7-6 is used)  
Bit 2-1: Pass length select  
o 00: Pass length = 001  
o 01: Pass length = 011  
o 10: Pass length = 101  
o 11: Pass length = 111  
9.6.4.2 Inductive sensing  
ProxFusion settings 3_1 (0x47)  
Bit  
Number  
Data  
7
6
5
4
-
3
2
1
0
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
UP  
LENGTH  
EN  
UP LENGTH  
SELECT  
Internal  
use  
Name  
CS DIV  
1
PASS LENGTH  
-
0x36  
Fixed  
use  
0
0
1
0
1
1
0
Bit definitions:  
Bit 7-6: Up length select (requires UP_LENGTH_EN = 1 for use)  
o 00: Up length = 0010  
o 01: Up length = 0110  
Bit 5: CS divider  
o 0: Normal CS cap size  
Bit 3: Up length select enable  
o 0: Up length select is disabled  
o 10: Up length = 1010  
o 11: Up length = 1110  
o 1: CS cap size 5 times smaller  
o 1: Up length select is enabled (value in bit 7-6 is used)  
Bit 2-1: Pass length select  
o 00: Pass length = 001  
o 01: Pass length = 011  
o 10: Pass length = 101  
o 11: Pass length = 111  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 45 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion settings 4  
9.6.5.1 Capacitive sensing  
ProxFusion settings 4 (0x48)  
Bit  
Number  
Data  
Access  
7
-
6
-
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TWO  
SIDED  
EN  
Internal  
use  
ACF  
DISABLE  
Name  
-
LTA BETA  
ACF BETA  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 5: Two-sided detection  
o 0: Bidirectional detection  
disabled  
o 1: Bidirectional detection  
enabled  
Bit 4: Disable AC Filter  
o 0: AC filter enabled  
Bit 3-2: Long term average beta value  
o 1: AC filter disabled  
o 00: 7  
o 01: 8  
o 10: 9  
o 10: 3  
o 11: 10  
o 11: 4  
Bit 1-0: AC filter beta value  
o 00: 1  
o 01: 2  
9.6.5.2 Inductive sensing  
ProxFusion settings 4 (0x48)  
Bit  
Number  
Data  
7
-
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
HYSTE-  
RESIS UI SIDED  
TWO  
ACF  
DISABLE  
Name  
-
LTA BETA  
ACF BETA  
EN  
EN  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 6: Hysteresis UI enable  
o 0: Hysteresis UI is disabled  
Bit 5: Two-sided detection  
o 0: Bidirectional detection  
disabled  
o 1: Hysteresis UI is enabled  
o 1: Bidirectional detection  
enabled  
Bit 4: Disable AC filter  
o 0: AC filter enabled  
Bit 3-2: Long term average beta value  
o 1: AC filter disabled  
o 00: 7  
o 01: 8  
o 10: 9  
o 10: 3  
o 11: 10  
Bit 1-0: AC filter beta value  
o 00: 1  
o 01: 2  
o 11: 4  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 46 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion settings 5  
ProxFusion settings 5 (0x49)  
Bit  
Number  
Data  
Access  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Name  
Internal use  
0x01  
Default  
0
0
0
0
0
0
0
1
Bit definitions:  
Bit 7-0: Internal use  
Compensation  
Compensation Ch0/1/2/3 (0x4A - 0x4B)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Compensation (0-7)  
Bit definitions:  
Bit 7-0: Compensation (7-0)  
o 0-255: Lower 8-bits of the Compensation value.  
Multipliers  
Multipliers Ch0/1/2/3 (0x4C-0x4D)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Compensation (8-9)  
Multiplier coarse  
Multiplier fine  
Bit definitions:  
Bit 7-6: Compensation (8-9)  
o 0-3: Upper 2-bits of the Compensation value.  
Bit 5-4: Multiplier coarse  
o 0-3: Coarse multiplier selection  
Bit 3-0: Multiplier fine  
o 0-15: Fine multiplier selection  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 47 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ProxFusion UI settings  
Prox threshold Ch0/1  
Prox Threshold Ch0/1 (0x50/0x52)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Prox threshold value  
0x16 = D’22  
Default  
0
0
0
1
0
1
1
0
Bit definitions:  
Bit 7-0: Prox threshold = Prox threshold value  
Touch threshold Ch0/1  
Touch Threshold Ch0/1 (0x51/0x53)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Touch threshold value  
0x20 = D’32  
Default  
0
0
1
0
0
0
0
0
Bit definitions:  
Bit 7-0: Touch threshold = Touch threshold value * LTA/256  
ProxFusion discrete UI halt time  
ProxFusion discrete UI halt time (0x54)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Halt time  
0x28 = D’40 * 500ms = 20sec  
Default  
0
0
1
0
0
0
0
0
Bit definitions:  
Bit 7-0: Halt time in 500ms increments (decimal value x 500ms)  
o 0 127sec: ProxFusion discrete UI halt time  
o 0xFF = 255: Always halt filters  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 48 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hysteresis UI settings  
Hysteresis UI settings  
Hysteresis UI settings (0x60)  
Bit  
Number  
Data  
Access  
Name  
7
6
5
4
3
2
1
0
-
-
-
-
R/W  
R/W  
-
-
-
-
R/W  
R/W  
Hysteresis_T  
Hysteresis_P  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 5-4: Touch hysteresis  
o 00: Disabled  
o 10: 1/8 of threshold  
o 11: 1/16 of threshold  
o 01: 1/4 of threshold  
Bit 1-0: Proximity hysteresis  
o 00: Disabled  
o 10: 1/8 of threshold  
o 11: 1/16 of threshold  
o 01: 1/4 of threshold  
Hysteresis UI filter halt threshold  
Hysteresis UI filter halt threshold (0x61)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Hysteresis UI filter halt threshold value  
0x01 = D’01  
Default  
0
0
0
0
0
0
0
1
Bit definitions:  
Bit 7-0: Hysteresis UI filter halt threshold  
o 0-255: Hysteresis UI filter halt threshold value  
Hysteresis UI proximity threshold  
Hysteresis UI proximity threshold (0x62)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Proximity threshold value  
0x16 = D’22  
Default  
0
0
0
1
0
1
1
0
Bit definitions:  
Bit 7-0: Proximity threshold  
o 0-255: Proximity threshold value  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 49 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hysteresis UI touch threshold  
Hysteresis UI touch threshold (0x63)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Touch threshold value  
0x20 = D’32 * 4 = 128  
Default  
0
0
1
0
0
0
0
0
Bit definitions:  
Bit 7-0: Touch threshold  
o 0-1020: Touch threshold value * 4  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 50 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ALS sensor settings  
ALS settings 0  
ALS settings 0 (0x70)  
Bit  
Number  
Data  
Access  
7
-
6
-
5
4
3
2
1
-
0
-
R/W  
R/W  
R/W  
R/W  
CSz  
Internal  
use  
INC  
DELAY  
Name  
-
CHARGE FREQ  
0x04  
-
-
Default  
0
0
0
0
0
1
0
0
Bit definitions:  
Bit 5-4: Charge frequency divider  
o 00: 1/2  
o 01: 1/4  
o 10: 1/8  
o 11: 1/16  
Bit 3: Inc Delay  
o 0: Pre-charge delay is at default  
o 1: Increase pre-charge delay to improve low light performance  
Bit 2: CS divider size  
o 0: CS capacitor size 15pF  
o 1: CS capacitor size 60pF  
ALS settings 1  
ALS settings 1 (0x71)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
MULTIPLIER  
CALIBRATION  
Name  
ATI Target (x32)  
0x80  
Default  
1
0
0
0
0
0
0
0
Bit definitions:  
Bit 7-2: ATI target for ALS Ch4  
o 0-2016: ATI target Ch4 = ATI target value value x 32  
Bit 1-0: Multiplier calibration  
o 0-3: Multiplier calibration size for ALS sensor calibration  
ALS settings filter speed  
ALS settings filter speed (0x72)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
ALS settings filter speed  
0x07 = D’7  
Default  
0
0
0
0
0
1
1
1
Bit definitions:  
Bit 7-0: ALS settings filter speed  
o 0: Both filter stages are disabled  
o 1: Only the IIR filter is enabled  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 51 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
o 2-255: Windowed minima filter (with window length of 2-255) and the IIR is enabled  
Multipliers Ch3/4  
Multipliers Ch3/4 (0x73)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
MULTIPLIER  
COARSE  
Name  
-
MULIPLIER FINE  
Bit definitions:  
Bit 5-4: Multiplier coarse  
o 0-3: Coarse multiplier selection  
Bit 3-0: Multiplier fine  
o 0-15: Fine multiplier selection  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 52 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ALS UI settings  
ALS dark threshold  
ALS dark threshold (0x80)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
ALS dark threshold x4 (Lux)  
0x0A = D’10 * 4 = 40 Lux  
Default  
0
0
0
0
1
0
1
0
Bit definitions:  
Bit 7-0: Dark threshold = Dark threshold value x4  
ALS light threshold  
ALS light threshold (0x81)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
ALS Light Threshold x16 (Lux)  
0x0A = D’10 * 16 = 160 Lux  
Default  
0
0
0
0
1
0
1
0
Bit definitions:  
Bit 7-0: Light Threshold = Light Threshold value x16  
ALS raw to Lux divider  
ALS raw to Lux divider (0x82)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
ALS raw to Lux divider  
Bit definitions:  
Bit 7-0: ALS raw to Lux divider = ALS raw to Lux divider value (The default value is loaded  
from OTP Bank 2, 0 disables divider)  
ALS IR compensation  
ALS IR compensation (0x83)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
ALS IR compensation divider  
Bit definitions:  
Bit 0-7: ALS IR compensation divider = ALS IR compensation divider value.  
The default value is loaded from OTP:  
o For IQS621: a 6-bit value stored in OTP Bank 0 (bit 5 & 4) & OTP Bank 3 (bit 3 0)  
o A value equal to 0 disables the divider.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 53 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hall-effect sensor settings  
Hall-effect settings 0  
Hall-effect settings 0 (0x90)  
Bit  
Number  
Data  
Access  
7
6
5
4
3
-
2
-
1
0
-
-
-
-
R/W  
R/W  
R/W  
R/W  
Name  
CHARGE FREQ  
reserved  
AUTO ATI MODE  
0x03  
Default  
0
0
0
0
0
0
1
1
Bit definitions:  
Bit 0-1: Auto ATI Mode  
o 00: ATI disabled  
o 01: Partial ATI (all multipliers are fixed)  
o 10: Semi-Partial ATI (only coarse multipliers are fixed)  
o 11: Full-ATI  
Bit 4-5: Charge frequency divider  
o 00: 1/2  
o 01: 1/4  
o 10: 1/8  
o 11: 1/16  
Hall-effect settings 1  
Hall-effect settings 1 (0x91)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
ATI_BASE  
ATI_TARGET (x32)  
0x50  
Default  
0
1
0
1
0
0
0
0
Bit definitions:  
Bit 0-5: Auto ATI Target  
o 0-2016: ATI Target = ATI target 6-bit value x 32  
Bit 6-7: Auto ATI base value  
o 00: 75  
o 10: 150  
o 11: 200  
o 01: 100  
Compensation Ch4/5  
Compensation Ch5/6 (0x92)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Compensation (7-0)  
Bit definitions:  
Bit 7-0: Compensation (7-0)  
o 7-0: Lower 8-bits of the Compensation value.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 54 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Multipliers Ch4/5  
Multipliers Ch5/6 (0x93)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Compensation (9-8)  
Multipliers coarse  
Multipliers fine  
Bit definitions:  
Bit 7-6: Compensation (9-8)  
o 0-3: Upper 2-bits of the Compensation value.  
Bit 5-4: Multipliers coarse  
o 0-3: Coarse multiplier selection  
Bit 3-0: Multipliers fine  
o 0-15: Fine multiplier selection  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 55 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Hall-effect switch UI settings  
Hall-effect UI settings  
Hall-effect UI settings (0xA0)  
Bit  
Number  
Data  
Access  
7
-
6
5
4
3
-
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Swap  
Direction  
Name  
Lin Mode  
Hysteresis T  
-
Hysteresis P  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 6: Linearize output  
o 0: Disabled  
o 1: Enabled  
Bit 4-5: Touch hysteresis  
o 00: Disabled  
o 10: 1/8 of threshold  
o 11: 1/16 of threshold  
o 01: 1/4 of threshold  
Bit 2: Swap field direction indication  
o 0: Disabled  
Bit 0-1: Proximity hysteresis  
o 00: Disabled  
o 1: Enabled  
o 10: 1/8 of threshold  
o 11: 1/16 of threshold  
o 01: 1/4 of threshold  
Hall-effect UI proximity threshold  
Hall-effect UI proximity threshold (0xA1)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Proximity threshold value  
0x19 = D’25  
Default  
0
0
0
1
1
0
0
1
Bit definitions:  
Bit 0-7: Hall-effect UI proximity threshold  
o 0-255: Hall-effect UI Proximity Threshold = Proximity threshold value  
Hall-effect UI touch threshold  
Hall-effect UI touch threshold (0xA2)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Touch threshold value  
0x19 = D’25 * 4 = 100  
Default  
0
0
0
1
1
0
0
1
Bit definitions:  
Bit 0-7: Hall-effect UI touch threshold  
o 0-1020: Hall-effect touch threshold = Touch threshold value * 4  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 56 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Temperature monitoring UI settings  
Temperature UI settings  
Temperature UI settings (0xC0)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESEED RESEED  
Name  
reserved  
RESEED THRESHOLD  
IN PROX  
EN  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 6: Allow temperature channel to reseed channel 0 and 1 while in proximity  
o 0: Reseed in prox disabled  
Bit 5: Temperature reseed of channel 0 and 1 enable  
o 0: Reseed is disabled  
o 1: Reseed in prox enabled  
o 1: Reseed is enabled  
Bit 4-0: Temperature reseed threshold = Temperature reseed threshold value  
Multiplier channel 2  
Multiplier Ch2 (0xC1)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
Name  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Multiplier coarse  
Multiplier fine  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 5-4: Multiplier coarse  
o 0-3: Coarse multiplier selection  
Bit 3-0: Multiplier fine  
o 0-15: Fine multiplier selection  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 57 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Temperature calibration 0  
Temperature calibration 0 (0xC2)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Temperature multiplier  
Temperature divider  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 7-4: Temperature multiplier = Temperature multiplier value +1  
o 1-16: Temperature multiplier  
Bit 3-0: Temperature divider = Temperature divider value +1  
o 1-16: Temperature divider  
Temperature calibration 1  
Temperature calibration 1 (0xC3)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Temperature offset  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 7-0: Temperature offset = Temperature offset value  
o 0-255: Temperature offset  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 58 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Device and power mode settings  
System settings  
System settings (0xD0)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
W=1  
W=1  
R/W  
R/W  
8MHz  
R/W  
R/W  
W=1  
W=1  
SOFT  
RESET  
ACK  
RESET  
EVENT  
MODE  
COMMS  
ATI  
ATI  
BAND  
REDO  
ATI  
Name  
RESEED  
0x08  
Default  
0
0
0
0
1
0
0
0
Bit definitions:  
Bit 7: Software Reset (Set only, will clear when done)  
o 1: Causes the device to perform a WDT reset  
Bit 6: ACK Reset (Set only, will clear when done)  
o 1: Acknowledge that a reset has occurred. This event will trigger until  
acknowledged.  
Bit 5: Event mode enable  
o 0: Event mode disabled. Default streaming mode communication.  
o 1: Event mode communication enabled.  
Bit 4: Main Clock frequency selection  
o 0: Run FOSC at 16MHz  
o 1: Run FOSC at 8MHz  
Bit 3: Communications during ATI  
o 0: No communications are generated during ATI  
o 1: Communication continue as setup regardless of ATI state.  
Bit 2: Re-ATI Band selection  
o 0: Re-ATI when outside 1/8 of ATI target  
o 1: Re-ATI when outside 1/16 of ATI target  
Bit 1: Redo ATI on all channels (Set only, will clear when done)  
o 1: Redo the ATI on all channels  
Bit 0: Reseed all Long-term filters (Set only, will clear when done)  
o 1: Reseed all channels  
Active channels  
Active channels (0xD1)  
Bit  
Number  
Data  
Access  
Name  
7
6
5
4
3
2
1
0
-
-
R/W  
Ch6  
R/W  
Ch5  
R/W  
Ch4  
R/W  
Ch3  
R/W  
Ch2  
R/W  
Ch1  
R/W  
Ch0  
0x7F  
Default  
0
1
1
1
1
1
1
1
Bit definitions:  
Bit 6: Ch6 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be  
functional)  
o 0: Channel is disabled  
o 1: Channel is enabled  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 59 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Bit 5: Ch5 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be  
functional)  
o 0: Channel is disabled  
Bit 4: Ch4 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional)  
o 0: Channel is disabled o 1: Channel is enabled  
Bit 3: Ch3 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional)  
o 0: Channel is disabled o 1: Channel is enabled  
Bit 2: Ch2 (note: Ch2 must be enabled for temperature UI to be functional)  
o 1: Channel is enabled  
o 0: Channel is disabled  
Bit 1: Ch1  
o 0: Channel is disabled  
Bit 0: Ch0  
o 1: Channel is enabled  
o 1: Channel is enabled  
o 1: Channel is enabled  
o 0: Channel is disabled  
Power mode settings  
Power mode settings (0xD2)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DSBL  
AUTO  
MODE  
NP SEG EN ULP  
Name  
POWER MODE  
0x03  
NP SEG RATE  
1
ALL  
MODE  
Default  
0
0
0
0
0
0
1
Bit definitions:  
Bit 7: Normal Power Segment bounds check  
o 0: NP-segment check on PRX channels only  
o 1: NP-segment check on all channels  
Bit 6: Allow auto ultra-low power mode switching  
o 0: ULP is disabled during auto-mode switching  
o 1: U LP is enabled during auto-mode switching  
Bit 5: Disable auto mode switching  
o 0: Auto mode switching is enabled  
o 1: Auto mode switching is disabled  
Bit 4-3: Manually select power mode (note: bit 5 must be set)  
o 00: Normal Power mode. The device runs at the normal power rate, all enabled  
channels and UIs will execute.  
o 01: Low Power mode. The device runs at the low power rate, all enabled channels  
and UIs will execute.  
o 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is run  
as wake-up channel. The other channels execute at the NP-segment rate.  
o 11: Halt Mode. No conversions are performed; the device must be removed from  
this mode using an I2C command.  
Bit 2-0: Normal power segment update rate  
o 000: ½ ULP rate  
o 001: ¼ ULP rate  
o 010: 1/8 ULP rate  
o 011: 1/16 ULP rate  
o 100: 1/32 ULP rate  
o 101: 1/64 ULP rate  
o 110: 1/128 ULP rate  
o 111: 1/256 ULP rate  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 60 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Normal power mode report rate  
Normal power mode report rate (0xD3)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Normal power mode report rate in ms  
0x0C = D’12 = 12ms  
Default  
0
0
0
0
1
1
0
0
Bit definitions:  
Bit 7-0: Normal mode report rate in ms (note: LPOSC timer has ± 4ms accuracy)  
o 0 255ms: Normal mode report rate  
Please note: Report rates faster than 4ms can be delayed due to channel setup and comm speed.  
Low power mode report rate  
Low power mode report rate (0xD4)  
Bit  
7
6
5
4
3
2
1
0
Number  
Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Low power mode report rate in ms  
0x30 = D’48 = 48ms  
Default  
0
0
1
1
0
0
0
0
Bit definitions:  
Bit 7-0: Low-power mode report rate in ms (note: LPOSC timer has ± 4ms accuracy)  
o 0 255ms: Low-power mode report rate  
Ultra-low power mode report rate  
Ultra-low power mode report rate (0xD5)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Ultra-low power mode report rate in 16ms increments  
0x08 = D’8 * 16 = 128ms  
Default  
0
0
0
0
1
0
0
0
Bit definitions:  
Bit 7-0: Ultra-low power mode report rate in 16ms increments (decimal value x 16ms)  
o 0 4080ms: Ultra-low power mode report rate  
Auto mode timer  
Auto mode timer (0xD6)  
Bit  
Number  
Data  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access  
Name  
Auto mode timer in 500ms increments  
0x14 = D’20 * 500 = 10sec  
Default  
0
0
0
1
0
1
0
0
Bit definitions:  
Bit 7-0: Auto modes switching time in 500ms increments (decimal value x 500ms)  
o 0 127.5s: Auto mode switching time  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 61 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Global event mask  
Global event mask (0xD7)  
Bit  
Number  
Data  
Access  
7
-
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
POWER  
MODE  
EVENT  
HYSTE-  
RESIS UI  
EVENT  
PROX  
SENSE  
EVENT  
SYS  
TEMP  
ALS  
EVENT  
HALL  
EVENT  
Name  
-
EVENT EVENT  
0x00  
Default  
0
0
0
0
0
0
0
0
Bit definitions:  
Bit 6: Power mode event mask  
o 0: Event is allowed  
Bit 5: System event mask  
o 0: Event is allowed  
Bit 4: Temperature event mask  
o 0: Event is allowed  
o 1: Event is masked  
o 1: Event is masked  
o 1: Event is masked  
o 1: Event is masked  
o 1: Event is masked  
o 1: Event is masked  
o 1: Event is masked  
Bit 3: Hysteresis UI event mask  
o 0: Event is allowed  
Bit 2: ALS UI event mask  
o 0: Event is allowed  
Bit 1: Hall-effect UI event mask  
o 0: Event is allowed  
Bit 0: ProxSense event mask  
o 0: Event is allowed  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 62 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
RDY timeout period  
RDY timeout period (0xD8)  
Bit  
Number  
7
6
5
4
3
2
1
0
Data  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
RDY timeout period value  
0x20 = D’32 * 0.32 = 10.24ms  
Default  
0
0
1
0
0
0
0
0
Bit definitions:  
Bit 7-0: RDY timeout period = RDY timeout period value * 0.32ms  
o 0 81.6ms: RDY timeout period  
I2C settings  
I2C settings (0xD9)  
Bit  
Number  
Data  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
R/W  
R/W  
Access  
STOP  
DISABLE  
Name  
Reserved  
0x01  
Reserve  
Default  
0
0
0
0
0
0
0
1
Bit definitions:  
Bit 7: Stop disable  
o 0: Stop enabled: Stop bit will exit the communication window.  
o 1: Stop disabled: Stop bit will not exit the communication window. No start within the  
RDY timeout period (0xD8) will exit the communication window.  
Bit 6 1: Reserved  
o Do not configure, leave cleared.  
Bit 0: Reserved  
o Must always be set (bit 0 = 1).  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 63 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
10 Electrical characteristics  
Absolute Maximum Specifications  
The following absolute maximum parameters are specified for the device:  
Exceeding these maximum specifications may cause damage to the device.  
Table 10.1 Absolute maximum specification  
Absolute maximum  
Parameter  
Operating temperature  
-20°C to +85°C  
Supply Voltage (VDDHI GND)  
Maximum pin voltage  
3.6V  
VDDHI + 0.5V (may not exceed VDDHI max)  
Maximum continuous current (for specific pins)  
Minimum pin voltage  
10mA  
GND - 0.5V  
Minimum power-on slope  
ESD protection  
100V/s  
±4kV (Human body model)  
Voltage regulation specifications  
Table 10.2 Internal voltage regulator operating conditions  
SYMBOL  
VDDHI  
VREG  
MIN  
1.8  
TYPICAL  
MAX  
3.3  
UNIT  
V
DESCRIPTION  
Supply voltage  
-
Internal voltage regulator  
1.63  
1.66  
1.69  
V
Reset conditions  
Table 10.3 Device reset specifications  
Explanation  
SYMBOL  
MIN  
MAX UNIT  
DESCRIPTION  
VDDHI rising level to ensure  
active state startup  
Reset - VDDHI rising level  
RESETVDDHI  
-
1.55  
VDDHI falling level to  
ensure reset  
Reset - VDDHI falling level  
Reset - VREG falling level  
RESETVDDHI  
0.70  
0.65  
-
V
VREG falling level for reset  
during LP & ULP modes  
RESETVREG  
1.41  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 64 of 79  
May 2018  
 
 
IQ Switch  
ProxFusion® Series  
I2C module output logic fall time limits  
Table 10.4 I2C module output logic fall time specifications  
VDDHI Temp  
Pull-up  
CLOAD  
SYMBOL  
MIN  
MAX  
UNIT  
DESCRIPTION  
(V)  
(°C) resistor () (pF)  
7000  
885  
7000  
885  
7000  
885  
7000  
885  
7000  
885  
7000  
885  
420  
420  
420  
420  
420  
420  
770  
770  
770  
885  
770  
770  
50  
400  
50  
11.80  
28.70  
11.80  
30.70  
11.80  
33.80  
7.90  
-20  
+25  
+85  
-20  
1.8  
400  
50  
SDA & SCL  
minimum fall  
times  
400  
50  
TF_min  
400  
50  
18.60  
11.80  
30.70  
11.80  
33.80  
3.3  
1.8  
3.3  
+25  
+85  
-20  
400  
50  
400  
50  
ns  
42.50  
65.10  
43.40  
69.70  
45.30  
77.30  
20.20  
32.80  
19.90  
34.30  
20.00  
36.80  
400  
50  
+25  
+85  
-20  
400  
50  
SDA & SCL  
maximum fall  
times  
400  
50  
TF_max  
400  
50  
+25  
+85  
400  
50  
400  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 65 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
I2C module slew rates  
Table 10.5 I2C module fastest falling slew rates and matching rising slew rates  
VDDHI  
(V)  
Fall time Rise time  
Conditions  
SYMBOL  
SR  
UNIT  
DESCRIPTION  
(ns)  
(ns)  
CBUS = 50pF  
RPU = 7kΩ  
TA = -20°C  
11.80  
SRFALL  
61.02  
SDA & SCL  
slew rates for  
the minimum  
allowed bus  
capacitance  
1.8  
3.3  
1.8  
3.3  
296.55  
SRRISE  
SRFALL  
SRRISE  
SRFALL  
SRRISE  
SRFALL  
SRRISE  
2.43  
167.09  
4.45  
CBUS = 50pF  
RPU = 7kΩ  
TA = -20°C  
7.90  
28.70  
18.60  
296.55  
299.94  
299.94  
V
µs  
CBUS = 400pF  
RPU = 885Ω  
TA = -20°C  
25.09  
2.40  
SDA & SCL  
slew rates for  
the maximum  
allowed bus  
capacitance  
CBUS = 400pF  
RPU = 885Ω  
TA = -20°C  
70.97  
4.40  
Table 10.6 I2C module slowest falling slew rates and matching rising slew rates  
VDDHI  
(V)  
Fall time Rise time  
Conditions  
SYMBOL  
SRFALL  
SRRISE  
SR  
UNIT  
DESCRIPTION  
(ns)  
(ns)  
CBUS = 50pF  
RPU = 420Ω  
TA = +85°C  
45.30  
15.89  
40.47  
65.35  
40.47  
SDA & SCL  
slew rates for  
the minimum  
allowed bus  
capacitance  
1.8  
3.3  
1.8  
3.3  
17.79  
CBUS = 50pF  
RPU = 770Ω  
TA = -20°C  
20.20  
77.30  
36.80  
SRFALL  
SRRISE  
32.62  
142.34  
260.96  
V
µs  
CBUS = 400pF  
RPU = 420Ω  
TA = +85°C  
SRFALL  
SRRISE  
SRFALL  
SRRISE  
9.31  
5.06  
SDA & SCL  
slew rates for  
the maximum  
allowed bus  
capacitance  
CBUS = 400pF  
RPU = 770Ω  
TA = +85°C  
35.87  
5.06  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 66 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
I2C pins (SCL & SDA) input/output logic levels  
Table 10.7 I2C pins (SCL & SDA) input and output logic level boundaries  
Temperature  
-20°C  
TYP  
Conditions SYMBOL  
MIN  
MAX  
UNIT  
DESCRIPTION  
32.12  
Input low level  
voltage  
Vin_LOW  
+25°C  
34.84  
+85°C  
39.39  
71.51  
-20°C  
400kHz I2C  
clock  
frequency  
Input high level  
voltage  
% of  
VDDHI  
Vin_HIGH  
+25°C  
68.18  
+85°C  
66.06  
Output low level  
voltage  
Vout_LOW  
Vout_HIGH  
-20°C +85°C  
-20°C +85°C  
0
Output high  
level voltage  
100  
Calculated input buffer trigger levels for I2C pins at 400kHz clock frequency  
for 1.8V and 3.3V VDDHI power supplies  
General purpose digital output pins (GPIO0 & GPIO3) logic levels  
Temperature  
-20°C +85°C  
-20°C +85°C  
TYP  
0
SYMBOL  
Vout_LOW  
MIN  
MAX  
UNIT  
DESCRIPTION  
Output low level voltage  
% of  
VDDHI  
Output high level voltage  
Vout_HIGH  
100  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 67 of 79  
May 2018  
 
 
IQ Switch  
ProxFusion® Series  
Current consumptions  
IC subsystems  
Table 10.8 IC subsystem current consumption  
TYPICAL MAX UNIT  
Description  
Core active  
Core sleep  
339  
377  
1
µA  
µA  
0.63  
Table 10.9 IC subsystem typical timing  
Core active  
Core sleep TOTAL UNIT  
Power mode  
NP mode  
LP mode  
ULP mode  
5
5
5
10  
48  
ms  
ms  
ms  
43  
1.75  
128  
129.75  
Capacitive sensing alone  
Table 10.10 Capacitive sensing current consumption  
Conditions  
Report rate  
MIN  
TYPICAL  
MAX  
UNIT  
Power mode  
NP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
72.54  
73.09  
20.94  
19.96  
4.95  
73.40  
73.53  
21.38  
20.71  
5.54  
74.08  
73.97  
21.79  
21.20  
6.01  
µA  
µA  
µA  
µA  
µA  
µA  
10ms  
LP mode  
48ms  
ULP mode  
128ms  
4.34  
4.88  
5.24  
-These measurements where done on the default setup of the IC  
Table 10.11 Single capacitive wake-up channel current consumption  
Supply  
voltage  
VDD = 1.8V  
VDD = 3.3V  
Charging  
frequency  
ATI  
target  
192  
192  
Report rate  
TYPICAL UNIT  
Power mode  
ULP mode  
2MHz  
2MHz  
256ms  
256ms  
2.51  
A  
2.76  
-These measurements where done with enhanced settings for minimum current consumption for a single touch channel  
Inductive sensing alone  
Table 10.12 Inductive sensing current consumption  
Conditions  
Report rate  
MIN  
TYPICAL  
MAX  
UNIT  
Power mode  
NP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
75.31  
76.45  
21.14  
21.68  
N/A (1)  
N/A (1)  
75.85  
76.88  
21.83  
22.36  
N/A (1)  
N/A (1)  
76.48  
77.53  
30.91  
23.46  
N/A (1)  
N/A (1)  
µA  
µA  
µA  
µA  
µA  
µA  
10ms  
LP mode  
48ms  
ULP mode  
128ms  
-These measurements where done on the default setup of the IC  
(1) It is not advised to use the IQS621 in ULP without capacitive sensing. This is due to the inductive sensor being  
disabled in ULP.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 68 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
ALS sensing alone  
Table 10.13 Ambient light sensing current consumption  
Conditions  
Report rate  
MIN  
TYPICAL  
MAX  
UNIT  
Power mode  
NP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
60.89  
55.62  
17.52  
15.42  
N/A (1)  
N/A (1)  
61.56  
57.79  
18.03  
16.52  
N/A (1)  
N/A (1)  
62.01  
58.47  
18.45  
17.13  
N/A (1)  
N/A (1)  
µA  
µA  
µA  
µA  
µA  
µA  
10ms  
LP mode  
48ms  
ULP mode  
128ms  
-These measurements where done on the default setup of the IC and in 300 Lux ambient light  
(2) It is not advised to use the IQS621 in ULP without capacitive sensing due to the ALS sensor disabled in ULP.  
Hall-effect sensing alone  
Table 10.14 Hall-effect current consumption  
Conditions  
Report rate  
MIN  
TYPICAL  
MAX  
UNIT  
Power mode  
NP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
93.49  
92.63  
26.03  
25.11  
N/A (1)  
N/A (1)  
93.73  
92.97  
26.71  
25.88  
N/A (1)  
N/A (1)  
93.96  
93.79  
27.28  
26.45  
N/A (1)  
N/A (1)  
µA  
µA  
µA  
µA  
µA  
µA  
10ms  
LP mode  
48ms  
ULP mode  
128ms  
-These measurements where done on the default setup of the IC  
(1) It is not advised to use the IQS621 in ULP without capacitive sensing due to the Hall-effect sensor disabled in ULP.  
Temperature monitoring alone  
Table 10.15 Temperature monitoring current consumption  
Conditions  
Report rate  
10ms  
MIN  
TYPICAL  
MAX  
UNIT  
Power mode  
NP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
41.54  
41.20  
11.98  
11.18  
N/A (1)  
N/A (1)  
42.02  
41.62  
12.25  
11.55  
N/A (1)  
N/A (1)  
42.37  
41.98  
12.68  
11.94  
N/A (1)  
N/A (1)  
µA  
µA  
µA  
µA  
µA  
µA  
LP mode  
48ms  
ULP mode  
128ms  
-These measurements where done on the default setup of the IC  
(1) It is not advised to use the IQS621 in ULP without capacitive sensing due to the temperature sensor disabled in ULP.  
Halt mode  
Table 10.16 Halt mode current consumption  
Conditions  
VDD = 1.8V  
VDD = 3.3V  
TYPICAL UNIT  
Power mode  
Halt mode  
1.6  
1.9  
µA  
µA  
Halt mode  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 69 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Start-up timing specifications  
VDDHI  
POR  
Internal  
reset  
I/O  
pins  
RDY  
Full  
sensing  
mode  
Cx0  
tinit  
tATI  
tstabilize  
ttest_mode  
tcomms1  
tcomms2  
IQS621 start-up timing diagram  
Table 10.17 Timing values for IQS621 start-up timing diagram  
Min  
Typical  
Max  
Timing  
tinit  
6ms  
5ms  
ttest_mode  
tcomms1 (16MHz)  
tcomms1 (8MHz)  
tATI (16MHz)  
tATI (8MHz)  
until I2C stop bit  
until I2C stop bit  
10ms (time-out)  
20ms (time-out)  
110ms (default settings)  
220ms (default settings)  
tcomms2  
Time-out value defined  
in register 0xD8  
until I2C stop bit  
(event mode enabled  
system event)  
(x2 for 8MHz mode)  
tstabilize (16MHz)  
40ms  
80ms  
70ms (default settings)  
140ms (default settings)  
201ms (from POR)  
tstabilize (8MHz)  
tfull_sensing_mode (16MHz)  
tfull_sensing_mode (8MHz)  
402ms (from POR)  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 70 of 79  
May 2018  
 
IQ Switch  
ProxFusion® Series  
ALS specifications  
Human eye response Lux calculation  
The spectral response of the human eye does not match that of typical silicone based light sensors.  
The human eye perceives a peak response in the “green” colour band centred at around 550nm.  
However, silicone based sensors has a maximum response to ambient light typically in the infrared  
band. To translate the sensor measurement to correlate with the human eye’s natural perceived  
ambient light sensitivity a dynamic mathematical function is applied.  
The follow parameter values are defined for explanatory purposes:  
풂 → 푨푳푺 풎풖풍풕풊풑풍풊풆풓:  
o A dynamic multiplier value calculated as in the table below for the specific ALS setup  
and current ALS value output.  
(
)
풃 → 푨푳푺 풓풂풘 풕풐 푳풖풙 풅풊풗풊풅풆풓:  
o 8-bit value loaded from OTP Bank 2 into register 0x82. This calibration value is  
determined during IC calibration.  
풄 → 푨푳푺 푰푹 풄풐풎풑풆풏풔풂풕풊풐풏 풅풊풗풊풅풆풓:  
o For IQS621 a 6-bit value is loaded from OTP Bank 0 (bit 5 & 4) and OTP Bank 3 (bit3  
- 0) into register 0x83.  
o This calibration value is determined during IC calibration and can be increased to an  
8-bit value if calibration requires a higher value.  
The IQS621’s ALS multiplier (parameter ) is calculated as specified in the following table.  
Table 10.18 ALS multiplier calculation  
Output  
Inputs  
Coarse  
multiplier  
(0x75:  
Charge  
frequency  
divider  
CS  
size  
(0x70:  
bit2)  
ALS  
multi-  
plier  
ALS  
value  
(0x16:  
bit3-0)  
Fine multiplier  
(0x75: bit3-0)  
bit5-4)  
(0x70: bit5-4)  
0
1
0
0
0
0
0
0
0
0
1
2
3
MULTIPLIER_CALIBRATION  
MULTIPLIER_CALIBRATION  
3
2
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
MULTIPLIER_CALIBRATION  
4
3
MULTIPLIER_CALIBRATION  
8
4
MULTIPLIER_CALIBRATION  
16  
5
MULTIPLIER_CALIBRATION  
32  
6
(MULTIPLIER_CALIBRATION+1)*2-1  
(MULTIPLIER_CALIBRATION+1)*4-1  
(MULTIPLIER_CALIBRATION+1)*4-1  
(MULTIPLIER_CALIBRATION+1)*4-1  
(MULTIPLIER_CALIBRATION+1)*4-1  
64  
7
128  
384  
1152  
3456  
8
9
10  
All the calculations performed on chip are simplified for fixed-point arithmetic. The ALS Lux output is  
calculated by the following equation:  
2ꢂꢁ  
2ꢂꢁ  
퐴퐿푆 ≅  
풃 퐶4 풄. 퐶퐻3  
ALS in units of Lux (as perceived by a human eye) is calculated using the measurement of channels  
3 (IR-component) & 4 (ALS-component) as well as the three compensation parameters 풂, 풃 & 풄 as  
defined above. The output of this function is a 16-bit integer available in the ALS UI output register  
(0x17-0x18).  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 71 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
11 Package information  
UOLG-2.8 x 2.5 x 0.6 9-pin package and footprint specifications  
Table 11.1 UOLG-2.8 x 2.5 x 0.6 9-pin  
package dimensions (bottom)  
Min.  
[mm]  
Nom.  
[mm]  
Max.  
[mm]  
Dimension  
A
B
C
D
E
F
2.40  
2.70  
0.35  
0.45  
-
2.50  
2.80  
0.40  
0.50  
0.43  
0.33  
0.10  
0.10  
2.60  
2.90  
0.45  
0.55  
-
-
-
G
H
0.05  
0.05  
0.15  
0.15  
Table 11.2 UOLG-2.8 x 2.5 x 0.6 9-pin  
package dimensions (side)  
UOLG-2.8 x 2.5 x 0.6-9N  
Package dimensions (bottom view).  
Min.  
[mm]  
0.55  
Nom.  
[mm]  
0.60  
Max.  
[mm]  
0.65  
Dimension  
I
J
2.70  
2.80  
0.37  
0.23  
1.56  
0.62  
0.40  
0.145  
2.90  
K
L
-
-
-
-
-
-
-
-
-
-
-
-
M
N
O
P
UOLG-2.8 x 2.5 x 0.6-9N  
Package dimensions (side view)  
Table 11.3 UOLG-2.8 x 2.5 x 0.6 9-pin  
landing pad dimensions  
Min.  
[mm]  
0.45  
Nom.  
[mm]  
0.50  
Max.  
[mm]  
0.55  
Dimension  
Q
R
S
T
0.35  
0.69  
0.83  
1.20  
1.35  
0.40  
0.74  
0.88  
1.25  
1.40  
0.45  
0.79  
0.93  
1.30  
1.45  
U
V
UOLG-2.8 x 2.5 x 0.6-9N  
Landing pad dimensions (top view)  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 72 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Device marking and ordering information  
Device marking:  
No device marking due to clear package.  
Pin 1 indication:  
UOLG-2.8 x 2.5 x 0.6-9N pin numbers as viewed from top  
Ordering Information:  
IQS621zppb  
z –  
Configuration  
0: 44H sub-address  
1: 45H sub-address  
pp Package type  
U9: UOLG-2.8 x 2.5 x 0.6-9N  
b Bulk packaging  
R: Reel (3k per reel, MOQ=1 Reel)  
Example:  
IQS6210U9R  
0
U9  
R
- configuration is default (44H sub-address)  
- UOLG-2.8 x 2.5 x 0.6-9N package  
- packaged in reels of 3k (must be ordered in multiples of 3k)  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 73 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Bulk packaging specification  
Tape specification  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 74 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Reel specification  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 75 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
MSL Level  
Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some  
semiconductors. The MSL is an electronic standard for the period in which a moisture sensitive  
device can be exposed to ambient room conditions (approximately 30°C / 60% RH see J-STD033C  
for more info) before reflow occur.  
Level (duration)  
Package  
MSL 4 (72 hours at ≤ 30°C / 60% RH)  
UOLG-2.8 x 2.5 x 0.6-9N  
Reflow profile peak temperature < 260°C for < 30 seconds  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 76 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
12 Datasheet revisions  
Revision history  
v1.00: First release version  
v1.10: Datasheet update  
Table 6.1 added for temperature calibration value descriptions.  
Default register values added (hex and binary representation) for all memory map registers.  
Register 0xC2 and 0xC3 ranges corrected (offset of 1; hex value of 0 = 1 used in equations).  
v1.11: Datasheet update  
I2C stop-bit disable functionality explained. Section 8.4 added.  
v1.12: Datasheet update  
Voltage regulation specifications added (10.2).  
v1.13: Datasheet update  
Low power mode description corrected.  
ProxFusion® updated to a registered trademark.  
v1.14: Datasheet update  
Hall-effect sensing operational range confirmed and updated to 10mT 200mT.  
Section 1.5 ProxFusion® Sensitivity added for ATI algorithm explanation.  
Section 10.4 & 10.5 added: I2C module fall times and slew rates.  
Section 10.6 updated and illustrated in additional Figure 10.1.  
Appendix B. Hall ATI added.  
v1.15: Datasheet update  
Section 10.9 added: Start-up timing specifications.  
Section 10.3 Reset conditions updated.  
Appendix A. Contact information updated.  
Errata  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 77 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Appendix A. Contact information  
USA  
Asia  
South Africa  
Physical  
Address  
Rm1227, Glittery City  
Shennan Rd  
Futian District  
Shenzhen, 518033  
China  
109 Main Street  
Paarl  
7646  
6507 Jester Blvd  
Bldg 5, suite 510G  
Austin  
TX 78750  
USA  
South Africa  
Postal  
Address  
Rm1227, Glittery City  
Shennan Rd  
Futian District  
Shenzhen, 518033  
China  
PO Box 3534  
Paarl  
7620  
6507 Jester Blvd  
Bldg 5, suite 510G  
Austin  
TX 78750  
USA  
South Africa  
Tel  
+1 512 538 1995  
+1 512 672 8442  
info@azoteq.com  
+86 755 8303 5294  
ext 808  
+27 21 863 0033  
+27 21 863 1512  
info@azoteq.com  
Fax  
Email  
info@azoteq.com  
Please visit www.azoteq.com for a list of distributors and worldwide representation.  
The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US  
8,395,395; US 8,531,120; US 8,659,306; US 9,209,803; US 9,360,510; US 9,496,793; US 9,709,614; US 9,948,297; EP  
2,351,220; EP 2,559,164; EP 2,748,927; EP 2,846,465; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541;  
SA 2017/02224;  
AirButton®, Azoteq®, Crystal Driver, IQ Switch®, ProxSense®, ProxFusion®, LightSense™, SwipeSwitch™,  
and the  
logo are trademarks of Azoteq.  
The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does  
not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an “as is” basis only, without any representations  
or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and  
conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and  
non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused  
by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages.  
The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further  
modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use  
as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property  
rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in  
contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its  
products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any  
time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please  
refer to www.azoteq.com.  
www.azoteq.com/ip  
info@azoteq.com  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 78 of 79  
May 2018  
IQ Switch  
ProxFusion® Series  
Appendix B: Hall ATI  
Azoteq’s ProxFusion® Hall technology has ATI Functionality; which ensures stable sensor sensitivity.  
The ATI functionality is similar to the ATI functionality found in ProxSense® technology. The  
difference is that the Hall ATI requires two channels for a single plate.  
Using two channels ensures that the ATI can still be used in the presence of the magnet. The two  
channels are the inverse of each other, this means that the one channel will sense North and the  
other South. The two channels being inverted allows the capability of calculating a reference value  
which will always be the same regardless of the presence of a magnet.  
Hall reference value:  
The equation used to calculate the reference value, per plate:  
1
푅푒푓 =  
2 ∙ ꢆꢁ  
+
ꢈ  
ATI parameters:  
The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two  
parameters per plate (ATI base and ATI target). The ATI process is used to ensure that the sensor’s  
sensitivity is not severely affected by external influences (Temperature, voltage supply change, etc.).  
Coarse and Fine multipliers:  
In the ATI process the compensation is set to 0 and the coarse and fine multipliers are adjusted such  
that the counts of the reference value (푅푒푓) are roughly the same as the ATI Base value. This means  
that if the base value is increased, the coarse and fine multipliers should also increase and vice  
versa.  
ATI-Compensation:  
After the coarse and fine multipliers are adjusted, the compensation is adjusted till the reference  
value (푅푒푓) reaches the ATI target. A higher target means more compensation and therefore more  
sensitivity on the sensor.  
The ATI process ensures that long term temperature changes, or bulk magnetic interference (e.g.  
the accidental placement of another magnet too close to the setup), do not affect the sensor’s ability  
to detect the intended magnetic change.  
Copyright © Azoteq 2018  
All Rights Reserved  
IQS621 Datasheet revision 1.15  
Shortcut to memory map  
Page 79 of 79  
May 2018  

相关型号:

IQS6210U9R

Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities
ETC

IQS621_V01

Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities
ETC

IQS6624-300DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQS6624-301DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQS6624-500DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQS6624-501DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQT20A1000B

Consumer IC
ETC

IQT20A10B

Consumer IC
ETC

IQT20A30

Consumer IC
ETC

IQT20A60

Consumer IC
ETC

IQT20A70

Consumer IC
ETC

IQT20A900

Consumer IC
ETC