LM3S2110-IQC25(T) [ETC]

Microcontroller; 微控制器
LM3S2110-IQC25(T)
型号: LM3S2110-IQC25(T)
厂家: ETC    ETC
描述:

Microcontroller
微控制器

微控制器
文件: 总485页 (文件大小:4902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LM3S2110 Microcontroller  
DATA SHEET  
DS-LM3S2110-1972  
Copyright © 2007 Luminary Micro, Inc.  
Legal Disclaimers and Trademark Information  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO  
LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR  
USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.  
Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office  
or your distributor to obtain the latest specifications before placing your product order.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these  
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Copyright © 2007 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of  
Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark  
of ARM Limited. Other names and brands may be claimed as the property of others.  
Luminary Micro, Inc.  
108 Wild Basin, Suite 350  
Austin, TX 78746  
Main: +1-512-279-8800  
Fax: +1-512-279-8879  
http://www.luminarymicro.com  
2
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table of Contents  
About This Document .................................................................................................................... 18  
Audience .............................................................................................................................................. 18  
About This Manual ................................................................................................................................ 18  
Related Documents ............................................................................................................................... 18  
Documentation Conventions .................................................................................................................. 18  
1
Architectural Overview ...................................................................................................... 20  
Product Features ...................................................................................................................... 20  
Target Applications .................................................................................................................... 25  
High-Level Block Diagram ......................................................................................................... 26  
Functional Overview .................................................................................................................. 27  
1.1  
1.2  
1.3  
1.4  
1.4.1 ARM Cortex™-M3 ..................................................................................................................... 27  
1.4.2 Motor Control Peripherals .......................................................................................................... 27  
1.4.3 Analog Peripherals .................................................................................................................... 28  
1.4.4 Serial Communications Peripherals ............................................................................................ 28  
1.4.5 System Peripherals ................................................................................................................... 30  
1.4.6 Memory Peripherals .................................................................................................................. 31  
1.4.7 Additional Features ................................................................................................................... 31  
1.4.8 Hardware Details ...................................................................................................................... 32  
2
2.1  
2.2  
ARM Cortex-M3 Processor Core ...................................................................................... 33  
Block Diagram .......................................................................................................................... 34  
Functional Description ............................................................................................................... 34  
2.2.1 Serial Wire and JTAG Debug ..................................................................................................... 34  
2.2.2 Embedded Trace Macrocell (ETM) ............................................................................................. 35  
2.2.3 Trace Port Interface Unit (TPIU) ................................................................................................. 35  
2.2.4 ROM Table ............................................................................................................................... 35  
2.2.5 Memory Protection Unit (MPU) ................................................................................................... 35  
2.2.6 Nested Vectored Interrupt Controller (NVIC) ................................................................................ 35  
3
4
Memory Map ....................................................................................................................... 39  
Interrupts ............................................................................................................................ 41  
5
5.1  
5.2  
JTAG Interface .................................................................................................................... 43  
Block Diagram .......................................................................................................................... 44  
Functional Description ............................................................................................................... 44  
5.2.1 JTAG Interface Pins .................................................................................................................. 45  
5.2.2 JTAG TAP Controller ................................................................................................................. 46  
5.2.3 Shift Registers .......................................................................................................................... 47  
5.2.4 Operational Considerations ........................................................................................................ 47  
5.3  
5.4  
Initialization and Configuration ................................................................................................... 50  
Register Descriptions ................................................................................................................ 50  
5.4.1 Instruction Register (IR) ............................................................................................................. 50  
5.4.2 Data Registers .......................................................................................................................... 52  
6
6.1  
System Control ................................................................................................................... 54  
Functional Description ............................................................................................................... 54  
6.1.1 Device Identification .................................................................................................................. 54  
6.1.2 Reset Control ............................................................................................................................ 54  
November 29, 2007  
3
Preliminary  
Table of Contents  
6.1.3 Power Control ........................................................................................................................... 57  
6.1.4 Clock Control ............................................................................................................................ 57  
6.1.5 System Control ......................................................................................................................... 59  
6.2  
6.3  
6.4  
Initialization and Configuration ................................................................................................... 59  
Register Map ............................................................................................................................ 60  
Register Descriptions ................................................................................................................ 61  
7
7.1  
7.2  
Internal Memory ............................................................................................................... 110  
Block Diagram ........................................................................................................................ 110  
Functional Description ............................................................................................................. 110  
7.2.1 SRAM Memory ........................................................................................................................ 110  
7.2.2 Flash Memory ......................................................................................................................... 111  
7.3  
Flash Memory Initialization and Configuration ........................................................................... 112  
7.3.1 Flash Programming ................................................................................................................. 112  
7.3.2 Nonvolatile Register Programming ........................................................................................... 113  
7.4  
7.5  
7.6  
Register Map .......................................................................................................................... 113  
Flash Register Descriptions (Flash Control Offset) ..................................................................... 114  
Flash Register Descriptions (System Control Offset) .................................................................. 121  
8
8.1  
General-Purpose Input/Outputs (GPIOs) ....................................................................... 134  
Functional Description ............................................................................................................. 134  
8.1.1 Data Control ........................................................................................................................... 135  
8.1.2 Interrupt Control ...................................................................................................................... 136  
8.1.3 Mode Control .......................................................................................................................... 137  
8.1.4 Commit Control ....................................................................................................................... 137  
8.1.5 Pad Control ............................................................................................................................. 137  
8.1.6 Identification ........................................................................................................................... 137  
8.2  
8.3  
8.4  
Initialization and Configuration ................................................................................................. 137  
Register Map .......................................................................................................................... 138  
Register Descriptions .............................................................................................................. 140  
9
9.1  
9.2  
General-Purpose Timers ................................................................................................. 175  
Block Diagram ........................................................................................................................ 175  
Functional Description ............................................................................................................. 176  
9.2.1 GPTM Reset Conditions .......................................................................................................... 176  
9.2.2 32-Bit Timer Operating Modes .................................................................................................. 177  
9.2.3 16-Bit Timer Operating Modes .................................................................................................. 178  
9.3  
Initialization and Configuration ................................................................................................. 182  
9.3.1 32-Bit One-Shot/Periodic Timer Mode ....................................................................................... 182  
9.3.2 32-Bit Real-Time Clock (RTC) Mode ......................................................................................... 183  
9.3.3 16-Bit One-Shot/Periodic Timer Mode ....................................................................................... 183  
9.3.4 16-Bit Input Edge Count Mode ................................................................................................. 184  
9.3.5 16-Bit Input Edge Timing Mode ................................................................................................ 184  
9.3.6 16-Bit PWM Mode ................................................................................................................... 185  
9.4  
9.5  
Register Map .......................................................................................................................... 185  
Register Descriptions .............................................................................................................. 186  
10  
Watchdog Timer ............................................................................................................... 211  
Block Diagram ........................................................................................................................ 211  
Functional Description ............................................................................................................. 211  
Initialization and Configuration ................................................................................................. 212  
10.1  
10.2  
10.3  
4
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
10.4  
10.5  
Register Map .......................................................................................................................... 212  
Register Descriptions .............................................................................................................. 213  
11  
11.1  
11.2  
Universal Asynchronous Receivers/Transmitters (UARTs) ......................................... 234  
Block Diagram ........................................................................................................................ 235  
Functional Description ............................................................................................................. 235  
11.2.1 Transmit/Receive Logic ........................................................................................................... 235  
11.2.2 Baud-Rate Generation ............................................................................................................. 236  
11.2.3 Data Transmission .................................................................................................................. 237  
11.2.4 Serial IR (SIR) ......................................................................................................................... 237  
11.2.5 FIFO Operation ....................................................................................................................... 238  
11.2.6 Interrupts ................................................................................................................................ 238  
11.2.7 Loopback Operation ................................................................................................................ 239  
11.2.8 IrDA SIR block ........................................................................................................................ 239  
11.3  
11.4  
11.5  
Initialization and Configuration ................................................................................................. 239  
Register Map .......................................................................................................................... 240  
Register Descriptions .............................................................................................................. 241  
12  
12.1  
12.2  
Synchronous Serial Interface (SSI) ................................................................................ 275  
Block Diagram ........................................................................................................................ 275  
Functional Description ............................................................................................................. 275  
12.2.1 Bit Rate Generation ................................................................................................................. 276  
12.2.2 FIFO Operation ....................................................................................................................... 276  
12.2.3 Interrupts ................................................................................................................................ 276  
12.2.4 Frame Formats ....................................................................................................................... 277  
12.3  
12.4  
12.5  
Initialization and Configuration ................................................................................................. 284  
Register Map .......................................................................................................................... 285  
Register Descriptions .............................................................................................................. 286  
13  
13.1  
13.2  
Inter-Integrated Circuit (I2C) Interface ............................................................................ 312  
Block Diagram ........................................................................................................................ 312  
Functional Description ............................................................................................................. 312  
13.2.1 I2C Bus Functional Overview .................................................................................................... 313  
13.2.2 Available Speed Modes ........................................................................................................... 315  
13.2.3 Interrupts ................................................................................................................................ 316  
13.2.4 Loopback Operation ................................................................................................................ 316  
13.2.5 Command Sequence Flow Charts ............................................................................................ 316  
13.3  
13.4  
13.5  
13.6  
Initialization and Configuration ................................................................................................. 323  
I2C Register Map ..................................................................................................................... 324  
Register Descriptions (I2C Master) ........................................................................................... 325  
Register Descriptions (I2C Slave) ............................................................................................. 338  
14  
Controller Area Network (CAN) Module ......................................................................... 347  
Controller Area Network Overview ............................................................................................ 347  
Controller Area Network Features ............................................................................................ 347  
Controller Area Network Block Diagram .................................................................................... 348  
Controller Area Network Functional Description ......................................................................... 349  
14.1  
14.2  
14.3  
14.4  
14.4.1 Initialization ............................................................................................................................. 349  
14.4.2 Operation ............................................................................................................................... 350  
14.4.3 Transmitting Message Objects ................................................................................................. 350  
14.4.4 Configuring a Transmit Message Object .................................................................................... 350  
November 29, 2007  
5
Preliminary  
Table of Contents  
14.4.5 Updating a Transmit Message Object ....................................................................................... 351  
14.4.6 Accepting Received Message Objects ...................................................................................... 351  
14.4.7 Receiving a Data Frame .......................................................................................................... 352  
14.4.8 Receiving a Remote Frame ...................................................................................................... 352  
14.4.9 Receive/Transmit Priority ......................................................................................................... 352  
14.4.10 Configuring a Receive Message Object .................................................................................... 352  
14.4.11 Handling of Received Message Objects .................................................................................... 353  
14.4.12 Handling of Interrupts .............................................................................................................. 353  
14.4.13 Bit Timing Configuration Error Considerations ........................................................................... 354  
14.4.14 Bit Time and Bit Rate ............................................................................................................... 354  
14.4.15 Calculating the Bit Timing Parameters ...................................................................................... 356  
14.5  
14.6  
Controller Area Network Register Map ...................................................................................... 358  
Register Descriptions .............................................................................................................. 360  
15  
15.1  
15.2  
Analog Comparators ....................................................................................................... 388  
Block Diagram ........................................................................................................................ 389  
Functional Description ............................................................................................................. 389  
15.2.1 Internal Reference Programming .............................................................................................. 391  
15.3  
15.4  
15.5  
Initialization and Configuration ................................................................................................. 392  
Register Map .......................................................................................................................... 392  
Register Descriptions .............................................................................................................. 393  
16  
16.1  
16.2  
Pulse Width Modulator (PWM) ........................................................................................ 401  
Block Diagram ........................................................................................................................ 401  
Functional Description ............................................................................................................. 401  
16.2.1 PWM Timer ............................................................................................................................. 401  
16.2.2 PWM Comparators .................................................................................................................. 402  
16.2.3 PWM Signal Generator ............................................................................................................ 403  
16.2.4 Dead-Band Generator ............................................................................................................. 404  
16.2.5 Interrupt Selector ..................................................................................................................... 404  
16.2.6 Synchronization Methods ......................................................................................................... 404  
16.2.7 Fault Conditions ...................................................................................................................... 404  
16.2.8 Output Control Block ............................................................................................................... 405  
16.3  
16.4  
16.5  
Initialization and Configuration ................................................................................................. 405  
Register Map .......................................................................................................................... 406  
Register Descriptions .............................................................................................................. 407  
17  
18  
19  
Pin Diagram ...................................................................................................................... 436  
Signal Tables .................................................................................................................... 437  
Operating Characteristics ............................................................................................... 449  
20  
20.1  
Electrical Characteristics ................................................................................................ 450  
DC Characteristics .................................................................................................................. 450  
20.1.1 Maximum Ratings ................................................................................................................... 450  
20.1.2 Recommended DC Operating Conditions .................................................................................. 450  
20.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics ............................................................ 451  
20.1.4 Power Specifications ............................................................................................................... 451  
20.1.5 Flash Memory Characteristics .................................................................................................. 452  
20.2  
AC Characteristics ................................................................................................................... 453  
20.2.1 Load Conditions ...................................................................................................................... 453  
20.2.2 Clocks .................................................................................................................................... 453  
6
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
20.2.3 Analog Comparator ................................................................................................................. 454  
20.2.4 I2C ......................................................................................................................................... 454  
20.2.5 Synchronous Serial Interface (SSI) ........................................................................................... 455  
20.2.6 JTAG and Boundary Scan ........................................................................................................ 456  
20.2.7 General-Purpose I/O ............................................................................................................... 458  
20.2.8 Reset ..................................................................................................................................... 458  
21  
Package Information ........................................................................................................ 461  
A
A.1  
A.2  
Serial Flash Loader .......................................................................................................... 463  
Serial Flash Loader ................................................................................................................. 463  
Interfaces ............................................................................................................................... 463  
A.2.1 UART ..................................................................................................................................... 463  
A.2.2 SSI ......................................................................................................................................... 463  
A.3  
Packet Handling ...................................................................................................................... 464  
A.3.1 Packet Format ........................................................................................................................ 464  
A.3.2 Sending Packets ..................................................................................................................... 464  
A.3.3 Receiving Packets ................................................................................................................... 464  
A.4  
Commands ............................................................................................................................. 465  
A.4.1 COMMAND_PING (0X20) ........................................................................................................ 465  
A.4.2 COMMAND_GET_STATUS (0x23) ........................................................................................... 465  
A.4.3 COMMAND_DOWNLOAD (0x21) ............................................................................................. 465  
A.4.4 COMMAND_SEND_DATA (0x24) ............................................................................................. 466  
A.4.5 COMMAND_RUN (0x22) ......................................................................................................... 466  
A.4.6 COMMAND_RESET (0x25) ..................................................................................................... 466  
B
Register Quick Reference ............................................................................................... 468  
C
Ordering and Contact Information ................................................................................. 484  
Ordering Information ................................................................................................................ 484  
Kits ......................................................................................................................................... 484  
Company Information .............................................................................................................. 484  
Support Information ................................................................................................................. 485  
C.1  
C.2  
C.3  
C.4  
November 29, 2007  
7
Preliminary  
Table of Contents  
List of Figures  
Figure 1-1.  
Figure 2-1.  
Figure 2-2.  
Figure 5-1.  
Figure 5-2.  
Figure 5-3.  
Figure 5-4.  
Figure 5-5.  
Figure 6-1.  
Figure 7-1.  
Figure 8-1.  
Figure 8-2.  
Figure 8-3.  
Figure 9-1.  
Figure 9-2.  
Figure 9-3.  
Figure 9-4.  
Stellaris® 2000 Series High-Level Block Diagram ............................................................... 26  
CPU Block Diagram ......................................................................................................... 34  
TPIU Block Diagram ........................................................................................................ 35  
JTAG Module Block Diagram ............................................................................................ 44  
Test Access Port State Machine ....................................................................................... 47  
IDCODE Register Format ................................................................................................. 52  
BYPASS Register Format ................................................................................................ 53  
Boundary Scan Register Format ....................................................................................... 53  
External Circuitry to Extend Reset .................................................................................... 55  
Flash Block Diagram ...................................................................................................... 110  
GPIO Port Block Diagram ............................................................................................... 135  
GPIODATA Write Example ............................................................................................. 136  
GPIODATA Read Example ............................................................................................. 136  
GPTM Module Block Diagram ........................................................................................ 176  
16-Bit Input Edge Count Mode Example .......................................................................... 180  
16-Bit Input Edge Time Mode Example ........................................................................... 181  
16-Bit PWM Mode Example ............................................................................................ 182  
Figure 10-1. WDT Module Block Diagram .......................................................................................... 211  
Figure 11-1. UART Module Block Diagram ......................................................................................... 235  
Figure 11-2. UART Character Frame ................................................................................................. 236  
Figure 11-3. IrDA Data Modulation ..................................................................................................... 238  
Figure 12-1. SSI Module Block Diagram ............................................................................................. 275  
Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer) .................................................... 278  
Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer) ............................................ 278  
Figure 12-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 ...................................... 279  
Figure 12-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0 .............................. 279  
Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1 ..................................................... 280  
Figure 12-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 ........................... 281  
Figure 12-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 .................... 281  
Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1 ..................................................... 282  
Figure 12-10. MICROWIRE Frame Format (Single Frame) .................................................................... 283  
Figure 12-11. MICROWIRE Frame Format (Continuous Transfer) ......................................................... 284  
Figure 12-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements ........................ 284  
Figure 13-1. I2C Block Diagram ......................................................................................................... 312  
Figure 13-2. I2C Bus Configuration .................................................................................................... 313  
Figure 13-3. START and STOP Conditions ......................................................................................... 313  
Figure 13-4. Complete Data Transfer with a 7-Bit Address ................................................................... 314  
Figure 13-5. R/S Bit in First Byte ........................................................................................................ 314  
Figure 13-6. Data Validity During Bit Transfer on the I2C Bus ............................................................... 314  
Figure 13-7. Master Single SEND ...................................................................................................... 317  
Figure 13-8. Master Single RECEIVE ................................................................................................. 318  
Figure 13-9. Master Burst SEND ....................................................................................................... 319  
Figure 13-10. Master Burst RECEIVE .................................................................................................. 320  
Figure 13-11. Master Burst RECEIVE after Burst SEND ........................................................................ 321  
Figure 13-12. Master Burst SEND after Burst RECEIVE ........................................................................ 322  
8
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 13-13. Slave Command Sequence ............................................................................................ 323  
Figure 14-1. CAN Module Block Diagram ........................................................................................... 348  
Figure 14-2. CAN Bit Time ................................................................................................................ 355  
Figure 15-1. Analog Comparator Module Block Diagram ..................................................................... 389  
Figure 15-2. Structure of Comparator Unit .......................................................................................... 390  
Figure 15-3. Comparator Internal Reference Structure ........................................................................ 391  
Figure 16-1. PWM Module Block Diagram .......................................................................................... 401  
Figure 16-2. PWM Count-Down Mode ................................................................................................ 402  
Figure 16-3. PWM Count-Up/Down Mode .......................................................................................... 403  
Figure 16-4. PWM Generation Example In Count-Up/Down Mode ....................................................... 403  
Figure 16-5. PWM Dead-Band Generator ........................................................................................... 404  
Figure 17-1. Pin Connection Diagram ................................................................................................ 436  
Figure 20-1. Load Conditions ............................................................................................................ 453  
Figure 20-2. I2C Timing ..................................................................................................................... 455  
Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement .............. 455  
Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer ............................. 456  
Figure 20-5. SSI Timing for SPI Frame Format (FRF=00), with SPH=1 ................................................. 456  
Figure 20-6. JTAG Test Clock Input Timing ......................................................................................... 457  
Figure 20-7. JTAG Test Access Port (TAP) Timing .............................................................................. 458  
Figure 20-8. JTAG TRST Timing ........................................................................................................ 458  
Figure 20-9. External Reset Timing (RST) .......................................................................................... 459  
Figure 20-10. Power-On Reset Timing ................................................................................................. 459  
Figure 20-11. Brown-Out Reset Timing ................................................................................................ 459  
Figure 20-12. Software Reset Timing ................................................................................................... 460  
Figure 20-13. Watchdog Reset Timing ................................................................................................. 460  
Figure 21-1. 100-Pin LQFP Package .................................................................................................. 461  
November 29, 2007  
9
Preliminary  
Table of Contents  
List of Tables  
Table 1.  
Documentation Conventions ............................................................................................ 18  
Table 3-1.  
Table 4-1.  
Table 4-2.  
Table 5-1.  
Table 5-2.  
Table 6-1.  
Table 7-1.  
Table 7-2.  
Table 7-3.  
Table 8-1.  
Table 8-2.  
Table 8-3.  
Table 9-1.  
Table 9-2.  
Table 9-3.  
Table 10-1.  
Table 11-1.  
Table 12-1.  
Table 13-1.  
Table 13-2.  
Table 13-3.  
Table 14-1.  
Table 14-2.  
Table 14-3.  
Table 14-4.  
Table 15-1.  
Table 15-2.  
Table 15-3.  
Table 15-4.  
Table 15-5.  
Table 16-1.  
Table 18-1.  
Table 18-2.  
Table 18-3.  
Table 18-4.  
Table 19-1.  
Table 19-2.  
Table 20-1.  
Table 20-2.  
Table 20-3.  
Table 20-4.  
Table 20-5.  
Table 20-6.  
Table 20-7.  
Table 20-8.  
Memory Map ................................................................................................................... 39  
Exception Types .............................................................................................................. 41  
Interrupts ........................................................................................................................ 42  
JTAG Port Pins Reset State ............................................................................................. 45  
JTAG Instruction Register Commands ............................................................................... 50  
System Control Register Map ........................................................................................... 60  
Flash Protection Policy Combinations ............................................................................. 112  
Flash Resident Registers ............................................................................................... 113  
Flash Register Map ........................................................................................................ 113  
GPIO Pad Configuration Examples ................................................................................. 137  
GPIO Interrupt Configuration Example ............................................................................ 138  
GPIO Register Map ....................................................................................................... 139  
Available CCP Pins ........................................................................................................ 176  
16-Bit Timer With Prescaler Configurations ..................................................................... 179  
Timers Register Map ...................................................................................................... 185  
Watchdog Timer Register Map ........................................................................................ 212  
UART Register Map ....................................................................................................... 240  
SSI Register Map .......................................................................................................... 285  
Examples of I2C Master Timer Period versus Speed Mode ............................................... 315  
Inter-Integrated Circuit (I2C) Interface Register Map ......................................................... 324  
Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) ................................................ 329  
Transmit Message Object Bit Settings ............................................................................. 351  
Receive Message Object Bit Settings .............................................................................. 353  
CAN Protocol Ranges .................................................................................................... 355  
CAN Register Map ......................................................................................................... 358  
Comparator 0 Operating Modes ...................................................................................... 390  
Comparator 1 Operating Modes ..................................................................................... 390  
Comparator 2 Operating Modes ...................................................................................... 391  
Internal Reference Voltage and ACREFCTL Field Values ................................................. 391  
Analog Comparators Register Map ................................................................................. 393  
PWM Register Map ........................................................................................................ 406  
Signals by Pin Number ................................................................................................... 437  
Signals by Signal Name ................................................................................................. 441  
Signals by Function, Except for GPIO ............................................................................. 444  
GPIO Pins and Alternate Functions ................................................................................. 447  
Temperature Characteristics ........................................................................................... 449  
Thermal Characteristics ................................................................................................. 449  
Maximum Ratings .......................................................................................................... 450  
Recommended DC Operating Conditions ........................................................................ 450  
LDO Regulator Characteristics ....................................................................................... 451  
Detailed Power Specifications ........................................................................................ 452  
Flash Memory Characteristics ........................................................................................ 452  
Phase Locked Loop (PLL) Characteristics ....................................................................... 453  
Clock Characteristics ..................................................................................................... 453  
Crystal Characteristics ................................................................................................... 453  
10  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table 20-9.  
Analog Comparator Characteristics ................................................................................. 454  
Table 20-10. Analog Comparator Voltage Reference Characteristics .................................................... 454  
Table 20-11. I2C Characteristics ......................................................................................................... 454  
Table 20-12. SSI Characteristics ........................................................................................................ 455  
Table 20-13. JTAG Characteristics ..................................................................................................... 456  
Table 20-14. GPIO Characteristics ..................................................................................................... 458  
Table 20-15. Reset Characteristics ..................................................................................................... 458  
Table C-1.  
Part Ordering Information ............................................................................................... 484  
November 29, 2007  
11  
Preliminary  
Table of Contents  
List of Registers  
System Control .............................................................................................................................. 54  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Device Identification 0 (DID0), offset 0x000 ....................................................................... 62  
Brown-Out Reset Control (PBORCTL), offset 0x030 .......................................................... 64  
LDO Power Control (LDOPCTL), offset 0x034 ................................................................... 65  
Raw Interrupt Status (RIS), offset 0x050 ........................................................................... 66  
Interrupt Mask Control (IMC), offset 0x054 ........................................................................ 67  
Masked Interrupt Status and Clear (MISC), offset 0x058 .................................................... 68  
Reset Cause (RESC), offset 0x05C .................................................................................. 69  
Run-Mode Clock Configuration (RCC), offset 0x060 .......................................................... 70  
XTAL to PLL Translation (PLLCFG), offset 0x064 .............................................................. 74  
Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 ...................................................... 75  
Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 .......................................... 77  
Register 12: Device Identification 1 (DID1), offset 0x004 ....................................................................... 78  
Register 13: Device Capabilities 0 (DC0), offset 0x008 ......................................................................... 80  
Register 14: Device Capabilities 1 (DC1), offset 0x010 ......................................................................... 81  
Register 15: Device Capabilities 2 (DC2), offset 0x014 ......................................................................... 83  
Register 16: Device Capabilities 3 (DC3), offset 0x018 ......................................................................... 85  
Register 17: Device Capabilities 4 (DC4), offset 0x01C ......................................................................... 87  
Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 .................................... 88  
Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 .................................. 90  
Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 ......................... 92  
Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 .................................... 94  
Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 .................................. 96  
Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 ......................... 98  
Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 ................................... 100  
Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 ................................. 102  
Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 ....................... 104  
Register 27: Software Reset Control 0 (SRCR0), offset 0x040 ............................................................. 106  
Register 28: Software Reset Control 1 (SRCR1), offset 0x044 ............................................................. 107  
Register 29: Software Reset Control 2 (SRCR2), offset 0x048 ............................................................. 109  
Internal Memory ........................................................................................................................... 110  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Flash Memory Address (FMA), offset 0x000 .................................................................... 115  
Flash Memory Data (FMD), offset 0x004 ......................................................................... 116  
Flash Memory Control (FMC), offset 0x008 ..................................................................... 117  
Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C ............................................ 119  
Flash Controller Interrupt Mask (FCIM), offset 0x010 ........................................................ 120  
Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 ..................... 121  
USec Reload (USECRL), offset 0x140 ............................................................................ 122  
Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200 ................... 123  
Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400 ............... 124  
Register 10: User Debug (USER_DBG), offset 0x1D0 ......................................................................... 125  
Register 11: User Register 0 (USER_REG0), offset 0x1E0 .................................................................. 126  
Register 12: User Register 1 (USER_REG1), offset 0x1E4 .................................................................. 127  
Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204 .................................... 128  
Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208 .................................... 129  
12  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C ................................... 130  
Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404 ............................... 131  
Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408 ............................... 132  
Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C ............................... 133  
General-Purpose Input/Outputs (GPIOs) ................................................................................... 134  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
GPIO Data (GPIODATA), offset 0x000 ............................................................................ 141  
GPIO Direction (GPIODIR), offset 0x400 ......................................................................... 142  
GPIO Interrupt Sense (GPIOIS), offset 0x404 .................................................................. 143  
GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 ........................................................ 144  
GPIO Interrupt Event (GPIOIEV), offset 0x40C ................................................................ 145  
GPIO Interrupt Mask (GPIOIM), offset 0x410 ................................................................... 146  
GPIO Raw Interrupt Status (GPIORIS), offset 0x414 ........................................................ 147  
GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 ................................................... 148  
GPIO Interrupt Clear (GPIOICR), offset 0x41C ................................................................ 149  
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 ............................................ 150  
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 ........................................................ 152  
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 ........................................................ 153  
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 ........................................................ 154  
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C ......................................................... 155  
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510 ................................................................ 156  
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514 ........................................................... 157  
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 ................................................ 158  
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C ................................................................ 159  
Register 19: GPIO Lock (GPIOLOCK), offset 0x520 ............................................................................ 160  
Register 20: GPIO Commit (GPIOCR), offset 0x524 ............................................................................ 161  
Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 ....................................... 163  
Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 ....................................... 164  
Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 ....................................... 165  
Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC ...................................... 166  
Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 ....................................... 167  
Register 26: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 ....................................... 168  
Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 ....................................... 169  
Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC ...................................... 170  
Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .......................................... 171  
Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .......................................... 172  
Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .......................................... 173  
Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC ......................................... 174  
General-Purpose Timers ............................................................................................................. 175  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
GPTM Configuration (GPTMCFG), offset 0x000 .............................................................. 187  
GPTM TimerA Mode (GPTMTAMR), offset 0x004 ............................................................ 188  
GPTM TimerB Mode (GPTMTBMR), offset 0x008 ............................................................ 190  
GPTM Control (GPTMCTL), offset 0x00C ........................................................................ 192  
GPTM Interrupt Mask (GPTMIMR), offset 0x018 .............................................................. 195  
GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C ..................................................... 197  
GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 ................................................ 198  
GPTM Interrupt Clear (GPTMICR), offset 0x024 .............................................................. 199  
GPTM TimerA Interval Load (GPTMTAILR), offset 0x028 ................................................. 201  
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C ................................................ 202  
November 29, 2007  
13  
Preliminary  
Table of Contents  
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030 ................................................... 203  
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034 .................................................. 204  
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038 ........................................................ 205  
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C ....................................................... 206  
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040 ........................................... 207  
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044 ........................................... 208  
Register 17: GPTM TimerA (GPTMTAR), offset 0x048 ........................................................................ 209  
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C ....................................................................... 210  
Watchdog Timer ........................................................................................................................... 211  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Watchdog Load (WDTLOAD), offset 0x000 ...................................................................... 214  
Watchdog Value (WDTVALUE), offset 0x004 ................................................................... 215  
Watchdog Control (WDTCTL), offset 0x008 ..................................................................... 216  
Watchdog Interrupt Clear (WDTICR), offset 0x00C .......................................................... 217  
Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 .................................................. 218  
Watchdog Masked Interrupt Status (WDTMIS), offset 0x014 ............................................. 219  
Watchdog Test (WDTTEST), offset 0x418 ....................................................................... 220  
Watchdog Lock (WDTLOCK), offset 0xC00 ..................................................................... 221  
Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0 ................................. 222  
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4 ................................. 223  
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8 ................................. 224  
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC ................................ 225  
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0 ................................. 226  
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4 ................................. 227  
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8 ................................. 228  
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC ................................. 229  
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0 .................................... 230  
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4 .................................... 231  
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8 .................................... 232  
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC .................................. 233  
Universal Asynchronous Receivers/Transmitters (UARTs) ..................................................... 234  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
UART Data (UARTDR), offset 0x000 ............................................................................... 242  
UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 ........................... 244  
UART Flag (UARTFR), offset 0x018 ................................................................................ 246  
UART IrDA Low-Power Register (UARTILPR), offset 0x020 ............................................. 248  
UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024 ............................................ 249  
UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 ....................................... 250  
UART Line Control (UARTLCRH), offset 0x02C ............................................................... 251  
UART Control (UARTCTL), offset 0x030 ......................................................................... 253  
UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ........................................... 255  
Register 10: UART Interrupt Mask (UARTIM), offset 0x038 ................................................................. 257  
Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C ...................................................... 259  
Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040 ................................................. 260  
Register 13: UART Interrupt Clear (UARTICR), offset 0x044 ............................................................... 261  
Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0 ..................................... 263  
Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4 ..................................... 264  
Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8 ..................................... 265  
Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC ..................................... 266  
Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0 ...................................... 267  
14  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4 ...................................... 268  
Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8 ...................................... 269  
Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC ..................................... 270  
Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0 ........................................ 271  
Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4 ........................................ 272  
Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8 ........................................ 273  
Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC ........................................ 274  
Synchronous Serial Interface (SSI) ............................................................................................ 275  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
SSI Control 0 (SSICR0), offset 0x000 .............................................................................. 287  
SSI Control 1 (SSICR1), offset 0x004 .............................................................................. 289  
SSI Data (SSIDR), offset 0x008 ...................................................................................... 291  
SSI Status (SSISR), offset 0x00C ................................................................................... 292  
SSI Clock Prescale (SSICPSR), offset 0x010 .................................................................. 294  
SSI Interrupt Mask (SSIIM), offset 0x014 ......................................................................... 295  
SSI Raw Interrupt Status (SSIRIS), offset 0x018 .............................................................. 297  
SSI Masked Interrupt Status (SSIMIS), offset 0x01C ........................................................ 298  
SSI Interrupt Clear (SSIICR), offset 0x020 ....................................................................... 299  
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0 ............................................. 300  
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 ............................................. 301  
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 ............................................. 302  
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC ............................................ 303  
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 ............................................. 304  
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 ............................................. 305  
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 ............................................. 306  
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC ............................................ 307  
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 ............................................... 308  
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 ............................................... 309  
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 ............................................... 310  
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC ............................................... 311  
Inter-Integrated Circuit (I2C) Interface ........................................................................................ 312  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
I2C Master Slave Address (I2CMSA), offset 0x000 ........................................................... 326  
I2C Master Control/Status (I2CMCS), offset 0x004 ........................................................... 327  
I2C Master Data (I2CMDR), offset 0x008 ......................................................................... 331  
I2C Master Timer Period (I2CMTPR), offset 0x00C ........................................................... 332  
I2C Master Interrupt Mask (I2CMIMR), offset 0x010 ......................................................... 333  
I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014 ................................................. 334  
I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ........................................... 335  
I2C Master Interrupt Clear (I2CMICR), offset 0x01C ......................................................... 336  
I2C Master Configuration (I2CMCR), offset 0x020 ............................................................ 337  
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000 ............................................................ 339  
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004 ........................................................... 340  
Register 12: I2C Slave Data (I2CSDR), offset 0x008 ........................................................................... 342  
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C ........................................................... 343  
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010 ................................................... 344  
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014 .............................................. 345  
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018 ............................................................ 346  
November 29, 2007  
15  
Preliminary  
Table of Contents  
Controller Area Network (CAN) Module ..................................................................................... 347  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
CAN Control (CANCTL), offset 0x000 ............................................................................. 361  
CAN Status (CANSTS), offset 0x004 ............................................................................... 363  
CAN Error Counter (CANERR), offset 0x008 ................................................................... 366  
CAN Bit Timing (CANBIT), offset 0x00C .......................................................................... 367  
CAN Interrupt (CANINT), offset 0x010 ............................................................................. 369  
CAN Test (CANTST), offset 0x014 .................................................................................. 370  
CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018 ....................................... 372  
CAN IF1 Command Request (CANIF1CRQ), offset 0x020 ................................................ 373  
CAN IF2 Command Request (CANIF2CRQ), offset 0x080 ................................................ 373  
Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024 .................................................. 374  
Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084 .................................................. 374  
Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028 ................................................................ 377  
Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088 ................................................................ 377  
Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C ................................................................ 378  
Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C ................................................................ 378  
Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030 ......................................................... 379  
Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090 ......................................................... 379  
Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034 ......................................................... 380  
Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094 ......................................................... 380  
Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038 .................................................. 381  
Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098 .................................................. 381  
Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C ................................................................. 383  
Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040 ................................................................. 383  
Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044 ................................................................. 383  
Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048 ................................................................. 383  
Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C ................................................................. 383  
Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0 ................................................................. 383  
Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4 ................................................................. 383  
Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8 ................................................................. 383  
Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100 ................................................ 384  
Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104 ................................................ 384  
Register 32: CAN New Data 1 (CANNWDA1), offset 0x120 ................................................................. 385  
Register 33: CAN New Data 2 (CANNWDA2), offset 0x124 ................................................................. 385  
Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140 ..................................... 386  
Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144 ..................................... 386  
Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160 ....................................................... 387  
Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164 ....................................................... 387  
Analog Comparators ................................................................................................................... 388  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00 .................................... 394  
Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04 ......................................... 395  
Analog Comparator Interrupt Enable (ACINTEN), offset 0x08 ........................................... 396  
Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10 ......................... 397  
Analog Comparator Status 0 (ACSTAT0), offset 0x20 ....................................................... 398  
Analog Comparator Status 1 (ACSTAT1), offset 0x40 ....................................................... 398  
Analog Comparator Status 2 (ACSTAT2), offset 0x60 ....................................................... 398  
Analog Comparator Control 0 (ACCTL0), offset 0x24 ....................................................... 399  
Analog Comparator Control 1 (ACCTL1), offset 0x44 ....................................................... 399  
16  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x64 ...................................................... 399  
Pulse Width Modulator (PWM) .................................................................................................... 401  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
PWM Master Control (PWMCTL), offset 0x000 ................................................................ 408  
PWM Time Base Sync (PWMSYNC), offset 0x004 ........................................................... 409  
PWM Output Enable (PWMENABLE), offset 0x008 .......................................................... 410  
PWM Output Inversion (PWMINVERT), offset 0x00C ....................................................... 411  
PWM Output Fault (PWMFAULT), offset 0x010 ................................................................ 412  
PWM Interrupt Enable (PWMINTEN), offset 0x014 ........................................................... 413  
PWM Raw Interrupt Status (PWMRIS), offset 0x018 ........................................................ 414  
PWM Interrupt Status and Clear (PWMISC), offset 0x01C ................................................ 415  
PWM Status (PWMSTATUS), offset 0x020 ...................................................................... 416  
Register 10: PWM0 Control (PWM0CTL), offset 0x040 ....................................................................... 417  
Register 11: PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 ...................................................... 419  
Register 12: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 .................................................... 421  
Register 13: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C ........................................... 422  
Register 14: PWM0 Load (PWM0LOAD), offset 0x050 ....................................................................... 423  
Register 15: PWM0 Counter (PWM0COUNT), offset 0x054 ................................................................ 424  
Register 16: PWM0 Compare A (PWM0CMPA), offset 0x058 ............................................................. 425  
Register 17: PWM0 Compare B (PWM0CMPB), offset 0x05C ............................................................. 426  
Register 18: PWM0 Generator A Control (PWM0GENA), offset 0x060 ................................................ 427  
Register 19: PWM0 Generator B Control (PWM0GENB), offset 0x064 ................................................ 430  
Register 20: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 ................................................ 433  
Register 21: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C ............................. 434  
Register 22: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070 ............................. 435  
November 29, 2007  
17  
Preliminary  
About This Document  
About This Document  
This data sheet provides reference information for the LM3S2110 microcontroller, describing the  
functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3  
core.  
Audience  
This manual is intended for system software developers, hardware designers, and application  
developers.  
About This Manual  
This document is organized into sections that correspond to each major feature.  
Related Documents  
The following documents are referenced by the data sheet, and available on the documentation CD  
or from the Luminary Micro web site at www.luminarymicro.com:  
ARM® Cortex™-M3 Technical Reference Manual  
ARM® CoreSight Technical Reference Manual  
ARM® v7-M Architecture Application Level Reference Manual  
The following related documents are also referenced:  
IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture  
This documentation list was current as of publication date. Please check the Luminary Micro web  
site for additional documentation, including application notes and white papers.  
Documentation Conventions  
This document uses the conventions shown in Table 1 on page 18.  
Table 1. Documentation Conventions  
Notation  
Meaning  
General Register Notation  
REGISTER  
APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and  
Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more  
than one register. For example, SRCRn represents any (or all) of the three Software Reset Control  
registers: SRCR0, SRCR1 , and SRCR2.  
bit  
A single bit in a register.  
bit field  
offset 0xnnn  
Two or more consecutive and related bits.  
A hexadecimal increment to a register's address, relative to that module's base address as specified  
in “Memory Map” on page 39.  
Register N  
Registers are numbered consecutively throughout the document to aid in referencing them. The  
register number has no meaning to software.  
18  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Notation  
Meaning  
reserved  
Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to  
0; however, user software should not rely on the value of a reserved bit. To provide software  
compatibility with future products, the value of a reserved bit should be preserved across a  
read-modify-write operation.  
yy:xx  
The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in  
that register.  
Register Bit/Field  
Types  
This value in the register bit diagram indicates whether software running on the controller can  
change the value of the bit field.  
RC  
Software can read this field. The bit or field is cleared by hardware after reading the bit/field.  
Software can read this field. Always write the chip reset value.  
Software can read or write this field.  
RO  
R/W  
R/W1C  
Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the  
register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.  
This register type is primarily used for clearing interrupt status bits where the read operation  
provides the interrupt status and the write of the read value clears only the interrupts being reported  
at the time the register was read.  
W1C  
WO  
Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register.  
A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A  
read of the register returns no meaningful data.  
This register is typically used to clear the corresponding bit in an interrupt register.  
Only a write by software is valid; a read of the register returns no meaningful data.  
This value in the register bit diagram shows the bit/field value after any reset, unless noted.  
Register Bit/Field  
Reset Value  
0
Bit cleared to 0 on chip reset.  
Bit set to 1 on chip reset.  
Nondeterministic.  
1
-
Pin/Signal Notation  
[ ]  
Pin alternate function; a pin defaults to the signal without the brackets.  
Refers to the physical connection on the package.  
pin  
signal  
Refers to the electrical signal encoding of a pin.  
assert a signal  
Change the value of the signal from the logically False state to the logically True state. For active  
High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value  
is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL  
below).  
deassert a signal  
Change the value of the signal from the logically True state to the logically False state.  
SIGNAL  
Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that  
it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.  
SIGNAL  
Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To  
assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.  
Numbers  
X
An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For  
example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and  
so on.  
0x  
Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.  
All other numbers within register tables are assumed to be binary. Within conceptual information,  
binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written  
without a prefix or suffix.  
November 29, 2007  
19  
Preliminary  
Architectural Overview  
1
Architectural Overview  
The Luminary Micro Stellaris® family of microcontrollers—the first ARM® Cortex™-M3 based  
controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller  
applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to  
legacy 8- and 16-bit devices, all in a package with a small footprint.  
The Stellaris® family offers efficient performance and extensive integration, favorably positioning  
the device into cost-conscious applications requiring significant control-processing and connectivity  
capabilities. The Stellaris® LM3S1000 series extends the Stellaris® family with larger on-chip  
memories, enhanced power management, and expanded I/O and control capabilities. The Stellaris®  
LM3S2000 series, designed for Controller Area Network (CAN) applications, extends the Stellaris  
family with Bosch CAN networking technology, the golden standard in short-haul industrial networks.  
The Stellaris® LM3S2000 series also marks the first integration of CAN capabilities with the  
revolutionary Cortex-M3 core. The Stellaris® LM3S6000 series combines both a 10/100 Ethernet  
Media Access Control (MAC) and Physical (PHY) layer, marking the first time that integrated  
connectivity is available with an ARM Cortex-M3 MCU and the only integrated 10/100 Ethernet MAC  
and PHY available in an ARM architecture MCU. The Stellaris® LM3S8000 series combines Bosch  
Controller Area Network technology with both a 10/100 Ethernet Media Access Control (MAC) and  
Physical (PHY) layer.  
The LM3S2110 microcontroller is targeted for industrial applications, including remote monitoring,  
electronic point-of-sale machines, test and measurement equipment, network appliances and  
switches, factory automation, HVAC and building control, gaming equipment, motion control, medical  
instrumentation, and fire and security.  
In addition, the LM3S2110 microcontroller offers the advantages of ARM's widely available  
development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community.  
Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce  
memory requirements and, thereby, cost. Finally, the LM3S2110 microcontroller is code-compatible  
to all members of the extensive Stellaris® family; providing flexibility to fit our customers' precise  
needs.  
Luminary Micro offers a complete solution to get to market quickly, with evaluation and development  
boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong  
support, sales, and distributor network.  
1.1  
Product Features  
The LM3S2110 microcontroller includes the following product features:  
32-Bit RISC Performance  
32-bit ARM® Cortex™-M3 v7M architecture optimized for small-footprint embedded  
applications  
System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero  
counter with a flexible control mechanism  
Thumb®-compatible Thumb-2-only instruction set processor core for high code density  
25-MHz operation  
Hardware-division and single-cycle-multiplication  
20  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt  
handling  
26 interrupts with eight priority levels  
Memory protection unit (MPU), providing a privileged mode for protected operating system  
functionality  
Unaligned data access, enabling data to be efficiently packed into memory  
Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined  
peripheral control  
Internal Memory  
64 KB single-cycle flash  
User-managed flash block protection on a 2-KB block basis  
User-managed flash data programming  
User-defined and managed flash-protection block  
16 KB single-cycle SRAM  
General-Purpose Timers  
Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers.  
Each GPTM can be configured to operate independently:  
As a single 32-bit timer  
As one 32-bit Real-Time Clock (RTC) to event capture  
For Pulse Width Modulation (PWM)  
32-bit Timer modes  
Programmable one-shot timer  
Programmable periodic timer  
Real-Time Clock when using an external 32.768-KHz clock as the input  
User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU  
Halt flag during debug  
16-bit Timer modes  
General-purpose timer function with an 8-bit prescaler  
Programmable one-shot timer  
Programmable periodic timer  
User-enabled stalling when the controller asserts CPU Halt flag during debug  
November 29, 2007  
21  
Preliminary  
Architectural Overview  
16-bit Input Capture modes  
Input edge count capture  
Input edge time capture  
16-bit PWM mode  
Simple PWM mode with software-programmable output inversion of the PWM signal  
ARM FiRM-compliant Watchdog Timer  
32-bit down counter with a programmable load register  
Separate watchdog clock with an enable  
Programmable interrupt generation logic with interrupt masking  
Lock register protection from runaway software  
Reset generation logic with an enable/disable  
User-enabled stalling when the controller asserts the CPU Halt flag during debug  
Controller Area Network (CAN)  
Supports CAN protocol version 2.0 part A/B  
Bit rates up to 1Mb/s  
32 message objects, each with its own identifier mask  
Maskable interrupt  
Disable automatic retransmission mode for TTCAN  
Programmable loop-back mode for self-test operation  
Synchronous Serial Interface (SSI)  
Master or slave operation  
Programmable clock bit rate and prescale  
Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep  
Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments  
synchronous serial interfaces  
Programmable data frame size from 4 to 16 bits  
Internal loopback test mode for diagnostic/debug testing  
UART  
Fully programmable 16C550-type UART with IrDA support  
22  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service  
loading  
Programmable baud-rate generator with fractional divider  
Programmable FIFO length, including 1-byte deep operation providing conventional  
double-buffered interface  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Standard asynchronous communication bits for start, stop, and parity  
False-start-bit detection  
Line-break generation and detection  
Analog Comparators  
Three independent integrated analog comparators  
Configurable for output to: drive an output pin or generate an interrupt  
I2C  
Compare external pin input to external pin input or to internal programmable voltage reference  
Master and slave receive and transmit operation with transmission speed up to 100 Kbps in  
Standard mode and 400 Kbps in Fast mode  
Interrupt generation  
Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing  
mode  
PWM  
One PWM generator blocks, each with one 16-bit counter, two comparators, a PWM generator,  
and a dead-band generator  
One 16-bit counter  
Runs in Down or Up/Down mode  
Output frequency controlled by a 16-bit load value  
Load value updates can be synchronized  
Produces output signals at zero and load value  
Two PWM comparators  
Comparator value updates can be synchronized  
Produces output signals on match  
PWM generator  
November 29, 2007  
23  
Preliminary  
Architectural Overview  
Output PWM signal is constructed based on actions taken as a result of the counter and  
PWM comparator output signals  
Produces two independent PWM signals  
Dead-band generator  
Produces two PWM signals with programmable dead-band delays suitable for driving a  
half-H bridge  
Can be bypassed, leaving input PWM signals unmodified  
Flexible output control block with PWM output enable of each PWM signal  
PWM output enable of each PWM signal  
Optional output inversion of each PWM signal (polarity control)  
Optional fault handling for each PWM signal  
Synchronization of timers in the PWM generator blocks  
Synchronization of timer/comparator updates across the PWM generator blocks  
Interrupt status summary of the PWM generator blocks  
GPIOs  
11-40 GPIOs, depending on configuration  
5-V-tolerant input/outputs  
Programmable interrupt generation as either edge-triggered or level-sensitive  
Bit masking in both read and write operations through address lines  
Programmable control for GPIO pad configuration:  
Weak pull-up or pull-down resistors  
2-mA, 4-mA, and 8-mA pad drive  
Slew rate control for the 8-mA drive  
Open drain enables  
Digital input enables  
Power  
On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable  
from 2.25 V to 2.75 V  
Low-power options on controller: Sleep and Deep-sleep modes  
Low-power options for peripherals: software controls shutdown of individual peripherals  
24  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
User-enabled LDO unregulated voltage detection and automatic reset  
3.3-V supply brown-out detection and reporting via interrupt or reset  
Flexible Reset Sources  
Power-on reset (POR)  
Reset pin assertion  
Brown-out (BOR) detector alerts to system power drops  
Software reset  
Watchdog timer reset  
Internal low drop-out (LDO) regulator output goes unregulated  
Additional Features  
Six reset sources  
Programmable clock source control  
Clock gating to individual peripherals for power savings  
IEEE 1149.1-1990 compliant Test Access Port (TAP) controller  
Debug access via JTAG and Serial Wire interfaces  
Full JTAG boundary scan  
Industrial-range 100-pin RoHS-compliant LQFP package  
1.2  
Target Applications  
Remote monitoring  
Electronic point-of-sale (POS) machines  
Test and measurement equipment  
Network appliances and switches  
Factory automation  
HVAC and building control  
Gaming equipment  
Motion control  
Medical instrumentation  
Fire and security  
Power and energy  
November 29, 2007  
25  
Preliminary  
Architectural Overview  
Transportation  
1.3  
High-Level Block Diagram  
Figure 1-1 on page 26 represents the full set of features in the Stellaris® 2000 series of devices;  
not all features may be available on the LM3S2110 microcontroller.  
Figure 1-1. Stellaris® 2000 Series High-Level Block Diagram  
26  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
1.4  
Functional Overview  
The following sections provide an overview of the features of the LM3S2110 microcontroller. The  
page number in parenthesis indicates where that feature is discussed in detail. Ordering and support  
information can be found in “Ordering and Contact Information” on page 484.  
1.4.1  
ARM Cortex™-M3  
1.4.1.1 Processor Core (see page 33)  
All members of the Stellaris® product family, including the LM3S2110 microcontroller, are designed  
around an ARM Cortex™-M3 processor core. The ARM Cortex-M3 processor provides the core for  
a high-performance, low-cost platform that meets the needs of minimal memory implementation,  
reduced pin count, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
“ARM Cortex-M3 Processor Core” on page 33 provides an overview of the ARM core; the core is  
detailed in the ARM® Cortex™-M3 Technical Reference Manual.  
1.4.1.2 System Timer (SysTick)  
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter  
can be used in several different ways, for example:  
An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a  
SysTick routine.  
A high-speed alarm timer using the system clock.  
A variable rate alarm or signal timer—the duration is range-dependent on the reference clock  
used and the dynamic range of the counter.  
A simple counter. Software can use this to measure time to completion and time used.  
An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field  
in the control and status register can be used to determine if an action completed within a set  
duration, as part of a dynamic clock management control loop.  
1.4.1.3 Nested Vectored Interrupt Controller (NVIC)  
The LM3S2110 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the  
ARM Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions  
are handled in Handler Mode. The processor state is automatically stored to the stack on an  
exception, and automatically restored from the stack at the end of the Interrupt Service Routine  
(ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.  
The processor supports tail-chaining, which enables back-to-back interrupts to be performed without  
the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions  
(system handlers) and 26 interrupts.  
“Interrupts” on page 41 provides an overview of the NVIC controller and the interrupt map. Exceptions  
and interrupts are detailed in the ARM® Cortex™-M3 Technical Reference Manual.  
1.4.2  
Motor Control Peripherals  
To enhance motor control, the LM3S2110 controller features Pulse Width Modulation (PWM) outputs.  
November 29, 2007  
27  
Preliminary  
Architectural Overview  
1.4.2.1 PWM  
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.  
High-resolution counters are used to generate a square wave, and the duty cycle of the square  
wave is modulated to encode an analog signal. Typical applications include switching power supplies  
and motor control.  
On the LM3S2110, PWM motion control functionality can be achieved through:  
Dedicated, flexible motion control hardware using the PWM pins  
The motion control features of the general-purpose timers using the CCP pins  
PWM Pins (see page 401)  
The LM3S2110 PWM module consists of one PWM generator blocks and a control block. Each  
PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a  
PWM signal generator, a dead-band generator, and an interrupt. The control block determines the  
polarity of the PWM signals, and which signals are passed through to the pins.  
Each PWM generator block produces two PWM signals that can either be independent signals or  
a single pair of complementary signals with dead-band delays inserted. The output of the PWM  
generation blocks are managed by the output control block before being passed to the device pins.  
CCP Pins (see page 181)  
The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable  
to support a simple PWM mode with a software-programmable output inversion of the PWM signal.  
1.4.3  
Analog Peripherals  
For support of analog signals, the LM3S2110 microcontroller offers three analog comparators.  
1.4.3.1 Analog Comparators (see page 388)  
An analog comparator is a peripheral that compares two analog voltages, and provides a logical  
output that signals the comparison result.  
The LM3S2110 microcontroller provides three independent integrated analog comparators that can  
be configured to drive an output or generate an interrupt .  
A comparator can compare a test voltage against any one of these voltages:  
An individual external reference voltage  
A shared single external reference voltage  
A shared internal reference voltage  
The comparator can provide its output to a device pin, acting as a replacement for an analog  
comparator on the board, or it can be used to signal the application via interrupts to cause it to start  
capturing a sample sequence.  
1.4.4  
Serial Communications Peripherals  
The LM3S2110 controller supports both asynchronous and synchronous serial communications  
with:  
One fully programmable 16C550-type UART  
28  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
One SSI module  
One I2C module  
One CAN unit  
1.4.4.1 UART (see page 234)  
A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C  
serial communications, containing a transmitter (parallel-to-serial converter) and a receiver  
(serial-to-parallel converter), each clocked separately.  
The LM3S2110 controller includes one fully programmable 16C550-type UARTthat supports data  
transfer speeds up to 460.8 Kbps. (Although similar in functionality to a 16C550 UART, it is not  
register-compatible.) In addition, each UART is capable of supporting IrDA.  
Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading.  
The UART can generate individually masked interrupts from the RX, TX, modem status, and error  
conditions. The module provides a single combined interrupt when any of the interrupts are asserted  
and are unmasked.  
1.4.4.2 SSI (see page 275)  
Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.  
The LM3S2110 controller includes one SSI module that provides the functionality for synchronous  
serial communications with peripheral devices, and can be configured to use the Freescale SPI,  
MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also  
configurable, and can be set between 4 and 16 bits, inclusive.  
The SSI module performs serial-to-parallel conversion on data received from a peripheral device,  
and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths  
are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.  
The SSI module can be configured as either a master or slave device. As a slave device, the SSI  
module can also be configured to disable its output, which allows a master device to be coupled  
with multiple slave devices.  
The SSI module also includes a programmable bit rate clock divider and prescaler to generate the  
output serial clock derived from the SSI module's input clock. Bit rates are generated based on the  
input clock and the maximum bit rate is determined by the connected peripheral.  
1.4.4.3 I2C (see page 312)  
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design  
(a serial data line SDA and a serial clock line SCL).  
The I2C bus interfaces to external I2C devices such as serial memory (RAMs and ROMs), networking  
devices, LCDs, tone generators, and so on. The I2C bus may also be used for system testing and  
diagnostic purposes in product development and manufacture.  
The LM3S2110 controller includes one I2C module that provides the ability to communicate to other  
IC devices over an I2C bus. The I2C bus supports devices that can both transmit and receive (write  
and read) data.  
Devices on the I2C bus can be designated as either a master or a slave. The I2C module supports  
both sending and receiving data as either a master or a slave, and also supports the simultaneous  
operation as both a master and a slave. The four I2C modes are: Master Transmit, Master Receive,  
Slave Transmit, and Slave Receive.  
November 29, 2007  
29  
Preliminary  
Architectural Overview  
A Stellaris® I2C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).  
Both the I2C master and slave can generate interrupts. The I2C master generates interrupts when  
a transmit or receive operation completes (or aborts due to an error). The I2C slave generates  
interrupts when data has been sent or requested by a master.  
1.4.4.4 Controller Area Network (see page 347)  
Controller Area Network (CAN) is a multicast shared serial-bus standard for connecting electronic  
control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy  
environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair  
wire. Originally created for automotive purposes, now it is used in many embedded control  
applications (for example, industrial or medical). Bit rates up to 1Mb/s are possible at network lengths  
below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kb/s at  
500m).  
A transmitter sends a message to all CAN nodes (broadcasting). Each node decides on the basis  
of the identifier received whether it should process the message. The identifier also determines the  
priority that the message enjoys in competition for bus access. Each CAN message can transmit  
from 0 to 8 bytes of user information. The LM3S2110 includes one CAN units.  
1.4.5  
System Peripherals  
1.4.5.1 Programmable GPIOs (see page 134)  
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.  
The Stellaris® GPIO module is composed of eight physical GPIO blocks, each corresponding to an  
individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP  
for Real-Time Microcontrollers specification) and supports 11-40 programmable input/output pins.  
The number of GPIOs available depends on the peripherals being used (see “Signal Tables” on page  
437 for the signals available to each GPIO pin).  
The GPIO module features programmable interrupt generation as either edge-triggered or  
level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in  
both read and write operations through address lines.  
1.4.5.2 Three Programmable Timers (see page 175)  
Programmable timers can be used to count or time external events that drive the Timer input pins.  
The Stellaris® General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM  
block provides two 16-bit timers/counters that can be configured to operate independently as timers  
or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).  
When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or  
periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can  
extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event  
capture or Pulse Width Modulation (PWM) generation.  
1.4.5.3 Watchdog Timer (see page 211)  
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is  
reached. The watchdog timer is used to regain control when a system has failed due to a software  
error or to the failure of an external device to respond in the expected way.  
The Stellaris® Watchdog Timer module consists of a 32-bit down counter, a programmable load  
register, interrupt generation logic, and a locking register.  
30  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,  
and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured,  
the lock register can be written to prevent the timer configuration from being inadvertently altered.  
1.4.6  
Memory Peripherals  
The LM3S2110 controller offers both single-cycle SRAM and single-cycle Flash memory.  
1.4.6.1 SRAM (see page 110)  
The LM3S2110 static random access memory (SRAM) controller supports 16 KB SRAM. The internal  
SRAM of the Stellaris® devices is located at offset 0x0000.0000 of the device memory map. To  
reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced  
bit-banding technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain  
regions in the memory map (SRAM and peripheral space) can use address aliases to access  
individual bits in a single, atomic operation.  
1.4.6.2 Flash (see page 111)  
The LM3S2110 Flash controller supports 64 KB of flash memory. The flash is organized as a set  
of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the  
block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually  
protected. The blocks can be marked as read-only or execute-only, providing different levels of code  
protection. Read-only blocks cannot be erased or programmed, protecting the contents of those  
blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only  
be read by the controller instruction fetch mechanism, protecting the contents of those blocks from  
being read by either the controller or by a debugger.  
1.4.7  
Additional Features  
1.4.7.1 Memory Map (see page 39)  
A memory map lists the location of instructions and data in memory. The memory map for the  
LM3S2110 controller can be found in “Memory Map” on page 39. Register addresses are given as  
a hexadecimal increment, relative to the module's base address as shown in the memory map.  
The ARM® Cortex™-M3 Technical Reference Manual provides further information on the memory  
map.  
1.4.7.2 JTAG TAP Controller (see page 43)  
The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the  
Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG  
data registers can be used to test the interconnects of assembled printed circuit boards, obtain  
manufacturing information on the components, and observe and/or control the inputs and outputs  
of the controller during normal operation. The JTAG port provides a high degree of testability and  
chip-level access at a low cost.  
The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is  
transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of  
this data is dependent on the current state of the TAP controller. For detailed information on the  
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test  
Access Port and Boundary-Scan Architecture.  
The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3  
core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG  
instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary  
November 29, 2007  
31  
Preliminary  
Architectural Overview  
Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has  
comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.  
1.4.7.3 System Control and Clocks (see page 54)  
System control determines the overall operation of the device. It provides information about the  
device, controls the clocking of the device and individual peripherals, and handles reset detection  
and reporting.  
1.4.8  
Hardware Details  
Details on the pins and package can be found in the following sections:  
“Pin Diagram” on page 436  
“Signal Tables” on page 437  
“Operating Characteristics” on page 449  
“Electrical Characteristics” on page 450  
“Package Information” on page 461  
32  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
2
ARM Cortex-M3 Processor Core  
The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that  
meets the needs of minimal memory implementation, reduced pin count, and low power consumption,  
while delivering outstanding computational performance and exceptional system response to  
interrupts. Features include:  
Compact core.  
Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory  
size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of  
memory for microcontroller class applications.  
Rapid application execution through Harvard architecture characterized by separate buses for  
instruction and data.  
Exceptional interrupt handling, by implementing the register manipulations required for handling  
an interrupt in hardware.  
Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.  
Migration from the ARM7™ processor family for better performance and power efficiency.  
Full-featured debug solution with a:  
Serial Wire JTAG Debug Port (SWJ-DP)  
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints  
Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,  
and system profiling  
Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer  
The Stellaris® family of microcontrollers builds on this core to bring high-performance 32-bit computing  
to cost-sensitive embedded microcontroller applications, such as factory automation and control,  
industrial control power devices, building and home automation, and stepper motors.  
For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex™-M3 Technical  
Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference  
Manual.  
November 29, 2007  
33  
Preliminary  
ARM Cortex-M3 Processor Core  
2.1  
Block Diagram  
Figure 2-1. CPU Block Diagram  
Nested  
Vectored  
Interrupt  
Controller  
Interrupts  
Sleep  
Serial  
Wire  
Output  
Trace  
Port  
ARM  
Cortex-M3  
CM3 Core  
Debug  
Instructions Data  
Trace  
Port  
Interface  
Unit  
Memory  
Protection  
Unit  
(SWO)  
Private  
Peripheral  
Bus  
Instrumentation  
Trace Macrocell  
Data  
Watchpoint  
and Trace  
Flash  
Patch and  
Breakpoint  
(external)  
ROM  
Table  
Private Peripheral  
Bus  
Adv. Peripheral  
Bus  
(internal)  
I-code bus  
D-code bus  
System bus  
Bus  
Matrix  
Adv. High-  
Perf. Bus  
Access Port  
Serial Wire JTAG  
Debug Port  
2.2  
Functional Description  
Important: The ARM® Cortex™-M3 Technical Reference Manual describes all the features of an  
ARM Cortex-M3 in detail. However, these features differ based on the implementation.  
This section describes the Stellaris® implementation.  
Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 34. As  
noted in the ARM® Cortex™-M3 Technical Reference Manual, several Cortex-M3 components are  
flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested  
Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.  
2.2.1  
Serial Wire and JTAG Debug  
Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant  
Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, “Debug Port,” of the  
ARM® Cortex™-M3 Technical Reference Manual does not apply to Stellaris® devices.  
The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the  
CoreSight™ Design Kit Technical Reference Manual for details on SWJ-DP.  
34  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
2.2.2  
2.2.3  
Embedded Trace Macrocell (ETM)  
ETM was not implemented in the Stellaris® devices. This means Chapters 15 and 16 of the ARM®  
Cortex™-M3 Technical Reference Manual can be ignored.  
Trace Port Interface Unit (TPIU)  
The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace  
Port Analyzer. The Stellaris® devices have implemented TPIU as shown in Figure 2-2 on page 35.  
This is similar to the non-ETM version described in the ARM® Cortex™-M3 Technical Reference  
Manual, however, SWJ-DP only provides SWV output for the TPIU.  
Figure 2-2. TPIU Block Diagram  
Debug  
Serial Wire  
Trace Port  
(SWO)  
ATB  
Interface  
Trace Out  
(serializer)  
ATB  
Slave  
Port  
Asynchronous FIFO  
APB  
Slave  
Port  
APB  
Interface  
2.2.4  
2.2.5  
ROM Table  
The default ROM table was implemented as described in the ARM® Cortex™-M3 Technical  
Reference Manual.  
Memory Protection Unit (MPU)  
The Memory Protection Unit (MPU) is included on the LM3S2110 controller and supports the standard  
ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for  
protection regions, overlapping protection regions, access permissions, and exporting memory  
attributes to the system.  
2.2.6  
Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC):  
Facilitates low-latency exception and interrupt handling  
Controls power management  
Implements system control registers  
November 29, 2007  
35  
Preliminary  
ARM Cortex-M3 Processor Core  
The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of  
priority. The NVIC and the processor core interface are closely coupled, which enables low latency  
interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge  
of the stacked (nested) interrupts to enable tail-chaining of interrupts.  
You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode  
if you enable the Configuration Control Register (see the ARM® Cortex™-M3 Technical Reference  
Manual). Any other user-mode access causes a bus fault.  
All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.  
All NVIC registers and system debug registers are little endian regardless of the endianness state  
of the processor.  
2.2.6.1 Interrupts  
The ARM® Cortex™-M3 Technical Reference Manual describes the maximum number of interrupts  
and interrupt priorities. The LM3S2110 microcontroller supports 26 interrupts with eight priority  
levels.  
2.2.6.2 System Timer (SysTick)  
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter  
can be used in several different ways, for example:  
An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a  
SysTick routine.  
A high-speed alarm timer using the system clock.  
A variable rate alarm or signal timer—the duration is range-dependent on the reference clock  
used and the dynamic range of the counter.  
A simple counter. Software can use this to measure time to completion and time used.  
An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field  
in the control and status register can be used to determine if an action completed within a set  
duration, as part of a dynamic clock management control loop.  
Functional Description  
The timer consists of three registers:  
A control and status counter to configure its clock, enable the counter, enable the SysTick  
interrupt, and determine counter status.  
The reload value for the counter, used to provide the counter's wrap value.  
The current value of the counter.  
A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris® devices.  
When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value  
in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks.  
Writing a value of zero to the Reload Value register disables the counter on the next wrap. When  
the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
36  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write  
does not trigger the SysTick exception logic. On a read, the current value is the value of the register  
at the time the register is accessed.  
If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect  
to a reference clock. The reference clock can be the core clock or an external clock source.  
SysTick Control and Status Register  
Use the SysTick Control and Status Register to enable the SysTick features. The reset is  
0x0000.0000.  
Bit/Field  
Name  
Type Reset Description  
31:17  
reserved  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide compatibility with  
future products, the value of a reserved bit should be preserved across a  
read-modify-write operation.  
16  
COUNTFLAG R/W  
Returns 1 if timer counted to 0 since last time this was read. Clears on read by  
application. If read by the debugger using the DAP, this bit is cleared on read-only  
if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the  
COUNTFLAG bit is not changed by the debugger read.  
15:3  
2
reserved  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide compatibility with  
future products, the value of a reserved bit should be preserved across a  
read-modify-write operation.  
CLKSOURCE R/W  
0 = external reference clock. (Not implemented for Stellaris microcontrollers.)  
1 = core clock.  
If no reference clock is provided, it is held at 1 and so gives the same time as the  
core clock. The core clock must be at least 2.5 times faster than the reference clock.  
If it is not, the count values are unpredictable.  
1
0
TICKINT  
ENABLE  
R/W  
R/W  
0
0
1 = counting down to 0 pends the SysTick handler.  
0 = counting down to 0 does not pend the SysTick handler. Software can use the  
COUNTFLAG to determine if ever counted to 0.  
1 = counter operates in a multi-shot way. That is, counter loads with the Reload  
value and then begins counting down. On reaching 0, it sets the COUNTFLAG to  
1 and optionally pends the SysTick handler, based on TICKINT. It then loads the  
Reload value again, and begins counting.  
0 = counter disabled.  
SysTick Reload Value Register  
Use the SysTick Reload Value Register to specify the start value to load into the current value  
register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value  
of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated  
when counting from 1 to 0.  
Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is  
any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99  
must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single  
shot, then the actual count down must be written. For example, if a tick is next required after 400  
clock pulses, 400 must be written into the RELOAD.  
Bit/Field Name Type Reset Description  
31:24 reserved RO  
0
Software should not rely on the value of a reserved bit. To provide compatibility with  
future products, the value of a reserved bit should be preserved across a read-modify-write  
operation.  
November 29, 2007  
37  
Preliminary  
ARM Cortex-M3 Processor Core  
Bit/Field Name Type Reset Description  
23:0 RELOAD W1C Value to load into the SysTick Current Value Register when the counter reaches 0.  
-
SysTick Current Value Register  
Use the SysTick Current Value Register to find the current value in the register.  
Bit/Field  
Name  
Type Reset Description  
31:24  
reserved RO  
0
-
Software should not rely on the value of a reserved bit. To provide compatibility with  
future products, the value of a reserved bit should be preserved across a  
read-modify-write operation.  
23:0  
CURRENT W1C  
Current value at the time the register is accessed. No read-modify-write protection is  
provided, so change with care.  
This register is write-clear. Writing to it with any value clears the register to 0. Clearing  
this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.  
SysTick Calibration Value Register  
The SysTick Calibration Value register is not implemented.  
38  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
3
Memory Map  
The memory map for the LM3S2110 controller is provided in Table 3-1 on page 39.  
In this manual, register addresses are given as a hexadecimal increment, relative to the module’s  
base address as shown in the memory map. See also Chapter 4, “Memory Map” in the ARM®  
Cortex™-M3 Technical Reference Manual.  
Important: In Table 3-1 on page 39, addresses not listed are reserved.  
Table 3-1. Memory Mapa  
Start  
End  
Description  
For details on  
registers, see  
page ...  
Memory  
0x0000.0000  
0x2000.0000  
0x2010.0000  
0x2200.0000  
0x2400.0000  
FiRM Peripherals  
0x4000.0000  
0x4000.4000  
0x4000.5000  
0x4000.6000  
0x4000.7000  
0x4000.8000  
0x4000.C000  
Peripherals  
0x4002.0000  
0x4002.0800  
0x4002.4000  
0x4002.5000  
0x4002.6000  
0x4002.7000  
0x4002.8000  
0x4003.0000  
0x4003.1000  
0x4003.2000  
0x4003.C000  
0x4004.0000  
0x400F.D000  
0x400F.E000  
0x4200.0000  
Private Peripheral Bus  
0x0000.FFFF  
0x2000.3FFF  
0x21FF.FFFF  
0x23FF.FFFF  
0x3FFF.FFFF  
On-chip flash b  
Bit-banded on-chip SRAMc  
114  
114  
-
Reserved non-bit-banded SRAM space  
Bit-band alias of 0x2000.0000 through 0x200F.FFFF  
Reserved non-bit-banded SRAM space  
110  
-
0x4000.0FFF  
0x4000.4FFF  
0x4000.5FFF  
0x4000.6FFF  
0x4000.7FFF  
0x4000.8FFF  
0x4000.CFFF  
Watchdog timer  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
SSI0  
213  
140  
140  
140  
140  
286  
241  
UART0  
0x4002.07FF  
0x4002.0FFF  
0x4002.4FFF  
0x4002.5FFF  
0x4002.6FFF  
0x4002.7FFF  
0x4002.8FFF  
0x4003.0FFF  
0x4003.1FFF  
0x4003.2FFF  
0x4003.CFFF  
0x4004.0FFF  
0x400F.DFFF  
0x400F.EFFF  
0x43FF.FFFF  
I2C Master 0  
325  
338  
140  
140  
140  
140  
407  
186  
186  
186  
388  
360  
114  
61  
I2C Slave 0  
GPIO Port E  
GPIO Port F  
GPIO Port G  
GPIO Port H  
PWM  
Timer0  
Timer1  
Timer2  
Analog Comparators  
CAN0 Controller  
Flash control  
System control  
Bit-banded alias of 0x4000.0000 through 0x400F.FFFF  
-
November 29, 2007  
39  
Preliminary  
Memory Map  
Start  
End  
Description  
For details on  
registers, see  
page ...  
0xE000.0000  
0xE000.1000  
0xE000.2000  
0xE000.3000  
0xE000.E000  
0xE000.F000  
0xE004.0000  
0xE004.1000  
0xE004.2000  
0xE010.0000  
0xE000.0FFF  
0xE000.1FFF  
0xE000.2FFF  
0xE000.DFFF  
0xE000.EFFF  
0xE003.FFFF  
0xE004.0FFF  
0xE004.1FFF  
0xE00F.FFFF  
0xFFFF.FFFF  
Instrumentation Trace Macrocell (ITM)  
Data Watchpoint and Trace (DWT)  
Flash Patch and Breakpoint (FPB)  
Reserved  
ARM®  
Cortex™-M3  
Technical  
Reference  
Manual  
Nested Vectored Interrupt Controller (NVIC)  
Reserved  
Trace Port Interface Unit (TPIU)  
Reserved  
-
-
-
Reserved  
Reserved for vendor peripherals  
a. All reserved space returns a bus fault when read or written.  
b. The unavailable flash will bus fault throughout this range.  
c. The unavailable SRAM will bus fault throughout this range.  
40  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
4
Interrupts  
The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and  
handle all exceptions. All exceptions are handled in Handler Mode. The processor state is  
automatically stored to the stack on an exception, and automatically restored from the stack at the  
end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which  
enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back  
interrupts to be performed without the overhead of state saving and restoration.  
Table 4-1 on page 41 lists all the exceptions. Software can set eight priority levels on seven of these  
exceptions (system handlers) as well as on 26 interrupts (listed in Table 4-2 on page 42).  
Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts  
are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt  
Priority registers. You can also group priorities by splitting priority levels into pre-emption priorities  
and subpriorities. All the interrupt registers are described in Chapter 8, “Nested Vectored Interrupt  
Controller” in the ARM® Cortex™-M3 Technical Reference Manual.  
Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and  
a Hard Fault. Note that 0 is the default priority for all the settable priorities.  
If you assign the same priority level to two or more interrupts, their hardware priority (the lower the  
position number) determines the order in which the processor activates them. For example, if both  
GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.  
See Chapter 5, “Exceptions” and Chapter 8, “Nested Vectored Interrupt Controller” in the ARM®  
Cortex™-M3 Technical Reference Manual for more information on exceptions and interrupts.  
Note: In Table 4-2 on page 42 interrupts not listed are reserved.  
Table 4-1. Exception Types  
Exception Type  
Position  
Prioritya  
Description  
-
0
1
-
Stack top is loaded from first entry of vector table on reset.  
Reset  
-3 (highest) Invoked on power up and warm reset. On first instruction, drops to lowest  
priority (and then is called the base level of activation). This is  
asynchronous.  
Non-Maskable  
Interrupt (NMI)  
2
-2  
Cannot be stopped or preempted by any exception but reset. This is  
asynchronous.  
An NMI is only producible by software, using the NVIC Interrupt Control  
State register.  
Hard Fault  
3
4
-1  
All classes of Fault, when the fault cannot activate due to priority or the  
configurable fault handler has been disabled. This is synchronous.  
Memory Management  
settable MPU mismatch, including access violation and no match. This is  
synchronous.  
The priority of this exception can be changed.  
Bus Fault  
5
settable Pre-fetch fault, memory access fault, and other address/memory related  
faults. This is synchronous when precise and asynchronous when  
imprecise.  
You can enable or disable this fault.  
Usage Fault  
6
settable Usage fault, such as undefined instruction executed or illegal state  
transition attempt. This is synchronous.  
-
7-10  
11  
-
Reserved.  
SVCall  
settable System service call with SVC instruction. This is synchronous.  
November 29, 2007  
41  
Preliminary  
Interrupts  
Exception Type  
Position  
Prioritya  
Description  
Debug Monitor  
12  
settable Debug monitor (when not halting). This is synchronous, but only active  
when enabled. It does not activate if lower priority than the current  
activation.  
-
13  
14  
-
Reserved.  
PendSV  
settable Pendable request for system service. This is asynchronous and only  
pended by software.  
SysTick  
15  
settable System tick timer has fired. This is asynchronous.  
Interrupts  
16 and  
above  
settable Asserted from outside the ARM Cortex-M3 core and fed through the NVIC  
(prioritized). These are all asynchronous. Table 4-2 on page 42 lists the  
interrupts on the LM3S2110 controller.  
a. 0 is the default priority for all the settable priorities.  
Table 4-2. Interrupts  
Interrupt (Bit in Interrupt Registers) Description  
0
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
GPIO Port E  
UART0  
1
2
3
4
5
7
SSI0  
8
I2C0  
9
PWM Fault  
PWM Generator 0  
Watchdog timer  
Timer0 A  
10  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
39  
Timer0 B  
Timer1 A  
Timer1 B  
Timer2 A  
Timer2 B  
Analog Comparator 0  
Analog Comparator 1  
Analog Comparator 2  
System Control  
Flash Control  
GPIO Port F  
GPIO Port G  
GPIO Port H  
CAN0  
42  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
5
JTAG Interface  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and  
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface  
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)  
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing  
information on the components. The JTAG Port also provides a means of accessing and controlling  
design-for-test features such as I/O pin observation and control, scan testing, and debugging.  
The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is  
transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of  
this data is dependent on the current state of the TAP controller. For detailed information on the  
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test  
Access Port and Boundary-Scan Architecture.  
The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3  
core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG  
instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary  
Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has  
comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.  
The JTAG module has the following features:  
IEEE 1149.1-1990 compatible Test Access Port (TAP) controller  
Four-bit Instruction Register (IR) chain for storing JTAG instructions  
IEEE standard instructions:  
BYPASS instruction  
IDCODE instruction  
SAMPLE/PRELOAD instruction  
EXTEST instruction  
INTEST instruction  
ARM additional instructions:  
APACC instruction  
DPACC instruction  
ABORT instruction  
Integrated ARM Serial Wire Debug (SWD)  
See the ARM® Cortex™-M3 Technical Reference Manual for more information on the ARM JTAG  
controller.  
November 29, 2007  
43  
Preliminary  
JTAG Interface  
5.1  
Block Diagram  
Figure 5-1. JTAG Module Block Diagram  
TRST  
TCK  
TMS  
TAP Controller  
TDI  
Instruction Register (IR)  
BYPASS Data Register  
Boundary Scan Data Register  
IDCODE Data Register  
ABORT Data Register  
DPACC Data Register  
APACC Data Register  
TDO  
Cortex-M3  
Debug  
Port  
5.2  
Functional Description  
A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 44. The JTAG  
module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel  
update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and  
TMS inputs. The current state of the TAP controller depends on the current value of TRST and the  
sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when  
the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel  
load registers. The current state of the TAP controller also determines whether the Instruction  
Register (IR) chain or one of the Data Register (DR) chains is being accessed.  
The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR)  
chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load  
register determines which DR chain is captured, shifted, or updated during the sequencing of the  
TAP controller.  
Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not  
capture, shift, or update any of the chains. Instructions that are not implemented decode to the  
BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see  
Table 5-2 on page 50 for a list of implemented instructions).  
See “JTAG and Boundary Scan” on page 456 for JTAG timing diagrams.  
44  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
5.2.1  
JTAG Interface Pins  
The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and  
their associated reset state are given in Table 5-1 on page 45. Detailed information on each pin  
follows.  
Table 5-1. JTAG Port Pins Reset State  
Pin Name  
TRST  
TCK  
Data Direction  
Input  
Internal Pull-Up Internal Pull-Down Drive Strength  
Drive Value  
N/A  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
N/A  
N/A  
Input  
N/A  
TMS  
Input  
N/A  
N/A  
TDI  
Input  
N/A  
N/A  
TDO  
Output  
2-mA driver  
High-Z  
5.2.1.1 Test Reset Input (TRST)  
The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP  
controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the  
Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters  
the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction,  
IDCODE.  
By default, the internal pull-up resistor on the TRST pin is enabled after reset. Changes to the pull-up  
resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled  
on PB7/TRST; otherwise JTAG communication could be lost.  
5.2.1.2 Test Clock Input (TCK)  
The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate  
independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers  
that are daisy-chained together can synchronously communicate serial test data between  
components. During normal operation, TCK is driven by a free-running clock with a nominal 50%  
duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK  
is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction  
and Data Registers is not lost.  
By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no  
clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down  
resistors can be turned off to save internal power as long as the TCK pin is constantly being driven  
by an external source.  
5.2.1.3 Test Mode Select (TMS)  
The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge  
of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered.  
Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the  
value on TMS to change on the falling edge of TCK.  
Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the  
Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG  
Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can  
be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine  
can be seen in its entirety in Figure 5-2 on page 47.  
November 29, 2007  
45  
Preliminary  
JTAG Interface  
By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up  
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled  
on PC1/TMS; otherwise JTAG communication could be lost.  
5.2.1.4 Test Data Input (TDI)  
The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is  
sampled on the rising edge of TCK and, depending on the current TAP state and the current  
instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on  
the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the falling  
edge of TCK.  
By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up  
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled  
on PC2/TDI; otherwise JTAG communication could be lost.  
5.2.1.5 Test Data Output (TDO)  
The TDO pin provides an output stream of serial information from the IR chain or the DR chains.  
The value of TDO depends on the current TAP state, the current instruction, and the data in the  
chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin  
is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected  
to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects  
the value on TDO to change on the falling edge of TCK.  
By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the  
pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and  
pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable  
during certain TAP controller states.  
5.2.2  
JTAG TAP Controller  
The JTAG TAP controller state machine is shown in Figure 5-2 on page 47. The TAP controller  
state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR)  
or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module  
to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed  
information on the function of the TAP controller and the operations that occur in each state, please  
refer to IEEE Standard 1149.1.  
46  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 5-2. Test Access Port State Machine  
Test Logic Reset  
1
0
Run Test Idle  
Select DR Scan  
Select IR Scan  
1
1
1
0
0
0
Capture DR  
0
Capture IR  
0
1
1
Shift DR  
1
Shift IR  
0
1
0
1
Exit 1 DR  
0
Exit 1 IR  
1
0
Pause DR  
1
Pause IR  
0
0
1
Exit 2 DR  
1
Exit 2 IR  
1
0
0
Update DR  
Update IR  
1
0
1
0
5.2.3  
5.2.4  
Shift Registers  
The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift  
register chain samples specific information during the TAP controller’s CAPTURE states and allows  
this information to be shifted out of TDO during the TAP controller’s SHIFT states. While the sampled  
data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register  
on TDI. This new data is stored in the parallel load register during the TAP controller’s UPDATE  
states. Each of the shift registers is discussed in detail in “Register Descriptions” on page 50.  
Operational Considerations  
There are certain operational considerations when using the JTAG module. Because the JTAG pins  
can be programmed to be GPIOs, board configuration and reset conditions on these pins must be  
considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the  
method for switching between these two operational modes is described below.  
November 29, 2007  
47  
Preliminary  
JTAG Interface  
5.2.4.1 GPIO Functionality  
When the controller is reset with either a POR or RST, the JTAG/SWD port pins default to their  
JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting  
GPIODEN to 1), enabling the pull-up resistors (setting GPIOPUR to 1), and enabling the alternate  
hardware function (setting GPIOAFSEL to 1) for the PB7 and PC[3:0] JTAG/SWD pins.  
It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and  
PC[3:0] in the GPIOAFSEL register. If the user does not require the JTAG/SWD port for debugging  
or board-level testing, this provides five more GPIOs for use in the design.  
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down  
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the  
controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors,  
and apply RST or power-cycle the part.  
In addition, it is possible to create a software sequence that prevents the debugger from connecting to  
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG  
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the  
controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This  
can be avoided with a software routine that restores JTAG functionality based on an external or software  
trigger.  
The commit control registers provide a layer of protection against accidental programming of critical  
hardware peripherals. Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL)  
register (see page 150) are not committed to storage unless the GPIO Lock (GPIOLOCK) register  
(see page 160) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register  
(see page 161) have been set to 1.  
Recovering a "Locked" Device  
If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate  
with the debugger, there is a debug sequence that can be used to recover the device. Performing  
a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset  
mass erases the flash memory. The sequence to recover the device is:  
1. Assert and hold the RST signal.  
2. Perform the JTAG-to-SWD switch sequence.  
3. Perform the SWD-to-JTAG switch sequence.  
4. Perform the JTAG-to-SWD switch sequence.  
5. Perform the SWD-to-JTAG switch sequence.  
6. Perform the JTAG-to-SWD switch sequence.  
7. Perform the SWD-to-JTAG switch sequence.  
8. Perform the JTAG-to-SWD switch sequence.  
9. Perform the SWD-to-JTAG switch sequence.  
10. Perform the JTAG-to-SWD switch sequence.  
11. Perform the SWD-to-JTAG switch sequence.  
48  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
12. Release the RST signal.  
The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in “ARM Serial Wire Debug  
(SWD)” on page 49. When performing switch sequences for the purpose of recovering the debug  
capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.  
5.2.4.2 ARM Serial Wire Debug (SWD)  
In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire  
debugger must be able to connect to the Cortex-M3 core without having to perform, or have any  
knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the  
SWD session begins.  
The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller  
in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the  
following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test  
Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run  
Test Idle, Select DR, Select IR, and Test Logic Reset states.  
Stepping through this sequences of the TAP state machine enables the SWD interface and disables  
the JTAG interface. For more information on this operation and the SWD interface, see the ARM®  
Cortex™-M3 Technical Reference Manual and the ARM® CoreSight Technical Reference Manual.  
Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG  
TAP controller is not fully compliant to the IEEE Standard 1149.1. This is the only instance where  
the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low  
probability of this sequence occurring during normal operation of the TAP controller, it should not  
affect normal performance of the JTAG interface.  
JTAG-to-SWD Switching  
To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the  
external debug hardware must send a switch sequence to the device. The 16-bit switch sequence  
for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also  
be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should  
consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:  
1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and  
SWD are in their reset/idle states.  
2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.  
3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was  
already in SWD mode, before sending the switch sequence, the SWD goes into the line reset  
state.  
SWD-to-JTAG Switching  
To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the  
external debug hardware must send a switch sequence to the device. The 16-bit switch sequence  
for switching to JTAG mode is defined as b1110011110011110, transmitted LSB first. This can also  
be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should  
consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:  
1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and  
SWD are in their reset/idle states.  
November 29, 2007  
49  
Preliminary  
JTAG Interface  
2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.  
3. Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was  
already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic  
Reset state.  
5.3  
Initialization and Configuration  
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for  
JTAG communication. No user-defined initialization or configuration is needed. However, if the user  
application changes these pins to their GPIO function, they must be configured back to their JTAG  
functionality before JTAG communication can be restored. This is done by enabling the five JTAG  
pins (PB7 and PC[3:0]) for their alternate function using the GPIOAFSEL register.  
5.4  
Register Descriptions  
There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The  
registers within the JTAG controller are all accessed serially through the TAP Controller. The registers  
can be broken down into two main categories: Instruction Registers and Data Registers.  
5.4.1  
Instruction Register (IR)  
The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register  
connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct  
states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the  
chain and updated, they are interpreted as the current instruction. The decode of the Instruction  
Register bits is shown in Table 5-2 on page 50. A detailed explanation of each instruction, along  
with its associated Data Register, follows.  
Table 5-2. JTAG Instruction Register Commands  
IR[3:0]  
Instruction  
Description  
0000  
EXTEST  
Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD  
instruction onto the pads.  
0001  
0010  
INTEST  
Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD  
instruction into the controller.  
SAMPLE / PRELOAD Captures the current I/O values and shifts the sampled values out of the Boundary Scan  
Chain while new preload data is shifted in.  
1000  
1010  
1011  
1110  
ABORT  
DPACC  
APACC  
IDCODE  
Shifts data into the ARM Debug Port Abort Register.  
Shifts data into and out of the ARM DP Access Register.  
Shifts data into and out of the ARM AC Access Register.  
Loads manufacturing information defined by the IEEE Standard 1149.1 into the IDCODE  
chain and shifts it out.  
1111  
BYPASS  
Reserved  
Connects TDI to TDO through a single Shift Register chain.  
All Others  
Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.  
5.4.1.1 EXTEST Instruction  
The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction  
uses the data that has been preloaded into the Boundary Scan Data Register using the  
SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,  
the preloaded data in the Boundary Scan Data Register associated with the outputs and output  
enables are used to drive the GPIO pads rather than the signals coming from the core. This allows  
50  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
tests to be developed that drive known values out of the controller, which can be used to verify  
connectivity.  
5.4.1.2 INTEST Instruction  
The INTEST instruction does not have an associated Data Register chain. The INTEST instruction  
uses the data that has been preloaded into the Boundary Scan Data Register using the  
SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register,  
the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive  
the signals going into the core rather than the signals coming from the GPIO pads. This allows tests  
to be developed that drive known values into the controller, which can be used for testing. It is  
important to note that although the RST input pin is on the Boundary Scan Data Register chain, it  
is only observable.  
5.4.1.3 SAMPLE/PRELOAD Instruction  
The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between  
TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads  
new test data. Each GPIO pad has an associated input, output, and output enable signal. When the  
TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable  
signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while  
the TAP controller is in the Shift DR state and can be used for observation or comparison in various  
tests.  
While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary  
Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI.  
Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the  
parallel load registers when the TAP controller enters the Update DR state. This update of the  
parallel load register preloads data into the Boundary Scan Data Register that is associated with  
each input, output, and output enable. This preloaded data can be used with the EXTEST and  
INTEST instructions to drive data into or out of the controller. Please see “Boundary Scan Data  
Register” on page 53 for more information.  
5.4.1.4 ABORT Instruction  
The ABORT instruction connects the associated ABORT Data Register chain between TDI and  
TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates  
a DAP abort of a previous request. Please see the “ABORT Data Register” on page 53 for more  
information.  
5.4.1.5 DPACC Instruction  
The DPACC instruction connects the associated DPACC Data Register chain between TDI and  
TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this register and reading the data output from this  
register allows read and write access to the ARM debug and status registers. Please see “DPACC  
Data Register” on page 53 for more information.  
5.4.1.6 APACC Instruction  
The APACC instruction connects the associated APACC Data Register chain between TDI and  
TDO. This instruction provides read and write access to the APACC Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this register and reading the data output from this  
register allows read and write access to internal components and buses through the Debug Port.  
Please see “APACC Data Register” on page 53 for more information.  
November 29, 2007  
51  
Preliminary  
JTAG Interface  
5.4.1.7 IDCODE Instruction  
The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and  
TDO. This instruction provides information on the manufacturer, part number, and version of the  
ARM core. This information can be used by testing equipment and debuggers to automatically  
configure their input and output data streams. IDCODE is the default instruction that is loaded into  
the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the  
Test-Logic-Reset state is entered. Please see “IDCODE Data Register” on page 52 for more  
information.  
5.4.1.8 BYPASS Instruction  
The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and  
TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports.  
The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by  
allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain  
by loading them with the BYPASS instruction. Please see “BYPASS Data Register” on page 52 for  
more information.  
5.4.2  
Data Registers  
The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan,  
APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed  
in the following sections.  
5.4.2.1 IDCODE Data Register  
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in  
Figure 5-3 on page 52. The standard requires that every JTAG-compliant device implement either  
the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE  
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB  
of 0. This allows auto configuration test tools to determine which instruction is the default instruction.  
The major uses of the JTAG port are for manufacturer testing of component assembly, and program  
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE  
instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1  
processor. This allows the debuggers to automatically configure themselves to work correctly with  
the Cortex-M3 during debug.  
Figure 5-3. IDCODE Register Format  
5.4.2.2 BYPASS Data Register  
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in  
Figure 5-4 on page 53. The standard requires that every JTAG-compliant device implement either  
the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS  
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB  
of 1. This allows auto configuration test tools to determine which instruction is the default instruction.  
52  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 5-4. BYPASS Register Format  
5.4.2.3 Boundary Scan Data Register  
The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 53. Each GPIO  
pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data  
Register. Each GPIO pin has three associated digital signals that are included in the chain. These  
signals are input, output, and output enable, and are arranged in that order as can be seen in the  
figure. In addition to the GPIO pins, the controller reset pin, RST, is included in the chain. Because  
the reset pin is always an input, only the input signal is included in the Data Register chain.  
When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the  
input, output, and output enable from each digital pad are sampled and then shifted out of the chain  
to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR  
state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain  
in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with  
the EXTEST and INTEST instructions. These instructions either force data out of the controller, with  
the EXTEST instruction, or into the controller, with the INTEST instruction.  
Figure 5-5. Boundary Scan Register Format  
O
U
T
O
U
T
O
U
T
O
U
T
TDI  
TDO  
I
N
O
E
I
N
O
E
I
I
N
O
E
I
N
O
E
...  
...  
N
GPIO PB6  
GPIO m  
RST  
GPIO m+1  
GPIO n  
For detailed information on the order of the input, output, and output enable bits for each of the  
GPIO ports, please refer to the Stellaris® Family Boundary Scan Description Language (BSDL) files,  
downloadable from www.luminarymicro.com.  
5.4.2.4 APACC Data Register  
The format for the 35-bit APACC Data Register defined by ARM is described in the ARM®  
Cortex™-M3 Technical Reference Manual.  
5.4.2.5 DPACC Data Register  
The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM®  
Cortex™-M3 Technical Reference Manual.  
5.4.2.6 ABORT Data Register  
The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM®  
Cortex™-M3 Technical Reference Manual.  
November 29, 2007  
53  
Preliminary  
System Control  
6
System Control  
System control determines the overall operation of the device. It provides information about the  
device, controls the clocking to the core and individual peripherals, and handles reset detection and  
reporting.  
6.1  
Functional Description  
The System Control module provides the following capabilities:  
Device identification, see “Device Identification” on page 54  
Local control, such as reset (see “Reset Control” on page 54), power (see “Power  
Control” on page 57) and clock control (see “Clock Control” on page 57)  
System control (Run, Sleep, and Deep-Sleep modes), see “System Control” on page 59  
6.1.1  
6.1.2  
Device Identification  
Seven read-only registers provide software with information on the microcontroller, such as version,  
part number, SRAM size, flash size, and other features. See the DID0, DID1, and DC0-DC4 registers.  
Reset Control  
This section discusses aspects of hardware functions during reset as well as system software  
requirements following the reset sequence.  
6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins  
Two pins, CMOD0 and CMOD1, are defined for use by Luminary Micro for testing the devices during  
manufacture. They have no end-user function and should not be used. The CMOD pins should be  
connected to ground.  
6.1.2.2 Reset Sources  
The controller has five sources of reset:  
1. External reset input pin (RST) assertion, see “RST Pin Assertion” on page 54.  
2. Power-on reset (POR), see “Power-On Reset (POR)” on page 55.  
3. Internal brown-out (BOR) detector, see “Brown-Out Reset (BOR)” on page 55.  
4. Software-initiated reset (with the software reset registers), see “Software Reset” on page 56.  
5. A watchdog timer reset condition violation, see “Watchdog Timer Reset” on page 56.  
After a reset, the Reset Cause (RESC) register is set with the reset cause. The bits in this register  
are sticky and maintain their state across multiple reset sequences, except when an internal POR  
is the cause, and then all the other bits in the RESC register are cleared except for the POR indicator.  
6.1.2.3 RST Pin Assertion  
The external reset pin (RST) resets the controller. This resets the core and all the peripherals except  
the JTAG TAP controller (see “JTAG Interface” on page 43). The external reset sequence is as  
follows:  
54  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
1. The external reset pin (RST) is asserted and then de-asserted.  
2. The internal reset is released and the core loads from memory the initial stack pointer, the initial  
program counter, the first instruction designated by the program counter, and begins execution.  
A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for  
synchronization.  
The external reset timing is shown in Figure 20-9 on page 459.  
6.1.2.4 Power-On Reset (POR)  
The Power-On Reset (POR) circuit monitors the power supply voltage (VDD). The POR circuit  
generates a reset signal to the internal logic when the power supply ramp reaches a threshold value  
(VTH). If the application only uses the POR circuit, the RST input needs to be connected to the power  
supply (VDD) through a pull-up resistor (1K to 10K Ω).  
The device must be operating within the specified operating parameters at the point when the on-chip  
power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within  
10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of  
an external reset to hold the device in reset longer than the internal POR, the RST input may be  
used with the circuit as shown in Figure 6-1 on page 55.  
Figure 6-1. External Circuitry to Extend Reset  
Stellaris  
D1  
R1  
RST  
R2  
C1  
The R1 and C1 components define the power-on delay. The R2 resistor mitigates any leakage from  
the RST input. The diode (D1) discharges C1 rapidly when the power supply is turned off.  
The Power-On Reset sequence is as follows:  
1. The controller waits for the later of external reset (RST) or internal POR to go inactive.  
2. The internal reset is released and the core loads from memory the initial stack pointer, the initial  
program counter, the first instruction designated by the program counter, and begins execution.  
The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing  
is shown in Figure 20-10 on page 459.  
Note: The power-on reset also resets the JTAG controller. An external reset does not.  
6.1.2.5 Brown-Out Reset (BOR)  
A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used  
to reset the controller. This is initially disabled and may be enabled by software.  
The system provides a brown-out detection circuit that triggers if the power supply (VDD) drops  
below a brown-out threshold voltage (VBTH). If a brown-out condition is detected, the system may  
generate a controller interrupt or a system reset.  
November 29, 2007  
55  
Preliminary  
System Control  
Brown-out resets are controlled with the Power-On and Brown-Out Reset Control (PBORCTL)  
register. The BORIOR bit in the PBORCTL register must be set for a brown-out condition to trigger  
a reset.  
The brown-out reset is equivelent to an assertion of the external RST input and the reset is held  
active until the proper VDD level is restored. The RESC register can be examined in the reset interrupt  
handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to  
determine what actions are required to recover.  
The internal Brown-Out Reset timing is shown in Figure 20-11 on page 459.  
6.1.2.6 Software Reset  
Software can reset a specific peripheral or generate a reset to the entire system .  
Peripherals can be individually reset by software via three registers that control reset signals to each  
peripheral (see the SRCRn registers). If the bit position corresponding to a peripheral is set and  
subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with  
the encoding of the clock gating control for peripherals and on-chip functions (see “System  
Control” on page 59). Note that all reset signals for all clocks of the specified unit are asserted as  
a result of a software-initiated reset.  
The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3  
Application Interrupt and Reset Control register resets the entire system including the core. The  
software-initiated system reset sequence is as follows:  
1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3  
Application Interrupt and Reset Control register.  
2. An internal reset is asserted.  
3. The internal reset is deasserted and the controller loads from memory the initial stack pointer,  
the initial program counter, and the first instruction designated by the program counter, and  
then begins execution.  
The software-initiated system reset timing is shown in Figure 20-12 on page 460.  
6.1.2.7 Watchdog Timer Reset  
The watchdog timer module's function is to prevent system hangs. The watchdog timer can be  
configured to generate an interrupt to the controller on its first time-out, and to generate a reset  
signal on its second time-out.  
After the first time-out event, the 32-bit counter is reloaded with the value of the Watchdog Timer  
Load (WDTLOAD) register, and the timer resumes counting down from that value. If the timer counts  
down to its zero state again before the first time-out interrupt is cleared, and the reset signal has  
been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset  
sequence is as follows:  
1. The watchdog timer times out for the second time without being serviced.  
2. An internal reset is asserted.  
3. The internal reset is released and the controller loads from memory the initial stack pointer, the  
initial program counter, the first instruction designated by the program counter, and begins  
execution.  
56  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
The watchdog reset timing is shown in Figure 20-13 on page 460.  
6.1.3  
Power Control  
The Stellaris® microcontroller provides an integrated LDO regulator that may be used to provide  
power to the majority of the controller's internal logic. The LDO regulator provides software a  
mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V  
to 2.75 V (inclusive)—or 2.5 V ± 10%. The adjustment is made by changing the value of the VADJ  
field in the LDO Power Control (LDOPCTL) register.  
Note: The use of the LDO is optional. The internal logic may be supplied by the on-chip LDO or  
by an external regulator. If the LDO is used, the LDO output pin is connected to the VDD25  
pins on the printed circuit board. The LDO requires decoupling capacitors on the printed  
circuit board. If an external regulator is used, it is strongly recommended that the external  
regulator supply the controller only and not be shared with other devices on the printed  
circuit board.  
6.1.4  
Clock Control  
System control determines the control of clocks in this part.  
6.1.4.1 Fundamental Clock Sources  
There are four clock sources for use in the device:  
Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require  
the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%.  
Applications that do not depend on accurate clock sources may use this clock source to reduce  
system cost. The internal oscillator is the clock source the device uses during and following POR.  
If the main oscillator is required, software must enable the main oscillator following reset and  
allow the main oscillator to stabilize before changing the clock reference.  
Main Oscillator: The main oscillator provides a frequency-accurate clock source by one of two  
means: an external single-ended clock source is connected to the OSC0 input pin, or an external  
crystal is connected across the OSC0 input and OSC1 output pins. The crystal value allowed  
depends on whether the main oscillator is used as the clock reference source to the PLL. If so,  
the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192  
MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported  
frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC  
through the specified speed of the device. The supported crystals are listed in the XTAL bit in  
the RCC register (see page 70).  
Internal 30-kHz Oscillator: The internal 30-kHz oscillator is similar to the internal oscillator,  
except that it provides an operational frequency of 30 kHz ± 30%. It is intended for use during  
Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal  
switching and also allows the main oscillator to be powered down.  
The internal system clock (sysclk), is derived from any of the four sources plus two others: the output  
of the internal PLL, and the internal oscillator divided by four (3 MHz ± 30%). The frequency of the  
PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).  
The Run-Mode Clock Configuration (RCC) and Run-Mode Clock Configuration 2 (RCC2)  
registers provide control for the system clock. The RCC2 register is provided to extend fields that  
offer additional encodings over the RCC register. When used, the RCC2 register field values are  
November 29, 2007  
57  
Preliminary  
System Control  
used by the logic over the corresponding field in the RCC register. In particular, RCC2 provides for  
a larger assortment of clock configuration options.  
6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)  
The main oscillator supports the use of a select number of crystals. If the main oscillator is used by  
the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise,  
the range of supported crystals is 1 to 8.192 MHz.  
The XTAL bit in the RCC register (see page 70) describes the available crystal choices and default  
programming values.  
Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the  
design, the XTAL field value is internally translated to the PLL settings.  
6.1.4.3 PLL Frequency Configuration  
The PLL is disabled by default during power-on reset and is enabled later by software if required.  
Software configures the PLL input reference clock source, specifies the output divisor to set the  
system clock frequency, and enables the PLL to drive the output.  
If the main oscillator provides the clock reference to the PLL, the translation provided by hardware  
and used to program the PLL is available for software in the XTAL to PLL Translation (PLLCFG)  
register (see page 74). The internal translation provides a translation within ± 1% of the targeted  
PLL VCO frequency.  
The Crystal Value field (XTAL) on page 70 describes the available crystal choices and default  
programming of the PLLCFG register. The crystal number is written into the XTAL field of the  
Run-Mode Clock Configuration (RCC) register. Any time the XTAL field changes, the new settings  
are translated and the internal PLL settings are updated.  
6.1.4.4 PLL Modes  
The PLL has two modes of operation: Normal and Power-Down  
Normal: The PLL multiplies the input clock reference and drives the output.  
Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.  
The modes are programmed using the RCC/RCC2 register fields (see page 70 and page 75).  
6.1.4.5 PLL Operation  
If the PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks)  
to the new setting. The time between the configuration change and relock is TREADY (see Table  
20-6 on page 453). During this time, the PLL is not usable as a clock reference.  
The PLL is changed by one of the following:  
Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.  
Change in the PLL from Power-Down to Normal mode.  
A counter is defined to measure the TREADY requirement. The counter is clocked by the main  
oscillator. The range of the main oscillator has been taken into account and the down counter is set  
to 0x1200 (that is, ~600 μs at an 8.192 MHz external oscillator clock). . Hardware is provided to  
keep the PLL from being used as a system clock until the TREADY condition is met after one of the  
58  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator)  
before the RCC/RCC2 register is switched to use the PLL.  
6.1.5  
System Control  
For power-savings purposes, the RCGCn , SCGCn , and DCGCn registers control the clock gating  
logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep  
mode, respectively.  
In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active  
peripherals is unchanged, but the processor is not clocked and therefore no longer executes code.  
In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the  
Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns  
the device to Run mode from one of the sleep modes; the sleep modes are entered on request from  
the code. Each mode is described in more detail below.  
There are four levels of operation for the device defined as:  
Run Mode. Run mode provides normal operation of the processor and all of the peripherals that  
are currently enabled by the RCGCn registers. The system clock can be any of the available  
clock sources including the PLL.  
Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for  
Interrupt) instruction. Any properly configured interrupt event in the system will bring the  
processor back into Run mode. See the system control NVIC section of the ARM® Cortex™-M3  
Technical Reference Manual for more details.  
In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked.  
Peripherals are clocked that are enabled in the SCGCn register when auto-clock gating is enabled  
(see the RCC register) or the RCGCn register when the auto-clock gating is disabled. The system  
clock has the same source and frequency as that during Run mode.  
Deep-Sleep Mode. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in  
the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any  
properly configured interrupt event in the system will bring the processor back into Run mode.  
See the system control NVIC section of the ARM® Cortex™-M3 Technical Reference Manual  
for more details.  
The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are  
clocked that are enabled in the DCGCn register when auto-clock gating is enabled (see the RCC  
register) or the RCGCn register when auto-clock gating is disabled. The system clock source is  
the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if  
one is enabled. When the DSLPCLKCFG register is used, the internal oscillator is powered up,  
if necessary, and the main oscillator is powered down. If the PLL is running at the time of the  
WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active  
RCC/RCC2 register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs,  
hardware brings the system clock back to the source and frequency it had at the onset of  
Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep  
duration.  
6.2  
Initialization and Configuration  
The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register  
is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps  
required to successfully change the PLL-based system clock are:  
November 29, 2007  
59  
Preliminary  
System Control  
1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS  
bit in the RCC register. This configures the system to run off a “raw” clock source (using the  
main oscillator or internal oscillator) and allows for the new PLL configuration to be validated  
before switching the system clock to the PLL.  
2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in  
RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the  
appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.  
3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The  
SYSDIV field determines the system frequency for the microcontroller.  
4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.  
5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.  
6.3  
Register Map  
Table 6-1 on page 60 lists the System Control registers, grouped by function. The offset listed is a  
hexadecimal increment to the register’s address, relative to the System Control base address of  
0x400F.E000.  
Note: Spaces in the System Control register space that are not used are reserved for future or  
internal use by Luminary Micro, Inc. Software should not modify any reserved memory  
address.  
Table 6-1. System Control Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x010  
0x014  
0x018  
0x01C  
0x030  
0x034  
0x040  
0x044  
0x048  
0x050  
0x054  
0x058  
0x05C  
DID0  
RO  
RO  
-
Device Identification 0  
Device Identification 1  
Device Capabilities 0  
Device Capabilities 1  
Device Capabilities 2  
Device Capabilities 3  
Device Capabilities 4  
Brown-Out Reset Control  
LDO Power Control  
62  
78  
DID1  
-
DC0  
RO  
0x003F.001F  
0x0110.709F  
0x0707.1011  
0x0F00.B7C3  
0x0000.00FF  
0x0000.7FFD  
0x0000.0000  
0x00000000  
0x00000000  
0x00000000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
-
80  
DC1  
RO  
81  
DC2  
RO  
83  
DC3  
RO  
85  
DC4  
RO  
87  
PBORCTL  
LDOPCTL  
SRCR0  
SRCR1  
SRCR2  
RIS  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
64  
65  
Software Reset Control 0  
Software Reset Control 1  
Software Reset Control 2  
Raw Interrupt Status  
Interrupt Mask Control  
Masked Interrupt Status and Clear  
Reset Cause  
106  
107  
109  
66  
IMC  
R/W  
R/W1C  
R/W  
67  
MISC  
RESC  
68  
69  
60  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x060  
0x064  
0x070  
0x100  
0x104  
0x108  
0x110  
0x114  
0x118  
0x120  
0x124  
0x128  
0x144  
RCC  
R/W  
RO  
0x07AE.3AD1  
-
Run-Mode Clock Configuration  
XTAL to PLL Translation  
70  
74  
75  
PLLCFG  
RCC2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0780.2800  
0x00000040  
0x00000000  
0x00000000  
0x00000040  
0x00000000  
0x00000000  
0x00000040  
0x00000000  
0x00000000  
0x0780.0000  
Run-Mode Clock Configuration 2  
RCGC0  
RCGC1  
RCGC2  
SCGC0  
SCGC1  
SCGC2  
DCGC0  
DCGC1  
DCGC2  
DSLPCLKCFG  
Run Mode Clock Gating Control Register 0  
Run Mode Clock Gating Control Register 1  
Run Mode Clock Gating Control Register 2  
Sleep Mode Clock Gating Control Register 0  
Sleep Mode Clock Gating Control Register 1  
Sleep Mode Clock Gating Control Register 2  
Deep Sleep Mode Clock Gating Control Register 0  
Deep Sleep Mode Clock Gating Control Register 1  
Deep Sleep Mode Clock Gating Control Register 2  
Deep Sleep Clock Configuration  
88  
94  
100  
90  
96  
102  
92  
98  
104  
77  
6.4  
Register Descriptions  
All addresses given are relative to the System Control base address of 0x400F.E000.  
November 29, 2007  
61  
Preliminary  
System Control  
Register 1: Device Identification 0 (DID0), offset 0x000  
This register identifies the version of the device.  
Device Identification 0 (DID0)  
Base 0x400F.E000  
Offset 0x000  
Type RO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
VER  
reserved  
CLASS  
MINOR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MAJOR  
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
30:28  
VER  
RO  
0x1  
DID0 Version  
This field defines the DID0 register format version. The version number  
is numeric. The value of the VER field is encoded as follows:  
Value Description  
0x1 First revision of the DID0 register format, for Stellaris®  
Fury-class devices .  
27:24  
23:16  
reserved  
CLASS  
RO  
RO  
0x0  
0x1  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
Device Class  
The CLASS field value identifies the internal design from which all mask  
sets are generated for all devices in a particular product line. The CLASS  
field value is changed for new product lines, for changes in fab process  
(for example, a remap or shrink), or any case where the MAJOR or MINOR  
fields require differentiation from prior devices. The value of the CLASS  
field is encoded as follows (all other encodings are reserved):  
Value Description  
0x0 Stellaris® Sandstorm-class devices.  
0x1 Stellaris® Fury-class devices.  
62  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
15:8  
Name  
Type  
RO  
Reset  
-
Description  
MAJOR  
Major Revision  
This field specifies the major revision number of the device. The major  
revision reflects changes to base layers of the design. The major revision  
number is indicated in the part number as a letter (A for first revision, B  
for second, and so on). This field is encoded as follows:  
Value Description  
0x0 Revision A (initial device)  
0x1 Revision B (first base layer revision)  
0x2 Revision C (second base layer revision)  
and so on.  
7:0  
MINOR  
RO  
-
Minor Revision  
This field specifies the minor revision number of the device. The minor  
revision reflects changes to the metal layers of the design. The MINOR  
field value is reset when the MAJOR field is changed. This field is numeric  
and is encoded as follows:  
Value Description  
0x0 Initial device, or a major revision update.  
0x1 First metal layer change.  
0x2 Second metal layer change.  
and so on.  
November 29, 2007  
63  
Preliminary  
System Control  
Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030  
This register is responsible for controlling reset conditions after initial power-on reset.  
Brown-Out Reset Control (PBORCTL)  
Base 0x400F.E000  
Offset 0x030  
Type R/W, reset 0x0000.7FFD  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BORIOR reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
BORIOR  
reserved  
R/W  
RO  
0
0
BOR Interrupt or Reset  
This bit controls how a BOR event is signaled to the controller. If set, a  
reset is signaled. Otherwise, an interrupt is signaled.  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
64  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 3: LDO Power Control (LDOPCTL), offset 0x034  
The VADJ field in this register adjusts the on-chip output voltage (VOUT).  
LDO Power Control (LDOPCTL)  
Base 0x400F.E000  
Offset 0x034  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
VADJ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5:0  
VADJ  
R/W  
0x0  
LDO Output Voltage  
This field sets the on-chip output voltage. The programming values for  
the VADJ field are provided below.  
Value  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
VOUT (V)  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
0x06-0x3F Reserved  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
2.75  
2.70  
2.65  
2.60  
2.55  
November 29, 2007  
65  
Preliminary  
System Control  
Register 4: Raw Interrupt Status (RIS), offset 0x050  
Central location for system control raw interrupts. These are set and cleared by hardware.  
Raw Interrupt Status (RIS)  
Base 0x400F.E000  
Offset 0x050  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLRIS  
reserved  
BORRIS reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
PLLLRIS  
reserved  
RO  
RO  
0
0
PLL Lock Raw Interrupt Status  
This bit is set when the PLL TREADY Timer asserts.  
5:2  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
BORRIS  
RO  
0
Brown-Out Reset Raw Interrupt Status  
This bit is the raw interrupt status for any brown-out conditions. If set,  
a brown-out condition is currently active. This is an unregistered signal  
from the brown-out detection circuit. An interrupt is reported if the BORIM  
bit in the IMC register is set and the BORIOR bit in the PBORCTL register  
is cleared.  
0
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
66  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 5: Interrupt Mask Control (IMC), offset 0x054  
Central location for system control interrupt masks.  
Interrupt Mask Control (IMC)  
Base 0x400F.E000  
Offset 0x054  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLIM  
reserved  
BORIM reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
PLLLIM  
R/W  
0
PLL Lock Interrupt Mask  
This bit specifies whether a current limit detection is promoted to a  
controller interrupt. If set, an interrupt is generated if PLLLRIS in RIS  
is set; otherwise, an interrupt is not generated.  
5:2  
1
reserved  
BORIM  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Brown-Out Reset Interrupt Mask  
This bit specifies whether a brown-out condition is promoted to a  
controller interrupt. If set, an interrupt is generated if BORRIS is set;  
otherwise, an interrupt is not generated.  
0
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
67  
Preliminary  
System Control  
Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058  
Central location for system control result of RIS AND IMC to generate an interrupt to the controller.  
All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS  
register (see page 66).  
Masked Interrupt Status and Clear (MISC)  
Base 0x400F.E000  
Offset 0x058  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLMIS  
reserved  
BORMIS reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
PLLLMIS  
reserved  
R/W1C  
RO  
0
0
PLL Lock Masked Interrupt Status  
This bit is set when the PLL TREADY timer asserts. The interrupt is cleared  
by writing a 1 to this bit.  
5:2  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
BORMIS  
reserved  
R/W1C  
RO  
0
0
BOR Masked Interrupt Status  
The BORMIS is simply the BORRIS ANDed with the mask value, BORIM.  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
68  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 7: Reset Cause (RESC), offset 0x05C  
This register is set with the reset cause after reset. The bits in this register are sticky and maintain  
their state across multiple reset sequences, except when an external reset is the cause, and then  
all the other bits in the RESC register are cleared.  
Reset Cause (RESC)  
Base 0x400F.E000  
Offset 0x05C  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
LDO  
SW  
WDT  
BOR  
POR  
EXT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
LDO  
R/W  
-
LDO Reset  
When set, indicates the LDO circuit has lost regulation and has  
generated a reset event.  
4
3
2
1
0
SW  
WDT  
BOR  
POR  
EXT  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
Software Reset  
When set, indicates a software reset is the cause of the reset event.  
Watchdog Timer Reset  
When set, indicates a watchdog reset is the cause of the reset event.  
Brown-Out Reset  
When set, indicates a brown-out reset is the cause of the reset event.  
Power-On Reset  
When set, indicates a power-on reset is the cause of the reset event.  
External Reset  
When set, indicates an external reset (RST assertion) is the cause of  
the reset event.  
November 29, 2007  
69  
Preliminary  
System Control  
Register 8: Run-Mode Clock Configuration (RCC), offset 0x060  
This register is defined to provide source control and frequency speed.  
Run-Mode Clock Configuration (RCC)  
Base 0x400F.E000  
Offset 0x060  
Type R/W, reset 0x07AE.3AD1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
USESYSDIV  
USEPWMDIV  
reserved  
ACG  
SYSDIV  
reserved  
PWMDIV  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
RO  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWRDN reserved BYPASS reserved  
XTAL  
OSCSRC  
reserved  
IOSCDIS MOSCDIS  
Type  
Reset  
RO  
0
RO  
0
R/W  
1
RO  
1
R/W  
1
RO  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
RO  
0
RO  
0
R/W  
0
R/W  
1
Bit/Field  
31:28  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
27  
ACG  
R/W  
0
Auto Clock Gating  
This bit specifies whether the system uses the Sleep-Mode Clock  
Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock  
Gating Control (DCGCn) registers if the controller enters a Sleep or  
Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers  
are used to control the clocks distributed to the peripherals when the  
controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating  
Control (RCGCn) registers are used when the controller enters a sleep  
mode.  
The RCGCn registers are always used to control the clocks in Run  
mode.  
This allows peripherals to consume less power when the controller is  
in a sleep mode and the peripheral is unused.  
70  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
26:23  
Name  
Type  
R/W  
Reset  
0xF  
Description  
SYSDIV  
System Clock Divisor  
Specifies which divisor is used to generate the system clock from the  
PLL output.  
The PLL VCO frequency is 400 MHz.  
Value Divisor (BYPASS=1) Frequency (BYPASS=0)  
0x0 reserved  
0x1 /2  
reserved  
reserved  
0x2 /3  
reserved  
0x3 /4  
reserved  
0x4 /5  
reserved  
0x5 /6  
reserved  
0x6 /7  
reserved  
0x7 /8  
25 MHz  
0x8 /9  
22.22 MHz  
20 MHz  
0x9 /10  
0xA /11  
0xB /12  
0xC /13  
0xD /14  
0xE /15  
0xF /16  
18.18 MHz  
16.67 MHz  
15.38 MHz  
14.29 MHz  
13.33 MHz  
12.5 MHz (default)  
When reading the Run-Mode Clock Configuration (RCC) register (see  
page 70), the SYSDIV value is MINSYSDIV if a lower divider was  
requested and the PLL is being used. This lower value is allowed to  
divide a non-PLL source.  
22  
USESYSDIV  
R/W  
0
Enable System Clock Divider  
Use the system clock divider as the source for the system clock. The  
system clock divider is forced to be used when the PLL is selected as  
the source.  
21  
20  
reserved  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
USEPWMDIV  
R/W  
Enable PWM Clock Divisor  
Use the PWM clock divider as the source for the PWM clock.  
November 29, 2007  
71  
Preliminary  
System Control  
Bit/Field  
19:17  
Name  
Type  
R/W  
Reset  
0x7  
Description  
PWMDIV  
PWM Unit Clock Divisor  
This field specifies the binary divisor used to predivide the system clock  
down for use as the timing reference for the PWM module. This clock  
is only power 2 divide and rising edge is synchronous without phase  
shift from the system clock.  
Value Divisor  
0x0 /2  
0x1 /4  
0x2 /8  
0x3 /16  
0x4 /32  
0x5 /64  
0x6 /64  
0x7 /64 (default)  
16:14  
13  
reserved  
PWRDN  
RO  
0
1
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PLL Power Down  
This bit connects to the PLL PWRDN input. The reset value of 1 powers  
down the PLL.  
12  
11  
reserved  
BYPASS  
RO  
1
1
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PLL Bypass  
Chooses whether the system clock is derived from the PLL output or  
the OSC source. If set, the clock that drives the system is the OSC  
source. Otherwise, the clock that drives the system is the PLL output  
clock divided by the system divider.  
10  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
72  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
9:6  
Name  
XTAL  
Type  
R/W  
Reset  
0xB  
Description  
Crystal Value  
This field specifies the crystal value attached to the main oscillator. The  
encoding for this field is provided below.  
Value  
Crystal Frequency (MHz) Crystal Frequency (MHz)  
Not Using the PLL  
Using the PLL  
0x0  
1.000  
reserved  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
1.8432  
reserved  
reserved  
reserved  
2.000  
2.4576  
3.579545 MHz  
3.6864 MHz  
4 MHz  
4.096 MHz  
4.9152 MHz  
5 MHz  
5.12 MHz  
6 MHz (reset value)  
6.144 MHz  
7.3728 MHz  
8 MHz  
8.192 MHz  
5:4  
OSCSRC  
R/W  
0x1  
Oscillator Source  
Picks among the four input sources for the OSC. The values are:  
Value Input Source  
0x0 Main oscillator (default)  
0x1 Internal oscillator (default)  
0x2 Internal oscillator / 4 (this is necessary if used as input to PLL)  
0x3 reserved  
3:2  
1
reserved  
IOSCDIS  
RO  
0x0  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Internal Oscillator Disable  
0: Internal oscillator (IOSC) is enabled.  
1: Internal oscillator is disabled.  
0
MOSCDIS  
R/W  
1
Main Oscillator Disable  
0: Main oscillator is enabled.  
1: Main oscillator is disabled (default).  
November 29, 2007  
73  
Preliminary  
System Control  
Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064  
This register provides a means of translating external crystal frequencies into the appropriate PLL  
settings. This register is initialized during the reset sequence and updated anytime that the XTAL  
field changes in the Run-Mode Clock Configuration (RCC) register (see page 70).  
The PLL frequency is calculated using the PLLCFG field values, as follows:  
PLLFreq = OSCFreq * F / (R + 1)  
XTAL to PLL Translation (PLLCFG)  
Base 0x400F.E000  
Offset 0x064  
Type RO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
F
8
7
6
5
4
3
2
1
0
reserved  
R
Type  
Reset  
RO  
0
RO  
0
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31:14  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
13:5  
4:0  
F
RO  
RO  
-
-
PLL F Value  
This field specifies the value supplied to the PLL’s F input.  
R
PLL R Value  
This field specifies the value supplied to the PLL’s R input.  
74  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070  
This register overrides the RCC equivalent register fields when the USERCC2 bit is set. This allows  
RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible  
to previous parts. The fields within the RCC2 register occupy the same bit positions as they do  
within the RCC register as LSB-justified.  
The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system  
clock frequency for improved Deep Sleep power consumption.  
Run-Mode Clock Configuration 2 (RCC2)  
Base 0x400F.E000  
Offset 0x070  
Type R/W, reset 0x0780.2800  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
USERCC2  
reserved  
SYSDIV2  
reserved  
Type  
Reset  
R/W  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWRDN2 reserved BYPASS2  
reserved  
OSCSRC2  
reserved  
Type  
Reset  
RO  
0
RO  
0
R/W  
1
RO  
0
R/W  
1
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31  
Name  
Type  
R/W  
Reset  
0
Description  
Use RCC2  
USERCC2  
When set, overrides the RCC register fields.  
30:29  
28:23  
reserved  
SYSDIV2  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
0x0F  
System Clock Divisor  
Specifies which divisor is used to generate the system clock from the  
PLL output.  
The PLL VCO frequency is 400 MHz.  
This field is wider than the RCC register SYSDIV field in order to provide  
additional divisor values. This permits the system clock to be run at  
much lower frequencies during Deep Sleep mode. For example, where  
the RCC register SYSDIV encoding of 1111 provides /16, the RCC2  
register SYSDIV2 encoding of 111111 provides /64.  
22:14  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
13  
12  
PWRDN2  
reserved  
R/W  
RO  
1
0
Power-Down PLL  
When set, powers down the PLL.  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11  
BYPASS2  
R/W  
1
Bypass PLL  
When set, bypasses the PLL for the clock source.  
November 29, 2007  
75  
Preliminary  
System Control  
Bit/Field  
10:7  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6:4  
OSCSRC2  
R/W  
0x0  
System Clock Source  
Value Description  
0x0 Main oscillator (MOSC)  
0x1 Internal oscillator (IOSC)  
0x2 Internal oscillator / 4  
0x3 30 kHz internal oscillator  
0x7 32 kHz external oscillator  
3:0  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
76  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144  
This register provides configuration information for the hardware control of Deep Sleep Mode.  
Deep Sleep Clock Configuration (DSLPCLKCFG)  
Base 0x400F.E000  
Offset 0x144  
Type R/W, reset 0x0780.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
DSDIVORIDE  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DSOSCSRC  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:29  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
28:23  
DSDIVORIDE  
R/W  
0x0F  
Divider Field Override  
6-bit system divider field to override when Deep-Sleep occurs with PLL  
running.  
22:7  
6:4  
reserved  
RO  
0x0  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
DSOSCSRC  
R/W  
Clock Source  
When set, forces IOSC to be clock source during Deep Sleep mode.  
Value Name  
Description  
0x0 NOORIDE No override to the oscillator clock source is done  
0x1 IOSC  
0x3 30kHz  
0x7 32kHz  
Use internal 12 MHz oscillator as source  
Use 30 kHz internal oscillator  
Use 32 kHz external oscillator  
3:0  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
77  
Preliminary  
System Control  
Register 12: Device Identification 1 (DID1), offset 0x004  
This register identifies the device family, part number, temperature range, pin count, and package  
type.  
Device Identification 1 (DID1)  
Base 0x400F.E000  
Offset 0x004  
Type RO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VER  
FAM  
PARTNO  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PINCOUNT  
reserved  
TEMP  
PKG  
ROHS  
QUAL  
Type  
Reset  
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
-
RO  
-
Bit/Field  
31:28  
Name  
VER  
Type  
RO  
Reset  
0x1  
Description  
DID1 Version  
This field defines the DID1 register format version. The version number  
is numeric. The value of the VER field is encoded as follows (all other  
encodings are reserved):  
Value Description  
0x1 First revision of the DID1 register format, indicating a Stellaris  
Fury-class device.  
27:24  
FAM  
RO  
0x0  
Family  
This field provides the family identification of the device within the  
Luminary Micro product portfolio. The value is encoded as follows (all  
other encodings are reserved):  
Value Description  
0x0 Stellaris family of microcontollers, that is, all devices with  
external part numbers starting with LM3S.  
23:16  
PARTNO  
RO  
0x51  
Part Number  
This field provides the part number of the device within the family. The  
value is encoded as follows (all other encodings are reserved):  
Value Description  
0x51 LM3S2110  
15:13  
PINCOUNT  
RO  
0x2  
Package Pin Count  
This field specifies the number of pins on the device package. The value  
is encoded as follows (all other encodings are reserved):  
Value Description  
0x2 100-pin package  
78  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
12:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:5  
TEMP  
RO  
0x1  
Temperature Range  
This field specifies the temperature rating of the device. The value is  
encoded as follows (all other encodings are reserved):  
Value Description  
0x1 Industrial temperature range (-40°C to 85°C)  
4:3  
PKG  
RO  
0x1  
Package Type  
This field specifies the package type. The value is encoded as follows  
(all other encodings are reserved):  
Value Description  
0x1 LQFP package  
2
ROHS  
QUAL  
RO  
RO  
1
-
RoHS-Compliance  
This bit specifies whether the device is RoHS-compliant. A 1 indicates  
the part is RoHS-compliant.  
1:0  
Qualification Status  
This field specifies the qualification status of the device. The value is  
encoded as follows (all other encodings are reserved):  
Value Description  
0x0 Engineering Sample (unqualified)  
0x1 Pilot Production (unqualified)  
0x2 Fully Qualified  
November 29, 2007  
79  
Preliminary  
System Control  
Register 13: Device Capabilities 0 (DC0), offset 0x008  
This register is predefined by the part and can be used to verify features.  
Device Capabilities 0 (DC0)  
Base 0x400F.E000  
Offset 0x008  
Type RO, reset 0x003F.001F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
SRAMSZ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FLASHSZ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
SRAM Size  
SRAMSZ  
0x003F  
Indicates the size of the on-chip SRAM memory.  
Value Description  
0x003F 16 KB of SRAM  
15:0  
FLASHSZ  
RO  
0x001F  
Flash Size  
Indicates the size of the on-chip flash memory.  
Value Description  
0x001F 64 KB of Flash  
80  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 14: Device Capabilities 1 (DC1), offset 0x010  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: CANs, PWM,  
ADC, Watchdog timer, Hibernation module, and debug capabilities. This register also indicates the  
maximum clock frequency and maximum ADC sample rate. The format of this register is consistent  
with the RCGC0, SCGC0, and DCGC0 clock control registers and the SRCR0 software reset control  
register.  
Device Capabilities 1 (DC1)  
Base 0x400F.E000  
Offset 0x010  
Type RO, reset 0x0110.709F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CAN0  
reserved  
PWM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MINSYSDIV  
reserved  
MPU  
reserved  
PLL  
WDT  
SWO  
SWD  
JTAG  
Type  
Reset  
RO  
0
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
CAN0  
RO  
RO  
1
0
CAN Module 0 Present  
When set, indicates that CAN unit 0 is present.  
23:21  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
20  
PWM  
RO  
RO  
1
0
PWM Module Present  
When set, indicates that the PWM module is present.  
19:16  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:12  
MINSYSDIV  
RO  
0x7  
System Clock Divider  
Minimum 4-bit divider value for system clock. The reset value is  
hardware-dependent. See the RCC register for how to change the  
system clock divisor using the SYSDIV bit.  
Value Description  
0x7 Specifies a 25-MHz clock with a PLL divider of 8.  
11:8  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
81  
Preliminary  
System Control  
Bit/Field  
7
Name  
MPU  
Type  
RO  
Reset  
1
Description  
MPU Present  
When set, indicates that the Cortex-M3 Memory Protection Unit (MPU)  
module is present. See the ARM Cortex-M3 Technical Reference Manual  
for details on the MPU.  
6:5  
4
reserved  
PLL  
RO  
RO  
0
1
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
PLL Present  
When set, indicates that the on-chip Phase Locked Loop (PLL) is  
present.  
3
2
WDT  
SWO  
RO  
RO  
1
1
Watchdog Timer Present  
When set, indicates that a watchdog timer is present.  
SWO Trace Port Present  
When set, indicates that the Serial Wire Output (SWO) trace port is  
present.  
1
0
SWD  
JTAG  
RO  
RO  
1
1
SWD Present  
When set, indicates that the Serial Wire Debugger (SWD) is present.  
JTAG Present  
When set, indicates that the JTAG debugger interface is present.  
82  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 15: Device Capabilities 2 (DC2), offset 0x014  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: Analog  
Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register  
is consistent with the RCGC1, SCGC1, and DCGC1 clock control registers and the SRCR1 software  
reset control register.  
Device Capabilities 2 (DC2)  
Base 0x400F.E000  
Offset 0x014  
Type RO, reset 0x0707.1011  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP2 COMP1 COMP0  
reserved  
TIMER2 TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:27  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
26  
25  
COMP2  
COMP1  
COMP0  
reserved  
RO  
RO  
RO  
RO  
1
1
1
0
Analog Comparator 2 Present  
When set, indicates that analog comparator 2 is present.  
Analog Comparator 1 Present  
When set, indicates that analog comparator 1 is present.  
24  
Analog Comparator 0 Present  
When set, indicates that analog comparator 0 is present.  
23:19  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
18  
17  
TIMER2  
TIMER1  
TIMER0  
reserved  
RO  
RO  
RO  
RO  
1
1
1
0
Timer 2 Present  
When set, indicates that General-Purpose Timer module 2 is present.  
Timer 1 Present  
When set, indicates that General-Purpose Timer module 1 is present.  
16  
Timer 0 Present  
When set, indicates that General-Purpose Timer module 0 is present.  
15:13  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12  
I2C0  
RO  
1
I2C Module 0 Present  
When set, indicates that I2C module 0 is present.  
November 29, 2007  
83  
Preliminary  
System Control  
Bit/Field  
11:5  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4
SSI0  
RO  
RO  
1
0
SSI0 Present  
When set, indicates that SSI module 0 is present.  
3:1  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
UART0  
RO  
1
UART0 Present  
When set, indicates that UART module 0 is present.  
84  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: Device Capabilities 3 (DC3), offset 0x018  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: Analog  
Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.  
Device Capabilities 3 (DC3)  
Base 0x400F.E000  
Offset 0x018  
Type RO, reset 0x0F00.B7C3  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CCP3  
CCP2  
CCP1  
CCP0  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWMFAULT reserved C2PLUS C2MINUS reserved C1PLUS C1MINUS C0O  
C0PLUS C0MINUS  
reserved  
PWM1  
PWM0  
Type  
Reset  
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
Bit/Field  
31:28  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
27  
26  
CCP3  
CCP2  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
0
CCP3 Pin Present  
When set, indicates that Capture/Compare/PWM pin 3 is present.  
CCP2 Pin Present  
When set, indicates that Capture/Compare/PWM pin 2 is present.  
25  
CCP1  
CCP1 Pin Present  
When set, indicates that Capture/Compare/PWM pin 1 is present.  
24  
CCP0  
CCP0 Pin Present  
When set, indicates that Capture/Compare/PWM pin 0 is present.  
23:16  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15  
14  
PWMFAULT  
reserved  
RO  
RO  
1
0
PWM Fault Pin Present  
When set, indicates that the PWM Fault pin is present.  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
13  
12  
C2PLUS  
RO  
RO  
1
1
C2+ Pin Present  
When set, indicates that the analog comparator 2 (+) input pin is present.  
C2MINUS  
C2- Pin Present  
When set, indicates that the analog comparator 2 (-) input pin is present.  
November 29, 2007  
85  
Preliminary  
System Control  
Bit/Field  
11  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
C1PLUS  
C1MINUS  
C0O  
RO  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
1
0
C1+ Pin Present  
When set, indicates that the analog comparator 1 (+) input pin is present.  
C1- Pin Present  
When set, indicates that the analog comparator 1 (-) input pin is present.  
8
C0o Pin Present  
When set, indicates that the analog comparator 0 output pin is present.  
7
C0PLUS  
C0MINUS  
reserved  
C0+ Pin Present  
When set, indicates that the analog comparator 0 (+) input pin is present.  
6
C0- Pin Present  
When set, indicates that the analog comparator 0 (-) input pin is present.  
5:2  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
PWM1  
PWM0  
RO  
RO  
1
1
PWM1 Pin Present  
When set, indicates that the PWM pin 1 is present.  
PWM0 Pin Present  
When set, indicates that the PWM pin 0 is present.  
86  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 17: Device Capabilities 4 (DC4), offset 0x01C  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: Ethernet MAC  
and PHY, GPIOs, and CCP I/Os. The format of this register is consistent with the RCGC2, SCGC2,  
and DCGC2 clock control registers and the SRCR2 software reset control register.  
Device Capabilities 4 (DC4)  
Base 0x400F.E000  
Offset 0x01C  
Type RO, reset 0x0000.00FF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
5
4
3
2
1
0
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
1
1
1
1
GPIO Port H Present  
When set, indicates that GPIO Port H is present.  
GPIO Port G Present  
When set, indicates that GPIO Port G is present.  
GPIO Port F Present  
When set, indicates that GPIO Port F is present.  
GPIO Port E Present  
When set, indicates that GPIO Port E is present.  
GPIO Port D Present  
When set, indicates that GPIO Port D is present.  
GPIO Port C Present  
When set, indicates that GPIO Port C is present.  
GPIO Port B Present  
When set, indicates that GPIO Port B is present.  
GPIO Port A Present  
When set, indicates that GPIO Port A is present.  
November 29, 2007  
87  
Preliminary  
System Control  
Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the  
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Run Mode Clock Gating Control Register 0 (RCGC0)  
Base 0x400F.E000  
Offset 0x100  
Type R/W, reset 0x00000040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CAN0  
reserved  
PWM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
CAN0  
R/W  
0
CAN0 Clock Gating Control  
This bit controls the clock gating for CAN unit 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled.  
23:21  
20  
reserved  
PWM  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PWM Clock Gating Control  
This bit controls the clock gating for the PWM module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
19:4  
3
reserved  
WDT  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
WDT Clock Gating Control  
This bit controls the clock gating for the WDT module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
88  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
2:0  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
89  
Preliminary  
System Control  
Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset  
0x110  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the  
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Sleep Mode Clock Gating Control Register 0 (SCGC0)  
Base 0x400F.E000  
Offset 0x110  
Type R/W, reset 0x00000040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CAN0  
reserved  
PWM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
CAN0  
R/W  
0
CAN0 Clock Gating Control  
This bit controls the clock gating for CAN unit 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled.  
23:21  
20  
reserved  
PWM  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PWM Clock Gating Control  
This bit controls the clock gating for the PWM module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
19:4  
3
reserved  
WDT  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
WDT Clock Gating Control  
This bit controls the clock gating for the WDT module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
90  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
2:0  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
91  
Preliminary  
System Control  
Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0),  
offset 0x120  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the  
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)  
Base 0x400F.E000  
Offset 0x120  
Type R/W, reset 0x00000040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CAN0  
reserved  
PWM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
CAN0  
R/W  
0
CAN0 Clock Gating Control  
This bit controls the clock gating for CAN unit 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled.  
23:21  
20  
reserved  
PWM  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PWM Clock Gating Control  
This bit controls the clock gating for the PWM module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
19:4  
3
reserved  
WDT  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
WDT Clock Gating Control  
This bit controls the clock gating for the WDT module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
92  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
2:0  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
93  
Preliminary  
System Control  
Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the  
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Run Mode Clock Gating Control Register 1 (RCGC1)  
Base 0x400F.E000  
Offset 0x104  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP2 COMP1 COMP0  
reserved  
TIMER2 TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:27  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
26  
25  
COMP2  
COMP1  
COMP0  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
Analog Comparator 2 Clock Gating  
This bit controls the clock gating for analog comparator 2. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
Analog Comparator 1 Clock Gating  
This bit controls the clock gating for analog comparator 1. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
24  
Analog Comparator 0 Clock Gating  
This bit controls the clock gating for analog comparator 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
23:19  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
94  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
18  
Name  
Type  
R/W  
Reset  
0
Description  
TIMER2  
Timer 2 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 2.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
17  
16  
TIMER1  
TIMER0  
R/W  
R/W  
0
0
Timer 1 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 1.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
Timer 0 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 0.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
15:13  
12  
reserved  
I2C0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
I2C0 Clock Gating Control  
This bit controls the clock gating for I2C module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
11:5  
4
reserved  
SSI0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
SSI0 Clock Gating Control  
This bit controls the clock gating for SSI module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Clock Gating Control  
This bit controls the clock gating for UART module 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
November 29, 2007  
95  
Preliminary  
System Control  
Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset  
0x114  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the  
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Sleep Mode Clock Gating Control Register 1 (SCGC1)  
Base 0x400F.E000  
Offset 0x114  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP2 COMP1 COMP0  
reserved  
TIMER2 TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:27  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
26  
25  
COMP2  
COMP1  
COMP0  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
Analog Comparator 2 Clock Gating  
This bit controls the clock gating for analog comparator 2. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
Analog Comparator 1 Clock Gating  
This bit controls the clock gating for analog comparator 1. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
24  
Analog Comparator 0 Clock Gating  
This bit controls the clock gating for analog comparator 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
23:19  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
96  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
18  
Name  
Type  
R/W  
Reset  
0
Description  
TIMER2  
Timer 2 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 2.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
17  
16  
TIMER1  
TIMER0  
R/W  
R/W  
0
0
Timer 1 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 1.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
Timer 0 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 0.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
15:13  
12  
reserved  
I2C0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
I2C0 Clock Gating Control  
This bit controls the clock gating for I2C module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
11:5  
4
reserved  
SSI0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
SSI0 Clock Gating Control  
This bit controls the clock gating for SSI module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Clock Gating Control  
This bit controls the clock gating for UART module 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
November 29, 2007  
97  
Preliminary  
System Control  
Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1),  
offset 0x124  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the  
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)  
Base 0x400F.E000  
Offset 0x124  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP2 COMP1 COMP0  
reserved  
TIMER2 TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:27  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
26  
25  
COMP2  
COMP1  
COMP0  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
Analog Comparator 2 Clock Gating  
This bit controls the clock gating for analog comparator 2. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
Analog Comparator 1 Clock Gating  
This bit controls the clock gating for analog comparator 1. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
24  
Analog Comparator 0 Clock Gating  
This bit controls the clock gating for analog comparator 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
23:19  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
98  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
18  
Name  
Type  
R/W  
Reset  
0
Description  
TIMER2  
Timer 2 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 2.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
17  
16  
TIMER1  
TIMER0  
R/W  
R/W  
0
0
Timer 1 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 1.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
Timer 0 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 0.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
15:13  
12  
reserved  
I2C0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
I2C0 Clock Gating Control  
This bit controls the clock gating for I2C module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
11:5  
4
reserved  
SSI0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
SSI0 Clock Gating Control  
This bit controls the clock gating for SSI module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Clock Gating Control  
This bit controls the clock gating for UART module 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
November 29, 2007  
99  
Preliminary  
System Control  
Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the  
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Run Mode Clock Gating Control Register 2 (RCGC2)  
Base 0x400F.E000  
Offset 0x108  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
5
4
GPIOH  
GPIOG  
GPIOF  
GPIOE  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Port H Clock Gating Control  
This bit controls the clock gating for Port H. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port G Clock Gating Control  
This bit controls the clock gating for Port G. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port F Clock Gating Control  
This bit controls the clock gating for Port F. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port E Clock Gating Control  
This bit controls the clock gating for Port E. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
100  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
3
Name  
Type  
R/W  
Reset  
0
Description  
GPIOD  
Port D Clock Gating Control  
This bit controls the clock gating for Port D. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
2
1
0
GPIOC  
GPIOB  
GPIOA  
R/W  
R/W  
R/W  
0
0
0
Port C Clock Gating Control  
This bit controls the clock gating for Port C. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port B Clock Gating Control  
This bit controls the clock gating for Port B. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port A Clock Gating Control  
This bit controls the clock gating for Port A. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
November 29, 2007  
101  
Preliminary  
System Control  
Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset  
0x118  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the  
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Sleep Mode Clock Gating Control Register 2 (SCGC2)  
Base 0x400F.E000  
Offset 0x118  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
5
4
GPIOH  
GPIOG  
GPIOF  
GPIOE  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Port H Clock Gating Control  
This bit controls the clock gating for Port H. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port G Clock Gating Control  
This bit controls the clock gating for Port G. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port F Clock Gating Control  
This bit controls the clock gating for Port F. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port E Clock Gating Control  
This bit controls the clock gating for Port E. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
102  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
3
Name  
Type  
R/W  
Reset  
0
Description  
GPIOD  
Port D Clock Gating Control  
This bit controls the clock gating for Port D. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
2
1
0
GPIOC  
GPIOB  
GPIOA  
R/W  
R/W  
R/W  
0
0
0
Port C Clock Gating Control  
This bit controls the clock gating for Port C. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port B Clock Gating Control  
This bit controls the clock gating for Port B. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port A Clock Gating Control  
This bit controls the clock gating for Port A. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
November 29, 2007  
103  
Preliminary  
System Control  
Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2),  
offset 0x128  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the  
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)  
Base 0x400F.E000  
Offset 0x128  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
5
4
GPIOH  
GPIOG  
GPIOF  
GPIOE  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Port H Clock Gating Control  
This bit controls the clock gating for Port H. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port G Clock Gating Control  
This bit controls the clock gating for Port G. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port F Clock Gating Control  
This bit controls the clock gating for Port F. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port E Clock Gating Control  
This bit controls the clock gating for Port E. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
104  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
3
Name  
Type  
R/W  
Reset  
0
Description  
GPIOD  
Port D Clock Gating Control  
This bit controls the clock gating for Port D. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
2
1
0
GPIOC  
GPIOB  
GPIOA  
R/W  
R/W  
R/W  
0
0
0
Port C Clock Gating Control  
This bit controls the clock gating for Port C. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port B Clock Gating Control  
This bit controls the clock gating for Port B. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port A Clock Gating Control  
This bit controls the clock gating for Port A. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
November 29, 2007  
105  
Preliminary  
System Control  
Register 27: Software Reset Control 0 (SRCR0), offset 0x040  
Writes to this register are masked by the bits in the Device Capabilities 1 (DC1) register.  
Software Reset Control 0 (SRCR0)  
Base 0x400F.E000  
Offset 0x040  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CAN0  
reserved  
PWM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
CAN0  
R/W  
RO  
0
0
CAN0 Reset Control  
Reset control for CAN unit 0.  
23:21  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
20  
PWM  
R/W  
RO  
0
0
PWM Reset Control  
Reset control for PWM module.  
19:4  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
WDT  
R/W  
RO  
0
0
WDT Reset Control  
Reset control for Watchdog unit.  
2:0  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
106  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 28: Software Reset Control 1 (SRCR1), offset 0x044  
Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.  
Software Reset Control 1 (SRCR1)  
Base 0x400F.E000  
Offset 0x044  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP2 COMP1 COMP0  
reserved  
TIMER2 TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:27  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
26  
25  
COMP2  
COMP1  
COMP0  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
Analog Comp 2 Reset Control  
Reset control for analog comparator 2.  
Analog Comp 1 Reset Control  
Reset control for analog comparator 1.  
24  
Analog Comp 0 Reset Control  
Reset control for analog comparator 0.  
23:19  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
18  
17  
TIMER2  
TIMER1  
TIMER0  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
Timer 2 Reset Control  
Reset control for General-Purpose Timer module 2.  
Timer 1 Reset Control  
Reset control for General-Purpose Timer module 1.  
16  
Timer 0 Reset Control  
Reset control for General-Purpose Timer module 0.  
15:13  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12  
I2C0  
R/W  
RO  
0
0
I2C0 Reset Control  
Reset control for I2C unit 0.  
11:5  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
107  
Preliminary  
System Control  
Bit/Field  
4
Name  
SSI0  
Type  
R/W  
Reset  
0
Description  
SSI0 Reset Control  
Reset control for SSI unit 0.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Reset Control  
Reset control for UART unit 0.  
108  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 29: Software Reset Control 2 (SRCR2), offset 0x048  
Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.  
Software Reset Control 2 (SRCR2)  
Base 0x400F.E000  
Offset 0x048  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
5
4
3
2
1
0
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
Port H Reset Control  
Reset control for GPIO Port H.  
Port G Reset Control  
Reset control for GPIO Port G.  
Port F Reset Control  
Reset control for GPIO Port F.  
Port E Reset Control  
Reset control for GPIO Port E.  
Port D Reset Control  
Reset control for GPIO Port D.  
Port C Reset Control  
Reset control for GPIO Port C.  
Port B Reset Control  
Reset control for GPIO Port B.  
Port A Reset Control  
Reset control for GPIO Port A.  
November 29, 2007  
109  
Preliminary  
Internal Memory  
7
Internal Memory  
The LM3S2110 microcontroller comes with 16 KB of bit-banded SRAM and 64 KB of flash memory.  
The flash controller provides a user-friendly interface, making flash programming a simple task.  
Flash protection can be applied to the flash memory on a 2-KB block basis.  
7.1  
Block Diagram  
Figure 7-1. Flash Block Diagram  
Flash Timing  
USECRL  
Flash Control  
ICode  
Cortex-M3  
DCode  
FMA  
Flash Array  
FMD  
FMC  
System Bus  
FCRIS  
FCIM  
FCMISC  
APB  
Bridge  
User Registers  
Flash Protection  
USER_DBG  
FMPREn  
FMPPEn  
USER_REG0  
USER_REG1  
SRAM Array  
7.2  
Functional Description  
This section describes the functionality of both the flash and SRAM memories.  
7.2.1  
SRAM Memory  
The internal SRAM of the Stellaris® devices is located at address 0x2000.0000 of the device memory  
map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has  
introduced bit-banding technology in the Cortex-M3 processor. With a bit-band-enabled processor,  
certain regions in the memory map (SRAM and peripheral space) can use address aliases to access  
individual bits in a single, atomic operation.  
The bit-band alias is calculated by using the formula:  
110  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)  
For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:  
0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C  
With the alias address calculated, an instruction performing a read/write to address 0x2202.000C  
allows direct access to only bit 3 of the byte at address 0x2000.1000.  
For details about bit-banding, please refer to Chapter 4, “Memory Map” in the ARM® Cortex™-M3  
Technical Reference Manual.  
7.2.2  
Flash Memory  
The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block  
causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be  
programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB  
blocks that can be individually protected. The protection allows blocks to be marked as read-only  
or execute-only, providing different levels of code protection. Read-only blocks cannot be erased  
or programmed, protecting the contents of those blocks from being modified. Execute-only blocks  
cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism,  
protecting the contents of those blocks from being read by either the controller or by a debugger.  
See also “Serial Flash Loader” on page 463 for a preprogrammed flash-resident utility used to  
download code to the flash memory of a device without the use of a debug interface.  
7.2.2.1 Flash Memory Timing  
The timing for the flash is automatically handled by the flash controller. However, in order to do so,  
it must know the clock rate of the system in order to time its internal signals properly. The number  
of clock cycles per microsecond must be provided to the flash controller for it to accomplish this  
timing. It is software's responsibility to keep the flash controller updated with this information via the  
USec Reload (USECRL) register.  
On reset, the USECRL register is loaded with a value that configures the flash timing so that it works  
with the maximum clock rate of the part. If software changes the system operating frequency, the  
new operating frequency minus 1 (in MHz) must be loaded into USECRL before any flash  
modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value  
of 0x13 (20-1) must be written to the USECRL register.  
7.2.2.2 Flash Memory Protection  
The user is provided two forms of flash protection per 2-KB flash blocks in one pair of 32-bit wide  
registers. The protection policy for each form is controlled by individual bits (per policy per block)  
in the FMPPEn and FMPREn registers.  
Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed  
(written) or erased. If cleared, the block may not be changed.  
Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read  
by software or debuggers. If cleared, the block may only be executed. The contents of the memory  
block are prohibited from being accessed as data and traversing the DCode bus.  
The policies may be combined as shown in Table 7-1 on page 112.  
November 29, 2007  
111  
Preliminary  
Internal Memory  
Table 7-1. Flash Protection Policy Combinations  
FMPPEn FMPREn Protection  
0
0
Execute-only protection. The block may only be executed and may not be written or erased. This mode  
is used to protect code.  
1
0
0
1
The block may be written, erased or executed, but not read. This combination is unlikely to be used.  
Read-only protection. The block may be read or executed but may not be written or erased. This mode  
is used to lock the block from further modification while allowing any read or execute access.  
1
1
No protection. The block may be written, erased, executed or read.  
An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt  
may be optionally generated (by setting the AMASK bit in the FIM register) to alert software developers  
of poorly behaving software during the development and debug phases.  
An access that attempts to read an RE-protected block is prohibited. Such accesses return data  
filled with all 0s. A controller interrupt may be optionally generated to alert software developers of  
poorly behaving software during the development and debug phases.  
The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented  
banks. This implements a policy of open access and programmability. The register bits may be  
changed by writing the specific register bit. The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. Details on  
programming these bits are discussed in “Nonvolatile Register Programming” on page 113.  
7.3  
Flash Memory Initialization and Configuration  
7.3.1  
Flash Programming  
The Stellaris® devices provide a user-friendly interface for flash programming. All erase/program  
operations are handled via three registers: FMA, FMD, and FMC.  
7.3.1.1 To program a 32-bit word  
1. Write source data to the FMD register.  
2. Write the target address to the FMA register.  
3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.  
4. Poll the FMC register until the WRITE bit is cleared.  
7.3.1.2 To perform an erase of a 1-KB page  
1. Write the page address to the FMA register.  
2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.  
3. Poll the FMC register until the ERASE bit is cleared.  
7.3.1.3 To perform a mass erase of the flash  
1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.  
2. Poll the FMC register until the MERASE bit is cleared.  
112  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
7.3.2  
Nonvolatile Register Programming  
This section discusses how to update registers that are resident within the flash memory itself.  
These registers exist in a separate space from the main flash array and are not affected by an  
ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit  
in the FMC register to activate a write operation. For the USER_DBG register, the data to be written  
must be loaded into the FMD register before it is "committed". All other registers are R/W and can  
have their operation tried before committing them to nonvolatile memory.  
Important: These registers can only have bits changed from 1 to 0 by the user and there is no  
mechanism for the user to erase them back to a 1 value.  
In addition, the USER_REG0, USER_REG1, and USER_DBG use bit 31 (NW) of their respective  
registers to indicate that they are available for user write. These three registers can only be written  
once whereas the flash protection registers may be written multiple times. Table 7-2 on page 113  
provides the FMA address required for commitment of each of the registers and the source of the  
data to be written when the COMT bit of the FMC register is written with a value of 0xA442.0008.  
After writing the COMT bit, the user may poll the FMC register to wait for the commit operation to  
complete.  
Table 7-2. Flash Resident Registersa  
Register to be Committed FMA Value Data Source  
FMPRE0  
0x0000.0000 FMPRE0  
0x0000.0002 FMPRE1  
0x0000.0004 FMPRE2  
0x0000.0008 FMPRE3  
0x0000.0001 FMPPE0  
0x0000.0003 FMPPE1  
0x0000.0005 FMPPE2  
0x0000.0007 FMPPE3  
0x8000.0000 USER_REG0  
0x8000.0001 USER_REG1  
0x7510.0000 FMD  
FMPRE1  
FMPRE2  
FMPRE3  
FMPPE0  
FMPPE1  
FMPPE2  
FMPPE3  
USER_REG0  
USER_REG1  
USER_DBG  
a. Which FMPREn and FMPPEn registers are available depend on the flash size of your particular Stellaris® device.  
7.4  
Register Map  
Table 7-3 on page 113 lists the Flash memory and control registers. The offset listed is a hexadecimal  
increment to the register's address. The FMA, FMD, FMC, FCRIS, FCIM, and FCMISC registers  
are relative to the Flash control base address of 0x400F.D000. The FMPREn, FMPPEn, USECRL,  
USER_DBG, and USER_REGn registers are relative to the System Control base address of  
0x400F.E000.  
Table 7-3. Flash Register Map  
See  
page  
Offset  
Flash Control Offset  
0x000 FMA  
Name  
Type  
Reset  
Description  
R/W  
0x0000.0000  
Flash Memory Address  
115  
November 29, 2007  
113  
Preliminary  
Internal Memory  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x004  
0x008  
0x00C  
0x010  
0x014  
FMD  
R/W  
R/W  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
Flash Memory Data  
116  
117  
119  
120  
121  
FMC  
Flash Memory Control  
FCRIS  
FCIM  
RO  
Flash Controller Raw Interrupt Status  
Flash Controller Interrupt Mask  
Flash Controller Masked Interrupt Status and Clear  
R/W  
FCMISC  
R/W1C  
System Control Offset  
0x130  
0x200  
0x134  
0x400  
0x140  
0x1D0  
0x1E0  
0x1E4  
0x204  
0x208  
0x20C  
0x404  
0x408  
0x40C  
FMPRE0  
FMPRE0  
FMPPE0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0xFFFF.FFFF  
0xFFFF.FFFF  
0xFFFF.FFFF  
0xFFFF.FFFF  
0x16  
Flash Memory Protection Read Enable 0  
Flash Memory Protection Read Enable 0  
Flash Memory Protection Program Enable 0  
Flash Memory Protection Program Enable 0  
USec Reload  
123  
123  
124  
124  
122  
125  
126  
127  
128  
129  
130  
131  
132  
133  
FMPPE0  
USECRL  
USER_DBG  
USER_REG0  
USER_REG1  
FMPRE1  
FMPRE2  
FMPRE3  
FMPPE1  
0xFFFF.FFFE  
0xFFFF.FFFF  
0xFFFF.FFFF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
User Debug  
User Register 0  
User Register 1  
Flash Memory Protection Read Enable 1  
Flash Memory Protection Read Enable 2  
Flash Memory Protection Read Enable 3  
Flash Memory Protection Program Enable 1  
Flash Memory Protection Program Enable 2  
Flash Memory Protection Program Enable 3  
FMPPE2  
FMPPE3  
7.5  
Flash Register Descriptions (Flash Control Offset)  
The remainder of this section lists and describes the Flash Memory registers, in numerical order by  
address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.  
114  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 1: Flash Memory Address (FMA), offset 0x000  
During a write operation, this register contains a 4-byte-aligned address and specifies where the  
data is written. During erase operations, this register contains a 1 KB-aligned address and specifies  
which page is erased. Note that the alignment requirements must be met by software or the results  
of the operation are unpredictable.  
Flash Memory Address (FMA)  
Base 0x400F.D000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OFFSET  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
OFFSET  
R/W  
0x0  
Address Offset  
Address offset in flash where operation is performed, except for  
nonvolatile registers (see “Nonvolatile Register Programming” on page  
113 for details on values for this field).  
November 29, 2007  
115  
Preliminary  
Internal Memory  
Register 2: Flash Memory Data (FMD), offset 0x004  
This register contains the data to be written during the programming cycle or read during the read  
cycle. Note that the contents of this register are undefined for a read access of an execute-only  
block. This register is not used during the erase cycles.  
Flash Memory Data (FMD)  
Base 0x400F.D000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DATA  
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
DATA  
Type  
R/W  
Reset  
0x0  
Description  
Data Value  
Data value for write operation.  
116  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 3: Flash Memory Control (FMC), offset 0x008  
When this register is written, the flash controller initiates the appropriate access cycle for the location  
specified by the Flash Memory Address (FMA) register (see page 115). If the access is a write  
access, the data contained in the Flash Memory Data (FMD) register (see page 116) is written.  
This is the final register written and initiates the memory operation. There are four control bits in the  
lower byte of this register that, when set, initiate the memory operation. The most used of these  
register bits are the ERASE and WRITE bits.  
It is a programming error to write multiple control bits and the results of such an operation are  
unpredictable.  
Flash Memory Control (FMC)  
Base 0x400F.D000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WRKEY  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
COMT MERASE ERASE WRITE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
WO  
Reset  
0x0  
Description  
WRKEY  
Flash Write Key  
This field contains a write key, which is used to minimize the incidence  
of accidental flash writes. The value 0xA442 must be written into this  
field for a write to occur. Writes to the FMC register without this WRKEY  
value are ignored. A read of this field returns the value 0.  
15:4  
3
reserved  
COMT  
RO  
0x0  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Commit Register Value  
Commit (write) of register value to nonvolatile storage. A write of 0 has  
no effect on the state of this bit.  
If read, the state of the previous commit access is provided. If the  
previous commit access is complete, a 0 is returned; otherwise, if the  
commit access is not complete, a 1 is returned.  
This can take up to 50 μs.  
Mass Erase Flash Memory  
2
MERASE  
R/W  
0
If this bit is set, the flash main memory of the device is all erased. A  
write of 0 has no effect on the state of this bit.  
If read, the state of the previous mass erase access is provided. If the  
previous mass erase access is complete, a 0 is returned; otherwise, if  
the previous mass erase access is not complete, a 1 is returned.  
This can take up to 250 ms.  
November 29, 2007  
117  
Preliminary  
Internal Memory  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
ERASE  
Erase a Page of Flash Memory  
If this bit is set, the page of flash main memory as specified by the  
contents of FMA is erased. A write of 0 has no effect on the state of this  
bit.  
If read, the state of the previous erase access is provided. If the previous  
erase access is complete, a 0 is returned; otherwise, if the previous  
erase access is not complete, a 1 is returned.  
This can take up to 25 ms.  
0
WRITE  
R/W  
0
Write a Word into Flash Memory  
If this bit is set, the data stored in FMD is written into the location as  
specified by the contents of FMA. A write of 0 has no effect on the state  
of this bit.  
If read, the state of the previous write update is provided. If the previous  
write access is complete, a 0 is returned; otherwise, if the write access  
is not complete, a 1 is returned.  
This can take up to 50 µs.  
118  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C  
This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled  
if the corresponding FCIM register bit is set.  
Flash Controller Raw Interrupt Status (FCRIS)  
Base 0x400F.D000  
Offset 0x00C  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PRIS  
ARIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
PRIS  
ARIS  
RO  
0
Programming Raw Interrupt Status  
This bit indicates the current state of the programming cycle. If set, the  
programming cycle completed; if cleared, the programming cycle has  
not completed. Programming cycles are either write or erase actions  
generated through the Flash Memory Control (FMC) register bits (see  
page 117).  
0
RO  
0
Access Raw Interrupt Status  
This bit indicates if the flash was improperly accessed. If set, the program  
tried to access the flash counter to the policy as set in the Flash Memory  
Protection Read Enable (FMPREn) and Flash Memory Protection  
Program Enable (FMPPEn) registers. Otherwise, no access has tried  
to improperly access the flash.  
November 29, 2007  
119  
Preliminary  
Internal Memory  
Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010  
This register controls whether the flash controller generates interrupts to the controller.  
Flash Controller Interrupt Mask (FCIM)  
Base 0x400F.D000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PMASK AMASK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
PMASK  
AMASK  
R/W  
R/W  
0
0
Programming Interrupt Mask  
This bit controls the reporting of the programming raw interrupt status  
to the controller. If set, a programming-generated interrupt is promoted  
to the controller. Otherwise, interrupts are recorded but suppressed from  
the controller.  
Access Interrupt Mask  
This bit controls the reporting of the access raw interrupt status to the  
controller. If set, an access-generated interrupt is promoted to the  
controller. Otherwise, interrupts are recorded but suppressed from the  
controller.  
120  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC),  
offset 0x014  
This register provides two functions. First, it reports the cause of an interrupt by indicating which  
interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the  
interrupt reporting.  
Flash Controller Masked Interrupt Status and Clear (FCMISC)  
Base 0x400F.D000  
Offset 0x014  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PMISC  
AMISC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
PMISC  
AMISC  
R/W1C  
R/W1C  
0
0
Programming Masked Interrupt Status and Clear  
This bit indicates whether an interrupt was signaled because a  
programming cycle completed and was not masked. This bit is cleared  
by writing a 1. The PRIS bit in the FCRIS register (see page 119) is also  
cleared when the PMISC bit is cleared.  
Access Masked Interrupt Status and Clear  
This bit indicates whether an interrupt was signaled because an improper  
access was attempted and was not masked. This bit is cleared by writing  
a 1. The ARIS bit in the FCRIS register is also cleared when the AMISC  
bit is cleared.  
7.6  
Flash Register Descriptions (System Control Offset)  
The remainder of this section lists and describes the Flash Memory registers, in numerical order by  
address offset. Registers in this section are relative to the System Control base address of  
0x400F.E000.  
November 29, 2007  
121  
Preliminary  
Internal Memory  
Register 7: USec Reload (USECRL), offset 0x140  
Note: Offset is relative to System Control base address of 0x400F.E000  
This register is provided as a means of creating a 1-μs tick divider reload value for the flash controller.  
The internal flash has specific minimum and maximum requirements on the length of time the high  
voltage write pulse can be applied. It is required that this register contain the operating frequency  
(in MHz -1) whenever the flash is being erased or programmed. The user is required to change this  
value if the clocking conditions are changed for a flash erase/program operation.  
USec Reload (USECRL)  
Base 0x400F.E000  
Offset 0x140  
Type R/W, reset 0x16  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
USEC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
USEC  
R/W  
0x18  
Microsecond Reload Value  
MHz -1 of the controller clock when the flash is being erased or  
programmed.  
USEC should be set to 0x18 (24 MHz) whenever the flash is being erased  
or programmed.  
122  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130  
and 0x200  
Note: This register is aliased for backwards compatability.  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Read Enable 0 (FMPRE0)  
Base 0x400F.D000  
Offset 0x130 and 0x200  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
READ_ENABLE  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
READ_ENABLE  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
READ_ENABLE  
0xFFFFFFFF Flash Read Enable  
Enables 2-KB flash blocks to be executed or read. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0xFFFFFFFF Enables 64 KB of flash.  
November 29, 2007  
123  
Preliminary  
Internal Memory  
Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset  
0x134 and 0x400  
Note: This register is aliased for backwards compatability.  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Program Enable 0 (FMPPE0)  
Base 0x400F.D000  
Offset 0x134 and 0x400  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
PROG_ENABLE  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PROG_ENABLE  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
PROG_ENABLE  
0xFFFFFFFF Flash Programming Enable  
Configures 2-KB flash blocks to be execute only. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0xFFFFFFFF Enables 64 KB of flash.  
124  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: User Debug (USER_DBG), offset 0x1D0  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register provides a write-once mechanism to disable external debugger access to the device  
in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory  
and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0  
disables any external debugger access to the device permanently, starting with the next power-up  
cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written  
and is controlled through hardware to ensure that the register is only written once.  
User Debug (USER_DBG)  
Base 0x400F.E000  
Offset 0x1D0  
Type R/W, reset 0xFFFF.FFFE  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
NW  
DATA  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
DBG1  
DBG0  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
Bit/Field  
31  
Name  
NW  
Type  
R/W  
Reset  
1
Description  
User Debug Not Written  
Specifies that this 32-bit dword has not been written.  
30:2  
DATA  
R/W  
0x1FFFFFFF User Data  
Contains the user data value. This field is initialized to all 1s and can  
only be written once.  
1
0
DBG1  
DBG0  
R/W  
R/W  
1
0
Debug Control 1  
The DBG1 bit must be 1 and DBG0 must be 0 for debug to be available.  
Debug Control 0  
The DBG1 bit must be 1 and DBG0 must be 0 for debug to be available.  
November 29, 2007  
125  
Preliminary  
Internal Memory  
Register 11: User Register 0 (USER_REG0), offset 0x1E0  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register provides 31 bits of user-defined data that is non-volatile and can only be written once.  
Bit 31 indicates that the register is available to be written and is controlled through hardware to  
ensure that the register is only written once. The write-once characteristics of this register are useful  
for keeping static information like communication addresses that need to be unique per part and  
would otherwise require an external EEPROM or other non-volatile device.  
User Register 0 (USER_REG0)  
Base 0x400F.E000  
Offset 0x1E0  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
NW  
DATA  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31  
Name  
NW  
Type  
R/W  
Reset  
1
Description  
Not Written  
Specifies that this 32-bit dword has not been written.  
0x7FFFFFFF User Data  
30:0  
DATA  
R/W  
Contains the user data value. This field is initialized to all 1s and can  
only be written once.  
126  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 12: User Register 1 (USER_REG1), offset 0x1E4  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register provides 31 bits of user-defined data that is non-volatile and can only be written once.  
Bit 31 indicates that the register is available to be written and is controlled through hardware to  
ensure that the register is only written once. The write-once characteristics of this register are useful  
for keeping static information like communication addresses that need to be unique per part and  
would otherwise require an external EEPROM or other non-volatile device.  
User Register 1 (USER_REG1)  
Base 0x400F.E000  
Offset 0x1E4  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
NW  
DATA  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31  
Name  
NW  
Type  
R/W  
Reset  
1
Description  
Not Written  
Specifies that this 32-bit dword has not been written.  
0x7FFFFFFF User Data  
30:0  
DATA  
R/W  
Contains the user data value. This field is initialized to all 1s and can  
only be written once.  
November 29, 2007  
127  
Preliminary  
Internal Memory  
Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Read Enable 1 (FMPRE1)  
Base 0x400F.E000  
Offset 0x204  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
READ_ENABLE  
0x00000000 Flash Read Enable  
Enables 2-KB flash blocks to be executed or read. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0x00000000 Enables 64 KB of flash.  
128  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Read Enable 2 (FMPRE2)  
Base 0x400F.E000  
Offset 0x208  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
READ_ENABLE  
0x00000000 Flash Read Enable  
Enables 2-KB flash blocks to be executed or read. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0x00000000 Enables 64 KB of flash.  
November 29, 2007  
129  
Preliminary  
Internal Memory  
Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Read Enable 3 (FMPRE3)  
Base 0x400F.E000  
Offset 0x20C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
READ_ENABLE  
0x00000000 Flash Read Enable  
Enables 2-KB flash blocks to be executed or read. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0x00000000 Enables 64 KB of flash.  
130  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset  
0x404  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Program Enable 1 (FMPPE1)  
Base 0x400F.E000  
Offset 0x404  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
PROG_ENABLE  
0x00000000 Flash Programming Enable  
Configures 2-KB flash blocks to be execute only. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0x00000000 Enables 64 KB of flash.  
November 29, 2007  
131  
Preliminary  
Internal Memory  
Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset  
0x408  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Program Enable 2 (FMPPE2)  
Base 0x400F.E000  
Offset 0x408  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
PROG_ENABLE  
0x00000000 Flash Programming Enable  
Configures 2-KB flash blocks to be execute only. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0x00000000 Enables 64 KB of flash.  
132  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset  
0x40C  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the  
execute-only bits). This register is loaded during the power-on reset sequence. The factory settings  
for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves  
a policy of open access and programmability. The register bits may be changed by writing the  
specific register bit. However, this register is R/W0; the user can only change the protection bit from  
a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence. For additional  
information, see the "Flash Memory Protection" section.  
Flash Memory Protection Program Enable 3 (FMPPE3)  
Base 0x400F.E000  
Offset 0x40C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
PROG_ENABLE  
0x00000000 Flash Programming Enable  
Configures 2-KB flash blocks to be execute only. The policies may be  
combined as shown in the table “Flash Protection Policy Combinations”.  
Value  
Description  
0x00000000 Enables 64 KB of flash.  
November 29, 2007  
133  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
8
General-Purpose Input/Outputs (GPIOs)  
The GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual  
GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, and Port H). The GPIO module is  
FiRM-compliant and supports 11-40 programmable input/output pins, depending on the peripherals  
being used.  
The GPIO module has the following features:  
Programmable control for GPIO interrupts  
Interrupt generation masking  
Edge-triggered on rising, falling, or both  
Level-sensitive on High or Low values  
5-V-tolerant input/outputs  
Bit masking in both read and write operations through address lines  
Programmable control for GPIO pad configuration  
Weak pull-up or pull-down resistors  
2-mA, 4-mA, and 8-mA pad drive  
Slew rate control for the 8-mA drive  
Open drain enables  
Digital input enables  
8.1  
Functional Description  
Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0,  
and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]).  
The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1,  
GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both  
groups of pins back to their default state.  
Each GPIO port is a separate hardware instantiation of the same physical block (see Figure  
8-1 on page 135). The LM3S2110 microcontroller contains eight ports and thus eight of these physical  
GPIO blocks.  
134  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 8-1. GPIO Port Block Diagram  
Commit  
Control  
Mode  
Control  
GPIOLOCK  
GPIOCR  
GPIOAFSEL  
Alternate Input  
Pad Input  
Alternate Output  
Alternate Output Enable  
Digital  
I/O Pad  
Pad Output  
Package I/O Pin  
GPIO Input  
Data  
Control  
GPIO Output  
GPIODATA  
GPIODIR  
Pad Output Enable  
GPIO Output Enable  
Interrupt  
Control  
Pad  
Control  
GPIOIS  
GPIOIBE  
GPIODR2R  
GPIODR4R  
GPIODR8R  
GPIOSLR  
GPIOPUR  
GPIOPDR  
GPIOODR  
GPIODEN  
Interrupt  
GPIOIEV  
GPIOIM  
GPIORIS  
GPIOMIS  
GPIOICR  
Identification Registers  
GPIOPeriphID0 GPIOPeriphID4  
GPIOPeriphID1 GPIOPeriphID5  
GPIOPeriphID2 GPIOPeriphID6  
GPIOPeriphID3 GPIOPeriphID7  
GPIOPCellID0  
GPIOPCellID1  
GPIOPCellID2  
GPIOPCellID3  
8.1.1  
Data Control  
The data control registers allow software to configure the operational modes of the GPIOs. The data  
direction register configures the GPIO as an input or an output while the data register either captures  
incoming data or drives it out to the pads.  
8.1.1.1 Data Direction Operation  
The GPIO Direction (GPIODIR) register (see page 142) is used to configure each individual pin as  
an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and  
the corresponding data register bit will capture and store the value on the GPIO port. When the data  
direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit  
will be driven out on the GPIO port.  
8.1.1.2 Data Register Operation  
To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the  
GPIO Data (GPIODATA) register (see page 141) by using bits [9:2] of the address bus as a mask.  
This allows software drivers to modify individual GPIO pins in a single instruction, without affecting  
the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write  
operation to set or clear an individual GPIO pin. To accommodate this feature, the GPIODATA  
register covers 256 locations in the memory map.  
During a write, if the address bit associated with that data bit is set to 1, the value of the GPIODATA  
register is altered. If it is cleared to 0, it is left unchanged.  
November 29, 2007  
135  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in  
Figure 8-2 on page 136, where u is data unchanged by the write.  
Figure 8-2. GPIODATA Write Example  
9
0
8
0
7
1
6
0
5
0
4
1
3
1
2
0
1
1
0
0
ADDR[9:2]  
0x098  
1
1
1
0
1
0
1
1
0xEB  
u
7
u
6
1
5
u
4
u
3
0
2
1
1
u
0
GPIODATA  
During a read, if the address bit associated with the data bit is set to 1, the value is read. If the  
address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value.  
For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-3 on page 136.  
Figure 8-3. GPIODATA Read Example  
9
0
8
0
7
1
6
1
5
0
4
0
3
0
2
1
1
0
0
0
ADDR[9:2]  
0x0C4  
1
0
1
1
1
1
1
0
GPIODATA  
0
7
0
6
1
5
1
4
0
3
0
2
0
1
0
0
Returned Value  
8.1.2  
Interrupt Control  
The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these  
registers, it is possible to select the source of the interrupt, its polarity, and the edge properties.  
When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt  
controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt  
to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source  
holds the level constant for the interrupt to be recognized by the controller.  
Three registers are required to define the edge or sense that causes interrupts:  
GPIO Interrupt Sense (GPIOIS) register (see page 143)  
GPIO Interrupt Both Edges (GPIOIBE) register (see page 144)  
GPIO Interrupt Event (GPIOIEV) register (see page 145)  
Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 146).  
When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations:  
the GPIO Raw Interrupt Status (GPIORIS) and GPIO Masked Interrupt Status (GPIOMIS) registers  
(see page 147 and page 148). As the name implies, the GPIOMIS register only shows interrupt  
conditions that are allowed to be passed to the controller. The GPIORIS register indicates that a  
GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.  
Interrupts are cleared by writing a 1 to the GPIO Interrupt Clear (GPIOICR) register (see page 149).  
136  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
When programming the following interrupt control registers, the interrupts should be masked (GPIOIM  
set to 0). Writing any value to an interrupt control register (GPIOIS, GPIOIBE, or GPIOIEV) can  
generate a spurious interrupt if the corresponding bits are enabled.  
8.1.3  
8.1.4  
Mode Control  
The GPIO pins can be controlled by either hardware or software. When hardware control is enabled  
via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 150), the pin state is  
controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO  
mode, where the GPIODATA register is used to read/write the corresponding pins.  
Commit Control  
The commit control registers provide a layer of protection against accidental programming of critical  
hardware peripherals. Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL)  
register (see page 150) are not committed to storage unless the GPIO Lock (GPIOLOCK) register  
(see page 160) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register  
(see page 161) have been set to 1.  
8.1.5  
8.1.6  
Pad Control  
The pad control registers allow for GPIO pad configuration by software based on the application  
requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR,  
GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers.  
Identification  
The identification registers configured at reset allow software to detect and identify the module as  
a GPIO block. The identification registers include the GPIOPeriphID0-GPIOPeriphID7 registers as  
well as the GPIOPCellID0-GPIOPCellID3 registers.  
8.2  
Initialization and Configuration  
To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit  
field (GPIOn) in the RCGC2 register.  
On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven  
(tristate): GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0. Table 8-1 on page 137  
shows all possible configurations of the GPIO pads and the control register settings required to  
achieve them. Table 8-2 on page 138 shows how a rising edge interrupt would be configured for pin  
2 of a GPIO port.  
Table 8-1. GPIO Pad Configuration Examples  
Configuration  
GPIO Register Bit Valuea  
AFSEL  
DIR  
ODR  
DEN  
PUR  
PDR  
DR2R  
DR4R  
DR8R  
SLR  
Digital Input (GPIO)  
Digital Output (GPIO)  
0
0
0
0
1
0
0
1
?
?
X
?
X
?
X
?
X
0
1
1
1
?
?
?
Open Drain Input  
(GPIO)  
X
X
X
X
X
X
Open Drain Output  
(GPIO)  
0
1
1
1
1
1
1
X
X
X
X
?
?
?
?
?
?
?
?
Open Drain  
Input/Output (I2C)  
X
November 29, 2007  
137  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Configuration  
GPIO Register Bit Valuea  
AFSEL  
DIR  
ODR  
DEN  
PUR  
PDR  
DR2R  
DR4R  
DR8R  
SLR  
Digital Input (Timer  
CCP)  
1
X
0
1
?
?
X
X
X
X
Digital Output (PWM)  
1
1
X
X
0
0
1
1
?
?
?
?
?
?
?
?
?
?
?
?
Digital Output (Timer  
PWM)  
Digital Input/Output  
(SSI)  
1
1
0
1
X
X
0
0
0
0
0
1
1
0
1
?
?
0
?
?
?
0
?
?
?
X
?
?
?
X
?
?
?
X
?
?
?
X
?
Digital Input/Output  
(UART)  
Analog Input  
(Comparator)  
Digital Output  
(Comparator)  
X
a. X=Ignored (don’t care bit)  
?=Can be either 0 or 1, depending on the configuration  
Table 8-2. GPIO Interrupt Configuration Example  
Register  
Desired  
Interrupt  
Event  
Pin 2 Bit Valuea  
7
6
5
4
3
2
1
0
Trigger  
GPIOIS  
0=edge  
1=level  
X
X
X
X
X
X
X
X
X
0
0
X
X
X
GPIOIBE  
0=single  
edge  
X
X
X
X
1=both  
edges  
GPIOIEV  
GPIOIM  
0=Low level,  
or negative  
edge  
X
0
X
0
X
0
X
0
1
1
X
0
1=High level,  
or positive  
edge  
0=masked  
0
0
1=not  
masked  
a. X=Ignored (don’t care bit)  
8.3  
Register Map  
Table 8-3 on page 139 lists the GPIO registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that GPIO port’s base address:  
GPIO Port A: 0x4000.4000  
GPIO Port B: 0x4000.5000  
GPIO Port C: 0x4000.6000  
138  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
GPIO Port D: 0x4000.7000  
GPIO Port E: 0x4002.4000  
GPIO Port F: 0x4002.5000  
GPIO Port G: 0x4002.6000  
GPIO Port H: 0x4002.7000  
Important: The GPIO registers in this chapter are duplicated in each GPIO block, however,  
depending on the block, all eight bits may not be connected to a GPIO pad. In those  
cases, writing to those unconnected bits has no effect and reading those unconnected  
bits returns no meaningful data.  
Note: The default reset value for the GPIOAFSEL, GPIOPUR, and GPIODEN registers are  
0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and  
PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default  
reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value  
for Port C is 0x0000.000F.  
The default register type for the GPIOCR register is RO for all GPIO pins, with the exception  
of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only  
GPIOs that are protected by the GPIOCR register. Because of this, the register type for  
GPIO Port B7 and GPIO Port C[3:0] is R/W.  
The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the  
exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port  
is not accidentally programmed as a GPIO, these five pins default to non-commitable.  
Because of this, the default reset value of GPIOCR for GPIO Port B is 0x0000.007F while  
the default reset value of GPIOCR for Port C is 0x0000.00F0.  
Table 8-3. GPIO Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x400  
0x404  
0x408  
0x40C  
0x410  
0x414  
0x418  
0x41C  
0x420  
0x500  
0x504  
GPIODATA  
GPIODIR  
GPIOIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
-
GPIO Data  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
152  
153  
GPIO Direction  
GPIO Interrupt Sense  
GPIO Interrupt Both Edges  
GPIO Interrupt Event  
GPIO Interrupt Mask  
GPIOIBE  
GPIOIEV  
GPIOIM  
GPIORIS  
GPIOMIS  
GPIOICR  
GPIOAFSEL  
GPIODR2R  
GPIODR4R  
GPIO Raw Interrupt Status  
GPIO Masked Interrupt Status  
GPIO Interrupt Clear  
RO  
W1C  
R/W  
R/W  
R/W  
GPIO Alternate Function Select  
GPIO 2-mA Drive Select  
GPIO 4-mA Drive Select  
0x0000.00FF  
0x0000.0000  
November 29, 2007  
139  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x508  
0x50C  
0x510  
0x514  
0x518  
0x51C  
0x520  
0x524  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
GPIODR8R  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0x0000.0000  
0x0000.0000  
-
GPIO 8-mA Drive Select  
154  
155  
156  
157  
158  
159  
160  
161  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
GPIOODR  
GPIO Open Drain Select  
GPIOPUR  
GPIO Pull-Up Select  
GPIOPDR  
0x0000.0000  
0x0000.0000  
-
GPIO Pull-Down Select  
GPIOSLR  
GPIO Slew Rate Control Select  
GPIO Digital Enable  
GPIODEN  
GPIOLOCK  
0x0000.0001  
-
GPIO Lock  
GPIOCR  
GPIO Commit  
GPIOPeriphID4  
GPIOPeriphID5  
GPIOPeriphID6  
GPIOPeriphID7  
GPIOPeriphID0  
GPIOPeriphID1  
GPIOPeriphID2  
GPIOPeriphID3  
GPIOPCellID0  
GPIOPCellID1  
GPIOPCellID2  
GPIOPCellID3  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0061  
0x0000.0000  
0x0000.0018  
0x0000.0001  
0x0000.000D  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
GPIO Peripheral Identification 4  
GPIO Peripheral Identification 5  
GPIO Peripheral Identification 6  
GPIO Peripheral Identification 7  
GPIO Peripheral Identification 0  
GPIO Peripheral Identification 1  
GPIO Peripheral Identification 2  
GPIO Peripheral Identification 3  
GPIO PrimeCell Identification 0  
GPIO PrimeCell Identification 1  
GPIO PrimeCell Identification 2  
GPIO PrimeCell Identification 3  
8.4  
Register Descriptions  
The remainder of this section lists and describes the GPIO registers, in numerical order by address  
offset.  
140  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 1: GPIO Data (GPIODATA), offset 0x000  
The GPIODATA register is the data register. In software control mode, values written in the  
GPIODATA register are transferred onto the GPIO port pins if the respective pins have been  
configured as outputs through the GPIO Direction (GPIODIR) register (see page 142).  
In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus  
bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.  
Similarly, the values read from this register are determined for each bit by the mask bit derived from  
the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause  
the corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask cause the  
corresponding bits in GPIODATA to be read as 0, regardless of their value.  
A read from GPIODATA returns the last bit value written if the respective pins are configured as  
outputs, or it returns the value on the corresponding input pin when these are configured as inputs.  
All bits are cleared by a reset.  
GPIO Data (GPIODATA)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
R/W  
0x00  
GPIO Data  
This register is virtually mapped to 256 locations in the address space.  
To facilitate the reading and writing of data to these registers by  
independent drivers, the data read from and the data written to the  
registers are masked by the eight address lines ipaddr[9:2]. Reads  
from this register return its current state. Writes to this register only affect  
bits that are not masked by ipaddr[9:2] and are configured as  
outputs. See “Data Register Operation” on page 135 for examples of  
reads and writes.  
November 29, 2007  
141  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 2: GPIO Direction (GPIODIR), offset 0x400  
The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure  
the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are  
cleared by a reset, meaning all GPIO pins are inputs by default.  
GPIO Direction (GPIODIR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x400  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DIR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DIR  
R/W  
0x00  
GPIO Data Direction  
The DIR values are defined as follows:  
Value Description  
0
1
Pins are inputs.  
Pins are outputs.  
142  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404  
The GPIOIS register is the interrupt sense register. Bits set to 1 in GPIOIS configure the  
corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits  
are cleared by a reset.  
GPIO Interrupt Sense (GPIOIS)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x404  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IS  
R/W  
0x00  
GPIO Interrupt Sense  
The IS values are defined as follows:  
Value Description  
0
1
Edge on corresponding pin is detected (edge-sensitive).  
Level on corresponding pin is detected (level-sensitive).  
November 29, 2007  
143  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408  
The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in the GPIO  
Interrupt Sense (GPIOIS) register (see page 143) is set to detect edges, bits set to High in GPIOIBE  
configure the corresponding pin to detect both rising and falling edges, regardless of the  
corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 145). Clearing a bit  
configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.  
GPIO Interrupt Both Edges (GPIOIBE)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x408  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IBE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IBE  
R/W  
0x00  
GPIO Interrupt Both Edges  
The IBE values are defined as follows:  
Value Description  
0
Interrupt generation is controlled by the GPIO Interrupt Event  
(GPIOIEV) register (see page 145).  
1
Both edges on the corresponding pin trigger an interrupt.  
Note:  
Single edge is determined by the corresponding bit  
in GPIOIEV.  
144  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C  
The GPIOIEV register is the interrupt event register. Bits set to High in GPIOIEV configure the  
corresponding pin to detect rising edges or high levels, depending on the corresponding bit value  
in the GPIO Interrupt Sense (GPIOIS) register (see page 143). Clearing a bit configures the pin to  
detect falling edges or low levels, depending on the corresponding bit value in GPIOIS. All bits are  
cleared by a reset.  
GPIO Interrupt Event (GPIOIEV)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x40C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IEV  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IEV  
R/W  
0x00  
GPIO Interrupt Event  
The IEV values are defined as follows:  
Value Description  
0
Falling edge or Low levels on corresponding pins trigger  
interrupts.  
1
Rising edge or High levels on corresponding pins trigger  
interrupts.  
November 29, 2007  
145  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410  
The GPIOIM register is the interrupt mask register. Bits set to High in GPIOIM allow the corresponding  
pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables  
interrupt triggering on that pin. All bits are cleared by a reset.  
GPIO Interrupt Mask (GPIOIM)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x410  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IME  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IME  
R/W  
0x00  
GPIO Interrupt Mask Enable  
The IME values are defined as follows:  
Value Description  
0
1
Corresponding pin interrupt is masked.  
Corresponding pin interrupt is not masked.  
146  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414  
The GPIORIS register is the raw interrupt status register. Bits read High in GPIORIS reflect the  
status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the  
requirements have been met, before they are finally allowed to trigger by the GPIO Interrupt Mask  
(GPIOIM) register (see page 146). Bits read as zero indicate that corresponding input pins have not  
initiated an interrupt. All bits are cleared by a reset.  
GPIO Raw Interrupt Status (GPIORIS)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x414  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
RIS  
RO  
0x00  
GPIO Interrupt Raw Status  
Reflects the status of interrupt trigger condition detection on pins (raw,  
prior to masking).  
The RIS values are defined as follows:  
Value Description  
0
1
Corresponding pin interrupt requirements not met.  
Corresponding pin interrupt has met requirements.  
November 29, 2007  
147  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418  
The GPIOMIS register is the masked interrupt status register. Bits read High in GPIOMIS reflect  
the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has  
been generated, or the interrupt is masked.  
GPIOMIS is the state of the interrupt after masking.  
GPIO Masked Interrupt Status (GPIOMIS)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x418  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
MIS  
RO  
0x00  
GPIO Masked Interrupt Status  
Masked value of interrupt due to corresponding pin.  
The MIS values are defined as follows:  
Value Description  
0
1
Corresponding GPIO line interrupt not active.  
Corresponding GPIO line asserting interrupt.  
148  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C  
The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the  
corresponding interrupt edge detection logic register. Writing a 0 has no effect.  
GPIO Interrupt Clear (GPIOICR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x41C  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IC  
W1C  
0x00  
GPIO Interrupt Clear  
The IC values are defined as follows:  
Value Description  
0
1
Corresponding interrupt is unaffected.  
Corresponding interrupt is cleared.  
November 29, 2007  
149  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420  
The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register  
selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore  
no GPIO line is set to hardware control by default.  
The commit control registers provide a layer of protection against accidental programming of critical  
hardware peripherals. Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL)  
register (see page 150) are not committed to storage unless the GPIO Lock (GPIOLOCK) register  
(see page 160) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register  
(see page 161) have been set to 1.  
Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0,  
and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]).  
The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1,  
GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both  
groups of pins back to their default state.  
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down  
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the  
controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors,  
and apply RST or power-cycle the part.  
In addition, it is possible to create a software sequence that prevents the debugger from connecting to  
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG  
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the  
controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This  
can be avoided with a software routine that restores JTAG functionality based on an external or software  
trigger.  
GPIO Alternate Function Select (GPIOAFSEL)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x420  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
AFSEL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
150  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
7:0  
Name  
Type  
R/W  
Reset  
-
Description  
AFSEL  
GPIO Alternate Function Select  
The AFSEL values are defined as follows:  
Value Description  
0
1
Software control of corresponding GPIO line (GPIO mode).  
Hardware control of corresponding GPIO line (alternate  
hardware function).  
Note:  
The default reset value for the GPIOAFSEL,  
GPIOPUR, and GPIODEN registers are 0x0000.0000  
for all GPIO pins, with the exception of the five  
JTAG/SWD pins (PB7 and PC[3:0]). These five pins  
default to JTAG/SWD functionality. Because of this,  
the default reset value of these registers for GPIO  
Port B is 0x0000.0080 while the default reset value  
for Port C is 0x0000.000F.  
November 29, 2007  
151  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500  
The GPIODR2R register is the 2-mA drive control register. It allows for each GPIO signal in the port  
to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO  
signal, the corresponding DRV4 bit in the GPIODR4R register and the DRV8 bit in the GPIODR8R  
register are automatically cleared by hardware.  
GPIO 2-mA Drive Select (GPIODR2R)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x500  
Type R/W, reset 0x0000.00FF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DRV2  
R/W  
0xFF  
Output Pad 2-mA Drive Enable  
A write of 1 to either GPIODR4[n] or GPIODR8[n] clears the  
corresponding 2-mA enable bit. The change is effective on the second  
clock cycle after the write.  
152  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504  
The GPIODR4R register is the 4-mA drive control register. It allows for each GPIO signal in the port  
to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO  
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV8 bit in the GPIODR8R  
register are automatically cleared by hardware.  
GPIO 4-mA Drive Select (GPIODR4R)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x504  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DRV4  
R/W  
0x00  
Output Pad 4-mA Drive Enable  
A write of 1 to either GPIODR2[n] or GPIODR8[n] clears the  
corresponding 4-mA enable bit. The change is effective on the second  
clock cycle after the write.  
November 29, 2007  
153  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508  
The GPIODR8R register is the 8-mA drive control register. It allows for each GPIO signal in the port  
to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO  
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV4 bit in the GPIODR4R  
register are automatically cleared by hardware.  
GPIO 8-mA Drive Select (GPIODR8R)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x508  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV8  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DRV8  
R/W  
0x00  
Output Pad 8-mA Drive Enable  
A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the  
corresponding 8-mA enable bit. The change is effective on the second  
clock cycle after the write.  
154  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C  
The GPIOODR register is the open drain control register. Setting a bit in this register enables the  
open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the  
corresponding bit should also be set in the GPIO Digital Input Enable (GPIODEN) register (see  
page 159). Corresponding bits in the drive strength registers (GPIODR2R, GPIODR4R, GPIODR8R,  
and GPIOSLR ) can be set to achieve the desired rise and fall times. The GPIO acts as an open  
drain input if the corresponding bit in the GPIODIR register is set to 0; and as an open drain output  
when set to 1.  
When using the I2C module, the GPIO Alternate Function Select (GPIOAFSEL) register bit for  
PB2 and PB3 should be set to 1 (see examples in “Initialization and Configuration” on page 137).  
GPIO Open Drain Select (GPIOODR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x50C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ODE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
ODE  
R/W  
0x00  
Output Pad Open Drain Enable  
The ODE values are defined as follows:  
Value Description  
0
1
Open drain configuration is disabled.  
Open drain configuration is enabled.  
November 29, 2007  
155  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510  
The GPIOPUR register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up  
resistor on the corresponding GPIO signal. Setting a bit in GPIOPUR automatically clears the  
corresponding bit in the GPIO Pull-Down Select (GPIOPDR) register (see page 157).  
GPIO Pull-Up Select (GPIOPUR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x510  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PUE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PUE  
R/W  
-
Pad Weak Pull-Up Enable  
A write of 1 to GPIOPDR[n] clears the corresponding GPIOPUR[n]  
enables. The change is effective on the second clock cycle after the  
write.  
Note:  
The default reset value for the GPIOAFSEL, GPIOPUR, and  
GPIODEN registers are 0x0000.0000 for all GPIO pins, with  
the exception of the five JTAG/SWD pins (PB7 and PC[3:0]).  
These five pins default to JTAG/SWD functionality. Because  
of this, the default reset value of these registers for GPIO Port  
B is 0x0000.0080 while the default reset value for Port C is  
0x0000.000F.  
156  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514  
The GPIOPDR register is the pull-down control register. When a bit is set to 1, it enables a weak  
pull-down resistor on the corresponding GPIO signal. Setting a bit in GPIOPDR automatically clears  
the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 156).  
GPIO Pull-Down Select (GPIOPDR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x514  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PDE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PDE  
R/W  
0x00  
Pad Weak Pull-Down Enable  
A write of 1 to GPIOPUR[n] clears the corresponding GPIOPDR[n]  
enables. The change is effective on the second clock cycle after the  
write.  
November 29, 2007  
157  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518  
The GPIOSLR register is the slew rate control register. Slew rate control is only available when  
using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see  
page 154).  
GPIO Slew Rate Control Select (GPIOSLR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x518  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SRL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
SRL  
R/W  
0x00  
Slew Rate Limit Enable (8-mA drive only)  
The SRL values are defined as follows:  
Value Description  
0
1
Slew rate control disabled.  
Slew rate control enabled.  
158  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C  
The GPIODEN register is the digital enable register. By default, with the exception of the GPIO  
signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven  
(tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not  
allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or  
alternate function), the corresponding GPIODEN bit must be set.  
GPIO Digital Enable (GPIODEN)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x51C  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DEN  
R/W  
-
Digital Enable  
The DEN values are defined as follows:  
Value Description  
0
1
Digital functions disabled.  
Digital functions enabled.  
Note:  
The default reset value for the GPIOAFSEL,  
GPIOPUR, and GPIODEN registers are 0x0000.0000  
for all GPIO pins, with the exception of the five  
JTAG/SWD pins (PB7 and PC[3:0]). These five pins  
default to JTAG/SWD functionality. Because of this,  
the default reset value of these registers for GPIO  
Port B is 0x0000.0080 while the default reset value  
for Port C is 0x0000.000F.  
November 29, 2007  
159  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 19: GPIO Lock (GPIOLOCK), offset 0x520  
The GPIOLOCK register enables write access to the GPIOCR register (see page 161). Writing  
0x1ACCE551 to the GPIOLOCK register will unlock the GPIOCR register. Writing any other value  
to the GPIOLOCK register re-enables the locked state. Reading the GPIOLOCK register returns  
the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses  
are disabled, or locked, reading the GPIOLOCK register returns 0x00000001. When write accesses  
are enabled, or unlocked, reading the GPIOLOCK register returns 0x00000000.  
GPIO Lock (GPIOLOCK)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x520  
Type R/W, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
LOCK  
LOCK  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:0  
Name  
LOCK  
Type  
R/W  
Reset  
Description  
0x0000.0001 GPIO Lock  
A write of the value 0x1ACCE551 unlocks the GPIO Commit (GPIOCR)  
register for write access. A write of any other value reapplies the lock,  
preventing any register updates. A read of this register returns the  
following values:  
Value  
Description  
0x0000.0001 locked  
0x0000.0000 unlocked  
160  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 20: GPIO Commit (GPIOCR), offset 0x524  
The GPIOCR register is the commit register. The value of the GPIOCR register determines which  
bits of the GPIOAFSEL register will be committed when a write to the GPIOAFSEL register is  
performed. If a bit in the GPIOCR register is a zero, the data being written to the corresponding bit  
in the GPIOAFSEL register will not be committed and will retain its previous value. If a bit in the  
GPIOCR register is a one, the data being written to the corresponding bit of the GPIOAFSEL register  
will be committed to the register and will reflect the new value.  
The contents of the GPIOCR register can only be modified if the GPIOLOCK register is unlocked.  
Writes to the GPIOCR register will be ignored if the GPIOLOCK register is locked.  
Important: This register is designed to prevent accidental programming of the GPIOAFSEL registers  
that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of  
the GPIOCR register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only  
be converted to GPIOs through a deliberate set of writes to the GPIOLOCK, GPIOCR,  
and GPIOAFSEL registers.  
Because this protection is currently only implemented on the JTAG/SWD pins on PB7  
and PC[3:0], all of the other bits in the GPIOCR registers cannot be written with 0x0.  
These bits are hardwired to 0x1, ensuring that it is always possible to commit new  
values to the GPIOAFSEL register bits of these other pins.  
GPIO Commit (GPIOCR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0x524  
Type -, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
161  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Bit/Field  
7:0  
Name  
CR  
Type  
-
Reset  
-
Description  
GPIO Commit  
On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL  
bit to be set to its alternate function.  
Note:  
The default register type for the GPIOCR register is RO for  
all GPIO pins, with the exception of the five JTAG/SWD pins  
(PB7 and PC[3:0]). These five pins are currently the only  
GPIOs that are protected by the GPIOCR register. Because  
of this, the register type for GPIO Port B7 and GPIO Port  
C[3:0] is R/W.  
The default reset value for the GPIOCR register is  
0x0000.00FF for all GPIO pins, with the exception of the five  
JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the  
JTAG port is not accidentally programmed as a GPIO, these  
five pins default to non-commitable. Because of this, the  
default reset value of GPIOCR for GPIO Port B is  
0x0000.007F while the default reset value of GPIOCR for Port  
C is 0x0000.00F0.  
162  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 4 (GPIOPeriphID4)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x00  
GPIO Peripheral ID Register[7:0]  
November 29, 2007  
163  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 5 (GPIOPeriphID5)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x00  
GPIO Peripheral ID Register[15:8]  
164  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 6 (GPIOPeriphID6)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x00  
GPIO Peripheral ID Register[23:16]  
November 29, 2007  
165  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 7 (GPIOPeriphID7)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x00  
GPIO Peripheral ID Register[31:24]  
166  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 0 (GPIOPeriphID0)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFE0  
Type RO, reset 0x0000.0061  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x61  
GPIO Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
167  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 26: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 1 (GPIOPeriphID1)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFE4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x00  
GPIO Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
168  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 2 (GPIOPeriphID2)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
GPIO Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
169  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 3 (GPIOPeriphID3)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
GPIO Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
170  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 0 (GPIOPCellID0)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
GPIO PrimeCell ID Register[7:0]  
Provides software a standard cross-peripheral identification system.  
November 29, 2007  
171  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 1 (GPIOPCellID1)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
GPIO PrimeCell ID Register[15:8]  
Provides software a standard cross-peripheral identification system.  
172  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 2 (GPIOPCellID2)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
GPIO PrimeCell ID Register[23:16]  
Provides software a standard cross-peripheral identification system.  
November 29, 2007  
173  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 3 (GPIOPCellID3)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
GPIO PrimeCell ID Register[31:24]  
Provides software a standard cross-peripheral identification system.  
174  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
9
General-Purpose Timers  
Programmable timers can be used to count or time external events that drive the Timer input pins.  
The Stellaris® General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1,  
and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and  
TimerB) that can be configured to operate independently as timers or event counters, or configured  
to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).  
Note: Timer2 is an internal timer and can only be used to generate internal interrupts.  
The General-Purpose Timer Module is one timing resource available on the Stellaris® microcontrollers.  
Other timer resources include the System Timer (SysTick) (see “System Timer (SysTick)” on page 36)  
and the PWM timer in the PWM module (see “PWM Timer” on page 401).  
The following modes are supported:  
32-bit Timer modes  
Programmable one-shot timer  
Programmable periodic timer  
Real-Time Clock using 32.768-KHz input clock  
Software-controlled event stalling (excluding RTC mode)  
16-bit Timer modes  
General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)  
Programmable one-shot timer  
Programmable periodic timer  
Software-controlled event stalling  
16-bit Input Capture modes  
Input edge count capture  
Input edge time capture  
16-bit PWM mode  
Simple PWM mode with software-programmable output inversion of the PWM signal  
9.1  
Block Diagram  
Note: In Figure 9-1 on page 176, the specific CCP pins available depend on the Stellaris® device.  
See Table 9-1 on page 176 for the available CCPs.  
November 29, 2007  
175  
Preliminary  
General-Purpose Timers  
Figure 9-1. GPTM Module Block Diagram  
0x0000 (Down Counter Modes)  
TimerA Control  
GPTMTAPMR  
GPTMTAPR  
TA Comparator  
GPTMAR En  
Clock / Edge  
Detect  
GPTMTAMATCHR  
GPTMTAILR  
Interrupt / Config  
32 KHz or  
Even CCP Pin  
GPTMTAMR  
GPTMCFG  
GPTMCTL  
GPTMIMR  
GPTMRIS  
GPTMMIS  
GPTMICR  
TimerA  
Interrupt  
RTC Divider  
TimerB  
Interrupt  
TimerB Control  
GPTMTBR En  
TB Comparator  
GPTMTBPMR  
GPTMTBPR  
Clock / Edge  
Detect  
Odd CCP Pin  
GPTMTBMATCHR  
GPTMTBILR  
GPTMTBMR  
0x0000 (Down Counter Modes)  
System  
Clock  
Table 9-1. Available CCP Pins  
Timer 16-Bit Up/Down Counter Even CCP Pin Odd CCP Pin  
Timer 0 TimerA  
TimerB  
CCP0  
-
-
CCP1  
Timer 1 TimerA  
TimerB  
CCP2  
-
-
-
-
CCP3  
Timer 2 TimerA  
TimerB  
-
-
9.2  
Functional Description  
The main components of each GPTM block are two free-running 16-bit up/down counters (referred  
to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit  
load/initialization registers and their associated control functions. The exact functionality of each  
GPTM is controlled by software and configured through the register interface.  
Software configures the GPTM using the GPTM Configuration (GPTMCFG) register (see page 187),  
the GPTM TimerA Mode (GPTMTAMR) register (see page 188), and the GPTM TimerB Mode  
(GPTMTBMR) register (see page 190). When in one of the 32-bit modes, the timer can only act as  
a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers  
configured in any combination of the 16-bit modes.  
9.2.1  
GPTM Reset Conditions  
After reset has been applied to the GPTM module, the module is in an inactive state, and all control  
registers are cleared and in their default states. Counters TimerA and TimerB are initialized to  
0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load  
176  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
(GPTMTAILR) register (see page 201) and the GPTM TimerB Interval Load (GPTMTBILR) register  
(see page 202). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale  
(GPTMTAPR) register (see page 205) and the GPTM TimerB Prescale (GPTMTBPR) register (see  
page 206).  
9.2.2  
32-Bit Timer Operating Modes  
This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their  
configuration.  
The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1  
(RTC mode) to the GPTM Configuration (GPTMCFG) register. In both configurations, certain GPTM  
registers are concatenated to form pseudo 32-bit registers. These registers include:  
GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 201  
GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 202  
GPTM TimerA (GPTMTAR) register [15:0], see page 209  
GPTM TimerB (GPTMTBR) register [15:0], see page 210  
In the 32-bit modes, the GPTM translates a 32-bit write access to GPTMTAILR into a write access  
to both GPTMTAILR and GPTMTBILR. The resulting word ordering for such a write operation is:  
GPTMTBILR[15:0]:GPTMTAILR[15:0]  
Likewise, a read access to GPTMTAR returns the value:  
GPTMTBR[15:0]:GPTMTAR[15:0]  
9.2.2.1 32-Bit One-Shot/Periodic Timer Mode  
In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB  
registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is  
determined by the value written to the TAMR field of the GPTM TimerA Mode (GPTMTAMR) register  
(see page 188), and there is no need to write to the GPTM TimerB Mode (GPTMTBMR) register.  
When software writes the TAEN bit in the GPTM Control (GPTMCTL) register (see page 192), the  
timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the  
timer reloads its start value from the concatenated GPTMTAILR on the next cycle. If configured to  
be a one-shot timer, the timer stops counting and clears the TAEN bit in the GPTMCTL register. If  
configured as a periodic timer, it continues counting.  
In addition to reloading the count value, the GPTM generates interrupts and output triggers when  
it reaches the 0x0000000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status  
(GPTMRIS) register (see page 197), and holds it until it is cleared by writing the GPTM Interrupt  
Clear (GPTMICR) register (see page 199). If the time-out interrupt is enabled in the GPTM Interrupt  
Mask (GPTIMR) register (see page 195), the GPTM also sets the TATOMIS bit in the GPTM Masked  
Interrupt Status (GPTMMIS) register (see page 198).  
The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000.0000  
state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE bit in GPTMCTL.  
If software reloads the GPTMTAILR register while the counter is running, the counter loads the new  
value on the next clock cycle and continues counting from the new value.  
November 29, 2007  
177  
Preliminary  
General-Purpose Timers  
If the TASTALL bit in the GPTMCTL register is asserted, the timer freezes counting until the signal  
is deasserted.  
9.2.2.2 32-Bit Real-Time Clock Timer Mode  
In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers  
are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is  
loaded with a value of 0x0000.0001. All subsequent load values must be written to the GPTM TimerA  
Match (GPTMTAMATCHR) register (see page 203) by the controller.  
The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The  
clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.  
When software writes the TAEN bit inthe GPTMCTL register, the counter starts counting up from its  
preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the  
GPTMTAMATCHR register, it rolls over to a value of 0x0000.0000 and continues counting until  
either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs,  
the GPTM asserts the RTCRIS bit in GPTMRIS. If the RTC interrupt is enabled in GPTIMR, the  
GPTM also sets the RTCMIS bit in GPTMISR and generates a controller interrupt. The status flags  
are cleared by writing the RTCCINT bit in GPTMICR.  
If the TASTALL and/or TBSTALL bits in the GPTMCTL register are set, the timer does not freeze if  
the RTCEN bit is set in GPTMCTL.  
9.2.3  
16-Bit Timer Operating Modes  
The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the GPTM Configuration  
(GPTMCFG) register (see page 187). This section describes each of the GPTM 16-bit modes of  
operation. TimerA and TimerB have identical modes, so a single description is given using an n to  
reference both.  
9.2.3.1 16-Bit One-Shot/Periodic Timer Mode  
In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with  
an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The  
selection of one-shot or periodic mode is determined by the value written to the TnMR field of the  
GPTMTnMR register. The optional prescaler is loaded into the GPTM Timern Prescale (GPTMTnPR)  
register.  
When software writes the TnEN bit in the GPTMCTL register, the timer begins counting down from  
its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from  
GPTMTnILR and GPTMTnPR on the next cycle. If configured to be a one-shot timer, the timer stops  
counting and clears the TnEN bit in the GPTMCTL register. If configured as a periodic timer, it  
continues counting.  
In addition to reloading the count value, the timer generates interrupts and output triggers when it  
reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the GPTMRIS register, and holds it  
until it is cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTIMR,  
the GPTM also sets the TnTOMIS bit in GPTMISR and generates a controller interrupt.  
The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000 state,  
and deasserted on the following clock cycle. It is enabled by setting the TnOTE bit in the GPTMCTL  
register, and can trigger SoC-level events.  
If software reloads the GPTMTAILR register while the counter is running, the counter loads the new  
value on the next clock cycle and continues counting from the new value.  
178  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
If the TnSTALL bit in the GPTMCTL register is enabled, the timer freezes counting until the signal  
is deasserted.  
The following example shows a variety of configurations for a 16-bit free running timer while using  
the prescaler. All values assume a 25-MHz clock with Tc=20 ns (clock period).  
Table 9-2. 16-Bit Timer With Prescaler Configurations  
Prescale #Clock (T c)a Max Time Units  
00000000  
00000001  
00000010  
------------  
11111100  
11111110  
11111111  
1
2
2.6214  
5.2428  
7.8642  
--  
mS  
mS  
mS  
--  
3
--  
254  
255  
256  
665.8458 mS  
668.4672 mS  
671.0886 mS  
a. Tc is the clock period.  
9.2.3.2 16-Bit Input Edge Count Mode  
In Edge Count mode, the timer is configured as a down-counter capable of capturing three types  
of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit  
of the GPTMTnMR register must be set to 0. The type of edge that the timer counts is determined  
by the TnEVENT fields of the GPTMCTL register. During initialization, the GPTM Timern Match  
(GPTMTnMATCHR) register is configured so that the difference between the value in the  
GPTMTnILR register and the GPTMTnMATCHR register equals the number of edge events that  
must be counted.  
When software writes the TnEN bit in the GPTM Control (GPTMCTL) register, the timer is enabled  
for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count  
matches GPTMTnMATCHR. When the counts match, the GPTM asserts the CnMRIS bit in the  
GPTMRIS register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded  
using the value in GPTMTnILR, and stopped since the GPTM automatically clears the TnEN bit in  
the GPTMCTL register. Once the event count has been reached, all further events are ignored until  
TnEN is re-enabled by software.  
Figure 9-2 on page 180 shows how input edge count mode works. In this case, the timer start value  
is set to GPTMnILR =0x000A and the match value is set to GPTMnMATCHR =0x0006 so that four  
edge events are counted. The counter is configured to detect both edges of the input signal.  
Note that the last two edges are not counted since the timer automatically clears the TnEN bit after  
the current count matches the value in the GPTMnMR register.  
November 29, 2007  
179  
Preliminary  
General-Purpose Timers  
Figure 9-2. 16-Bit Input Edge Count Mode Example  
Timer reload  
on next cycle  
Ignored  
Ignored  
Count  
0x000A  
0x0009  
0x0008  
0x0007  
0x0006  
Timer stops,  
flags  
asserted  
Input Signal  
9.2.3.3 16-Bit Input Edge Time Mode  
Note: The prescaler is not available in 16-Bit Input Edge Time mode.  
In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value  
loaded in the GPTMTnILR register (or 0xFFFF at reset). This mode allows for event capture of both  
rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMR bit in the  
GPTMTnMR register, and the type of event that the timer captures is determined by the TnEVENT  
fields of the GPTMCnTL register.  
When software writes the TnEN bit in the GPTMCTL register, the timer is enabled for event capture.  
When the selected input event is detected, the current Tn counter value is captured in the GPTMTnR  
register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and  
the CnEMIS bit, if the interrupt is not masked).  
After an event has been captured, the timer does not stop counting. It continues to count until the  
TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the  
GPTMnILR register.  
Figure 9-3 on page 181 shows how input edge timing mode works. In the diagram, it is assumed that  
the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture  
rising edge events.  
Each time a rising edge event is detected, the current count value is loaded into the GPTMTnR  
register, and is held there until another rising edge is detected (at which point the new count value  
is loaded into GPTMTnR).  
180  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 9-3. 16-Bit Input Edge Time Mode Example  
Count  
GPTMTnR=X  
0xFFFF  
GPTMTnR=Y  
GPTMTnR=Z  
Z
X
Y
Time  
Input Signal  
9.2.3.4 16-Bit PWM Mode  
The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a  
down-counter with a start value (and thus period) defined by GPTMTnILR. PWM mode is enabled  
with the GPTMTnMR register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR  
field to 0x2.  
When software writes the TnEN bit in the GPTMCTL register, the counter begins counting down  
until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from  
GPTMTnILR (and GPTMTnPR if using a prescaler) and continues counting until disabled by software  
clearing the TnEN bit in the GPTMCTL register. No interrupts or status bits are asserted in PWM  
mode.  
The output PWM signal asserts when the counter is at the value of the GPTMTnILR register (its  
start state), and is deasserted when the counter value equals the value in the GPTM Timern Match  
Register (GPTMnMATCHR). Software has the capability of inverting the output PWM signal by  
setting the TnPWML bit in the GPTMCTL register.  
Figure 9-4 on page 182 shows how to generate an output PWM with a 1-ms period and a 66% duty  
cycle assuming a 50-MHz input clock and TnPWML =0 (duty cycle would be 33% for the TnPWML  
=1 configuration). For this example, the start value is GPTMnIRL=0xC350 and the match value is  
GPTMnMR=0x411A.  
November 29, 2007  
181  
Preliminary  
General-Purpose Timers  
Figure 9-4. 16-Bit PWM Mode Example  
GPTMTnR=GPTMnMR  
GPTMTnR=GPTMnMR  
Count  
0xC350  
0x411A  
Time  
TnEN set  
TnPWML = 0  
TnPWML = 1  
Output  
Signal  
9.3  
Initialization and Configuration  
To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMER0,  
TIMER1, and TIMER2 bits in the RCGC1 register.  
This section shows module initialization and configuration examples for each of the supported timer  
modes.  
9.3.1  
32-Bit One-Shot/Periodic Timer Mode  
The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:  
1. Ensure the timer is disabled (the TAEN bit in the GPTMCTL register is cleared) before making  
any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.  
3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):  
a. Write a value of 0x1 for One-Shot mode.  
b. Write a value of 0x2 for Periodic mode.  
4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).  
5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).  
6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.  
182  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM  
Interrupt Clear Register (GPTMICR).  
In One-Shot mode, the timer stops counting after step 7 on page 183. To re-enable the timer, repeat  
the sequence. A timer configured in Periodic mode does not stop counting after it times out.  
9.3.2  
32-Bit Real-Time Clock (RTC) Mode  
To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4  
pins. To enable the RTC feature, follow these steps:  
1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.  
3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).  
4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.  
5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).  
6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.  
When the timer count equals the value in the GPTMTAMATCHR register, the counter is re-loaded  
with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.  
9.3.3  
16-Bit One-Shot/Periodic Timer Mode  
A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.  
3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:  
a. Write a value of 0x1 for One-Shot mode.  
b. Write a value of 0x2 for Periodic mode.  
4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register  
(GPTMTnPR).  
5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).  
6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).  
7. Set the TnEN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start  
counting.  
8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM  
Interrupt Clear Register (GPTMICR).  
November 29, 2007  
183  
Preliminary  
General-Purpose Timers  
In One-Shot mode, the timer stops counting after step 8 on page 183. To re-enable the timer, repeat  
the sequence. A timer configured in Periodic mode does not stop counting after it times out.  
9.3.4  
16-Bit Input Edge Count Mode  
A timer is configured to Input Edge Count mode by the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR  
field to 0x3.  
4. Configure the type of event(s) that the timer captures by writing the TnEVENT field of the GPTM  
Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.  
7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.  
8. Set the TnEN bit in the GPTMCTL register to enable the timer and begin waiting for edge events.  
9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM  
Interrupt Clear (GPTMICR) register.  
In Input Edge Count Mode, the timer stops after the desired number of edge events has been  
detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 184  
through step 9 on page 184.  
9.3.5  
16-Bit Input Edge Timing Mode  
A timer is configured to Input Edge Timing mode by the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR  
field to 0x3.  
4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM  
Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.  
7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.  
8. Poll the CnERIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM  
184  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained  
by reading the GPTM Timern (GPTMTnR) register.  
In Input Edge Timing mode, the timer continues running after an edge event has been detected,  
but the timer interval can be changed at any time by writing the GPTMTnILR register. The change  
takes effect at the next cycle after the write.  
9.3.6  
16-Bit PWM Mode  
A timer is configured to PWM mode using the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to  
0x0, and the TnMR field to 0x2.  
4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnEVENT field  
of the GPTM Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.  
7. If a prescaler is going to be used, configure the GPTM Timern Prescale (GPTMTnPR) register  
and the GPTM Timern Prescale Match (GPTMTnPMR) register.  
8. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin  
generation of the output PWM signal.  
In PWM Timing mode, the timer continues running after the PWM signal has been generated. The  
PWM period can be adjusted at any time by writing the GPTMTnILR register, and the change takes  
effect at the next cycle after the write.  
9.4  
Register Map  
Table 9-3 on page 185 lists the GPTM registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that timer’s base address:  
Timer0: 0x4003.0000  
Timer1: 0x4003.1000  
Timer2: 0x4003.2000  
Table 9-3. Timers Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
GPTMCFG  
GPTMTAMR  
GPTMTBMR  
R/W  
R/W  
R/W  
0x0000.0000  
0x0000.0000  
0x0000.0000  
GPTM Configuration  
GPTM TimerA Mode  
GPTM TimerB Mode  
187  
188  
190  
November 29, 2007  
185  
Preliminary  
General-Purpose Timers  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x00C  
0x018  
0x01C  
0x020  
0x024  
GPTMCTL  
GPTMIMR  
GPTMRIS  
GPTMMIS  
GPTMICR  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
GPTM Control  
192  
195  
197  
198  
199  
GPTM Interrupt Mask  
GPTM Raw Interrupt Status  
GPTM Masked Interrupt Status  
GPTM Interrupt Clear  
RO  
W1C  
0x0000.FFFF  
(16-bit mode)  
0xFFFF.FFFF  
(32-bit mode)  
0x028  
0x02C  
0x030  
GPTMTAILR  
R/W  
R/W  
R/W  
GPTM TimerA Interval Load  
GPTM TimerB Interval Load  
GPTM TimerA Match  
201  
202  
203  
GPTMTBILR  
0x0000.FFFF  
0x0000.FFFF  
(16-bit mode)  
0xFFFF.FFFF  
(32-bit mode)  
GPTMTAMATCHR  
0x034  
0x038  
0x03C  
0x040  
0x044  
GPTMTBMATCHR  
GPTMTAPR  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000.FFFF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
GPTM TimerB Match  
204  
205  
206  
207  
208  
GPTM TimerA Prescale  
GPTM TimerB Prescale  
GPTM TimerA Prescale Match  
GPTM TimerB Prescale Match  
GPTMTBPR  
GPTMTAPMR  
GPTMTBPMR  
0x0000.FFFF  
(16-bit mode)  
0xFFFF.FFFF  
(32-bit mode)  
0x048  
0x04C  
GPTMTAR  
GPTMTBR  
RO  
RO  
GPTM TimerA  
GPTM TimerB  
209  
210  
0x0000.FFFF  
9.5  
Register Descriptions  
The remainder of this section lists and describes the GPTM registers, in numerical order by address  
offset.  
186  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 1: GPTM Configuration (GPTMCFG), offset 0x000  
This register configures the global operation of the GPTM module. The value written to this register  
determines whether the GPTM is in 32- or 16-bit mode.  
GPTM Configuration (GPTMCFG)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPTMCFG  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2:0  
GPTMCFG  
R/W  
0x0  
GPTM Configuration  
The GPTMCFG values are defined as follows:  
Value Description  
0x0 32-bit timer configuration.  
0x1 32-bit real-time clock (RTC) counter configuration.  
0x2 Reserved.  
0x3 Reserved.  
0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of  
GPTMTAMR and GPTMTBMR.  
November 29, 2007  
187  
Preliminary  
General-Purpose Timers  
Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004  
This register configures the GPTM based on the configuration selected in the GPTMCFG register.  
When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to  
0x2.  
GPTM TimerA Mode (GPTMTAMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAAMS TACMR  
TAMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
TAAMS  
R/W  
0
GPTM TimerA Alternate Mode Select  
The TAAMS values are defined as follows:  
Value Description  
0
1
Capture mode is enabled.  
PWM mode is enabled.  
Note:  
To enable PWM mode, you must also clear the TACMR  
bit and set the TAMR field to 0x2.  
2
TACMR  
R/W  
0
GPTM TimerA Capture Mode  
The TACMR values are defined as follows:  
Value Description  
0
1
Edge-Count mode.  
Edge-Time mode.  
188  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
1:0  
Name  
TAMR  
Type  
R/W  
Reset  
0x0  
Description  
GPTM TimerA Mode  
The TAMR values are defined as follows:  
Value Description  
0x0 Reserved.  
0x1 One-Shot Timer mode.  
0x2 Periodic Timer mode.  
0x3 Capture mode.  
The Timer mode is based on the timer configuration defined by bits 2:0  
in the GPTMCFG register (16-or 32-bit).  
In 16-bit timer configuration, TAMR controls the 16-bit timer modes for  
TimerA.  
In 32-bit timer configuration, this register controls the mode and the  
contents of GPTMTBMR are ignored.  
November 29, 2007  
189  
Preliminary  
General-Purpose Timers  
Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008  
This register configures the GPTM based on the configuration selected in the GPTMCFG register.  
When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to  
0x2.  
GPTM TimerB Mode (GPTMTBMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBAMS TBCMR  
TBMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
TBAMS  
R/W  
0
GPTM TimerB Alternate Mode Select  
The TBAMS values are defined as follows:  
Value Description  
0
1
Capture mode is enabled.  
PWM mode is enabled.  
Note:  
To enable PWM mode, you must also clear the TBCMR  
bit and set the TBMR field to 0x2.  
2
TBCMR  
R/W  
0
GPTM TimerB Capture Mode  
The TBCMR values are defined as follows:  
Value Description  
0
1
Edge-Count mode.  
Edge-Time mode.  
190  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
1:0  
Name  
TBMR  
Type  
R/W  
Reset  
0x0  
Description  
GPTM TimerB Mode  
The TBMR values are defined as follows:  
Value Description  
0x0 Reserved.  
0x1 One-Shot Timer mode.  
0x2 Periodic Timer mode.  
0x3 Capture mode.  
The timer mode is based on the timer configuration defined by bits 2:0  
in the GPTMCFG register.  
In 16-bit timer configuration, these bits control the 16-bit timer modes  
for TimerB.  
In 32-bit timer configuration, this register’s contents are ignored and  
GPTMTAMR is used.  
November 29, 2007  
191  
Preliminary  
General-Purpose Timers  
Register 4: GPTM Control (GPTMCTL), offset 0x00C  
This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer  
configuration, and to enable other features such as timer stall.  
GPTM Control (GPTMCTL)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x00C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved TBPWML TBOTE reserved  
TBEVENT  
TBSTALL TBEN reserved TAPWML TAOTE RTCEN  
TAEVENT  
TASTALL TAEN  
Type  
Reset  
RO  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:15  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
14  
TBPWML  
R/W  
0
GPTM TimerB PWM Output Level  
The TBPWML values are defined as follows:  
Value Description  
0
1
Output is unaffected.  
Output is inverted.  
13  
TBOTE  
R/W  
0
GPTM TimerB Output Trigger Enable  
The TBOTE values are defined as follows:  
Value Description  
0
1
The output TimerB trigger is disabled.  
The output TimerB trigger is enabled.  
12  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11:10  
TBEVENT  
R/W  
0x0  
GPTM TimerB Event Mode  
The TBEVENT values are defined as follows:  
Value Description  
0x0 Positive edge.  
0x1 Negative edge.  
0x2 Reserved  
0x3 Both edges.  
192  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
9
Name  
Type  
R/W  
Reset  
0
Description  
TBSTALL  
GPTM TimerB Stall Enable  
The TBSTALL values are defined as follows:  
Value Description  
0
1
TimerB stalling is disabled.  
TimerB stalling is enabled.  
8
TBEN  
R/W  
0
GPTM TimerB Enable  
The TBEN values are defined as follows:  
Value Description  
0
1
TimerB is disabled.  
TimerB is enabled and begins counting or the capture logic is  
enabled based on the GPTMCFG register.  
7
6
reserved  
TAPWML  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
GPTM TimerA PWM Output Level  
The TAPWML values are defined as follows:  
Value Description  
0
1
Output is unaffected.  
Output is inverted.  
5
TAOTE  
R/W  
0
GPTM TimerA Output Trigger Enable  
The TAOTE values are defined as follows:  
Value Description  
0
1
The output TimerA trigger is disabled.  
The output TimerA trigger is enabled.  
4
RTCEN  
R/W  
0
GPTM RTC Enable  
The RTCEN values are defined as follows:  
Value Description  
0
1
RTC counting is disabled.  
RTC counting is enabled.  
November 29, 2007  
193  
Preliminary  
General-Purpose Timers  
Bit/Field  
3:2  
Name  
Type  
R/W  
Reset  
0x0  
Description  
TAEVENT  
GPTM TimerA Event Mode  
The TAEVENT values are defined as follows:  
Value Description  
0x0 Positive edge.  
0x1 Negative edge.  
0x2 Reserved  
0x3 Both edges.  
1
TASTALL  
R/W  
0
GPTM TimerA Stall Enable  
The TASTALL values are defined as follows:  
Value Description  
0
1
TimerA stalling is disabled.  
TimerA stalling is enabled.  
0
TAEN  
R/W  
0
GPTM TimerA Enable  
The TAEN values are defined as follows:  
Value Description  
0
1
TimerA is disabled.  
TimerA is enabled and begins counting or the capture logic is  
enabled based on the GPTMCFG register.  
194  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018  
This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables  
the interrupt, while writing a 0 disables it.  
GPTM Interrupt Mask (GPTMIMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x018  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBEIM  
CBMIM TBTOIM  
reserved  
RTCIM  
CAEIM  
CAMIM TATOIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
CBEIM  
CBMIM  
TBTOIM  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
GPTM CaptureB Event Interrupt Mask  
The CBEIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
9
GPTM CaptureB Match Interrupt Mask  
The CBMIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
8
GPTM TimerB Time-Out Interrupt Mask  
The TBTOIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
7:4  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
195  
Preliminary  
General-Purpose Timers  
Bit/Field  
3
Name  
Type  
R/W  
Reset  
0
Description  
RTCIM  
CAEIM  
CAMIM  
TATOIM  
GPTM RTC Interrupt Mask  
The RTCIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
2
1
0
R/W  
R/W  
R/W  
0
0
0
GPTM CaptureA Event Interrupt Mask  
The CAEIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
GPTM CaptureA Match Interrupt Mask  
The CAMIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
GPTM TimerA Time-Out Interrupt Mask  
The TATOIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
196  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C  
This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or  
not the interrupt is masked in the GPTMIMR register. Each bit can be cleared by writing a 1 to its  
corresponding bit in GPTMICR.  
GPTM Raw Interrupt Status (GPTMRIS)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x01C  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBERIS CBMRIS TBTORIS  
reserved  
RTCRIS CAERIS CAMRIS TATORIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
CBERIS  
CBMRIS  
TBTORIS  
reserved  
RO  
RO  
RO  
RO  
0
0
GPTM CaptureB Event Raw Interrupt  
This is the CaptureB Event interrupt status prior to masking.  
GPTM CaptureB Match Raw Interrupt  
This is the CaptureB Match interrupt status prior to masking.  
8
0
GPTM TimerB Time-Out Raw Interrupt  
This is the TimerB time-out interrupt status prior to masking.  
7:4  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
RTCRIS  
CAERIS  
CAMRIS  
TATORIS  
RO  
RO  
RO  
RO  
0
0
0
0
GPTM RTC Raw Interrupt  
This is the RTC Event interrupt status prior to masking.  
GPTM CaptureA Event Raw Interrupt  
This is the CaptureA Event interrupt status prior to masking.  
GPTM CaptureA Match Raw Interrupt  
This is the CaptureA Match interrupt status prior to masking.  
GPTM TimerA Time-Out Raw Interrupt  
This the TimerA time-out interrupt status prior to masking.  
November 29, 2007  
197  
Preliminary  
General-Purpose Timers  
Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020  
This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in  
GPTMIMR, and there is an event that causes the interrupt to be asserted, the corresponding bit is  
set in this register. All bits are cleared by writing a 1 to the corresponding bit in GPTMICR.  
GPTM Masked Interrupt Status (GPTMMIS)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x020  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBEMIS CBMMIS TBTOMIS  
reserved  
RTCMIS CAEMIS CAMMIS TATOMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
CBEMIS  
CBMMIS  
TBTOMIS  
reserved  
RO  
RO  
RO  
RO  
0
0
GPTM CaptureB Event Masked Interrupt  
This is the CaptureB event interrupt status after masking.  
GPTM CaptureB Match Masked Interrupt  
This is the CaptureB match interrupt status after masking.  
8
0
GPTM TimerB Time-Out Masked Interrupt  
This is the TimerB time-out interrupt status after masking.  
7:4  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
RTCMIS  
CAEMIS  
CAMMIS  
TATOMIS  
RO  
RO  
RO  
RO  
0
0
0
0
GPTM RTC Masked Interrupt  
This is the RTC event interrupt status after masking.  
GPTM CaptureA Event Masked Interrupt  
This is the CaptureA event interrupt status after masking.  
GPTM CaptureA Match Masked Interrupt  
This is the CaptureA match interrupt status after masking.  
GPTM TimerA Time-Out Masked Interrupt  
This is the TimerA time-out interrupt status after masking.  
198  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024  
This register is used to clear the status bits in the GPTMRIS and GPTMMIS registers. Writing a 1  
to a bit clears the corresponding bit in the GPTMRIS and GPTMMIS registers.  
GPTM Interrupt Clear (GPTMICR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x024  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBECINT CBMCINT TBTOCINT  
reserved  
RTCCINT CAECINT CAMCINT TATOCINT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
CBECINT  
CBMCINT  
TBTOCINT  
reserved  
W1C  
W1C  
W1C  
RO  
0
GPTM CaptureB Event Interrupt Clear  
The CBECINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
9
0
GPTM CaptureB Match Interrupt Clear  
The CBMCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
8
0
GPTM TimerB Time-Out Interrupt Clear  
The TBTOCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
7:4  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
199  
Preliminary  
General-Purpose Timers  
Bit/Field  
3
Name  
RTCCINT  
Type  
W1C  
Reset  
0
Description  
GPTM RTC Interrupt Clear  
The RTCCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
2
CAECINT  
W1C  
0
GPTM CaptureA Event Interrupt Clear  
The CAECINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
1
0
CAMCINT  
TATOCINT  
W1C  
W1C  
0
0
GPTM CaptureA Match Raw Interrupt  
This is the CaptureA match interrupt status after masking.  
GPTM TimerA Time-Out Raw Interrupt  
The TATOCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
200  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028  
This register is used to load the starting count value into the timer. When GPTM is configured to  
one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond  
to the contents of the GPTM TimerB Interval Load (GPTMTBILR) register). In 16-bit mode, the  
upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.  
GPTM TimerA Interval Load (GPTMTAILR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x028  
Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TAILRH  
Type  
Reset  
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TAILRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
GPTM TimerA Interval Load Register High  
TAILRH  
0xFFFF  
(32-bit mode)  
0x0000 (16-bit  
mode)  
When configured for 32-bit mode via the GPTMCFG register, the GPTM  
TimerB Interval Load (GPTMTBILR) register loads this value on a  
write. A read returns the current value of GPTMTBILR.  
In 16-bit mode, this field reads as 0 and does not have an effect on the  
state of GPTMTBILR.  
15:0  
TAILRL  
R/W  
0xFFFF  
GPTM TimerA Interval Load Register Low  
For both 16- and 32-bit modes, writing this field loads the counter for  
TimerA. A read returns the current value of GPTMTAILR.  
November 29, 2007  
201  
Preliminary  
General-Purpose Timers  
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C  
This register is used to load the starting count value into TimerB. When the GPTM is configured to  
a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.  
GPTM TimerB Interval Load (GPTMTBILR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x02C  
Type R/W, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBILRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TBILRL  
R/W  
0xFFFF  
GPTM TimerB Interval Load Register  
When the GPTM is not configured as a 32-bit timer, a write to this field  
updates GPTMTBILR. In 32-bit mode, writes are ignored, and reads  
return the current value of GPTMTBILR.  
202  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030  
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.  
GPTM TimerA Match (GPTMTAMATCHR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x030  
Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TAMRH  
Type  
Reset  
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TAMRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
GPTM TimerA Match Register High  
TAMRH  
0xFFFF  
(32-bit mode)  
0x0000 (16-bit  
mode)  
When configured for 32-bit Real-Time Clock (RTC) mode via the  
GPTMCFG register, this value is compared to the upper half of  
GPTMTAR, to determine match events.  
In 16-bit mode, this field reads as 0 and does not have an effect on the  
state of GPTMTBMATCHR.  
15:0  
TAMRL  
R/W  
0xFFFF  
GPTM TimerA Match Register Low  
When configured for 32-bit Real-Time Clock (RTC) mode via the  
GPTMCFG register, this value is compared to the lower half of  
GPTMTAR, to determine match events.  
When configured for PWM mode, this value along with GPTMTAILR,  
determines the duty cycle of the output PWM signal.  
When configured for Edge Count mode, this value along with  
GPTMTAILR, determines how many edge events are counted. The total  
number of edge events counted is equal to the value in GPTMTAILR  
minus this value.  
November 29, 2007  
203  
Preliminary  
General-Purpose Timers  
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034  
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.  
GPTM TimerB Match (GPTMTBMATCHR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x034  
Type R/W, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBMRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TBMRL  
R/W  
0xFFFF  
GPTM TimerB Match Register Low  
When configured for PWM mode, this value along with GPTMTBILR,  
determines the duty cycle of the output PWM signal.  
When configured for Edge Count mode, this value along with  
GPTMTBILR, determines how many edge events are counted. The total  
number of edge events counted is equal to the value in GPTMTBILR  
minus this value.  
204  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038  
This register allows software to extend the range of the 16-bit timers when operating in one-shot or  
periodic mode.  
GPTM TimerA Prescale (GPTMTAPR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x038  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAPSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TAPSR  
R/W  
0x00  
GPTM TimerA Prescale  
The register loads this value on a write. A read returns the current value  
of the register.  
Refer to Table 9-2 on page 179 for more details and an example.  
November 29, 2007  
205  
Preliminary  
General-Purpose Timers  
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C  
This register allows software to extend the range of the 16-bit timers when operating in one-shot or  
periodic mode.  
GPTM TimerB Prescale (GPTMTBPR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x03C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBPSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TBPSR  
R/W  
0x00  
GPTM TimerB Prescale  
The register loads this value on a write. A read returns the current value  
of this register.  
Refer to Table 9-2 on page 179 for more details and an example.  
206  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040  
This register effectively extends the range of GPTMTAMATCHR to 24 bits when operating in 16-bit  
one-shot or periodic mode.  
GPTM TimerA Prescale Match (GPTMTAPMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x040  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAPSMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TAPSMR  
R/W  
0x00  
GPTM TimerA Prescale Match  
This value is used alongside GPTMTAMATCHR to detect timer match  
events while using a prescaler.  
November 29, 2007  
207  
Preliminary  
General-Purpose Timers  
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044  
This register effectively extends the range of GPTMTBMATCHR to 24 bits when operating in 16-bit  
one-shot or periodic mode.  
GPTM TimerB Prescale Match (GPTMTBPMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x044  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBPSMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TBPSMR  
R/W  
0x00  
GPTM TimerB Prescale Match  
This value is used alongside GPTMTBMATCHR to detect timer match  
events while using a prescaler.  
208  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 17: GPTM TimerA (GPTMTAR), offset 0x048  
This register shows the current value of the TimerA counter in all cases except for Input Edge Count  
mode. When in this mode, this register contains the time at which the last edge event took place.  
GPTM TimerA (GPTMTAR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x048  
Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TARH  
TARL  
Type  
Reset  
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
TARH  
Type  
RO  
Reset  
Description  
GPTM TimerA Register High  
0xFFFF  
(32-bit mode)  
0x0000 (16-bit  
mode)  
If the GPTMCFG is in a 32-bit mode, TimerB value is read. If the  
GPTMCFG is in a 16-bit mode, this is read as zero.  
15:0  
TARL  
RO  
0xFFFF  
GPTM TimerA Register Low  
A read returns the current value of the GPTM TimerA Count Register,  
except in Input Edge Count mode, when it returns the timestamp from  
the last edge event.  
November 29, 2007  
209  
Preliminary  
General-Purpose Timers  
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C  
This register shows the current value of the TimerB counter in all cases except for Input Edge Count  
mode. When in this mode, this register contains the time at which the last edge event took place.  
GPTM TimerB (GPTMTBR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
Offset 0x04C  
Type RO, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBRL  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TBRL  
RO  
0xFFFF  
GPTM TimerB  
A read returns the current value of the GPTM TimerB Count Register,  
except in Input Edge Count mode, when it returns the timestamp from  
the last edge event.  
210  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
10  
Watchdog Timer  
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is  
reached. The watchdog timer is used to regain control when a system has failed due to a software  
error or due to the failure of an external device to respond in the expected way.  
The Stellaris® Watchdog Timer module consists of a 32-bit down counter, a programmable load  
register, interrupt generation logic, a locking register, and user-enabled stalling.  
The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,  
and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured,  
the lock register can be written to prevent the timer configuration from being inadvertently altered.  
10.1  
Block Diagram  
Figure 10-1. WDT Module Block Diagram  
WDTLOAD  
Control / Clock /  
Interrupt  
Generation  
WDTCTL  
WDTICR  
Interrupt  
WDTRIS  
32-Bit Down  
Counter  
WDTMIS  
WDTLOCK  
WDTTEST  
0x00000000  
System Clock  
Comparator  
WDTVALUE  
Identification Registers  
WDTPCellID0 WDTPeriphID0 WDTPeriphID4  
WDTPCellID1 WDTPeriphID1 WDTPeriphID5  
WDTPCellID2 WDTPeriphID2 WDTPeriphID6  
WDTPCellID3 WDTPeriphID3 WDTPeriphID7  
10.2  
Functional Description  
The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches  
the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt.  
After the first time-out event, the 32-bit counter is re-loaded with the value of the Watchdog Timer  
Load (WDTLOAD) register, and the timer resumes counting down from that value. Once the  
November 29, 2007  
211  
Preliminary  
Watchdog Timer  
Watchdog Timer has been configured, the Watchdog Timer Lock (WDTLOCK) register is written,  
which prevents the timer configuration from being inadvertently altered by software.  
If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the  
reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer  
asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its  
second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting  
resumes from that value.  
If WDTLOAD is written with a new value while the Watchdog Timer counter is counting, then the  
counter is loaded with the new value and continues counting.  
Writing to WDTLOAD does not clear an active interrupt. An interrupt must be specifically cleared  
by writing to the Watchdog Interrupt Clear (WDTICR) register.  
The Watchdog module interrupt and reset generation can be enabled or disabled as required. When  
the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its  
last state.  
10.3  
Initialization and Configuration  
To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the RCGC0 register.  
The Watchdog Timer is configured using the following sequence:  
1. Load the WDTLOAD register with the desired timer load value.  
2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.  
3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.  
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can  
be fully locked by writing any value to the WDTLOCK register. To unlock the Watchdog Timer, write  
a value of 0x1ACC.E551.  
10.4  
Register Map  
Table 10-1 on page 212 lists the Watchdog registers. The offset listed is a hexadecimal increment  
to the register’s address, relative to the Watchdog Timer base address of 0x4000.0000.  
Table 10-1. Watchdog Timer Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x418  
0xC00  
WDTLOAD  
WDTVALUE  
WDTCTL  
WDTICR  
R/W  
RO  
0xFFFF.FFFF  
0xFFFF.FFFF  
0x0000.0000  
-
Watchdog Load  
214  
215  
216  
217  
218  
219  
220  
221  
Watchdog Value  
R/W  
WO  
RO  
Watchdog Control  
Watchdog Interrupt Clear  
Watchdog Raw Interrupt Status  
Watchdog Masked Interrupt Status  
Watchdog Test  
WDTRIS  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
WDTMIS  
RO  
WDTTEST  
WDTLOCK  
R/W  
R/W  
Watchdog Lock  
212  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
WDTPeriphID4  
WDTPeriphID5  
WDTPeriphID6  
WDTPeriphID7  
WDTPeriphID0  
WDTPeriphID1  
WDTPeriphID2  
WDTPeriphID3  
WDTPCellID0  
WDTPCellID1  
WDTPCellID2  
WDTPCellID3  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0005  
0x0000.0018  
0x0000.0018  
0x0000.0001  
0x0000.000D  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
Watchdog Peripheral Identification 4  
Watchdog Peripheral Identification 5  
Watchdog Peripheral Identification 6  
Watchdog Peripheral Identification 7  
Watchdog Peripheral Identification 0  
Watchdog Peripheral Identification 1  
Watchdog Peripheral Identification 2  
Watchdog Peripheral Identification 3  
Watchdog PrimeCell Identification 0  
Watchdog PrimeCell Identification 1  
Watchdog PrimeCell Identification 2  
Watchdog PrimeCell Identification 3  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
10.5  
Register Descriptions  
The remainder of this section lists and describes the WDT registers, in numerical order by address  
offset.  
November 29, 2007  
213  
Preliminary  
Watchdog Timer  
Register 1: Watchdog Load (WDTLOAD), offset 0x000  
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the  
value is immediately loaded and the counter restarts counting down from the new value. If the  
WDTLOAD register is loaded with 0x0000.0000, an interrupt is immediately generated.  
Watchdog Load (WDTLOAD)  
Base 0x4000.0000  
Offset 0x000  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTLoad  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTLoad  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
WDTLoad  
0xFFFF.FFFF Watchdog Load Value  
214  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 2: Watchdog Value (WDTVALUE), offset 0x004  
This register contains the current count value of the timer.  
Watchdog Value (WDTVALUE)  
Base 0x4000.0000  
Offset 0x004  
Type RO, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTValue  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTValue  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:0  
Name  
Type  
RO  
Reset  
Description  
WDTValue  
0xFFFF.FFFF Watchdog Value  
Current value of the 32-bit down counter.  
November 29, 2007  
215  
Preliminary  
Watchdog Timer  
Register 3: Watchdog Control (WDTCTL), offset 0x008  
This register is the watchdog control register. The watchdog timer can be configured to generate a  
reset signal (on second time-out) or an interrupt on time-out.  
When the watchdog interrupt has been enabled, all subsequent writes to the control register are  
ignored. The only mechanism that can re-enable writes is a hardware reset.  
Watchdog Control (WDTCTL)  
Base 0x4000.0000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RESEN  
INTEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
RESEN  
R/W  
0
Watchdog Reset Enable  
The RESEN values are defined as follows:  
Value Description  
0
1
Disabled.  
Enable the Watchdog module reset output.  
0
INTEN  
R/W  
0
Watchdog Interrupt Enable  
The INTEN values are defined as follows:  
Value Description  
0
Interrupt event disabled (once this bit is set, it can only be  
cleared by a hardware reset).  
1
Interrupt event enabled. Once enabled, all writes are ignored.  
216  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C  
This register is the interrupt clear register. A write of any value to this register clears the Watchdog  
interrupt and reloads the 32-bit counter from the WDTLOAD register. Value for a read or reset is  
indeterminate.  
Watchdog Interrupt Clear (WDTICR)  
Base 0x4000.0000  
Offset 0x00C  
Type WO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTIntClr  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTIntClr  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
Bit/Field  
31:0  
Name  
Type  
WO  
Reset  
-
Description  
Watchdog Interrupt Clear  
WDTIntClr  
November 29, 2007  
217  
Preliminary  
Watchdog Timer  
Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010  
This register is the raw interrupt status register. Watchdog interrupt events can be monitored via  
this register if the controller interrupt is masked.  
Watchdog Raw Interrupt Status (WDTRIS)  
Base 0x4000.0000  
Offset 0x010  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDTRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
WDTRIS  
RO  
0
Watchdog Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of WDTINTR.  
218  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014  
This register is the masked interrupt status register. The value of this register is the logical AND of  
the raw interrupt bit and the Watchdog interrupt enable bit.  
Watchdog Masked Interrupt Status (WDTMIS)  
Base 0x4000.0000  
Offset 0x014  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDTMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
WDTMIS  
RO  
0
Watchdog Masked Interrupt Status  
Gives the masked interrupt state (after masking) of the WDTINTR  
interrupt.  
November 29, 2007  
219  
Preliminary  
Watchdog Timer  
Register 7: Watchdog Test (WDTTEST), offset 0x418  
This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag  
during debug.  
Watchdog Test (WDTTEST)  
Base 0x4000.0000  
Offset 0x418  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
STALL  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:9  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
8
STALL  
R/W  
RO  
0
Watchdog Stall Enable  
When set to 1, if the Stellaris® microcontroller is stopped with a  
debugger, the watchdog timer stops counting. Once the microcontroller  
is restarted, the watchdog timer resumes counting.  
7:0  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
220  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: Watchdog Lock (WDTLOCK), offset 0xC00  
Writing 0x1ACC.E551 to the WDTLOCK register enables write access to all other registers. Writing  
any other value to the WDTLOCK register re-enables the locked state for register writes to all the  
other registers. Reading the WDTLOCK register returns the lock status rather than the 32-bit value  
written. Therefore, when write accesses are disabled, reading the WDTLOCK register returns  
0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).  
Watchdog Lock (WDTLOCK)  
Base 0x4000.0000  
Offset 0xC00  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTLock  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTLock  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
WDTLock  
0x0000  
Watchdog Lock  
A write of the value 0x1ACC.E551 unlocks the watchdog registers for  
write access. A write of any other value reapplies the lock, preventing  
any register updates.  
A read of this register returns the following values:  
Value  
Description  
0x0000.0001 Locked  
0x0000.0000 Unlocked  
November 29, 2007  
221  
Preliminary  
Watchdog Timer  
Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 4 (WDTPeriphID4)  
Base 0x4000.0000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x00  
WDT Peripheral ID Register[7:0]  
222  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset  
0xFD4  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 5 (WDTPeriphID5)  
Base 0x4000.0000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x00  
WDT Peripheral ID Register[15:8]  
November 29, 2007  
223  
Preliminary  
Watchdog Timer  
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset  
0xFD8  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 6 (WDTPeriphID6)  
Base 0x4000.0000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x00  
WDT Peripheral ID Register[23:16]  
224  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset  
0xFDC  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 7 (WDTPeriphID7)  
Base 0x4000.0000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x00  
WDT Peripheral ID Register[31:24]  
November 29, 2007  
225  
Preliminary  
Watchdog Timer  
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset  
0xFE0  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 0 (WDTPeriphID0)  
Base 0x4000.0000  
Offset 0xFE0  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x05  
Watchdog Peripheral ID Register[7:0]  
226  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset  
0xFE4  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 1 (WDTPeriphID1)  
Base 0x4000.0000  
Offset 0xFE4  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x18  
Watchdog Peripheral ID Register[15:8]  
November 29, 2007  
227  
Preliminary  
Watchdog Timer  
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset  
0xFE8  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 2 (WDTPeriphID2)  
Base 0x4000.0000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
Watchdog Peripheral ID Register[23:16]  
228  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset  
0xFEC  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 3 (WDTPeriphID3)  
Base 0x4000.0000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
Watchdog Peripheral ID Register[31:24]  
November 29, 2007  
229  
Preliminary  
Watchdog Timer  
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 0 (WDTPCellID0)  
Base 0x4000.0000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
Watchdog PrimeCell ID Register[7:0]  
230  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 1 (WDTPCellID1)  
Base 0x4000.0000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
Watchdog PrimeCell ID Register[15:8]  
November 29, 2007  
231  
Preliminary  
Watchdog Timer  
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 2 (WDTPCellID2)  
Base 0x4000.0000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
Watchdog PrimeCell ID Register[23:16]  
232  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 3 (WDTPCellID3)  
Base 0x4000.0000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
Watchdog PrimeCell ID Register[31:24]  
November 29, 2007  
233  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
11  
Universal Asynchronous Receivers/Transmitters  
(UARTs)  
The Stellaris® Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable,  
16C550-type serial interface characteristics. The LM3S2110 controller is equipped with one UART  
module.  
The UART has the following features:  
Separate transmit and receive FIFOs  
Programmable FIFO length, including 1-byte deep operation providing conventional  
double-buffered interface  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Programmable baud-rate generator allowing rates up to 1.5625 Mbps  
Standard asynchronous communication bits for start, stop, and parity  
False start bit detection  
Line-break generation and detection  
Fully programmable serial interface characteristics:  
5, 6, 7, or 8 data bits  
Even, odd, stick, or no-parity bit generation/detection  
1 or 2 stop bit generation  
IrDA serial-IR (SIR) encoder/decoder providing:  
Programmable use of IrDA Serial InfraRed (SIR) or UART input/output  
Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex  
Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations  
Programmable internal clock generator enabling division of reference clock by 1 to 256 for  
low-power mode bit duration  
234  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
11.1  
Block Diagram  
Figure 11-1. UART Module Block Diagram  
System Clock  
TXFIFO  
16x8  
Interrupt Control  
Interrupt  
UARTIFLS  
UARTIM  
.
.
.
UARTMIS  
UARTRIS  
Identification  
Registers  
UARTICR  
Transmitter  
UnTx  
UARTPCellID0  
Baud Rate  
Generator  
UARTPCellID1  
UARTDR  
UARTPCellID2  
UARTPCellID3  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTIBRD  
UARTFBRD  
Receiver  
UnRx  
UARTPeriphID3  
Control / Status  
UART PeriphID4  
UARTRSR/ECR  
UARTPeriphID5  
UARTFR  
RXFIFO  
16x8  
UARTPeriphID6  
UARTLCRH  
.
.
.
UARTPeriphID7  
UARTCTL  
UARTILPR  
11.2  
Functional Description  
Each Stellaris® UART performs the functions of parallel-to-serial and serial-to-parallel conversions.  
It is similar in functionality to a 16C550 UART, but is not register compatible.  
The UART is configured for transmit and/or receive via the TXE and RXE bits of the UART Control  
(UARTCTL) register (see page 253). Transmit and receive are both enabled out of reset. Before any  
control registers are programmed, the UART must be disabled by clearing the UARTEN bit in  
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed  
prior to the UART stopping.  
The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected  
to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed  
using the UARTCTL register.  
11.2.1  
Transmit/Receive Logic  
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.  
The control logic outputs the serial bit stream beginning with a start bit, and followed by the data  
November 29, 2007  
235  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control  
registers. See Figure 11-2 on page 236 for details.  
The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start  
pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also  
performed, and their status accompanies the data that is written to the receive FIFO.  
Figure 11-2. UART Character Frame  
UnTX  
1
1-2  
stop bits  
LSB  
MSB  
5-8 data bits  
0
n
Parity bit  
if enabled  
Start  
11.2.2  
Baud-Rate Generation  
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.  
The number formed by these two values is used by the baud-rate generator to determine the bit  
period. Having a fractional baud-rate divider allows the UART to generate all the standard baud  
rates.  
The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register  
(see page 249) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate Divisor  
(UARTFBRD) register (see page 250). The baud-rate divisor (BRD) has the following relationship  
to the system clock (where BRDI is the integer part of the BRD and BRDF is the fractional part,  
separated by a decimal place.):  
BRD = BRDI + BRDF = SysClk / (16 * Baud Rate)  
The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the UARTFBRD register)  
can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and  
adding 0.5 to account for rounding errors:  
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)  
The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as  
Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error  
detection during receive operations.  
Along with the UART Line Control, High Byte (UARTLCRH) register (see page 251), the UARTIBRD  
and UARTFBRD registers form an internal 30-bit register. This internal register is only updated  
when a write operation to UARTLCRH is performed, so any changes to the baud-rate divisor must  
be followed by a write to the UARTLCRH register for the changes to take effect.  
To update the baud-rate registers, there are four possible sequences:  
UARTIBRD write, UARTFBRD write, and UARTLCRH write  
UARTFBRD write, UARTIBRD write, and UARTLCRH write  
UARTIBRD write and UARTLCRH write  
UARTFBRD write and UARTLCRH write  
236  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
11.2.3  
Data Transmission  
Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra  
four bits per character for status information. For transmission, data is written into the transmit FIFO.  
If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated  
in the UARTLCRH register. Data continues to be transmitted until there is no data left in the transmit  
FIFO. The BUSY bit in the UART Flag (UARTFR) register (see page 246) is asserted as soon as  
data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while  
data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the  
last character has been transmitted from the shift register, including the stop bits. The UART can  
indicate that it is busy even though the UART may no longer be enabled.  
When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has  
been received), the receive counter begins running and data is sampled on the eighth cycle of  
Baud16 (described in “Transmit/Receive Logic” on page 235).  
The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is  
detected and it is ignored. Start bit errors can be viewed in the UART Receive Status (UARTRSR)  
register (see page 244). If the start bit was valid, successive data bits are sampled on every 16th  
cycle of Baud16 (that is, one bit period later) according to the programmed length of the data  
characters. The parity bit is then checked if parity mode was enabled. Data length and parity are  
defined in the UARTLCRH register.  
Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When  
a full word is received, the data is stored in the receive FIFO, with any error bits associated with  
that word.  
11.2.4  
Serial IR (SIR)  
The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block  
provides functionality that converts between an asynchronous UART data stream, and half-duplex  
serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to  
provide a digital encoded output, and decoded input to the UART. The UART signal pins can be  
connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block  
has two modes of operation:  
In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the  
selected baud rate bit period on the output pin, while logic one levels are transmitted as a static  
LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light  
for each zero. On the reception side, the incoming light pulses energize the photo transistor base  
of the receiver, pulling its output LOW. This drives the UART input pin LOW.  
In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the  
period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz  
frequency) by changing the appropriate bit in the UARTCR register.  
Figure 11-3 on page 238 shows the UART transmit and receive signals, with and without IrDA  
modulation.  
November 29, 2007  
237  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Figure 11-3. IrDA Data Modulation  
Data bits  
0
Stop  
bit  
Start  
bit  
1
0
1
0
0
0
1
1
UnTx  
1
UnTx with IrDA  
3
16  
Bit period  
Bit period  
UnRx with IrDA  
UnRx  
0
1
0
1
0
0
0
1
1
1
Start  
Data bits  
Stop  
In both normal and low-power IrDA modes:  
During transmission, the UART data bit is used as the base for encoding  
During reception, the decoded bits are transferred to the UART receive logic  
The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay  
between transmission and reception. This delay must be generated by software because it is not  
automatically supported by the UART. The delay is required because the infrared receiver electronics  
might become biased, or even saturated from the optical power coupled from the adjacent transmitter  
LED. This delay is known as latency, or receiver setup time.  
11.2.5  
FIFO Operation  
The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed  
via the UART Data (UARTDR) register (see page 242). Read operations of the UARTDR register  
return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data  
in the transmit FIFO.  
Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are  
enabled by setting the FEN bit in UARTLCRH (page 251).  
FIFO status can be monitored via the UART Flag (UARTFR) register (see page 246) and the UART  
Receive Status (UARTRSR) register. Hardware monitors empty, full and overrun conditions. The  
UARTFR register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the  
UARTRSR register shows overrun status via the OE bit.  
The trigger points at which the FIFOs generate interrupts is controlled via the UART Interrupt FIFO  
Level Select (UARTIFLS) register (see page 255). Both FIFOs can be individually configured to  
trigger interrupts at different levels. Available configurations include 1/8, ¼, ½, ¾, and 7/8. For  
example, if the ¼ option is selected for the receive FIFO, the UART generates a receive interrupt  
after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the  
½ mark.  
11.2.6  
Interrupts  
The UART can generate interrupts when the following conditions are observed:  
Overrun Error  
Break Error  
238  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Parity Error  
Framing Error  
Receive Timeout  
Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)  
Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)  
All of the interrupt events are ORed together before being sent to the interrupt controller, so the  
UART can only generate a single interrupt request to the controller at any given time. Software can  
service multiple interrupt events in a single interrupt service routine by reading the UART Masked  
Interrupt Status (UARTMIS) register (see page 260).  
The interrupt events that can trigger a controller-level interrupt are defined in the UART Interrupt  
Mask (UARTIM ) register (see page 257) by setting the corresponding IM bit to 1. If interrupts are  
not used, the raw interrupt status is always visible via the UART Raw Interrupt Status (UARTRIS)  
register (see page 259).  
Interrupts are always cleared (for both the UARTMIS and UARTRIS registers) by setting the  
corresponding bit in the UART Interrupt Clear (UARTICR) register (see page 261).  
The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data  
is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO  
becomes empty through reading all the data (or by reading the holding register), or when a 1 is  
written to the corresponding bit in the UARTICR register.  
11.2.7  
11.2.8  
Loopback Operation  
The UART can be placed into an internal loopback mode for diagnostic or debug work. This is  
accomplished by setting the LBE bit in the UARTCTL register (see page 253). In loopback mode,  
data transmitted on UnTx is received on the UnRx input.  
IrDA SIR block  
The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the  
SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR  
transceiver.  
The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same  
time. Transmission must be stopped before data can be received. The IrDA SIR physical layer  
specifies a minimum 10-ms delay between transmission and reception.  
11.3  
Initialization and Configuration  
To use the UART, the peripheral clock must be enabled by setting the UART0 bit in the RCGC1  
register.  
This section discusses the steps that are required for using a UART module. For this example, the  
system clock is assumed to be 20 MHz and the desired UART configuration is:  
115200 baud rate  
Data length of 8 bits  
One stop bit  
November 29, 2007  
239  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
No parity  
FIFOs disabled  
No interrupts  
The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the  
UARTIBRD and UARTFBRD registers must be written before the UARTLCRH register. Using the  
equation described in “Baud-Rate Generation” on page 236, the BRD can be calculated:  
BRD = 20,000,000 / (16 * 115,200) = 10.8507  
which means that the DIVINT field of the UARTIBRD register (see page 249) should be set to 10.  
The value to be loaded into the UARTFBRD register (see page 250) is calculated by the equation:  
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54  
With the BRD values in hand, the UART configuration is written to the module in the following order:  
1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.  
2. Write the integer portion of the BRD to the UARTIBRD register.  
3. Write the fractional portion of the BRD to the UARTFBRD register.  
4. Write the desired serial parameters to the UARTLCRH register (in this case, a value of  
0x0000.0060).  
5. Enable the UART by setting the UARTEN bit in the UARTCTL register.  
11.4  
Register Map  
Table 11-1 on page 240 lists the UART registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that UART’s base address:  
UART0: 0x4000.C000  
Note: The UART must be disabled (see the UARTEN bit in the UARTCTL register on page 253)  
before any of the control registers are reprogrammed. When the UART is disabled during  
a TX or RX operation, the current transaction is completed prior to the UART stopping.  
Table 11-1. UART Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x018  
0x020  
0x024  
0x028  
UARTDR  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0090  
0x0000.0000  
0x0000.0000  
0x0000.0000  
UART Data  
242  
244  
246  
248  
249  
250  
UARTRSR/UARTECR  
UARTFR  
UART Receive Status/Error Clear  
UART Flag  
UARTILPR  
R/W  
R/W  
R/W  
UART IrDA Low-Power Register  
UART Integer Baud-Rate Divisor  
UART Fractional Baud-Rate Divisor  
UARTIBRD  
UARTFBRD  
240  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x040  
0x044  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
UARTLCRH  
R/W  
R/W  
R/W  
R/W  
RO  
RO  
W1C  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0x0000.0000  
0x0000.0300  
0x0000.0012  
0x0000.0000  
0x0000.000F  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0011  
0x0000.0000  
0x0000.0018  
0x0000.0001  
0x0000.000D  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
UART Line Control  
251  
253  
255  
257  
259  
260  
261  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
UARTCTL  
UART Control  
UARTIFLS  
UART Interrupt FIFO Level Select  
UART Interrupt Mask  
UARTIM  
UARTRIS  
UART Raw Interrupt Status  
UART Masked Interrupt Status  
UART Interrupt Clear  
UARTMIS  
UARTICR  
UARTPeriphID4  
UARTPeriphID5  
UARTPeriphID6  
UARTPeriphID7  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTPeriphID3  
UARTPCellID0  
UARTPCellID1  
UARTPCellID2  
UARTPCellID3  
UART Peripheral Identification 4  
UART Peripheral Identification 5  
UART Peripheral Identification 6  
UART Peripheral Identification 7  
UART Peripheral Identification 0  
UART Peripheral Identification 1  
UART Peripheral Identification 2  
UART Peripheral Identification 3  
UART PrimeCell Identification 0  
UART PrimeCell Identification 1  
UART PrimeCell Identification 2  
UART PrimeCell Identification 3  
11.5  
Register Descriptions  
The remainder of this section lists and describes the UART registers, in numerical order by address  
offset.  
November 29, 2007  
241  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 1: UART Data (UARTDR), offset 0x000  
This register is the data register (the interface to the FIFOs).  
When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs  
are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO).  
A write to this register initiates a transmission from the UART.  
For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity,  
and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and  
status are stored in the receiving holding register (the bottom word of the receive FIFO). The received  
data can be retrieved by reading this register.  
UART Data (UARTDR)  
UART0 base: 0x4000.C000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OE  
BE  
PE  
FE  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11  
OE  
RO  
0
UART Overrun Error  
The OE values are defined as follows:  
Value Description  
0
1
There has been no data loss due to a FIFO overrun.  
New data was received when the FIFO was full, resulting in  
data loss.  
10  
BE  
RO  
0
UART Break Error  
This bit is set to 1 when a break condition is detected, indicating that  
the receive data input was held Low for longer than a full-word  
transmission time (defined as start, data, parity, and stop bits).  
In FIFO mode, this error is associated with the character at the top of  
the FIFO. When a break occurs, only one 0 character is loaded into the  
FIFO. The next character is only enabled after the received data input  
goes to a 1 (marking state) and the next valid start bit is received.  
9
PE  
RO  
0
UART Parity Error  
This bit is set to 1 when the parity of the received data character does  
not match the parity defined by bits 2 and 7 of the UARTLCRH register.  
In FIFO mode, this error is associated with the character at the top of  
the FIFO.  
242  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
8
Name  
FE  
Type  
RO  
Reset  
0
Description  
UART Framing Error  
This bit is set to 1 when the received character does not have a valid  
stop bit (a valid stop bit is 1).  
7:0  
DATA  
R/W  
0
Data Transmitted or Received  
When written, the data that is to be transmitted via the UART. When  
read, the data that was received by the UART.  
November 29, 2007  
243  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset  
0x004  
The UARTRSR/UARTECR register is the receive status register/error clear register.  
In addition to the UARTDR register, receive status can also be read from the UARTRSR register.  
If the status is read from this register, then the status information corresponds to the entry read from  
UARTDR prior to reading UARTRSR. The status information for overrun is set immediately when  
an overrun condition occurs.  
The UARTRSR register cannot be written.  
A write of any value to the UARTECR register clears the framing, parity, break, and overrun errors.  
All the bits are cleared to 0 on reset.  
Read-Only Receive Status (UARTRSR) Register  
UART Receive Status/Error Clear (UARTRSR/UARTECR)  
UART0 base: 0x4000.C000  
Offset 0x004  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OE  
BE  
PE  
FE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
OE  
RO  
0
UART Overrun Error  
When this bit is set to 1, data is received and the FIFO is already full.  
This bit is cleared to 0 by a write to UARTECR.  
The FIFO contents remain valid since no further data is written when  
the FIFO is full, only the contents of the shift register are overwritten.  
The CPU must now read the data in order to empty the FIFO.  
2
BE  
RO  
0
UART Break Error  
This bit is set to 1 when a break condition is detected, indicating that  
the received data input was held Low for longer than a full-word  
transmission time (defined as start, data, parity, and stop bits).  
This bit is cleared to 0 by a write to UARTECR.  
In FIFO mode, this error is associated with the character at the top of  
the FIFO. When a break occurs, only one 0 character is loaded into the  
FIFO. The next character is only enabled after the receive data input  
goes to a 1 (marking state) and the next valid start bit is received.  
244  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
1
Name  
PE  
Type  
RO  
Reset  
0
Description  
UART Parity Error  
This bit is set to 1 when the parity of the received data character does  
not match the parity defined by bits 2 and 7 of the UARTLCRH register.  
This bit is cleared to 0 by a write to UARTECR.  
0
FE  
RO  
0
UART Framing Error  
This bit is set to 1 when the received character does not have a valid  
stop bit (a valid stop bit is 1).  
This bit is cleared to 0 by a write to UARTECR.  
In FIFO mode, this error is associated with the character at the top of  
the FIFO.  
Write-Only Error Clear (UARTECR) Register  
UART Receive Status/Error Clear (UARTRSR/UARTECR)  
UART0 base: 0x4000.C000  
Offset 0x004  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
31:8  
Name  
Type  
WO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
WO  
0
Error Clear  
A write to this register of any data clears the framing, parity, break, and  
overrun flags.  
November 29, 2007  
245  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 3: UART Flag (UARTFR), offset 0x018  
The UARTFR register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and  
TXFE and RXFE bits are 1.  
UART Flag (UARTFR)  
UART0 base: 0x4000.C000  
Offset 0x018  
Type RO, reset 0x0000.0090  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXFE  
RXFF  
TXFF  
RXFE  
BUSY  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
TXFE  
RO  
1
UART Transmit FIFO Empty  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled (FEN is 0), this bit is set when the transmit holding  
register is empty.  
If the FIFO is enabled (FEN is 1), this bit is set when the transmit FIFO  
is empty.  
6
5
4
RXFF  
TXFF  
RXFE  
RO  
RO  
RO  
0
0
1
UART Receive FIFO Full  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the receive holding register  
is full.  
If the FIFO is enabled, this bit is set when the receive FIFO is full.  
UART Transmit FIFO Full  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the transmit holding register  
is full.  
If the FIFO is enabled, this bit is set when the transmit FIFO is full.  
UART Receive FIFO Empty  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the receive holding register  
is empty.  
If the FIFO is enabled, this bit is set when the receive FIFO is empty.  
246  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
3
Name  
BUSY  
Type  
RO  
Reset  
0
Description  
UART Busy  
When this bit is 1, the UART is busy transmitting data. This bit remains  
set until the complete byte, including all stop bits, has been sent from  
the shift register.  
This bit is set as soon as the transmit FIFO becomes non-empty  
(regardless of whether UART is enabled).  
2:0  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
247  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020  
The UARTILPR register is an 8-bit read/write register that stores the low-power counter divisor  
value used to generate the IrLPBaud16 signal by dividing down the system clock (SysClk). All the  
bits are cleared to 0 when reset.  
The IrLPBaud16 internal signal is generated by dividing down the UARTCLK signal according to  
the low-power divisor value written to UARTILPR. The low-power divisor value is calculated as  
follows:  
ILPDVSR = SysClk / FIrLPBaud16  
where FIrLPBaud16 is nominally 1.8432 MHz.  
IrLPBaud16 is an internal signal used for SIR pulse generation when low-power mode is used.  
You must choose the divisor so that 1.42 MHz < FIrLPBaud16 < 2.12 MHz, which results in a low-power  
pulse duration of 1.41–2.11 μs (three times the period of IrLPBaud16). The minimum frequency  
of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that  
pulses greater than 1.4 μs are accepted as valid pulses.  
Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being  
generated.  
UART IrDA Low-Power Register (UARTILPR)  
UART0 base: 0x4000.C000  
Offset 0x020  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ILPDVSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
ILPDVSR  
R/W  
0x00  
IrDA Low-Power Divisor  
This is an 8-bit low-power divisor value.  
248  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024  
The UARTIBRD register is the integer part of the baud-rate divisor value. All the bits are cleared  
on reset. The minimum possible divide ratio is 1 (when UARTIBRD=0), in which case the UARTFBRD  
register is ignored. When changing the UARTIBRD register, the new value does not take effect until  
transmission/reception of the current character is complete. Any changes to the baud-rate divisor  
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 236  
for configuration details.  
UART Integer Baud-Rate Divisor (UARTIBRD)  
UART0 base: 0x4000.C000  
Offset 0x024  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DIVINT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
DIVINT  
R/W  
0x0000  
Integer Baud-Rate Divisor  
November 29, 2007  
249  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028  
The UARTFBRD register is the fractional part of the baud-rate divisor value. All the bits are cleared  
on reset. When changing the UARTFBRD register, the new value does not take effect until  
transmission/reception of the current character is complete. Any changes to the baud-rate divisor  
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 236  
for configuration details.  
UART Fractional Baud-Rate Divisor (UARTFBRD)  
UART0 base: 0x4000.C000  
Offset 0x028  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DIVFRAC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5:0  
DIVFRAC  
R/W  
0x000  
Fractional Baud-Rate Divisor  
250  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 7: UART Line Control (UARTLCRH), offset 0x02C  
The UARTLCRH register is the line control register. Serial parameters such as data length, parity,  
and stop bit selection are implemented in this register.  
When updating the baud-rate divisor (UARTIBRD and/or UARTIFRD), the UARTLCRH register  
must also be written. The write strobe for the baud-rate divisor registers is tied to the UARTLCRH  
register.  
UART Line Control (UARTLCRH)  
UART0 base: 0x4000.C000  
Offset 0x02C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SPS  
WLEN  
FEN  
STP2  
EPS  
PEN  
BRK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
SPS  
R/W  
0
UART Stick Parity Select  
When bits 1, 2, and 7 of UARTLCRH are set, the parity bit is transmitted  
and checked as a 0. When bits 1 and 7 are set and 2 is cleared, the  
parity bit is transmitted and checked as a 1.  
When this bit is cleared, stick parity is disabled.  
UART Word Length  
6:5  
WLEN  
R/W  
0
The bits indicate the number of data bits transmitted or received in a  
frame as follows:  
Value Description  
0x3 8 bits  
0x2 7 bits  
0x1 6 bits  
0x0 5 bits (default)  
4
3
FEN  
R/W  
R/W  
0
0
UART Enable FIFOs  
If this bit is set to 1, transmit and receive FIFO buffers are enabled (FIFO  
mode).  
When cleared to 0, FIFOs are disabled (Character mode). The FIFOs  
become 1-byte-deep holding registers.  
STP2  
UART Two Stop Bits Select  
If this bit is set to 1, two stop bits are transmitted at the end of a frame.  
The receive logic does not check for two stop bits being received.  
November 29, 2007  
251  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
2
Name  
EPS  
Type  
R/W  
Reset  
0
Description  
UART Even Parity Select  
If this bit is set to 1, even parity generation and checking is performed  
during transmission and reception, which checks for an even number  
of 1s in data and parity bits.  
When cleared to 0, then odd parity is performed, which checks for an  
odd number of 1s.  
This bit has no effect when parity is disabled by the PEN bit.  
1
0
PEN  
BRK  
R/W  
R/W  
0
0
UART Parity Enable  
If this bit is set to 1, parity checking and generation is enabled; otherwise,  
parity is disabled and no parity bit is added to the data frame.  
UART Send Break  
If this bit is set to 1, a Low level is continually output on the UnTX output,  
after completing transmission of the current character. For the proper  
execution of the break command, the software must set this bit for at  
least two frames (character periods). For normal use, this bit must be  
cleared to 0.  
252  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: UART Control (UARTCTL), offset 0x030  
The UARTCTL register is the control register. All the bits are cleared on reset except for the  
Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.  
To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration  
change in the module, the UARTEN bit must be cleared before the configuration changes are written.  
If the UART is disabled during a transmit or receive operation, the current transaction is completed  
prior to the UART stopping.  
UART Control (UARTCTL)  
UART0 base: 0x4000.C000  
Offset 0x030  
Type R/W, reset 0x0000.0300  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RXE  
TXE  
LBE  
reserved  
SIRLP  
SIREN UARTEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
9
RXE  
TXE  
R/W  
1
UART Receive Enable  
If this bit is set to 1, the receive section of the UART is enabled. When  
the UART is disabled in the middle of a receive, it completes the current  
character before stopping.  
Note:  
To enable reception, the UARTEN bit must also be set.  
8
R/W  
1
UART Transmit Enable  
If this bit is set to 1, the transmit section of the UART is enabled. When  
the UART is disabled in the middle of a transmission, it completes the  
current character before stopping.  
Note:  
To enable transmission, the UARTEN bit must also be set.  
7
LBE  
R/W  
RO  
0
0
UART Loop Back Enable  
If this bit is set to 1, the UnTX path is fed through the UnRX path.  
6:3  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
253  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
2
Name  
SIRLP  
Type  
R/W  
Reset  
0
Description  
UART SIR Low Power Mode  
This bit selects the IrDA encoding mode. If this bit is cleared to 0,  
low-level bits are transmitted as an active High pulse with a width of  
3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted  
with a pulse width which is 3 times the period of the IrLPBaud16 input  
signal, regardless of the selected bit rate. Setting this bit uses less power,  
but might reduce transmission distances. See page 248 for more  
information.  
1
0
SIREN  
R/W  
R/W  
0
0
UART SIR Enable  
If this bit is set to 1, the IrDA SIR block is enabled, and the UART will  
transmit and receive data using SIR protocol.  
UARTEN  
UART Enable  
If this bit is set to 1, the UART is enabled. When the UART is disabled  
in the middle of transmission or reception, it completes the current  
character before stopping.  
254  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034  
The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define  
the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.  
The interrupts are generated based on a transition through a level rather than being based on the  
level. That is, the interrupts are generated when the fill level progresses through the trigger level.  
For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the  
module is receiving the 9th character.  
Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt  
at the half-way mark.  
UART Interrupt FIFO Level Select (UARTIFLS)  
UART0 base: 0x4000.C000  
Offset 0x034  
Type R/W, reset 0x0000.0012  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RXIFLSEL  
TXIFLSEL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5:3  
RXIFLSEL  
R/W  
0x2  
UART Receive Interrupt FIFO Level Select  
The trigger points for the receive interrupt are as follows:  
Value Description  
0x0 RX FIFO ≥ 1/8 full  
0x1 RX FIFO ≥ ¼ full  
0x2 RX FIFO ≥ ½ full (default)  
0x3 RX FIFO ≥ ¾ full  
0x4 RX FIFO ≥ 7/8 full  
0x5-0x7 Reserved  
November 29, 2007  
255  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
2:0  
Name  
Type  
R/W  
Reset  
0x2  
Description  
TXIFLSEL  
UART Transmit Interrupt FIFO Level Select  
The trigger points for the transmit interrupt are as follows:  
Value Description  
0x0 TX FIFO ≤ 1/8 full  
0x1 TX FIFO ≤ ¼ full  
0x2 TX FIFO ≤ ½ full (default)  
0x3 TX FIFO ≤ ¾ full  
0x4 TX FIFO ≤ 7/8 full  
0x5-0x7 Reserved  
256  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: UART Interrupt Mask (UARTIM), offset 0x038  
The UARTIM register is the interrupt mask set/clear register.  
On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to  
a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a  
0 prevents the raw interrupt signal from being sent to the interrupt controller.  
UART Interrupt Mask (UARTIM)  
UART0 base: 0x4000.C000  
Offset 0x038  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEIM  
BEIM  
PEIM  
FEIM  
RTIM  
TXIM  
RXIM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
OEIM  
BEIM  
PEIM  
FEIM  
RTIM  
TXIM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
UART Overrun Error Interrupt Mask  
On a read, the current mask for the OEIM interrupt is returned.  
Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller.  
0
0
0
0
0
UART Break Error Interrupt Mask  
On a read, the current mask for the BEIM interrupt is returned.  
Setting this bit to 1 promotes the BEIM interrupt to the interrupt controller.  
8
UART Parity Error Interrupt Mask  
On a read, the current mask for the PEIM interrupt is returned.  
Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller.  
7
UART Framing Error Interrupt Mask  
On a read, the current mask for the FEIM interrupt is returned.  
Setting this bit to 1 promotes the FEIM interrupt to the interrupt controller.  
6
UART Receive Time-Out Interrupt Mask  
On a read, the current mask for the RTIM interrupt is returned.  
Setting this bit to 1 promotes the RTIM interrupt to the interrupt controller.  
5
UART Transmit Interrupt Mask  
On a read, the current mask for the TXIM interrupt is returned.  
Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.  
November 29, 2007  
257  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
4
Name  
RXIM  
Type  
R/W  
Reset  
0
Description  
UART Receive Interrupt Mask  
On a read, the current mask for the RXIM interrupt is returned.  
Setting this bit to 1 promotes the RXIM interrupt to the interrupt controller.  
3:0  
reserved  
RO  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
258  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C  
The UARTRIS register is the raw interrupt status register. On a read, this register gives the current  
raw status value of the corresponding interrupt. A write has no effect.  
UART Raw Interrupt Status (UARTRIS)  
UART0 base: 0x4000.C000  
Offset 0x03C  
Type RO, reset 0x0000.000F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OERIS  
BERIS  
PERIS  
FERIS  
RTRIS  
TXRIS  
RXRIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
OERIS  
BERIS  
PERIS  
FERIS  
RTRIS  
TXRIS  
RXRIS  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
UART Overrun Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
UART Break Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
8
0
UART Parity Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
7
0
UART Framing Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
6
0
UART Receive Time-Out Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
5
0
UART Transmit Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
4
0
UART Receive Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
3:0  
0xF  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
259  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040  
The UARTMIS register is the masked interrupt status register. On a read, this register gives the  
current masked status value of the corresponding interrupt. A write has no effect.  
UART Masked Interrupt Status (UARTMIS)  
UART0 base: 0x4000.C000  
Offset 0x040  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEMIS  
BEMIS  
PEMIS  
FEMIS  
RTMIS  
TXMIS  
RXMIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
OEMIS  
BEMIS  
PEMIS  
FEMIS  
RTMIS  
TXMIS  
RXMIS  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
0
UART Overrun Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
UART Break Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
8
UART Parity Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
7
UART Framing Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
6
UART Receive Time-Out Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
5
UART Transmit Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
4
UART Receive Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
3:0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
260  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 13: UART Interrupt Clear (UARTICR), offset 0x044  
The UARTICR register is the interrupt clear register. On a write of 1, the corresponding interrupt  
(both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.  
UART Interrupt Clear (UARTICR)  
UART0 base: 0x4000.C000  
Offset 0x044  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEIC  
BEIC  
PEIC  
FEIC  
RTIC  
TXIC  
RXIC  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
OEIC  
BEIC  
PEIC  
FEIC  
W1C  
W1C  
W1C  
W1C  
0
Overrun Error Interrupt Clear  
The OEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
9
0
0
0
Break Error Interrupt Clear  
The BEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
8
Parity Error Interrupt Clear  
The PEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
7
Framing Error Interrupt Clear  
The FEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
November 29, 2007  
261  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
6
Name  
RTIC  
Type  
W1C  
Reset  
0
Description  
Receive Time-Out Interrupt Clear  
The RTIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
5
TXIC  
W1C  
W1C  
RO  
0
Transmit Interrupt Clear  
The TXIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
4
RXIC  
0
Receive Interrupt Clear  
The RXIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
3:0  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
262  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 4 (UARTPeriphID4)  
UART0 base: 0x4000.C000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x0000  
UART Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
263  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 5 (UARTPeriphID5)  
UART0 base: 0x4000.C000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x0000  
UART Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
264  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 6 (UARTPeriphID6)  
UART0 base: 0x4000.C000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x0000  
UART Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
265  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 7 (UARTPeriphID7)  
UART0 base: 0x4000.C000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x0000  
UART Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
266  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 0 (UARTPeriphID0)  
UART0 base: 0x4000.C000  
Offset 0xFE0  
Type RO, reset 0x0000.0011  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x11  
UART Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
267  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 1 (UARTPeriphID1)  
UART0 base: 0x4000.C000  
Offset 0xFE4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x00  
UART Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
268  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 2 (UARTPeriphID2)  
UART0 base: 0x4000.C000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
UART Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
269  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 3 (UARTPeriphID3)  
UART0 base: 0x4000.C000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
UART Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
270  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 0 (UARTPCellID0)  
UART0 base: 0x4000.C000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
UART PrimeCell ID Register[7:0]  
Provides software a standard cross-peripheral identification system.  
November 29, 2007  
271  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 1 (UARTPCellID1)  
UART0 base: 0x4000.C000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
UART PrimeCell ID Register[15:8]  
Provides software a standard cross-peripheral identification system.  
272  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 2 (UARTPCellID2)  
UART0 base: 0x4000.C000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
UART PrimeCell ID Register[23:16]  
Provides software a standard cross-peripheral identification system.  
November 29, 2007  
273  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 3 (UARTPCellID3)  
UART0 base: 0x4000.C000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
UART PrimeCell ID Register[31:24]  
Provides software a standard cross-peripheral identification system.  
274  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
12  
Synchronous Serial Interface (SSI)  
The Stellaris® Synchronous Serial Interface (SSI) is a master or slave interface for synchronous  
serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas  
Instruments synchronous serial interfaces.  
The Stellaris® SSI module has the following features:  
Master or slave operation  
Programmable clock bit rate and prescale  
Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep  
Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments  
synchronous serial interfaces  
Programmable data frame size from 4 to 16 bits  
Internal loopback test mode for diagnostic/debug testing  
12.1  
Block Diagram  
Figure 12-1. SSI Module Block Diagram  
Interrupt  
Interrupt Control  
SSIIM  
TxFIFO  
8 x 16  
SSIMIS  
SSIRIS  
Control / Status  
.
.
SSIICR  
SSICR0  
.
SSICR1  
SSITx  
SSISR  
SSIRx  
SSIClk  
SSIFss  
Transmit/  
Receive  
Logic  
SSIDR  
RxFIFO  
8 x 16  
System Clock  
.
.
.
Clock  
Prescaler  
Identification Registers  
SSICPSR  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
SSIPCellID3  
SSIPeriphID0  
SSIPeriphID1  
SSIPeriphID2  
SSIPeriphID3  
SSIPeriphID4  
SSIPeriphID5  
SSIPeriphID6  
SSIPeriphID7  
12.2  
Functional Description  
The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU  
accesses data, control, and status information. The transmit and receive paths are buffered with  
November 29, 2007  
275  
Preliminary  
Synchronous Serial Interface (SSI)  
internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit  
and receive modes.  
12.2.1  
Bit Rate Generation  
The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output  
clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by  
peripheral devices.  
The serial bit rate is derived by dividing down the 25-MHz input clock. The clock is first divided by  
an even prescale value CPSDVSR from 2 to 254, which is programmed in the SSI Clock Prescale  
(SSICPSR) register (see page 294). The clock is further divided by a value from 1 to 256, which is  
1 + SCR, where SCR is the value programmed in the SSI Control0 (SSICR0) register (see page 287).  
The frequency of the output clock SSIClk is defined by:  
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))  
Note that although the SSIClk transmit clock can theoretically be 12.5 MHz, the module may not  
be able to operate at that speed. For master mode, the system clock must be at least two times  
faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the  
SSIClk.  
See “Synchronous Serial Interface (SSI)” on page 455 to view SSI timing parameters.  
12.2.2  
FIFO Operation  
12.2.2.1 Transmit FIFO  
The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The  
CPU writes data to the FIFO by writing the SSI Data (SSIDR) register (see page 291), and data is  
stored in the FIFO until it is read out by the transmission logic.  
When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial  
conversion and transmission to the attached slave or master, respectively, through the SSITx pin.  
12.2.2.2 Receive FIFO  
The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.  
Received data from the serial interface is stored in the buffer until read out by the CPU, which  
accesses the read FIFO by reading the SSIDR register.  
When configured as a master or slave, serial data received through the SSIRx pin is registered  
prior to parallel loading into the attached slave or master receive FIFO, respectively.  
12.2.3  
Interrupts  
The SSI can generate interrupts when the following conditions are observed:  
Transmit FIFO service  
Receive FIFO service  
Receive FIFO time-out  
Receive FIFO overrun  
276  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI  
can only generate a single interrupt request to the controller at any given time. You can mask each  
of the four individual maskable interrupts by setting the appropriate bits in the SSI Interrupt Mask  
(SSIIM) register (see page 295). Setting the appropriate mask bit to 1 enables the interrupt.  
Provision of the individual outputs, as well as a combined interrupt output, allows use of either a  
global interrupt service routine, or modular device drivers to handle interrupts. The transmit and  
receive dynamic dataflow interrupts have been separated from the status interrupts so that data  
can be read or written in response to the FIFO trigger levels. The status of the individual interrupt  
sources can be read from the SSI Raw Interrupt Status (SSIRIS) and SSI Masked Interrupt Status  
(SSIMIS) registers (see page 297 and page 298, respectively).  
12.2.4  
Frame Formats  
Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is  
transmitted starting with the MSB. There are three basic frame types that can be selected:  
Texas Instruments synchronous serial  
Freescale SPI  
MICROWIRE  
For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk  
transitions at the programmed frequency only during active transmission or reception of data. The  
idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive  
FIFO still contains data after a timeout period.  
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFss ) pin is active Low,  
and is asserted (pulled down) during the entire transmission of the frame.  
For Texas Instruments synchronous serial frame format, the SSIFss pin is pulsed for one serial  
clock period starting at its rising edge, prior to the transmission of each frame. For this frame format,  
both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and  
latch data from the other device on the falling edge.  
Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a  
special master-slave messaging technique, which operates at half-duplex. In this mode, when a  
frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no  
incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes  
it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent,  
responds with the requested data. The returned data can be 4 to 16 bits in length, making the total  
frame length anywhere from 13 to 25 bits.  
12.2.4.1 Texas Instruments Synchronous Serial Frame Format  
Figure 12-2 on page 278 shows the Texas Instruments synchronous serial frame format for a single  
transmitted frame.  
November 29, 2007  
277  
Preliminary  
Synchronous Serial Interface (SSI)  
Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer)  
SSIClk  
SSIFss  
MSB  
LSB  
SSITx/SSIRx  
4 to 16 bits  
In this mode, SSIClk and SSIFss are forced Low, and the transmit data line SSITx is tristated  
whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFss is  
pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit  
FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB  
of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data  
is shifted onto the SSIRx pin by the off-chip serial slave device.  
Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on  
the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive  
FIFO on the first rising edge of SSIClk after the LSB has been latched.  
Figure 12-3 on page 278 shows the Texas Instruments synchronous serial frame format when  
back-to-back frames are transmitted.  
Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer)  
SSIClk  
SSIFss  
MSB  
LSB  
SSITx/SSIRx  
4 to 16 bits  
12.2.4.2 Freescale SPI Frame Format  
The Freescale SPI interface is a four-wire interface where the SSIFss signal behaves as a slave  
select. The main feature of the Freescale SPI format is that the inactive state and phase of the  
SSIClk signal are programmable through the SPO and SPH bits within the SSISCR0 control register.  
SPO Clock Polarity Bit  
When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk  
pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not  
being transferred.  
SPH Phase Control Bit  
The SPH phase control bit selects the clock edge that captures data and allows it to change state.  
It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition  
before the first data capture edge. When the SPH phase control bit is Low, data is captured on the  
first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.  
278  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
12.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0  
Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and  
SPH=0 are shown in Figure 12-4 on page 279 and Figure 12-5 on page 279.  
Figure 12-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
SSITx  
MSB  
LSB  
LSB  
Q
4 to 16 bits  
MSB  
Note: Q is undefined.  
Figure 12-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
LSB  
LSB  
MSB  
LSB  
LSB  
MSB  
4 to 16 bits  
SSITx  
MSB  
MSB  
In this configuration, during idle periods:  
SSIClk is forced Low  
SSIFss is forced High  
The transmit data line SSITx is arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSIClk pad  
When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto  
the SSIRx input line of the master. The master SSITx output pad is enabled.  
One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the  
master and slave data have been set, the SSIClk master clock pin goes High after one further half  
SSIClk period.  
The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.  
In the case of a single word transmission, after all bits of the data word have been transferred, the  
SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.  
However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed  
High between each data word transfer. This is because the slave select pin freezes the data in its  
November 29, 2007  
279  
Preliminary  
Synchronous Serial Interface (SSI)  
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,  
the master device must raise the SSIFss pin of the slave device between each data transfer to  
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin  
is returned to its idle state one SSIClk period after the last bit has been captured.  
12.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1  
The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure  
12-6 on page 280, which covers both single and continuous transfers.  
Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1  
SSIClk  
SSIFss  
SSIRx  
SSITx  
Q
LSB  
LSB  
Q
MSB  
MSB  
4 to 16 bits  
Note: Q is undefined.  
In this configuration, during idle periods:  
SSIClk is forced Low  
SSIFss is forced High  
The transmit data line SSITx is arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSIClk pad  
When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After  
a further one half SSIClk period, both master and slave valid data is enabled onto their respective  
transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.  
Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.  
In the case of a single word transfer, after all bits have been transferred, the SSIFss line is returned  
to its idle High state one SSIClk period after the last bit has been captured.  
For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words  
and termination is the same as that of the single word transfer.  
12.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0  
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and  
SPH=0 are shown in Figure 12-7 on page 281 and Figure 12-8 on page 281.  
280  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 12-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
MSB  
LSB  
LSB  
Q
4 to 16 bits  
MSB  
SSITx  
Note: Q is undefined.  
Figure 12-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0  
SSIClk  
SSIFss  
LSB  
SSITx/SSIRx  
MSB  
LSB  
MSB  
4 to 16 bits  
In this configuration, during idle periods:  
SSIClk is forced High  
SSIFss is forced High  
The transmit data line SSITx is arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSIClk pad  
When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low, which causes slave data to be immediately  
transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.  
One half period later, valid master data is transferred to the SSITx line. Now that both the master  
and slave data have been set, the SSIClk master clock pin becomes Low after one further half  
SSIClk period. This means that data is captured on the falling edges and propagated on the rising  
edges of the SSIClk signal.  
In the case of a single word transmission, after all bits of the data word are transferred, the SSIFss  
line is returned to its idle High state one SSIClk period after the last bit has been captured.  
However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed  
High between each data word transfer. This is because the slave select pin freezes the data in its  
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,  
the master device must raise the SSIFss pin of the slave device between each data transfer to  
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin  
is returned to its idle state one SSIClk period after the last bit has been captured.  
November 29, 2007  
281  
Preliminary  
Synchronous Serial Interface (SSI)  
12.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1  
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure  
12-9 on page 282, which covers both single and continuous transfers.  
Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1  
SSIClk  
SSIFss  
SSIRx  
SSITx  
Q
LSB  
LSB  
Q
MSB  
MSB  
4 to 16 bits  
Note: Q is undefined.  
In this configuration, during idle periods:  
SSIClk is forced High  
SSIFss is forced High  
The transmit data line SSITx is arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSIClk pad  
When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled.  
After a further one-half SSIClk period, both master and slave data are enabled onto their respective  
transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then  
captured on the rising edges and propagated on the falling edges of the SSIClk signal.  
After all bits have been transferred, in the case of a single word transmission, the SSIFss line is  
returned to its idle high state one SSIClk period after the last bit has been captured.  
For continuous back-to-back transmissions, the SSIFss pin remains in its active Low state, until  
the final bit of the last word has been captured, and then returns to its idle state as described above.  
For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words  
and termination is the same as that of the single word transfer.  
12.2.4.7 MICROWIRE Frame Format  
Figure 12-10 on page 283 shows the MICROWIRE frame format, again for a single frame. Figure  
12-11 on page 284 shows the same format when back-to-back frames are transmitted.  
282  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 12-10. MICROWIRE Frame Format (Single Frame)  
SSIClk  
SSIFss  
MSB  
LSB  
SSITx  
SSIRx  
8-bit control  
MSB  
LSB  
0
4 to 16 bits  
output data  
MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of  
full-duplex, using a master-slave message passing technique. Each serial transmission begins with  
an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this  
transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip  
slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has  
been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the  
total frame length anywhere from 13 to 25 bits.  
In this configuration, during idle periods:  
SSIClk is forced Low  
SSIFss is forced High  
The transmit data line SSITx is arbitrarily forced Low  
A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFss  
causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial  
shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the  
SSITx pin. SSIFss remains Low for the duration of the frame transmission. The SSIRx pin remains  
tristated during this transmission.  
The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of  
each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a  
one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven  
onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising  
edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one  
clock period after the last bit has been latched in the receive serial shifter, which causes the data  
to be transferred to the receive FIFO.  
Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk  
after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.  
For continuous transfers, data transmission begins and ends in the same manner as a single transfer.  
However, the SSIFss line is continuously asserted (held Low) and transmission of data occurs  
back-to-back. The control byte of the next frame follows directly after the LSB of the received data  
from the current frame. Each of the received values is transferred from the receive shifter on the  
falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.  
November 29, 2007  
283  
Preliminary  
Synchronous Serial Interface (SSI)  
Figure 12-11. MICROWIRE Frame Format (Continuous Transfer)  
SSIClk  
SSIFss  
SSITx  
LSB  
MSB  
LSB  
8-bit control  
SSIRx  
MSB  
LSB  
MSB  
0
4 to 16 bits  
output data  
In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of  
SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that  
the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.  
Figure 12-12 on page 284 illustrates these setup and hold time requirements. With respect to the  
SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss  
must have a setup of at least two times the period of SSIClk on which the SSI operates. With  
respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one  
SSIClk period.  
Figure 12-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements  
tSetup=(2*tSSIClk  
)
tHold=tSSIClk  
SSIClk  
SSIFss  
SSIRx  
First RX data to be  
sampled by SSI slave  
12.3  
Initialization and Configuration  
To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.  
For each of the frame formats, the SSI is configured using the following steps:  
1. Ensure that the SSE bit in the SSICR1 register is disabled before making any configuration  
changes.  
2. Select whether the SSI is a master or slave:  
a. For master operations, set the SSICR1 register to 0x0000.0000.  
b. For slave mode (output enabled), set the SSICR1 register to 0x0000.0004.  
c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.  
3. Configure the clock prescale divisor by writing the SSICPSR register.  
284  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
4. Write the SSICR0 register with the following configuration:  
Serial clock rate (SCR)  
Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)  
The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)  
The data size (DSS)  
5. Enable the SSI by setting the SSE bit in the SSICR1 register.  
As an example, assume the SSI must be configured to operate with the following parameters:  
Master operation  
Freescale SPI mode (SPO=1, SPH=1)  
1 Mbps bit rate  
8 data bits  
Assuming the system clock is 20 MHz, the bit rate calculation would be:  
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))  
1x106 = 20x106 / (CPSDVSR * (1 + SCR))  
In this case, if CPSDVSR=2, SCR must be 9.  
The configuration sequence would be as follows:  
1. Ensure that the SSE bit in the SSICR1 register is disabled.  
2. Write the SSICR1 register with a value of 0x0000.0000.  
3. Write the SSICPSR register with a value of 0x0000.0002.  
4. Write the SSICR0 register with a value of 0x0000.09C7.  
5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.  
12.4  
Register Map  
Table 12-1 on page 285 lists the SSI registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that SSI module’s base address:  
SSI0: 0x4000.8000  
Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control  
registers are reprogrammed.  
Table 12-1. SSI Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
SSICR0  
R/W  
0x0000.0000  
SSI Control 0  
287  
November 29, 2007  
285  
Preliminary  
Synchronous Serial Interface (SSI)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
SSICR1  
R/W  
R/W  
RO  
R/W  
R/W  
RO  
RO  
W1C  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0003  
0x0000.0000  
0x0000.0000  
0x0000.0008  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0022  
0x0000.0000  
0x0000.0018  
0x0000.0001  
0x0000.000D  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
SSI Control 1  
289  
291  
292  
294  
295  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
SSIDR  
SSI Data  
SSISR  
SSI Status  
SSICPSR  
SSI Clock Prescale  
SSIIM  
SSI Interrupt Mask  
SSIRIS  
SSI Raw Interrupt Status  
SSI Masked Interrupt Status  
SSI Interrupt Clear  
SSIMIS  
SSIICR  
SSIPeriphID4  
SSIPeriphID5  
SSIPeriphID6  
SSIPeriphID7  
SSIPeriphID0  
SSIPeriphID1  
SSIPeriphID2  
SSIPeriphID3  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
SSIPCellID3  
SSI Peripheral Identification 4  
SSI Peripheral Identification 5  
SSI Peripheral Identification 6  
SSI Peripheral Identification 7  
SSI Peripheral Identification 0  
SSI Peripheral Identification 1  
SSI Peripheral Identification 2  
SSI Peripheral Identification 3  
SSI PrimeCell Identification 0  
SSI PrimeCell Identification 1  
SSI PrimeCell Identification 2  
SSI PrimeCell Identification 3  
12.5  
Register Descriptions  
The remainder of this section lists and describes the SSI registers, in numerical order by address  
offset.  
286  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 1: SSI Control 0 (SSICR0), offset 0x000  
SSICR0 is control register 0 and contains bit fields that control various functions within the SSI  
module. Functionality such as protocol mode, clock rate, and data size are configured in this register.  
SSI Control 0 (SSICR0)  
SSI0 base: 0x4000.8000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SCR  
SPH  
SPO  
FRF  
DSS  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:8  
SCR  
R/W  
0x0000  
SSI Serial Clock Rate  
The value SCR is used to generate the transmit and receive bit rate of  
the SSI. The bit rate is:  
BR=FSSIClk/(CPSDVSR * (1 + SCR))  
where CPSDVSR is an even value from 2-254 programmed in the  
SSICPSR register, and SCR is a value from 0-255.  
7
SPH  
R/W  
0
SSI Serial Clock Phase  
This bit is only applicable to the Freescale SPI Format.  
The SPH control bit selects the clock edge that captures data and allows  
it to change state. It has the most impact on the first bit transmitted by  
either allowing or not allowing a clock transition before the first data  
capture edge.  
When the SPH bit is 0, data is captured on the first clock edge transition.  
If SPH is 1, data is captured on the second clock edge transition.  
6
SPO  
R/W  
0
SSI Serial Clock Polarity  
This bit is only applicable to the Freescale SPI Format.  
When the SPO bit is 0, it produces a steady state Low value on the  
SSIClk pin. If SPO is 1, a steady state High value is placed on the  
SSIClk pin when data is not being transferred.  
November 29, 2007  
287  
Preliminary  
Synchronous Serial Interface (SSI)  
Bit/Field  
5:4  
Name  
FRF  
Type  
R/W  
Reset  
0x0  
Description  
SSI Frame Format Select  
The FRF values are defined as follows:  
Value Frame Format  
0x0 Freescale SPI Frame Format  
0x1 Texas Intruments Synchronous Serial Frame Format  
0x2 MICROWIRE Frame Format  
0x3 Reserved  
3:0  
DSS  
R/W  
0x00  
SSI Data Size Select  
The DSS values are defined as follows:  
Value  
Data Size  
0x0-0x2 Reserved  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
4-bit data  
5-bit data  
6-bit data  
7-bit data  
8-bit data  
9-bit data  
0x9 10-bit data  
0xA 11-bit data  
0xB 12-bit data  
0xC 13-bit data  
0xD 14-bit data  
0xE 15-bit data  
0xF 16-bit data  
288  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 2: SSI Control 1 (SSICR1), offset 0x004  
SSICR1 is control register 1 and contains bit fields that control various functions within the SSI  
module. Master and slave mode functionality is controlled by this register.  
SSI Control 1 (SSICR1)  
SSI0 base: 0x4000.8000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SOD  
MS  
SSE  
LBM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
SOD  
R/W  
0
SSI Slave Mode Output Disable  
This bit is relevant only in the Slave mode (MS=1). In multiple-slave  
systems, it is possible for the SSI master to broadcast a message to all  
slaves in the system while ensuring that only one slave drives data onto  
the serial output line. In such systems, the TXD lines from multiple slaves  
could be tied together. To operate in such a system, the SOD bit can be  
configured so that the SSI slave does not drive the SSITx pin.  
The SOD values are defined as follows:  
Value Description  
0
1
SSI can drive SSITx output in Slave Output mode.  
SSI must not drive the SSITx output in Slave mode.  
2
MS  
R/W  
0
SSI Master/Slave Select  
This bit selects Master or Slave mode and can be modified only when  
SSI is disabled (SSE=0).  
The MS values are defined as follows:  
Value Description  
0
1
Device configured as a master.  
Device configured as a slave.  
November 29, 2007  
289  
Preliminary  
Synchronous Serial Interface (SSI)  
Bit/Field  
1
Name  
SSE  
Type  
R/W  
Reset  
0
Description  
SSI Synchronous Serial Port Enable  
Setting this bit enables SSI operation.  
The SSE values are defined as follows:  
Value Description  
0
1
SSI operation disabled.  
SSI operation enabled.  
Note:  
This bit must be set to 0 before any control registers  
are reprogrammed.  
0
LBM  
R/W  
0
SSI Loopback Mode  
Setting this bit enables Loopback Test mode.  
The LBM values are defined as follows:  
Value Description  
0
1
Normal serial port operation enabled.  
Output of the transmit serial shift register is connected internally  
to the input of the receive serial shift register.  
290  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 3: SSI Data (SSIDR), offset 0x008  
SSIDR is the data register and is 16-bits wide. When SSIDR is read, the entry in the receive FIFO  
(pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI  
receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed  
to by the current FIFO write pointer).  
When SSIDR is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written  
to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is  
loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed  
bit rate.  
When a data size of less than 16 bits is selected, the user must right-justify data written to the  
transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is  
automatically right-justified in the receive buffer.  
When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is  
eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer.  
The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the SSICR1  
register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.  
SSI Data (SSIDR)  
SSI0 base: 0x4000.8000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
DATA  
R/W  
0x0000  
SSI Receive/Transmit Data  
A read operation reads the receive FIFO. A write operation writes the  
transmit FIFO.  
Software must right-justify data when the SSI is programmed for a data  
size that is less than 16 bits. Unused bits at the top are ignored by the  
transmit logic. The receive logic automatically right-justifies the data.  
November 29, 2007  
291  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 4: SSI Status (SSISR), offset 0x00C  
SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.  
SSI Status (SSISR)  
SSI0 base: 0x4000.8000  
Offset 0x00C  
Type RO, reset 0x0000.0003  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BSY  
RFF  
RNE  
TNF  
TFE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
R0  
1
Bit/Field  
31:5  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4
BSY  
RO  
0
SSI Busy Bit  
The BSY values are defined as follows:  
Value Description  
0
1
SSI is idle.  
SSI is currently transmitting and/or receiving a frame, or the  
transmit FIFO is not empty.  
3
2
1
RFF  
RNE  
TNF  
RO  
RO  
RO  
0
0
1
SSI Receive FIFO Full  
The RFF values are defined as follows:  
Value Description  
0
1
Receive FIFO is not full.  
Receive FIFO is full.  
SSI Receive FIFO Not Empty  
The RNE values are defined as follows:  
Value Description  
0
1
Receive FIFO is empty.  
Receive FIFO is not empty.  
SSI Transmit FIFO Not Full  
The TNF values are defined as follows:  
Value Description  
0
1
Transmit FIFO is full.  
Transmit FIFO is not full.  
292  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
0
Name  
TFE  
Type  
R0  
Reset  
1
Description  
SSI Transmit FIFO Empty  
The TFE values are defined as follows:  
Value Description  
0
1
Transmit FIFO is not empty.  
Transmit FIFO is empty.  
November 29, 2007  
293  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 5: SSI Clock Prescale (SSICPSR), offset 0x010  
SSICPSR is the clock prescale register and specifies the division factor by which the system clock  
must be internally divided before further use.  
The value programmed into this register must be an even number between 2 and 254. The  
least-significant bit of the programmed number is hard-coded to zero. If an odd number is written  
to this register, data read back from this register has the least-significant bit as zero.  
SSI Clock Prescale (SSICPSR)  
SSI0 base: 0x4000.8000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CPSDVSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CPSDVSR  
R/W  
0x00  
SSI Clock Prescale Divisor  
This value must be an even number from 2 to 254, depending on the  
frequency of SSIClk. The LSB always returns 0 on reads.  
294  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014  
The SSIIM register is the interrupt mask set or clear register. It is a read/write register and all bits  
are cleared to 0 on reset.  
On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to  
the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding  
mask.  
SSI Interrupt Mask (SSIIM)  
SSI0 base: 0x4000.8000  
Offset 0x014  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXIM  
RXIM  
RTIM  
RORIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
TXIM  
RXIM  
RTIM  
R/W  
R/W  
R/W  
0
0
0
SSI Transmit FIFO Interrupt Mask  
The TXIM values are defined as follows:  
Value Description  
0
1
TX FIFO half-full or less condition interrupt is masked.  
TX FIFO half-full or less condition interrupt is not masked.  
SSI Receive FIFO Interrupt Mask  
The RXIM values are defined as follows:  
Value Description  
0
1
RX FIFO half-full or more condition interrupt is masked.  
RX FIFO half-full or more condition interrupt is not masked.  
SSI Receive Time-Out Interrupt Mask  
The RTIM values are defined as follows:  
Value Description  
0
1
RX FIFO time-out interrupt is masked.  
RX FIFO time-out interrupt is not masked.  
November 29, 2007  
295  
Preliminary  
Synchronous Serial Interface (SSI)  
Bit/Field  
0
Name  
Type  
R/W  
Reset  
0
Description  
RORIM  
SSI Receive Overrun Interrupt Mask  
The RORIM values are defined as follows:  
Value Description  
0
1
RX FIFO overrun interrupt is masked.  
RX FIFO overrun interrupt is not masked.  
296  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018  
The SSIRIS register is the raw interrupt status register. On a read, this register gives the current  
raw status value of the corresponding interrupt prior to masking. A write has no effect.  
SSI Raw Interrupt Status (SSIRIS)  
SSI0 base: 0x4000.8000  
Offset 0x018  
Type RO, reset 0x0000.0008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXRIS  
RXRIS  
RTRIS RORRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
TXRIS  
RXRIS  
RTRIS  
RO  
RO  
RO  
RO  
1
0
0
0
SSI Transmit FIFO Raw Interrupt Status  
Indicates that the transmit FIFO is half full or less, when set.  
SSI Receive FIFO Raw Interrupt Status  
Indicates that the receive FIFO is half full or more, when set.  
SSI Receive Time-Out Raw Interrupt Status  
Indicates that the receive time-out has occurred, when set.  
RORRIS  
SSI Receive Overrun Raw Interrupt Status  
Indicates that the receive FIFO has overflowed, when set.  
November 29, 2007  
297  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C  
The SSIMIS register is the masked interrupt status register. On a read, this register gives the current  
masked status value of the corresponding interrupt. A write has no effect.  
SSI Masked Interrupt Status (SSIMIS)  
SSI0 base: 0x4000.8000  
Offset 0x01C  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXMIS  
RXMIS  
RTMIS RORMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
TXMIS  
RXMIS  
RTMIS  
RO  
RO  
RO  
RO  
0
0
0
0
SSI Transmit FIFO Masked Interrupt Status  
Indicates that the transmit FIFO is half full or less, when set.  
SSI Receive FIFO Masked Interrupt Status  
Indicates that the receive FIFO is half full or more, when set.  
SSI Receive Time-Out Masked Interrupt Status  
Indicates that the receive time-out has occurred, when set.  
RORMIS  
SSI Receive Overrun Masked Interrupt Status  
Indicates that the receive FIFO has overflowed, when set.  
298  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020  
The SSIICR register is the interrupt clear register. On a write of 1, the corresponding interrupt is  
cleared. A write of 0 has no effect.  
SSI Interrupt Clear (SSIICR)  
SSI0 base: 0x4000.8000  
Offset 0x020  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RTIC  
RORIC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
RTIC  
W1C  
0
SSI Receive Time-Out Interrupt Clear  
The RTIC values are defined as follows:  
Value Description  
0
1
No effect on interrupt.  
Clears interrupt.  
0
RORIC  
W1C  
0
SSI Receive Overrun Interrupt Clear  
The RORIC values are defined as follows:  
Value Description  
0
1
No effect on interrupt.  
Clears interrupt.  
November 29, 2007  
299  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 4 (SSIPeriphID4)  
SSI0 base: 0x4000.8000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x00  
SSI Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
300  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 5 (SSIPeriphID5)  
SSI0 base: 0x4000.8000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x00  
SSI Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
301  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 6 (SSIPeriphID6)  
SSI0 base: 0x4000.8000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x00  
SSI Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
302  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 7 (SSIPeriphID7)  
SSI0 base: 0x4000.8000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x00  
SSI Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
303  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 0 (SSIPeriphID0)  
SSI0 base: 0x4000.8000  
Offset 0xFE0  
Type RO, reset 0x0000.0022  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x22  
SSI Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
304  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 1 (SSIPeriphID1)  
SSI0 base: 0x4000.8000  
Offset 0xFE4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x00  
SSI Peripheral ID Register [15:8]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
305  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 2 (SSIPeriphID2)  
SSI0 base: 0x4000.8000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
SSI Peripheral ID Register [23:16]  
Can be used by software to identify the presence of this peripheral.  
306  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 3 (SSIPeriphID3)  
SSI0 base: 0x4000.8000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
SSI Peripheral ID Register [31:24]  
Can be used by software to identify the presence of this peripheral.  
November 29, 2007  
307  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 0 (SSIPCellID0)  
SSI0 base: 0x4000.8000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
SSI PrimeCell ID Register [7:0]  
Provides software a standard cross-peripheral identification system.  
308  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 1 (SSIPCellID1)  
SSI0 base: 0x4000.8000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
SSI PrimeCell ID Register [15:8]  
Provides software a standard cross-peripheral identification system.  
November 29, 2007  
309  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 2 (SSIPCellID2)  
SSI0 base: 0x4000.8000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
SSI PrimeCell ID Register [23:16]  
Provides software a standard cross-peripheral identification system.  
310  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 3 (SSIPCellID3)  
SSI0 base: 0x4000.8000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
SSI PrimeCell ID Register [31:24]  
Provides software a standard cross-peripheral identification system.  
November 29, 2007  
311  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
13  
Inter-Integrated Circuit (I2C) Interface  
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design  
(a serial data line SDA and a serial clock line SCL), and interfaces to external I2C devices such as  
serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I2C  
bus may also be used for system testing and diagnostic purposes in product development and  
manufacture. The LM3S2110 microcontroller includes one I2C module, providing the ability to interact  
(both send and receive) with other I2C devices on the bus.  
Devices on the I2C bus can be designated as either a master or a slave. The Stellaris® I2C module  
supports both sending and receiving data as either a master or a slave, and also supports the  
simultaneous operation as both a master and a slave. There are a total of four I2C modes: Master  
Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris® I2C module can  
operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).  
Both the I2C master and slave can generate interrupts; the I2C master generates interrupts when  
a transmit or receive operation completes (or aborts due to an error) and the I2C slave generates  
interrupts when data has been sent or requested by a master.  
13.1  
Block Diagram  
Figure 13-1. I2C Block Diagram  
I2CSCL  
I2C Control  
I2C Master Core  
I2CMSA  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
I2CSOAR  
I2CSCSR  
I2CSDR  
I2CSIM  
I2CSDA  
I2CSCL  
I2CSDA  
Interrupt  
I2C I/O Select  
I2CSRIS  
I2CSMIS  
I2CSICR  
I2CSCL  
I2CSDA  
I2C Slave Core  
13.2  
Functional Description  
The I2C module is comprised of both master and slave functions which are implemented as separate  
peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional  
open-drain pads. A typical I2C bus configuration is shown in Figure 13-2 on page 313.  
See “I2C” on page 454 for I2C timing diagrams.  
312  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 13-2. I2C Bus Configuration  
R
R
PUP  
PUP  
SCL  
SDA  
2
I C Bus  
I2CSCL I2CSDA  
SCL  
SDA  
SCL  
SDA  
3rd Party Device  
with I C Interface  
3rd Party Device  
with I C Interface  
TM  
2
2
Stellaris  
13.2.1  
I2C Bus Functional Overview  
The I2C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris®  
microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock  
line. The bus is considered idle when both lines are high.  
Every transaction on the I2C bus is nine bits long, consisting of eight data bits and a single  
acknowledge bit. The number of bytes per transfer (defined as the time between a valid START  
and STOP condition, described in “START and STOP Conditions” on page 313) is unrestricted, but  
each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When  
a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the  
transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.  
13.2.1.1 START and STOP Conditions  
The protocol of the I2C bus defines two states to begin and end a transaction: START and STOP.  
A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and  
a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus  
is considered busy after a START condition and free after a STOP condition. See Figure  
13-3 on page 313.  
Figure 13-3. START and STOP Conditions  
SDA  
SCL  
SDA  
SCL  
START  
STOP  
condition  
condition  
13.2.1.2 Data Format with 7-Bit Address  
Data transfers follow the format shown in Figure 13-4 on page 314. After the START condition, a  
slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction  
bit (R/S bit in the I2CMSA register). A zero indicates a transmit operation (send), and a one indicates  
a request for data (receive). A data transfer is always terminated by a STOP condition generated  
by the master, however, a master can initiate communications with another device on the bus by  
generating a repeated START condition and addressing another slave without first generating a  
STOP condition. Various combinations of receive/send formats are then possible within a single  
transfer.  
November 29, 2007  
313  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 13-4. Complete Data Transfer with a 7-Bit Address  
SDA  
MSB  
LSB  
R/S  
ACK  
MSB  
LSB  
ACK  
SCL  
1
2
7
8
9
1
2
7
8
9
Slave address  
Data  
The first seven bits of the first byte make up the slave address (see Figure 13-5 on page 314). The  
eighth bit determines the direction of the message. A zero in the R/S position of the first byte means  
that the master will write (send) data to the selected slave, and a one in this position means that  
the master will receive data from the slave.  
Figure 13-5. R/S Bit in First Byte  
MSB  
LSB  
R/S  
Slave address  
13.2.1.3 Data Validity  
The data on the SDA line must be stable during the high period of the clock, and the data line can  
only change when SCL is low (see Figure 13-6 on page 314).  
Figure 13-6. Data Validity During Bit Transfer on the I2C Bus  
SDA  
SCL  
Change  
of data  
allowed  
Dataline  
stable  
13.2.1.4 Acknowledge  
All bus transactions have a required acknowledge clock cycle that is generated by the master. During  
the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line.  
To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock  
cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data  
validity requirements described in “Data Validity” on page 314.  
When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave  
so that the master can generate a STOP condition and abort the current transfer. If the master  
device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer  
made by the slave. Since the master controls the number of bytes in the transfer, it signals the end  
of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave  
transmitter must then release SDA to allow the master to generate the STOP or a repeated START  
condition.  
314  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
13.2.1.5 Arbitration  
A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate  
a START condition within minimum hold time of the START condition. In these situations, an  
arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the  
competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low)  
will switch off its data output stage and retire until the bus is idle again.  
Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if  
both masters are trying to address the same device, arbitration continues on to the comparison of  
data bits.  
13.2.2  
Available Speed Modes  
The I2C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.  
where:  
CLK_PRD is the system clock period  
SCL_LP is the low phase of SCL (fixed at 6)  
SCL_HP is the high phase of SCL (fixed at 4)  
TIMER_PRD is the programmed value in the I2C Master Timer Period (I2CMTPR) register (see  
page 332).  
The I2C clock period is calculated as follows:  
SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD  
For example:  
CLK_PRD = 50 ns  
TIMER_PRD = 2  
SCL_LP=6  
SCL_HP=4  
yields a SCL frequency of:  
1/T = 333 Khz  
Table 13-1 on page 315 gives examples of timer period, system clock, and speed mode (Standard  
or Fast).  
Table 13-1. Examples of I2C Master Timer Period versus Speed Mode  
System Clock Timer Period Standard Mode Timer Period Fast Mode  
4 Mhz  
6 Mhz  
0x01  
0x02  
0x06  
0x08  
0x09  
0x0C  
100 Kbps  
100 Kbps  
89 Kbps  
-
-
-
-
12.5 Mhz  
16.7 Mhz  
20 Mhz  
25 Mhz  
0x01  
0x02  
0x02  
0x03  
312 Kbps  
278 Kbps  
333 Kbps  
312 Kbps  
93 Kbps  
100 Kbps  
96.2 Kbps  
November 29, 2007  
315  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
13.2.3  
Interrupts  
The I2C can generate interrupts when the following conditions are observed:  
Master transaction completed  
Master transaction error  
Slave transaction received  
Slave transaction requested  
There is a separate interrupt signal for the I2C master and I2C modules. While both modules can  
generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt  
controller.  
13.2.3.1 I2C Master Interrupts  
The I2C master module generates an interrupt when a transaction completes (either transmit or  
receive), or when an error occurs during a transaction. To enable the I2C master interrupt, software  
must write a '1' to the I2C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition  
is met, software must check the ERROR bit in the I2C Master Control/Status (I2CMCS) register to  
verify that an error didn't occur during the last transaction. An error condition is asserted if the last  
transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of  
the bus due to a lost arbitration round with another master. If an error is not detected, the application  
can proceed with the transfer. The interrupt is cleared by writing a '1' to the I2C Master Interrupt  
Clear (I2CMICR) register.  
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via  
the I2C Master Raw Interrupt Status (I2CMRIS) register.  
13.2.3.2 I2C Slave Interrupts  
The slave module generates interrupts as it receives requests from an I2C master. To enable the  
I2C slave interrupt, write a '1' to the I2C Slave Interrupt Mask (I2CSIMR) register. Software  
determines whether the module should write (transmit) or read (receive) data from the I2C Slave  
Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I2C Slave Control/Status  
(I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received,  
the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the I2C Slave  
Interrupt Clear (I2CSICR) register.  
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via  
the I2C Slave Raw Interrupt Status (I2CSRIS) register.  
13.2.4  
13.2.5  
Loopback Operation  
The I2C modules can be placed into an internal loopback mode for diagnostic or debug work. This  
is accomplished by setting the LPBK bit in the I2C Master Configuration (I2CMCR) register. In  
loopback mode, the SDA and SCL signals from the master and slave modules are tied together.  
Command Sequence Flow Charts  
This section details the steps required to perform the various I2C transfer types in both master and  
slave mode.  
316  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
13.2.5.1 I2C Master Command Sequences  
The figures that follow show the command sequences available for the I2C master.  
Figure 13-7. Master Single SEND  
Idle  
Write Slave  
Address to  
I2CMSA  
Sequence  
may be  
omitted in a  
Single Master  
system  
Write data to  
I2CMDR  
Read I2CMCS  
NO  
BUSBSY bit=0?  
YES  
Write ---0-111 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Idle  
November 29, 2007  
317  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 13-8. Master Single RECEIVE  
Idle  
Sequence may be  
omitted in a Single  
Master system  
Write Slave  
Address to  
I2CMSA  
Read I2CMCS  
NO  
BUSBSY bit=0?  
YES  
Write ---00111 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Read data from  
I2CMDR  
Idle  
318  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 13-9. Master Burst SEND  
Idle  
Write Slave  
Sequence  
Read I2CMCS  
Address to  
may be  
I2CMSA  
omitted in a  
Single Master  
system  
Write data to  
NO  
I2CMDR  
BUSY bit=0?  
YES  
Read I2CMCS  
NO  
ERROR bit=0?  
YES  
NO  
BUSBSY bit=0?  
NO  
Write data to  
I2CMDR  
ARBLST bit=1?  
YES  
Write ---0-011 to  
YES  
I2CMCS  
Write ---0-100 to  
I2CMCS  
NO  
Write ---0-001 to  
I2CMCS  
Index=n?  
YES  
Error Service  
Idle  
Write ---0-101 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Idle  
November 29, 2007  
319  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 13-10. Master Burst RECEIVE  
Idle  
Sequence  
may be  
Write Slave  
Address to  
I2CMSA  
omitted in a  
Single Master  
system  
Read I2CMCS  
BUSY bit=0?  
YES  
Read I2CMCS  
NO  
NO  
BUSBSY bit=0?  
YES  
NO  
ERROR bit=0?  
NO  
ARBLST bit=1?  
YES  
Write ---01011 to  
I2CMCS  
Read data from  
I2CMDR  
Write ---0-100 to  
I2CMCS  
NO  
Write ---01001 to  
I2CMCS  
Index=m-1?  
YES  
Error Service  
Idle  
Write ---00101 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
ERROR bit=0?  
YES  
Read data from  
I2CMDR  
Error Service  
Idle  
320  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 13-11. Master Burst RECEIVE after Burst SEND  
Idle  
Master operates in  
Master Transmit mode  
STOP condition is not  
generated  
Write Slave  
Address to  
I2CMSA  
Write ---01011 to  
I2CMCS  
Repeated START  
condition is generated  
with changing data  
direction  
Master operates in  
Master Receive mode  
Idle  
November 29, 2007  
321  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 13-12. Master Burst SEND after Burst RECEIVE  
Idle  
Master operates in  
Master Receive mode  
STOP condition is not  
generated  
Write Slave  
Address to  
I2CMSA  
Write ---0-011 to  
I2CMCS  
Repeated START  
condition is generated  
with changing data  
direction  
Master operates in  
Master Transmit mode  
Idle  
13.2.5.2 I2C Slave Command Sequences  
Figure 13-13 on page 323 presents the command sequence available for the I2C slave.  
322  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 13-13. Slave Command Sequence  
Idle  
Write OWN Slave  
Address to  
I2CSOAR  
Write -------1 to  
I2CSCSR  
Read I2CSCSR  
NO  
NO  
TREQ bit=1?  
RREQ bit=1?  
FBR is  
also valid  
YES  
YES  
Write data to  
I2CSDR  
Read data from  
I2CSDR  
13.3  
Initialization and Configuration  
The following example shows how to configure the I2C module to send a single byte as a master.  
This assumes the system clock is 20 MHz.  
1. Enable the I2C clock by writing a value of 0x0000.1000 to the RCGC1 register in the System  
Control module.  
2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control  
module.  
3. In the GPIO module, enable the appropriate pins for their alternate function using the  
GPIOAFSEL register. Also, be sure to enable the same pins for Open Drain operation.  
4. Initialize the I2C Master by writing the I2CMCR register with a value of 0x0000.0020.  
5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct  
value. The value written to the I2CMTPR register represents the number of system clock periods  
in one SCL clock period. The TPR value is determined by the following equation:  
November 29, 2007  
323  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;  
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;  
TPR = 9  
Write the I2CMTPR register with the value of 0x0000.0009.  
6. Specify the slave address of the master and that the next operation will be a Send by writing  
the I2CMSA register with a value of 0x0000.0076. This sets the slave address to 0x3B.  
7. Place data (byte) to be sent in the data register by writing the I2CMDR register with the desired  
data.  
8. Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with  
a value of 0x0000.0007 (STOP, START, RUN).  
9. Wait until the transmission completes by polling the I2CMCS register’s BUSBSY bit until it has  
been cleared.  
13.4  
I2C Register Map  
Table 13-2 on page 324 lists the I2C registers. All addresses given are relative to the I2C base  
addresses for the master and slave:  
I2C Master 0: 0x4002.0000  
I2C Slave 0: 0x4002.0800  
Table 13-2. Inter-Integrated Circuit (I2C) Interface Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
I2C Master  
0x000  
I2CMSA  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0001  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
I2C Master Slave Address  
I2C Master Control/Status  
I2C Master Data  
326  
327  
331  
332  
333  
334  
335  
336  
337  
0x004  
0x008  
0x00C  
0x010  
I2C Master Timer Period  
I2C Master Interrupt Mask  
I2C Master Raw Interrupt Status  
I2C Master Masked Interrupt Status  
I2C Master Interrupt Clear  
I2C Master Configuration  
0x014  
0x018  
RO  
0x01C  
0x020  
WO  
R/W  
I2C Slave  
0x000  
I2CSOAR  
I2CSCSR  
I2CSDR  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
I2C Slave Own Address  
I2C Slave Control/Status  
I2C Slave Data  
339  
340  
342  
343  
0x004  
0x008  
R/W  
R/W  
0x00C  
I2CSIMR  
I2C Slave Interrupt Mask  
324  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x010  
0x014  
0x018  
I2CSRIS  
I2CSMIS  
I2CSICR  
RO  
RO  
WO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
I2C Slave Raw Interrupt Status  
I2C Slave Masked Interrupt Status  
I2C Slave Interrupt Clear  
344  
345  
346  
13.5  
Register Descriptions (I2C Master)  
The remainder of this section lists and describes the I2C master registers, in numerical order by  
address offset. See also “Register Descriptions (I2C Slave)” on page 338.  
November 29, 2007  
325  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 1: I2C Master Slave Address (I2CMSA), offset 0x000  
This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which  
determines if the next operation is a Receive (High), or Send (Low).  
I2C Master Slave Address (I2CMSA)  
I2C Master 0 base: 0x4002.0000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SA  
R/S  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:1  
0
SA  
R/W  
R/W  
0
0
I2C Slave Address  
This field specifies bits A6 through A0 of the slave address.  
R/S  
Receive/Send  
The R/S bit specifies if the next operation is a Receive (High) or Send  
(Low).  
Value Description  
0
1
Send.  
Receive.  
326  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 2: I2C Master Control/Status (I2CMCS), offset 0x004  
This register accesses four control bits when written, and accesses seven status bits when read.  
The status register consists of seven bits, which when read determine the state of the I2C bus  
controller.  
The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes  
the generation of the START, or REPEATED START condition.  
The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst.  
To generate a single send cycle, the I2C Master Slave Address (I2CMSA) register is written with  
the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1),  
STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed  
(or aborted due an error), the interrupt pin becomes active and the data may be read from the  
I2CMDR register. When the I2C module operates in Master receiver mode, the ACK bit must be set  
normally to logic 1. This causes the I2C bus controller to send an acknowledge automatically after  
each byte. This bit must be reset when the I2C bus controller requires no further data to be sent  
from the slave transmitter.  
Read-Only Status Register  
I2C Master Control/Status (I2CMCS)  
I2C Master 0 base: 0x4002.0000  
Offset 0x004  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BUSBSY  
IDLE  
ARBLST DATACK ADRACK ERROR  
BUSY  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
BUSBSY  
RO  
0
Bus Busy  
This bit specifies the state of the I2C bus. If set, the bus is busy;  
otherwise, the bus is idle. The bit changes based on the START and  
STOP conditions.  
5
4
IDLE  
RO  
RO  
0
0
I2C Idle  
This bit specifies the I2C controller state. If set, the controller is idle;  
otherwise the controller is not idle.  
ARBLST  
Arbitration Lost  
This bit specifies the result of bus arbitration. If set, the controller lost  
arbitration; otherwise, the controller won arbitration.  
November 29, 2007  
327  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Bit/Field  
3
Name  
Type  
RO  
Reset  
0
Description  
DATACK  
Acknowledge Data  
This bit specifies the result of the last data operation. If set, the  
transmitted data was not acknowledged; otherwise, the data was  
acknowledged.  
2
1
ADRACK  
ERROR  
RO  
RO  
0
0
Acknowledge Address  
This bit specifies the result of the last address operation. If set, the  
transmitted address was not acknowledged; otherwise, the address was  
acknowledged.  
Error  
This bit specifies the result of the last bus operation. If set, an error  
occurred on the last operation; otherwise, no error was detected. The  
error can be from the slave address not being acknowledged, the  
transmit data not being acknowledged, or because the controller lost  
arbitration.  
0
BUSY  
RO  
0
I2C Busy  
This bit specifies the state of the controller. If set, the controller is busy;  
otherwise, the controller is idle. When the BUSY bit is set, the other status  
bits are not valid.  
Write-Only Control Register  
I2C Master Control/Status (I2CMCS)  
I2C Master 0 base: 0x4002.0000  
Offset 0x004  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ACK  
STOP  
START  
RUN  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
31:4  
Name  
Type  
WO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
ACK  
WO  
WO  
0
0
Data Acknowledge Enable  
When set, causes received data byte to be acknowledged automatically  
by the master. See field decoding in Table 13-3 on page 329.  
STOP  
Generate STOP  
When set, causes the generation of the STOP condition. See field  
decoding in Table 13-3 on page 329.  
328  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
1
Name  
Type  
WO  
Reset  
0
Description  
START  
Generate START  
When set, causes the generation of a START or repeated START  
condition. See field decoding in Table 13-3 on page 329.  
0
RUN  
WO  
0
I2C Master Enable  
When set, allows the master to send or receive data. See field decoding  
in Table 13-3 on page 329.  
Table 13-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)  
Current I2CMSA[0]  
I2CMCS[3:0]  
STOP START  
Description  
State  
R/S  
ACK  
RUN  
Idle  
0
0
1
1
1
1
Xa  
0
1
1
START condition followed by SEND (master goes to the  
Master Transmit state).  
X
0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
START condition followed by a SEND and STOP  
condition (master remains in Idle state).  
START condition followed by RECEIVE operation with  
negative ACK (master goes to the Master Receive state).  
START condition followed by RECEIVE and STOP  
condition (master remains in Idle state).  
START condition followed by RECEIVE (master goes to  
the Master Receive state).  
Illegal.  
All other combinations not listed are non-operations. NOP.  
Master  
Transmit  
X
X
0
0
1
SEND operation (master remains in Master Transmit  
state).  
X
X
X
X
1
1
0
0
0
1
STOP condition (master goes to Idle state).  
SEND followed by STOP condition (master goes to Idle  
state).  
0
0
1
X
X
0
0
1
0
1
1
1
1
1
1
Repeated START condition followed by a SEND (master  
remains in Master Transmit state).  
Repeated START condition followed by SEND and STOP  
condition (master goes to Idle state).  
Repeated START condition followed by a RECEIVE  
operation with a negative ACK (master goes to Master  
Receive state).  
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
Repeated START condition followed by a SEND and  
STOP condition (master goes to Idle state).  
Repeated START condition followed by RECEIVE (master  
goes to Master Receive state).  
Illegal.  
All other combinations not listed are non-operations. NOP.  
November 29, 2007  
329  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Current I2CMSA[0]  
State  
I2CMCS[3:0]  
STOP START  
Description  
R/S  
ACK  
RUN  
Master  
Receive  
X
0
0
0
1
RECEIVE operation with negative ACK (master remains  
in Master Receive state).  
X
X
X
0
1
1
0
0
0
1
STOP condition (master goes to Idle state).b  
RECEIVE followed by STOP condition (master goes to  
Idle state).  
X
1
0
0
1
RECEIVE operation (master remains in Master Receive  
state).  
X
1
1
0
1
0
0
1
1
1
Illegal.  
Repeated START condition followed by RECEIVE  
operation with a negative ACK (master remains in Master  
Receive state).  
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
Repeated START condition followed by RECEIVE and  
STOP condition (master goes to Idle state).  
Repeated START condition followed by RECEIVE (master  
remains in Master Receive state).  
X
X
Repeated START condition followed by SEND (master  
goes to Master Transmit state).  
Repeated START condition followed by SEND and STOP  
condition (master goes to Idle state).  
All other combinations not listed are non-operations. NOP.  
a. An X in a table cell indicates the bit can be 0 or 1.  
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by  
the master or an Address Negative Acknowledge executed by the slave.  
330  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 3: I2C Master Data (I2CMDR), offset 0x008  
This register contains the data to be transmitted when in the Master Transmit state, and the data  
received when in the Master Receive state.  
I2C Master Data (I2CMDR)  
I2C Master 0 base: 0x4002.0000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
R/W  
0x00  
Data Transferred  
Data transferred during transaction.  
November 29, 2007  
331  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C  
This register specifies the period of the SCL clock.  
I2C Master Timer Period (I2CMTPR)  
I2C Master 0 base: 0x4002.0000  
Offset 0x00C  
Type R/W, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TPR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TPR  
R/W  
0x1  
SCL Clock Period  
This field specifies the period of the SCL clock.  
SCL_PRD = 2*(1 + TPR)*(SCL_LP + SCL_HP)*CLK_PRD  
where:  
SCL_PRD is the SCL line period (I2C clock).  
TPR is the Timer Period register value (range of 1 to 255).  
SCL_LP is the SCL Low period (fixed at 6).  
SCL_HP is the SCL High period (fixed at 4).  
332  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010  
This register controls whether a raw interrupt is promoted to a controller interrupt.  
I2C Master Interrupt Mask (I2CMIMR)  
I2C Master 0 base: 0x4002.0000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IM  
R/W  
0
Interrupt Mask  
This bit controls whether a raw interrupt is promoted to a controller  
interrupt. If set, the interrupt is not masked and the interrupt is promoted;  
otherwise, the interrupt is masked.  
November 29, 2007  
333  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014  
This register specifies whether an interrupt is pending.  
I2C Master Raw Interrupt Status (I2CMRIS)  
I2C Master 0 base: 0x4002.0000  
Offset 0x014  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
RIS  
RO  
0
Raw Interrupt Status  
This bit specifies the raw interrupt state (prior to masking) of the I2C  
master block. If set, an interrupt is pending; otherwise, an interrupt is  
not pending.  
334  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018  
This register specifies whether an interrupt was signaled.  
I2C Master Masked Interrupt Status (I2CMMIS)  
I2C Master 0 base: 0x4002.0000  
Offset 0x018  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
MIS  
RO  
0
Masked Interrupt Status  
This bit specifies the raw interrupt state (after masking) of the I2C master  
block. If set, an interrupt was signaled; otherwise, an interrupt has not  
been generated since the bit was last cleared.  
November 29, 2007  
335  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C  
This register clears the raw interrupt.  
I2C Master Interrupt Clear (I2CMICR)  
I2C Master 0 base: 0x4002.0000  
Offset 0x01C  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IC  
WO  
0
Interrupt Clear  
This bit controls the clearing of the raw interrupt. A write of 1 clears the  
interrupt; otherwise, a write of 0 has no affect on the interrupt state. A  
read of this register returns no meaningful data.  
336  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 9: I2C Master Configuration (I2CMCR), offset 0x020  
This register configures the mode (Master or Slave) and sets the interface for test mode loopback.  
I2C Master Configuration (I2CMCR)  
I2C Master 0 base: 0x4002.0000  
Offset 0x020  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SFE  
MFE  
reserved  
LPBK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
4
SFE  
MFE  
R/W  
R/W  
0
0
I2C Slave Function Enable  
This bit specifies whether the interface may operate in Slave mode. If  
set, Slave mode is enabled; otherwise, Slave mode is disabled.  
I2C Master Function Enable  
This bit specifies whether the interface may operate in Master mode. If  
set, Master mode is enabled; otherwise, Master mode is disabled and  
the interface clock is disabled.  
3:1  
0
reserved  
LPBK  
RO  
0x00  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
I2C Loopback  
This bit specifies whether the interface is operating normally or in  
Loopback mode. If set, the device is put in a test mode loopback  
configuration; otherwise, the device operates normally.  
November 29, 2007  
337  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
13.6  
Register Descriptions (I2C Slave)  
The remainder of this section lists and describes the I2C slave registers, in numerical order by  
address offset. See also “Register Descriptions (I2C Master)” on page 325.  
338  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000  
This register consists of seven address bits that identify the Stellaris® I2C device on the I2C bus.  
I2C Slave Own Address (I2CSOAR)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OAR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:7  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6:0  
OAR  
R/W  
0x00  
I2C Slave Own Address  
This field specifies bits A6 through A0 of the slave address.  
November 29, 2007  
339  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004  
This register accesses one control bit when written, and three status bits when read.  
The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First  
Byte Received (FBR) bit is set only after the Stellaris® device detects its own slave address  
and receives the first data byte from the I2C master. The Receive Request (RREQ) bit indicates  
that the Stellaris® I2C device has received a data byte from an I2C master. Read one data byte from  
the I2C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit  
indicates that the Stellaris® I2C device is addressed as a Slave Transmitter. Write one data byte  
into the I2C Slave Data (I2CSDR) register to clear the TREQ bit.  
The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the  
Stellaris® I2C slave operation.  
Read-Only Status Register  
I2C Slave Control/Status (I2CSCSR)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x004  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
FBR  
TREQ  
RREQ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
FBR  
RO  
0
First Byte Received  
Indicates that the first byte following the slave’s own address is received.  
This bit is only valid when the RREQ bit is set, and is automatically cleared  
when data has been read from the I2CSDR register.  
Note:  
This bit is not used for slave transmit operations.  
1
TREQ  
RO  
0
0
Transmit Request  
This bit specifies the state of the I2C slave with regards to outstanding  
transmit requests. If set, the I2C unit has been addressed as a slave  
transmitter and uses clock stretching to delay the master until data has  
been written to the I2CSDR register. Otherwise, there is no outstanding  
transmit request.  
0
RREQ  
RO  
Receive Request  
This bit specifies the status of the I2C slave with regards to outstanding  
receive requests. If set, the I2C unit has outstanding receive data from  
the I2C master and uses clock stretching to delay the master until the  
data has been read from the I2CSDR register. Otherwise, no receive  
data is outstanding.  
340  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Write-Only Control Register  
I2C Slave Control/Status (I2CSCSR)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x004  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
DA  
WO  
0
Device Active  
Value Description  
0
1
Disables the I2C slave operation.  
Enables the I2C slave operation.  
November 29, 2007  
341  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 12: I2C Slave Data (I2CSDR), offset 0x008  
This register contains the data to be transmitted when in the Slave Transmit state, and the data  
received when in the Slave Receive state.  
I2C Slave Data (I2CSDR)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
R/W  
0x0  
Data for Transfer  
This field contains the data for transfer during a slave receive or transmit  
operation.  
342  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C  
This register controls whether a raw interrupt is promoted to a controller interrupt.  
I2C Slave Interrupt Mask (I2CSIMR)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x00C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IM  
R/W  
0
Interrupt Mask  
This bit controls whether a raw interrupt is promoted to a controller  
interrupt. If set, the interrupt is not masked and the interrupt is promoted;  
otherwise, the interrupt is masked.  
November 29, 2007  
343  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010  
This register specifies whether an interrupt is pending.  
I2C Slave Raw Interrupt Status (I2CSRIS)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x010  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
RIS  
RO  
0
Raw Interrupt Status  
This bit specifies the raw interrupt state (prior to masking) of the I2C  
slave block. If set, an interrupt is pending; otherwise, an interrupt is not  
pending.  
344  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014  
This register specifies whether an interrupt was signaled.  
I2C Slave Masked Interrupt Status (I2CSMIS)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x014  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
MIS  
RO  
0
Masked Interrupt Status  
This bit specifies the raw interrupt state (after masking) of the I2C slave  
block. If set, an interrupt was signaled; otherwise, an interrupt has not  
been generated since the bit was last cleared.  
November 29, 2007  
345  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018  
This register clears the raw interrupt.  
I2C Slave Interrupt Clear (I2CSICR)  
I2C Slave 0 base: 0x4002.0800  
Offset 0x018  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IC  
WO  
0
Clear Interrupt  
This bit controls the clearing of the raw interrupt. A write of 1 clears the  
interrupt; otherwise a write of 0 has no affect on the interrupt state. A  
read of this register returns no meaningful data.  
346  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
14  
Controller Area Network (CAN) Module  
14.1  
Controller Area Network Overview  
Controller Area Network (CAN) is a multicast shared serial bus standard for connecting electronic  
control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy  
environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair  
wire. Originally created for automotive purposes, it is also used in many embedded control  
applications (such as industrial and medical). Bit rates up to 1 Mbps are possible at network lengths  
below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kbps at  
500 m).  
14.2  
Controller Area Network Features  
The Stellaris® CAN module supports the following features:  
CAN protocol version 2.0 part A/B  
Bit rates up to 1 Mbps  
32 message objects  
Each message object has its own identifier mask  
Maskable interrupt  
Disable Automatic Retransmission mode for Time Triggered CAN (TTCAN) applications  
Programmable Loopback mode for self-test operation  
Programmable FIFO mode  
Gluelessly attach to an external CAN PHY through the CAN0Tx and CAN0Rx pins  
November 29, 2007  
347  
Preliminary  
Controller Area Network (CAN) Module  
14.3  
Controller Area Network Block Diagram  
Figure 14-1. CAN Module Block Diagram  
CAN Control  
CANCTL  
CANSTS  
CANBIT  
CANINT  
CANTST  
CANBRPE  
CANIF1CRQ  
CANIF1CMSK  
CANIF1MSK1  
CANIF1MSK2  
CANIF1ARB1  
CANIF1ARB2  
CANIF1MCTL  
CANIF1DA1  
CANIF1DA2  
CANIF1DB1  
CANIF1DB2  
CAN TX/RX  
APB Pins  
APB Interface  
CAN Core  
CANIF2CRQ  
CANIF2CMSK  
CANIF2MSK1  
CANIF2MSK2  
CANIF2ARB1  
CANIF2ARB2  
CANIF2MCTL  
CANIF2DA1  
CANIF2DA2  
CANIF2DB1  
CANIF2DB2  
Message RAM  
32 Message Objects  
348  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
14.4  
Controller Area Network Functional Description  
The CAN module conforms to the CAN protocol version 2.0 (parts A and B). Message transfers that  
include data, remote, error, and overload frames with an 11-bit identifier (standard) or a 29-bit  
identifier (extended) are supported. Transfer rates can be programmed up to 1 Mbps.  
The CAN module consists of three major parts:  
CAN protocol controller and message handler  
Message memory  
CAN register interface  
The protocol controller transfers and receives the serial data from the CAN bus and passes the data  
on to the message handler. The message handler then loads this information into the appropriate  
message object based on the current filtering and identifiers in the message object memory. The  
message handler is also responsible for generating interrupts based on events on the CAN bus.  
The message object memory is a set of 32 identical memory blocks that hold the current configuration,  
status, and actual data for each message object. These are accessed via the CAN message object  
register interface. The message memory is not directly accessable in the Stellaris® memory map,  
so the Stellaris® CAN controller provides an interface to communicate with the message memory.  
The CAN message object register interface provides two register sets for communicating with the  
message objects. Since there is no direct access to the message object memory, these two interfaces  
must be used to read or write to each message object. The two message object interfaces allow  
parallel access to the CAN controller message objects when multiple objects may have new  
information that needs to be processed.  
14.4.1  
Initialization  
The software initialization is started by setting the INIT bit in the CAN Control (CANCTL) register,  
with software or by a hardware reset, or by going bus-off, which occurs when the transmitter's error  
counter exceeds a count of 255. While INIT is set, all message transfers to and from the CAN bus  
are stopped and the status of the CAN transmit output is recessive (High). Entering the initialization  
state does not change the configuration of the CAN controller, the message objects, or the error  
counters. However, some configuration registers are only accessible when in the initialization state.  
To initialize the CAN controller, set the CAN Bit Timing (CANBIT) register and configure each  
message object. If a message object is not needed, it is sufficient to set it as not valid by clearing  
the MsgVal bit in the CANIFnARB2 register. Otherwise, the whole message object has to be  
initialized, as the fields of the message object may not have valid information causing unexpected  
results. Access to the CAN Bit Timing (CANBIT) register and to the CAN Baud Rate Prescalar  
Extension (CANBRPE) register to configure the bit timing are enabled when both the INIT and  
CCE bits in the CANCTL register are set. To leave the initialization state, the INIT bit must be  
cleared. Afterwards, the internal Bit Stream Processor (BSP) synchronizes itself to the data transfer  
on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus  
Idle) before it takes part in bus activities and starts message transfers. The initialization of the  
message objects is independent of being in the initialization state and can be done on the fly, but  
message objects should all be configured to particular identifiers or set to not valid before the BSP  
starts the message transfer. To change the configuration of a message object during normal  
operation, set the MsgVal bit in the CANIFnARB2 register to 0 (not valid). When the configuration  
is completed, MsgVal is set to 1 again (valid).  
November 29, 2007  
349  
Preliminary  
Controller Area Network (CAN) Module  
14.4.2  
Operation  
Once the CAN module is initialized and the INIT bit in the CANCTL register is reset to 0, the CAN  
module synchronizes itself to the CAN bus and starts the message transfer. As messages are  
received, they are stored in their appropriate message objects if they pass the message handler's  
filtering. The whole message (including all arbitration bits, data-length code, and eight data bytes)  
is stored in the message object. If the Identifier Mask (the Msk bits in the CANIFnMSKn registers)  
is used, the arbitration bits which are masked to "don't care" may be overwritten in the message  
object.  
The CPU may read or write each message any time via the CAN Interface Registers (CANIFnCRQ,  
CANIFnCMSK, CANIFnMSKn, CANIFnARBn, CANIFnMCTL, CANIFnDAn, and CANIFnDBn).  
The message handler guarantees data consistency in case of concurrent accesses.  
The transmission of message objects are under the control of the software that is managing the  
CAN hardware. These can be message objects used for one-time data transfers, or permanent  
message objects used to respond in a more periodic manner. Permanent message objects have  
all arbitration and control set up, and only the data bytes are updated. To start the transmission, the  
TxRqst bit in the CANTXRQn register and the NewDat bit in the CANNWDAn register are set. If  
several transmit messages are assigned to the same message object (when the number of message  
objects is not sufficient), the whole message object has to be configured before the transmission of  
this message is requested.  
The transmission of any number of message objects may be requested at the same time; they are  
transmitted according to their internal priority, which is based on the message identifier for the  
message object. Messages may be updated or set to not valid any time, even when their requested  
transmission is still pending. The old data is discarded when a message is updated before its pending  
transmission has started. Depending on the configuration of the message object, the transmission  
of a message may be requested autonomously by the reception of a remote frame with a matching  
identifier.  
There are two sets of CAN Interface Registers (CANIF1x and CANIF2x), which are used to access  
the Message Objects in the Message RAM. The CAN controller coordinates transfers to and from  
the Message RAM to and from the registers. The function of the two sets are independent and  
identical and can be used to queue transactions.  
14.4.3  
Transmitting Message Objects  
If the internal transmit shift register of the CAN module is ready for loading, and if there is no data  
transfer between the CAN Interface Registers and message RAM, the valid message object with  
the highest priority and that has a pending transmission request is loaded into the transmit shift  
register by the message handler and the transmission is started. The message object's NewDat bit  
is reset and can be viewed in the CANNWDAn register. After a successful transmission, and if no  
new data was written to the message object since the start of the transmission, the TxRqst bit in  
the CANIFnCMSK register is reset. If the TxIE bit in the CANIFnMCTL register is set, the IntPnd  
bit in the CANIFnMCTL register is set after a successful transmission. If the CAN module has lost  
the arbitration or if an error occurred during the transmission, the message is re-transmitted as soon  
as the CAN bus is free again. If, meanwhile, the transmission of a message with higher priority has  
been requested, the messages are transmitted in the order of their priority.  
14.4.4  
Configuring a Transmit Message Object  
Table 14-1 on page 351 specifies the bit settings for a transmit message object.  
350  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table 14-1. Transmit Message Object Bit Settings  
Register CANIFnARB2 CANIFnCMSK CANIFnMCTL CANIFnARB2  
CANIFnMCTL  
NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst  
appl appl  
Bit  
MsgVal  
Arb Data Mask  
EoB  
Dir  
Value  
1
appl appl appl  
1
1
0
0
0
0
0
The Xtd and ID bit fields in the CANIFnARBn registers are set by an application. They define the  
identifier and type of the outgoing message. If an 11-bit Identifier (Standard Frame) is used, it is  
programmed to bits [28:18] of CANIFnARB1, as bits 17:0 of CANIFnARBn are not used by the  
CAN controller for 11-bit identifiers.  
If the TxIE bit is set, the IntPnd bit is set after a successful transmission of the message object.  
If the RmtEn bit is set, a matching received Remote Frame causes the TxRqst bit to be set and  
the Remote Frame is autonomously answered by a Data Frame with the data from the message  
object.  
The DLC bit in the CANIFnMCTL register is set by an application. TxRqst and RmtEn may not be  
set before the data is valid.  
The CAN mask registers (Msk bits in CANIFnMSKn, UMask bit in CANIFnMCTL register, and MXtd  
and MDir bits in CANIFnMSK2 register) may be used (UMask=1) to allow groups of Remote Frames  
with similar identifiers to set the TxRqst bit. The Dir bit should not be masked.  
14.4.5  
Updating a Transmit Message Object  
The CPU may update the data bytes of a Transmit Message Object any time via the CAN Interface  
Registers and neither the MsgVal nor the TxRqst bits have to be reset before the update.  
Even if only a part of the data bytes are to be updated, all four bytes of the corresponding  
CANIFnDAn or CANIFnDBn register have to be valid before the content of that register is transferred  
to the message object. Either the CPU has to write all four bytes into the CANIFnDAn or CANIFnDBn  
register or the message object is transferred to the CANIFnDAn or CANIFnDBn register before the  
CPU writes the new data bytes.  
In order to only update the data in a message object, the WR, NewDat, DataA, and DataB bits are  
written to the CAN IFn Command Mask (CANIFnMSKn) register, followed by writing the CAN IFn  
Data registers, and then the number of the message object is written to the CAN IFn Command  
Request (CANIFnCRQ) register, to update the data bytes and the TxRqst bit at the same time.  
To prevent the reset of TxRqst at the end of a transmission that may already be in progress while  
the data is updated, NewDat has to be set together with TxRqst. When NewDat is set together  
with TxRqst, NewDat is reset as soon as the new transmission has started.  
14.4.6  
Accepting Received Message Objects  
When the arbitration and control field (ID + Xtd + RmtEn + DLC) of an incoming message is  
completely shifted into the CAN module, the message handling capability of the module starts  
scanning the message RAM for a matching valid message object. To scan the message RAM for  
a matching message object, the Acceptance Filtering unit is loaded with the arbitration bits from the  
core. Then the arbitration and mask fields (including MsgVal, UMask, NewDat, and EoB) of message  
object 1 are loaded into the Acceptance Filtering unit and compared with the arbitration field from  
the shift register. This is repeated with each following message object until a matching message  
object is found or until the end of the message RAM is reached. If a match occurs, the scanning is  
stopped and the message handler proceeds depending on the type of frame received.  
November 29, 2007  
351  
Preliminary  
Controller Area Network (CAN) Module  
14.4.7  
Receiving a Data Frame  
The message handler stores the message from the CAN module receive shift register into the  
respective message object in the message RAM. It stores the data bytes, all arbitration bits, and  
the Data Length Code into the corresponding message object. This is implemented to keep the data  
bytes connected with the identifier even if arbitration mask registers are used. The  
CANIFnMCTL.NewDat bit is set to indicate that new data has been received. The CPU should reset  
CANIFnMCTL.NewDat when it reads the message object to indicate to the controller that the  
message has been received and the buffer is free to receive more messages. If the CAN controller  
receives a message and the CANIFnMCTL.NewDat bit was already set, the MsgLst bit is set to  
indicate that the previous data was lost. If the CANIFnMCTL.RxIE bit is set, the  
CANIFnMCTL.IntPnd bit is set, causing the CANINT interrupt register to point to the message  
object that just received a message. The CANIFnMCTL.TxRqst bit of this message object is reset  
to prevent the transmission of a Remote Frame, while the requested Data Frame has just been  
received.  
14.4.8  
Receiving a Remote Frame  
When a Remote Frame is received, three different configurations of the matching message object  
have to be considered:  
Dir = 1 (direction = transmit), RmtEn = 1, UMask = 1 or 0  
At the reception of a matching Remote Frame, the TxRqst bit of this message object is set. The  
rest of the message object remains unchanged.  
Dir = 1 (direction = transmit), RmtEn = 0, UMask = 0  
At the reception of a matching Remote Frame, the TxRqst bit of this message object remains  
unchanged; the Remote Frame is ignored. This remote frame is disabled and will not automatically  
respond or indicate that the remote frame ever happened.  
Dir = 1 (direction = transmit), RmtEn = 0, UMask = 1  
At the reception of a matching Remote Frame, the TxRqst bit of this message object is reset.  
The arbitration and control field (ID + Xtd + RmtEn + DLC) from the shift register is stored into  
the message object in the message RAM and the NewDat bit of this message object is set. The  
data field of the message object remains unchanged; the Remote Frame is treated similar to a  
received Data Frame. This is useful for a remote data request from another CAN device for which  
the Stellaris® controller does not have readily available data. The software must fill the data and  
answer the frame manually.  
14.4.9  
Receive/Transmit Priority  
The receive/transmit priority for the message objects is controlled by the message number. Message  
object 1 has the highest priority, while message object 32 has the lowest priority. If more than one  
transmission request is pending, the message objects are transmitted in order based on the message  
object with the lowest message number. This should not be confused with the message identifier  
as that priority is enforced by the CAN bus. This means that if message object 1 and message object  
2 both have valid messages that need to be transmitted, message object 1 will always be transmitted  
first regardless of the message identifier in the message object itself.  
14.4.10 Configuring a Receive Message Object  
Table 14-2 on page 353 specifies the bit settings for a transmit message object.  
352  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table 14-2. Receive Message Object Bit Settings  
Register CANIFnARB2 CANIFnCMSK CANIFnMCTL CANIFnARB2  
CANIFnMCTL  
NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst  
appl  
Bit  
MsgVal  
Arb Data Mask  
EoB  
Dir  
Value  
1
appl appl appl  
1
0
0
0
0
0
0
0
The Xtd and ID bit fields in the CANIFnARBn registers are set by an application. They define the  
identifier and type of accepted received messages. If an 11-bit Identifier (Standard Frame) is used,  
it is programmed to bits [28:18] of CANIFnARB1, and bits [17:0] are ignored by the CAN controller.  
When a Data Frame with an 11-bit Identifier is received, bits [17:0] are set to 0.  
If the RxIE bit is set, the IntPnd bit is set when a received Data Frame is accepted and stored in  
the message object.  
When the message handler stores a Data Frame in the message object, it stores the received Data  
Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of  
the message object are overwritten by nonspecified values.  
The CAN mask registers (Msk bits in CANIFnMSKn, UMask bit in CANIFnMCTL register, and MXtd  
and MDir bits in CANIFnMSK2 register) may be used (UMask=1) to allow groups of Data Frames  
with similar identifiers to be accepted. The Dir bit should not be masked in typical applications.  
14.4.11 Handling of Received Message Objects  
The CPU may read a received message any time via the CAN Interface registers because the data  
consistency is guaranteed by the message handler state machine.  
Typically, the CPU first writes 0x007F to the CAN IFn Command Mask (CANIFnCMSK) register  
and then writes the number of the message object to the CAN IFn Command Request  
(CANIFnCRQ) register. That combination transfers the whole received message from the message  
RAM into the Message Buffer registers (CANIFnMSKn, CANIFnARBn, and CANIFnMCTL).  
Additionally, the NewDat and IntPnd bits are cleared in the message RAM, acknowledging that  
the message has been read and clearing the pending interrupt being generated by this message  
object.  
If the message object uses masks for acceptance filtering, the arbitration bits show which of the  
matching messages has been received.  
The actual value of NewDat shows whether a new message has been received since the last time  
this message object was read. The actual value of MsgLst shows whether more than one message  
has been received since the last time this message object was read. MsgLst is not automatically  
reset.  
Using a Remote Frame, the CPU may request new data from another CAN node on the CAN bus.  
Setting the TxRqst bit of a receive object causes the transmission of a Remote Frame with the  
receive object's identifier. This Remote Frame triggers the other CAN node to start the transmission  
of the matching Data Frame. If the matching Data Frame is received before the Remote Frame  
could be transmitted, the TxRqst bit is automatically reset. This prevents the possible loss of data  
when the other device on the CAN bus has already transmitted the data, slightly earlier than expected.  
14.4.12 Handling of Interrupts  
If several interrupts are pending, the CAN Interrupt (CANINT) register points to the pending interrupt  
with the highest priority, disregarding their chronological order. An interrupt remains pending until  
the CPU has cleared it.  
November 29, 2007  
353  
Preliminary  
Controller Area Network (CAN) Module  
The Status Interrupt has the highest priority. Among the message interrupts, the message object's  
interrupt priority decreases with increasing message number. A message interrupt is cleared by  
clearing the message object's IntPnd bit. The Status Interrupt is cleared by reading the CAN Status  
(CANSTS) register.  
The interrupt identifier IntId in the CANINT register indicates the cause of the interrupt. When no  
interrupt is pending, the register holds the value to 0. If the value of CANINT is different from 0, then  
there is an interrupt pending. If the IE bit is set in the CANCTL register, the interrupt line to the CPU  
is active. The interrupt line remains active until CANINT is 0, all interrupt sources have been cleared,  
(the cause of the interrupt is reset), or until IE is reset, which disables interrupts from the CAN  
controller.  
The value 0x8000 in the CANINT register indicates that an interrupt is pending because the CAN  
module has updated, but not necessarily changed, the CANSTS register (Error Interrupt or Status  
Interrupt). This indicates that there is either a new Error Interrupt or a new Status Interrupt. A write  
access can clear the RxOK, TxOK, and LEC flags in the CANSTS register, however, only a read  
access to the CANSTS register will clear the source of the status interrupt.  
IntId points to the pending message interrupt with the highest interrupt priority. The SIE bit in the  
CANCTL register controls whether a change of the status register may cause an interrupt. The EIE  
bit in the CANCTL register controls whether any interrupt from the CAN controller actually generates  
an interrupt to the microcontroller's interrupt controller. The CANINT interrupt register is updated  
even when the IE bit is set to zero.  
There are two possibilities when handling the source of a message interrupt. The first is to read the  
IntId bit in the CANINT interrupt register to determine the highest priority interrupt that is pending,  
and the second is to read the CAN Message Interrupt Pending (CANMSGnINT) register to see  
all of the message objects that have pending interrupts.  
An interrupt service routine reading the message that is the source of the interrupt may read the  
message and reset the message object's IntPnd at the same time by setting the ClrIntPnd bit  
in the CAN IFn Command Mask (CANIFnCMSK) register. When the IntPnd bit is cleared, the  
CANINT register will contain the message number for the next message object with a pending  
interrupt.  
14.4.13 Bit Timing Configuration Error Considerations  
Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the  
performance of a CAN network can be reduced significantly. In many cases, the CAN bit  
synchronization amends a faulty configuration of the CAN bit timing to such a degree that only  
occasionally an error frame is generated. In the case of arbitration, however, when two or more  
CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the  
transmitters to become error passive. The analysis of such sporadic errors requires a detailed  
knowledge of the CAN bit synchronization inside a CAN node and of the CAN nodes' interaction on  
the CAN bus.  
14.4.14 Bit Time and Bit Rate  
The CAN system supports bit rates in the range of lower than 1 Kbps up to 1000 Kbps. Each member  
of the CAN network has its own clock generator. The timing parameter of the bit time can be  
configured individually for each CAN node, creating a common bit rate even though the CAN nodes'  
oscillator periods may be different.  
Because of small variations in frequency caused by changes in temperature or voltage and by  
deteriorating components, these oscillators are not absolutely stable. As long as the variations  
354  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
remain inside a specific oscillator's tolerance range, the CAN nodes are able to compensate for the  
different bit rates by periodically resynchronizing to the bit stream.  
According to the CAN specification, the bit time is divided into four segments (see Figure  
14-2 on page 355): the Synchronization Segment, the Propagation Time Segment, the Phase Buffer  
Segment 1, and the Phase Buffer Segment 2. Each segment consists of a specific, programmable  
number of time quanta (see Table 14-3 on page 355). The length of the time quantum (tq), which  
is the basic time unit of the bit time, is defined by the CAN controller's system clock (fsys) and the  
Baud Rate Prescaler (BRP):  
tq = BRP / fsys  
The CAN module's system clock fsys is the frequency of its CAN module clock (CAN_CLK) input.  
The Synchronization Segment Sync_Seg is that part of the bit time where edges of the CAN bus  
level are expected to occur; the distance between an edge that occurs outside of Sync_Seg and  
the Sync_Seg is called the phase error of that edge.  
The Propagation Time Segment Prop_Seg is intended to compensate for the physical delay times  
within the CAN network.  
The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point.  
The (Re-)Synchronization Jump Width (SJW) defines how far a resynchronization may move the  
Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase  
errors.  
A given bit rate may be met by different bit-time configurations, but for the proper function of the  
CAN network, the physical delay times and the oscillator's tolerance range have to be considered.  
Figure 14-2. CAN Bit Time  
Table 14-3. CAN Protocol Rangesa  
Parameter Range Remark  
BRP  
[1 .. 32] Defines the length of the time quantum tq  
1 tq Fixed length, synchronization of bus input to system clock  
[1 .. 8] tq Compensates for the physical delay times  
Sync_Seg  
Prop_Seg  
Phase_Seg1 [1 .. 8] tq May be lengthened temporarily by synchronization  
Phase_Seg2 [1 .. 8] tq May be shortened temporarily by synchronization  
November 29, 2007  
355  
Preliminary  
Controller Area Network (CAN) Module  
Parameter Range Remark  
SJW  
[1 .. 4] tq May not be longer than either Phase Buffer Segment  
a. This table describes the minimum programmable ranges required by the CAN protocol.  
The bit timing configuration is programmed in two register bytes in the CANBIT register. The sum  
of Prop_Seg and Phase_Seg1 (as TSEG1) is combined with Phase_Seg2 (as TSEG2) in one byte,  
and SJW and BRP are combined in the other byte.  
In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be  
programmed to a numerical value that is one less than its functional value; so instead of values in  
the range of [1..n], values in the range of [0..n-1] are programmed. That way, for example, SJW  
(functional range of [1..4]) is represented by only two bits. Therefore, the length of the bit time is  
(programmed values):  
[TSEG1 + TSEG2 + 3] tq  
or (functional values):  
[Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq  
The data in the bit timing registers are the configuration input of the CAN protocol controller. The  
Baud Rate Prescalar (configured by BRP) defines the length of the time quantum, the basic time  
unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW) defines the number  
of time quanta in the bit time.  
The processing of the bit time, the calculation of the position of the Sample Point, and occasional  
synchronizations are controlled by the CAN controller and are evaluated once per time quantum.  
The CAN controller translates messages to and from frames. It generates and discards the enclosing  
fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC code, performs the  
error management, and decides which type of synchronization is to be used. It is evaluated at the  
Sample Point and processes the sampled bus input bit. The time after the Sample Point that is  
needed to calculate the next bit to be sent (that is, the data bit, CRC bit, stuff bit, error flag, or idle)  
is called the Information Processing Time (IPT).  
The IPT is application-specific but may not be longer than 2 tq; the CAN's IPT is 0 tq. Its length is  
the lower limit of the programmed length of Phase_Seg2. In case of synchronization, Phase_Seg2  
may be shortened to a value less than IPT, which does not affect bus timing.  
14.4.15 Calculating the Bit Timing Parameters  
Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The  
resulting bit time (1/bit rate) must be an integer multiple of the system clock period.  
The bit time may consist of 4 to 25 time quanta. Several combinations may lead to the desired bit  
time, allowing iterations of the following steps.  
The first part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times  
measured in the system. A maximum bus length as well as a maximum node delay has to be defined  
for expandable CAN bus systems. The resulting time for Prop_Seg is converted into time quanta  
(rounded up to the nearest integer multiple of tq).  
The Sync_Seg is 1 tq long (fixed), which leaves (bit time - Prop_Seg - 1) tq for the two Phase  
Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same  
length, that is, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.  
356  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may not  
be shorter than the CAN controller's Information Processing Time, which is, depending on the actual  
implementation, in the range of [0..2] tq.  
The length of the Synchronization Jump Width is set to its maximum value, which is the minimum  
of 4 and Phase_Seg1.  
The oscillator tolerance range necessary for the resulting configuration is calculated by the formula  
given below:  
(1 -df) x fnom <= fosc <= (1+ df) x fnom  
where:  
df = maximum tolerance of oscillator frequency  
fosc = actual oscillator frequency  
fnom = nominal oscillator frequency  
Maximum frequency tolerance must take into account the following formulas:  
df <= (Phase_Seg1,Phase_Seg2)min/ 2 x (13 x tbit - Phase_Seg2)  
dfmax = 2 x df x fnom  
where:  
Phase_Seg1 and Phase_Seg2 are from Table 14-3 on page 355  
tbit = Bit Time  
dfmax = maximum difference between two oscillators  
If more than one configuration is possible, that configuration allowing the highest oscillator tolerance  
range should be chosen.  
CAN nodes with different system clocks require different configurations to come to the same bit  
rate. The calculation of the propagation time in the CAN network, based on the nodes with the  
longest delay times, is done once for the whole network.  
The CAN system's oscillator tolerance range is limited by the node with the lowest tolerance range.  
The calculation may show that bus length or bit rate have to be decreased or that the oscillator  
frequencies' stability has to be increased in order to find a protocol-compliant configuration of the  
CAN bit timing.  
The resulting configuration is written into the CAN Bit Timing (CANBIT) register :  
(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&(SynchronizationJumpWidth-1)&(Prescaler-1)  
14.4.15.1 Example for Bit Timing at High Baud Rate  
In this example, the frequency of CAN_CLK is 10 MHz, BRP is 0, and the bit rate is 1 Mbps.  
tq 100 ns = tCAN_CLK  
delay of bus driver 50 ns  
delay of receiver circuit 30 ns  
delay of bus line (40m) 220 ns  
November 29, 2007  
357  
Preliminary  
Controller Area Network (CAN) Module  
tProp 600 ns = 6 × tq  
tSJW 100 ns = 1 × tq  
tTSeg1 700 ns = tProp + tSJW  
tTSeg2 200 ns = Information Processing Time + 1 × tq  
tSync-Seg 100 ns = 1 × tq  
bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2  
tolerance for CAN_CLK 0.39 % =  
min(PB1,PB2)/ 2 × (13 x bit time - PB2) =  
0.1us/ 2 x (13x 1us - 2us)  
In the above example, the concatenated bit time parameters are (2-1)3&(7-1)4&(1-1)2&(1-1)6, and  
CANBIT is programmed to 0x1600.  
14.4.15.2 Example for Bit Timing at Low Baud Rate  
In this example, the frequency of CAN_CLK is 2 MHz, BRP is 1, and the bit rate is 100 Kbps.  
tq 1 ms = 2 × tCAN_CLK  
delay of bus driver 200 ns  
delay of receiver circuit 80 ns  
delay of bus line (40m) 220 ns  
tProp 1 ms = 1 × tq  
tSJW 4 ms = 4 × tq  
tTSeg1 5 ms = tProp + tSJW  
tTSeg2 4 ms = Information Processing Time + 3 × tq  
tSync-Seg 1 ms = 1 × tq  
bit time 10 ms = tSync-Seg + tTSeg1 + tTSeg2  
tolerance for CAN_CLK 1.58 % =  
min(PB1,PB2)/ 2 x (13 x bit time - PB2) =  
4us/ 2 x (13 x 10us - 4us)  
In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, and CANBIT  
is programmed to 0x34C1.  
14.5  
Controller Area Network Register Map  
Table 14-4 on page 358 lists the registers. All addresses given are relative to the CAN base address  
of:  
CAN0: 0x4004.0000  
All accesses are on word (32-bit) boundaries.  
Table 14-4. CAN Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
CANCTL  
CANSTS  
CANERR  
CANBIT  
CANINT  
R/W  
R/W  
RO  
0x0000.0001  
0x0000.0000  
0x0000.0000  
0x0000.2301  
0x0000.0000  
CAN Control  
361  
363  
366  
367  
369  
CAN Status  
CAN Error Counter  
CAN Bit Timing  
CAN Interrupt  
R/W  
RO  
358  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x014  
0x018  
0x020  
0x024  
0x028  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x040  
0x044  
0x048  
0x080  
0x084  
0x088  
0x08C  
0x090  
0x094  
0x098  
0x09C  
0x0A0  
0x0A4  
0x0A8  
0x100  
0x104  
0x120  
0x124  
0x140  
0x144  
0x160  
0x164  
CANTST  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0001  
0x0000.0000  
0x0000.FFFF  
0x0000.FFFF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0001  
0x0000.0000  
0x0000.FFFF  
0x0000.FFFF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
CAN Test  
370  
CANBRPE  
CAN Baud Rate Prescalar Extension  
CAN IF1 Command Request  
CAN IF1 Command Mask  
CAN IF1 Mask 1  
372  
373  
374  
377  
378  
379  
380  
381  
383  
383  
383  
383  
373  
374  
377  
378  
379  
380  
381  
383  
383  
383  
383  
384  
384  
385  
385  
386  
386  
387  
387  
CANIF1CRQ  
CANIF1CMSK  
CANIF1MSK1  
CANIF1MSK2  
CANIF1ARB1  
CANIF1ARB2  
CANIF1MCTL  
CANIF1DA1  
CANIF1DA2  
CANIF1DB1  
CANIF1DB2  
CANIF2CRQ  
CANIF2CMSK  
CANIF2MSK1  
CANIF2MSK2  
CANIF2ARB1  
CANIF2ARB2  
CANIF2MCTL  
CANIF2DA1  
CANIF2DA2  
CANIF2DB1  
CANIF2DB2  
CANTXRQ1  
CANTXRQ2  
CANNWDA1  
CANNWDA2  
CANMSG1INT  
CANMSG2INT  
CANMSG1VAL  
CANMSG2VAL  
CAN IF1 Mask 2  
CAN IF1 Arbitration 1  
CAN IF1 Arbitration 2  
CAN IF1 Message Control  
CAN IF1 Data A1  
CAN IF1 Data A2  
CAN IF1 Data B1  
CAN IF1 Data B2  
CAN IF2 Command Request  
CAN IF2 Command Mask  
CAN IF2 Mask 1  
CAN IF2 Mask 2  
CAN IF2 Arbitration 1  
CAN IF2 Arbitration 2  
CAN IF2 Message Control  
CAN IF2 Data A1  
CAN IF2 Data A2  
CAN IF2 Data B1  
CAN IF2 Data B2  
CAN Transmission Request 1  
CAN Transmission Request 2  
CAN New Data 1  
RO  
RO  
RO  
CAN New Data 2  
RO  
CAN Message 1 Interrupt Pending  
CAN Message 2 Interrupt Pending  
CAN Message 1 Valid  
CAN Message 2 Valid  
RO  
RO  
RO  
November 29, 2007  
359  
Preliminary  
Controller Area Network (CAN) Module  
14.6  
Register Descriptions  
The remainder of this section lists and describes the CAN registers, in numerical order by address  
offset. There are two sets of Interface Registers which are used to access the Message Objects in  
the Message RAM: CANIF1x and CANIF2x. The function of the two sets are identical and are used  
to queue transactions.  
360  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 1: CAN Control (CANCTL), offset 0x000  
This control register initializes the module and enables test mode and interrupts.  
The bus-off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting  
or resetting INIT. If the device goes bus-off, it sets INIT, stopping all bus activities. Once INIT  
has been cleared by the CPU, the device then waits for 129 occurrences of Bus Idle (129 * 11  
consecutive High bits) before resuming normal operations. At the end of the bus-off recovery  
sequence, the Error Management Counters are reset.  
During the waiting time after INIT is reset, each time a sequence of 11 High bits has been monitored,  
a Bit0Error code is written to the CANSTS status register, enabling the CPU to readily check  
whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the proceeding  
of the bus-off recovery sequence.  
CAN Control (CANCTL)  
CAN0 base: 0x4004.0000  
Offset 0x000  
Type R/W, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Test  
CCE  
DAR  
reserved  
EIE  
SIE  
IE  
INIT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
5
Test  
CCE  
DAR  
R/W  
R/W  
R/W  
0
0
0
Test Mode Enable  
0: Normal Operation  
1: Test Mode  
Configuration Change Enable  
0: Do not allow write access to the CANBIT register.  
1: Allow write access to the CANBIT register if the INIT bit is 1.  
Disable Automatic Retransmission  
0: Auto retransmission of disturbed messages is enabled.  
1: Auto retransmission is disabled.  
4
3
reserved  
EIE  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Error Interrupt Enable  
0: Disabled. No Error Status interrupt is generated.  
1: Enabled. A change in the Boff or EWarn bits in the CANSTS register  
generates an interrupt.  
November 29, 2007  
361  
Preliminary  
Controller Area Network (CAN) Module  
Bit/Field  
2
Name  
SIE  
Type  
R/W  
Reset  
0
Description  
Status Change Interrupt Enable  
0: Disabled. No Status Change interrupt is generated.  
1: Enabled. An interrupt is generated when a message has successfully  
been transmitted or received, or a CAN bus error has been detected. A  
change in the TxOk or RxOk bits in the CANSTS register generates an  
interrupt.  
1
0
IE  
R/W  
R/W  
0
1
CAN Interrupt Enable  
0: Interrupt disabled.  
1: Interrupt enabled.  
INIT  
Initialization  
0: Normal operation.  
1: Initialization started.  
362  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 2: CAN Status (CANSTS), offset 0x004  
The status register contains information for interrupt servicing such as Bus-Off, error count threshold,  
and error types.  
The LEC field holds the code that indicates the type of the last error to occur on the CAN bus. This  
field is cleared to 0 when a message has been transferred (reception or transmission) without error.  
The unused error code 7 may be written by the CPU to check for updates.  
An Error Interrupt is generated by the BOff and EWarn bits and a Status Change Interrupt is  
generated by the RxOk, TxOk, and LEC bits, assuming that the corresponding enable bits in the  
CAN Control (CANCTL) register are set. A change of the EPass bit or a write to the RxOk, TxOk,  
or LEC bits does not generate an interrupt.  
Reading the CAN Status (CANSTS) register clears the CAN Interrupt (CANINT) register, if it is  
pending.  
CAN Status (CANSTS)  
CAN0 base: 0x4004.0000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BOff  
EWarn  
EPass  
RxOK  
TxOK  
LEC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
6
BOff  
RO  
RO  
0
0
Bus-Off Status  
0: Module is not in bus-off state.  
1: Module is in bus-off state.  
EWarn  
Warning Status  
0: Both error counters are below the error warning limit of 96.  
1: At least one of the error counters has reached the error warning limit  
of 96.  
5
EPass  
RO  
0
Error Passive  
0: The CAN module is in the Error Active state, that is, the receive or  
transmit error count is less than or equal to 127.  
1: The CAN module is in the Error Passive state, that is, the receive or  
transmit error count is greater than 127.  
November 29, 2007  
363  
Preliminary  
Controller Area Network (CAN) Module  
Bit/Field  
4
Name  
RxOK  
Type  
R/W  
Reset  
0
Description  
Received a Message Successfully  
0: Since this bit was last reset to 0, no message has been successfully  
received.  
1: Since this bit was last reset to 0, a message has been successfully  
received, independent of the result of the acceptance filtering.  
This bit is never reset by the CAN module.  
Transmitted a Message Successfully  
3
TxOK  
R/W  
0
0: Since this bit was last reset to 0, no message has been successfully  
transmitted.  
1: Since this bit was last reset to 0, a message has been successfully  
transmitted error-free and acknowledged by at least one other node.  
This bit is never reset by the CAN module.  
364  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
2:0  
Name  
LEC  
Type  
R/W  
Reset  
0x0  
Description  
Last Error Code  
This is the type of the last error to occur on the CAN bus.  
Value Definition  
0x0 No Error  
0x1 Stuff Error  
More than 5 equal bits in a sequence have occurred in a part  
of a received message where this is not allowed.  
0x2 Form Error  
A fixed format part of the received frame has the wrong format.  
0x3 ACK Error  
The message transmitted was not acknowledged by another  
node.  
0x4 Bit 1 Error  
When a message is transmitted, the CAN controller monitors  
the data lines to detect any conflicts. When the arbitration field  
is transmitted, data conflicts are a part of the arbitration protocol.  
When other frame fields are transmitted, data conflicts are  
considered errors.  
A Bit 1 Error indicates that the device wanted to send a High  
level (logical 1) but the monitored bus value was Low (logical  
0).  
0x5 Bit 0 Error  
A Bit 0 Error indicates that the device wanted to send a Low  
level (logical 0) but the monitored bus value was High (logical  
1).  
During bus-off recovery, this status is set each time a sequence  
of 11 High bits has been monitored. This enables the CPU to  
monitor the proceeding of the bus-off recovery sequence without  
any disturbances to the bus.  
0x6 CRC Error  
The CRC checksum was incorrect in the received message,  
indicating that the calculated value received did not match the  
calculated CRC of the data.  
0x7 Unused  
When the LEC bit shows this value, no CAN bus event was  
detected since the CPU wrote this value to LEC.  
November 29, 2007  
365  
Preliminary  
Controller Area Network (CAN) Module  
Register 3: CAN Error Counter (CANERR), offset 0x008  
This register contains the error counter values, which can be used to analyze the cause of an error.  
CAN Error Counter (CANERR)  
CAN0 base: 0x4004.0000  
Offset 0x008  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RP  
REC  
TEC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15  
RP  
RO  
0
Received Error Passive  
0: The Receive Error counter is below the Error Passive level (127 or  
less).  
1: The Receive Error counter has reached the Error Passive level (128  
or greater).  
14:8  
7:0  
REC  
TEC  
RO  
RO  
0x0  
0x0  
Receive Error Counter  
State of the receiver error counter (0 to 127).  
Transmit Error Counter  
State of the transmit error counter (0 to 255).  
366  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 4: CAN Bit Timing (CANBIT), offset 0x00C  
This register is used to program the bit width and bit quantum. Values are to be programmed to the  
system clock frequency. This register is write-enabled by the CCE and INIT bits in the CANCTL  
register.  
With a CAN module clock (CAN_CLK) of 8 MHz, the register reset value of 0x230 configures the  
CAN for a bit rate of 500 Kbps.  
CAN Bit Timing (CANBIT)  
CAN0 base: 0x4004.0000  
Offset 0x00C  
Type R/W, reset 0x0000.2301  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TSeg2  
TSeg1  
SJW  
BRP  
Type  
Reset  
RO  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:15  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
14:12  
11:8  
7:6  
TSeg2  
TSeg1  
SJW  
R/W  
R/W  
R/W  
0x2  
0x3  
0x0  
Time Segment after Sample Point  
0x00-0x07: The actual interpretation by the hardware of this value is  
such that one more than the value programmed here is used.  
So, for example, a reset value of 0x2 defines that there is 3(2+1) bit  
time quanta defined for Phase_Seg2 (see Figure 14-2 on page 355).  
The bit time quanta is defined by BRP.  
Time Segment Before Sample Point  
0x00-0x0F: The actual interpretation by the hardware of this value is  
such that one more than the value programmed here is used.  
So, for example, the reset value of 0x3 defines that there is 4(3+1) bit  
time quanta defined for Phase_Seg1 (see Figure 14-2 on page 355).  
The bit time quanta is define by BRP.  
(Re)Synchronization Jump Width  
0x00-0x03: The actual interpretation by the hardware of this value is  
such that one more than the value programmed here is used.  
During the start of frame (SOF), if the CAN controller detects a phase  
error (misalignment), it can adjust the length of TSeg2 or TSeg1 by the  
value in SJW. So the reset value of 0 adjusts the length by 1 bit time  
quanta.  
November 29, 2007  
367  
Preliminary  
Controller Area Network (CAN) Module  
Bit/Field  
5:0  
Name  
BRP  
Type  
R/W  
Reset  
0x1  
Description  
Baud Rate Prescalar  
0x00-0x03F: The value by which the oscillator frequency is divided for  
generating the bit time quanta. The bit time is built up from a multiple  
of this quantum. The actual interpretation by the hardware of this value  
is such that one more than the value programmed here is used.  
BRP defines the number of CAN clock periods that make up 1 bit time  
quanta, so the reset value is 2 bit time quanta (1+1).  
The BRPRE register can be used to further divide the bit time.  
368  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 5: CAN Interrupt (CANINT), offset 0x010  
This register indicates the source of the interrupt.  
If several interrupts are pending, the CAN Interrupt (CANINT) register points to the pending interrupt  
with the highest priority, disregarding their chronological order. An interrupt remains pending until  
the CPU has cleared it. If the IntId bit is not 0x0000 (the default) and the IE bit in the CANCTL  
register is set, the interrupt is active. The interrupt line remains active until the IntId bit is set back  
to 0x0000 when the cause of all interrupts are reset or until IE is reset.  
CAN Interrupt (CANINT)  
CAN0 base: 0x4004.0000  
Offset 0x010  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IntId  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
IntId  
RO  
0x0000  
Interrupt Identifier  
The number in this field indicates the source of the interrupt.  
Value  
Definition  
0x0000  
No interrupt pending  
0x0001-0x0020 Number of the message object that caused the  
interrupt  
0x0021-0x7FFF Unused  
0x8000  
Status Interrupt  
0x8001-0xFFFF Unused  
November 29, 2007  
369  
Preliminary  
Controller Area Network (CAN) Module  
Register 6: CAN Test (CANTST), offset 0x014  
This is the test mode register for self-test and external pin access. It is write-enabled by the Test  
bit in the CANCTL register. Different test functions may be combined but when the Tx bit is not  
equal to 0x0, it disturbs message transmits.  
CAN Test (CANTST)  
CAN0 base: 0x4004.0000  
Offset 0x014  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Rx  
Tx  
LBack  
Silent  
Basic  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
Rx  
Tx  
RO  
0
Receive Observation  
Displays the value on the CANnRx pin.  
6:5  
R/W  
0x0  
Transmit Control  
Overrides control of theCANnTx pin.  
Value Description  
00  
01  
10  
11  
CAN_TX is controlled by the CAN module (default)  
Sample Point signal driven on the CAN_TX pin  
CAN_TX drives a Low value  
CAN_TX drives a High value  
4
3
LBack  
Silent  
R/W  
R/W  
0
0
Loopback Mode  
0: Disabled.  
1: Enabled.  
Silent Mode  
Do not transmit data; monitor the bus. Also known as Bus Monitor mode.  
0: Disabled.  
1: Enabled.  
2
Basic  
R/W  
0
Basic Mode  
0: Disabled.  
1: Use CANIF1 registers as transmit buffer, and use CANIF2 registers  
as receive buffer.  
370  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
1:0  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
November 29, 2007  
371  
Preliminary  
Controller Area Network (CAN) Module  
Register 7: CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018  
This register is used to further divide the bit time set with the BRP bit in the CANBIT register. It is  
write-enabled with the CCE bit in the CANCTL register.  
CAN Baud Rate Prescalar Extension (CANBRPE)  
CAN0 base: 0x4004.0000  
Offset 0x018  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BRPE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3:0  
BRPE  
R/W  
0x0  
Baud Rate Prescalar Extension.  
0x00-0x0F: Extend the BRP bit to values up to 1023. The actual  
interpretation by the hardware is one more than the value programmed  
by BRPE (MSBs) and BRP (LSBs) are used.  
372  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020  
Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080  
This register is used to start a transfer when its MNUM bit field is updated. Its Busy bit indicates that  
the information is transferring from the CAN Interface Registers to the internal message RAM.  
A message transfer is started as soon as there is a write of the message object number with the  
MNUM bit. With this write operation, the Busy bit is automatically set to 1 to indicate that a transfer  
is in progress. After a wait time of 3 to 6 CAN_CLK periods, the transfer between the interface  
register and the message RAM completes, which then sets the Busy bit back to 0.  
CAN IF1 Command Request (CANIF1CRQ)  
CAN0 base: 0x4004.0000  
Offset 0x020  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Busy  
reserved  
MNUM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15  
Busy  
RO  
0x0  
Busy Flag  
0: Reset when read/write action has finished.  
1: Set when a write occurs to the message number in this register.  
14:6  
5:0  
reserved  
MNUM  
RO  
0x00  
0x01  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Message Number  
Selects one of the 32 message objects in the message RAM for data  
transfer. The message objects are numbered from 1 to 32.  
Value  
0x00  
Description  
0 is not a valid message number; it is interpreted as 0x20,  
or object 32.  
0x01-0x20 Indicates specified message object 1 to 32.  
0x21-0x3F Not a valid message number; values are shifted and it is  
interpreted as 0x01-0x1F.  
November 29, 2007  
373  
Preliminary  
Controller Area Network (CAN) Module  
Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024  
Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084  
The Command Mask registers specify the transfer direction and select which buffer registers are  
the source or target of the data transfer.  
CAN IF1 Command Mask (CANIF1CMSK)  
CAN0 base: 0x4004.0000  
Offset 0x024  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ClrIntPnd TxRqst/NewDat  
reserved  
WRNRD  
Mask  
Arb  
Control  
DataA  
DataB  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
WRNRD  
R/W  
0
Write, Not Read  
0: Read. Transfer the message object address specified by the CAN  
Command Request (CANIFnCRQ) register to the CAN message buffer  
registers (CANIFnMSK1, CANIFnMSK2, CANIFnARB1, CANIFnARB2,  
CANIFnCTL, CANIFnDA1, CANIFnDA2, CANIFnDB1, and  
CANIFnDB2).  
1: Write. Transfer data from the message buffer registers to the message  
object address specified by the CANIFnCRQ register.  
6
Mask  
R/W  
0x0  
Access Mask Bits  
When WRNRD=1 (writes):  
0: Mask bits unchanged.  
1: Transfer IDMask + Dir + MXtd to message object.  
When WRNRD=0 (reads):  
0: Mask bits unchanged.  
1: Transfer IDMask + Dir + MXtd of the message object into the  
Interface Registers.  
5
Arb  
R/W  
0x0  
Access Arbitration Bits  
When WRNRD=1 (writes):  
0: Arbitration bits unchanged.  
1: Transfer ID + Dir + Xtd + MsgVal to message object.  
When WRNRD=0 (reads):  
0: Arbitration bits unchanged.  
1: Transfer ID + Dir + Xtd + MsgVal to Message Buffer Register.  
374  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
4
Name  
Type  
R/W  
Reset  
0x0  
Description  
Control  
Access Control Bits  
When WRNRD=1 (writes):  
0: Control bits unchanged.  
1: Transfer control bits to message object.  
When WRNRD=0 (reads):  
0: Control bits unchanged.  
1: Transfer control bits to Message Buffer Register.  
3
2
ClrIntPnd  
R/W  
R/W  
0x0  
0x0  
Clear Interrupt Pending Bit  
Note:  
This bit is not used when in write (WRNRD=1).  
0: IntPnd bit in CANIFnMCTL register remains unchanged.  
1: Clear IntPnd bit in the CANIFnMCTL register in the message object.  
TxRqst/NewDat  
Access Transmission Request or New Data  
When WRNRD=1 (writes):  
Access Transmission Request Bit  
0: TxRqst bit unchanged.  
1: Set TxRqst bit  
Note:  
If a transmission is requested by programming this TxRqst  
bit, the parallel TxRqst in the CANIFnMCTL register is  
ignored.  
When WRNRD=0 (reads):  
Access New Data Bit  
0: NewDat bit unchanged.  
1: Clear NewDat bit in the message object.  
Note:  
A read access to a message object can be combined with the  
reset of the control bits IntPdn and NewDat. The values of  
these bits that are transferred to the CANIFnMCTL register  
always reflect the status before resetting these bits.  
1
DataA  
R/W  
0x0  
Access Data Byte 0 to 3  
When WRNRD=1 (writes):  
0: Data bytes 0-3 are unchanged.  
1: Transfer data bytes 0-3 (CANIFnDA1 and CANIFnDA2) to message  
object.  
When WRNRD=0 (reads):  
0: Data bytes 0-3 are unchanged.  
1: Transfer data bytes 0-3 in message object to CANIFnDA1 and  
CANIFnDA2.  
November 29, 2007  
375  
Preliminary  
Controller Area Network (CAN) Module  
Bit/Field  
0
Name  
DataB  
Type  
R/W  
Reset  
0x0  
Description  
Access Data Byte 4 to 7  
When WRNRD=1 (writes):  
0: Data bytes 4-7 unchanged.  
1: Transfer data bytes 4-7 (CANIFnDB1 and CANIFnDB2) to message  
object.  
When WRNRD=0 (reads):  
0: Data bytes 4-7 unchanged.  
1: Transfer data bytes 4-7 in message object to CANIFnDB1 and  
CANIFnDB2.  
376  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028  
Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088  
The mask information provided in this register accompanies the data (CANIFnDAn), arbitration  
information (CANIFnARBn), and control information (CANIFnMCTL) to the message object in the  
message RAM. The mask is used with the ID bit in the CANIFnARBn register for acceptance  
filtering. Additional mask information is contained in the CANIFnMSK2 register.  
CAN IF1 Mask 1 (CANIF1MSK1)  
CAN0 base: 0x4004.0000  
Offset 0x028  
Type RO, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Msk  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
Msk  
R/W  
0xFF  
Identifier Mask  
0: The corresponding identifier bit (ID) in the message object cannot  
inhibit the match in acceptance filtering.  
1: The corresponding identifier bit (ID) is used for acceptance filtering.  
November 29, 2007  
377  
Preliminary  
Controller Area Network (CAN) Module  
Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C  
Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C  
This register holds extended mask information that accompanies the CANIFnMSK1 register.  
CAN IF1 Mask 2 (CANIF1MSK2)  
CAN0 base: 0x4004.0000  
Offset 0x02C  
Type RO, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MXtd  
MDir  
reserved  
Msk  
Type  
Reset  
R/W  
1
R/W  
1
RO  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15  
14  
MXtd  
MDir  
R/W  
R/W  
0x1  
0x1  
Mask Extended Identifier  
0: The extended identifier bit (Xtd in the CANIFnARB2 register) has  
no effect on the acceptance filtering.  
1: The extended identifier bit Xtd is used for acceptance filtering.  
Mask Message Direction  
0: The message direction bit (Dir in the CANIFnARB2 register) has  
no effect for acceptance filtering.  
1: The message direction bit Dir is used for acceptance filtering.  
13  
reserved  
Msk  
RO  
0x1  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12:0  
R/W  
0xFF  
Identifier Mask  
0: The corresponding identifier bit (ID) in the message object cannot  
inhibit the match in acceptance filtering.  
1: The corresponding identifier bit (ID) is used for acceptance filtering.  
378  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030  
Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090  
These registers hold the identifiers for acceptance filtering.  
CAN IF1 Arbitration 1 (CANIF1ARB1)  
CAN0 base: 0x4004.0000  
Offset 0x030  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ID  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
ID  
R/W  
0x00  
Message Identifier  
This bit field is used with the ID field in the CANIFnARB2 register to  
create the message identifier. ID[28:0] is the Extended Frame and  
ID[28:18] is the Standard Frame.  
November 29, 2007  
379  
Preliminary  
Controller Area Network (CAN) Module  
Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034  
Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094  
These registers hold information for acceptance filtering.  
CAN IF1 Arbitration 2 (CANIF1ARB2)  
CAN0 base: 0x4004.0000  
Offset 0x034  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MsgVal  
Xtd  
Dir  
ID  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15  
MsgVal  
R/W  
0x0  
Message Valid  
0: The message object is ignored by the message handler.  
1: The message object is configured and will be considered by the  
message handler within the CAN controller.  
All unused message objects should have this bit cleared during  
initialization and before clearing the Init bit in the CANCTL register.  
The MsgVal bit must also be cleared before any of the following bits  
are modified or if the message object is no longer required: the ID bit  
fields in the CANIFnARBn registers, the Xtd and Dir bits in the  
CANIFnARB2 register, or the DLC bits in the CANIFnMCTL register.  
14  
13  
Xtd  
Dir  
R/W  
R/W  
0x0  
0x0  
Extended Identifier  
0: The 11-bit Standard Identifier will be used for this message object.  
1: The 29-bit Extended Identifier will be used for this message object.  
Message Direction  
0: Receive. On TxRqst, a Remote Frame with the identifier of this  
message object is transmitted. On reception of a Data Frame with  
matching identifier, that message is stored in this message object.  
1: Transmit. On TxRqst, the respective message object is transmitted  
as a Data Frame. On reception of a Remote Frame with matching  
identifier, TxRqst bit of this message object is set (if RmtEn=1).  
12:0  
ID  
R/W  
0x0  
Message Identifier  
Used with the ID bit in the CANIFnARB1 register to create the message  
identifier. ID[28:0] is the Extended Frame and ID[28:18] is the Standard  
Frame.  
380  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038  
Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098  
This register holds the control information associated with the message object to be sent to the  
Message RAM.  
CAN IF1 Message Control (CANIF1MCTL)  
CAN0 base: 0x4004.0000  
Offset 0x038  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NewDat MsgLst  
IntPnd  
UMask  
TxIE  
RxIE  
RmtEn  
TxRqst  
EoB  
reserved  
DLC  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15  
NewDat  
R/W  
0x0  
New Data  
0: No new data has been written into the data portion of this message  
object by the message handler since the last time this flag was cleared  
by the CPU.  
1: The message handler or the CPU has written new data into the data  
portion of this message object.  
14  
MsgLst  
R/W  
0x0  
Message Lost  
0 : No message was lost since the last time this bit was reset by the  
CPU.  
1: The message handler stored a new message into this object when  
NewDat was set; the CPU has lost a message.  
This bit is only valid for message objects with the Dir bit in the  
CANIFnARB2 register set to 0 (receive).  
13  
IntPnd  
R/W  
0x0  
Interrupt Pending  
0: This message object is not the source of an interrupt.  
1: This message object is the source of an interrupt. The interrupt  
identifier in the CAN Interrupt (CANINT) register will point to this  
message object if there is not another interrupt source with a higher  
priority.  
12  
UMask  
R/W  
0x0  
Use Acceptance Mask  
0: Mask ignored.  
1: Use mask (Msk, MXtd, and MDir) for acceptance filtering.  
November 29, 2007  
381  
Preliminary  
Controller Area Network (CAN) Module  
Bit/Field  
11  
Name  
TxIE  
Type  
R/W  
Reset  
0x0  
Description  
Transmit Interrupt Enable  
0: The IntPnd bit in the CANIFnMCTL register is unchanged after a  
successful transmission of a frame.  
1: The IntPnd bit in the CANIFnMCTL register is set after a successful  
transmission of a frame.  
10  
RxIE  
R/W  
R/W  
0x0  
0x0  
Receive Interrupt Enable  
0: The IntPnd bit in the CANIFnMCTL register is unchanged after a  
successful reception of a frame.  
1: The IntPnd bit in the CANIFnMCTL register is set after a successful  
reception of a frame.  
9
RmtEn  
Remote Enable  
0: At the reception of a Remote Frame, the TxRqst bit in the  
CANIFnMCTL register is left unchanged.  
1: At the reception of a Remote Frame, the TxRqst bit in the  
CANIFnMCTL register is set.  
8
7
TxRqst  
EoB  
R/W  
R/W  
0x0  
0x0  
Transmit Request  
0: This message object is not waiting for transmission.  
1: The transmission of this message object is requested and is not yet  
done.  
End of Buffer  
0: Message object belongs to a FIFO Buffer and is not the last message  
object of that FIFO Buffer.  
1: Single message object or last message object of a FIFO Buffer.  
This bit is used to concatenate two or more message objects (up to 32)  
to build a FIFO buffer. For a single message object (thus not belonging  
to a FIFO buffer), this bit must be set to 1.  
6:4  
3:0  
reserved  
DLC  
RO  
0x0  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Data Length Code  
Value  
Description  
0x0-0x8 Specifies the number of bytes in the Data Frame.  
0x9-0xF Defaults to a Data Frame with 8 bytes.  
The DLC bit in the CANIFnMCTL register of a message object must be  
defined the same as in all the corresponding objects with the same  
identifier at other nodes. When the message handler stores a data frame,  
it writes DLC to the value given by the received message.  
382  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C  
Register 23: CAN IF1 Data A2 (CANIF1DA2), offset 0x040  
Register 24: CAN IF1 Data B1 (CANIF1DB1), offset 0x044  
Register 25: CAN IF1 Data B2 (CANIF1DB2), offset 0x048  
Register 26: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C  
Register 27: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0  
Register 28: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4  
Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8  
These registers contain the data to be sent or that has been received. In a CAN Data Frame, data  
byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted  
or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.  
CAN IF1 Data A1 (CANIF1DA1)  
CAN0 base: 0x4004.0000  
Offset 0x03C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Data  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
Data  
R/W  
0x00  
Data  
The CANIFnDA1 registers contain data bytes 1 and 0; CANIFnDA2  
data bytes 3 and 2; CANIFnDB1 data bytes 5 and 4; and CANIFnDB2  
data bytes 7 and 6.  
November 29, 2007  
383  
Preliminary  
Controller Area Network (CAN) Module  
Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100  
Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104  
The CANTXRQ1 and CANTXRQ2 registers hold the TxRqst bits of the 32 message objects. By  
reading out these bits, the CPU can check which message object has a transmission request pending.  
The TxRqst bit of a specific message object can be changed by three sources: (1) the CPU via the  
CAN IFn Message Control (CANIFnMCTL) register, (2) the message handler state machine after  
the reception of a Remote Frame, or (3) the message handler state machine after a successful  
transmission.  
The CANTXRQ1 register contains the TxRqst bit of the first 16 message objects in the message  
RAM; the CANTXRQ2 register contains the TxRqst bit of the second 16 message objects.  
CAN Transmission Request 1 (CANTXRQ1)  
CAN0 base: 0x4004.0000  
Offset 0x100  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TxRqst  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TxRqst  
RO  
0x00  
Transmission Request Bits  
(of all message objects)  
0: The message object is not waiting for transmission.  
1: The transmission of the message object is requested and is not yet  
done.  
384  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 32: CAN New Data 1 (CANNWDA1), offset 0x120  
Register 33: CAN New Data 2 (CANNWDA2), offset 0x124  
The CANNWDA1 and CANNWDA2 registers hold the NewDat bits of the 32 message objects. By  
reading these bits, the CPU can check which message object has its data portion updated. The  
NewDat bit of a specific message object can be changed by three sources: (1) the CPU via the  
CAN IFn Message Control (CANIFnMCTL) register, (2) the message handler state machine after  
the reception of a Data Frame, or (3) the message handler state machine after a successful  
transmission.  
The CANNWDA1 register contains the NewDat bit of the first 16 message objects in the message  
RAM; the CANNWDA2 register contains the NewDat bit of the second 16 message objects.  
CAN New Data 1 (CANNWDA1)  
CAN0 base: 0x4004.0000  
Offset 0x120  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NewDat  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
NewDat  
RO  
0x00  
New Data Bits  
(of all message objects)  
0: No new data has been written into the data portion of this message  
object by the message handler since the last time this flag was cleared  
by the CPU.  
1: The message handler or the CPU has written new data into the data  
portion of this message object.  
November 29, 2007  
385  
Preliminary  
Controller Area Network (CAN) Module  
Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140  
Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144  
The CANMSG1INT and CANMSG2INT registers hold the IntPnd bits of the 32 message objects.  
By reading these bits, the CPU can check which message object has an interrupt pending. The  
IntPnd bit of a specific message object can be changed through two sources: (1) the CPU via the  
CAN IFn Message Control (CANIFnMCTL) register, or (2) the message handler state machine  
after the reception or transmission of a frame.  
This field is also encoded in the CAN Interrupt (CANINT) register.  
The CANMSG1INT register contains the IntPnd bit of the first 16 message objects in the message  
RAM; the CANMSG2INT register contains the IntPnd bit of the second 16 message objects.  
CAN Message 1 Interrupt Pending (CANMSG1INT)  
CAN0 base: 0x4004.0000  
Offset 0x140  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IntPnd  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
IntPnd  
RO  
0x00  
Interrupt Pending Bits  
(of all message objects)  
0: This message object is not the source of an interrupt.  
1: This message object is the source of an interrupt.  
386  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160  
Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164  
The CANMSG1VAL and CANMSG2VAL registers hold the MsgVal bits of the 32 message objects.  
By reading these bits, the CPU can check which message object is valid. The message value of a  
specific message object can be changed with the CAN IFn Message Control (CANIFnMCTL)  
register.  
The CANMSG1VAL register contains the MsgVal bit of the first 16 message objects in the message  
RAM; the CANMSG2VAL register contains the MsgVal bit of the second 16 message objects in  
the message RAM.  
CAN Message 1 Valid (CANMSG1VAL)  
CAN0 base: 0x4004.0000  
Offset 0x160  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MsgVal  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
MsgVal  
RO  
0x00  
Message Valid Bits  
(of all message objects)  
0: This message object is not configured and is ignored by the message  
handler.  
1: This message object is configured and should be considered by the  
message handler.  
November 29, 2007  
387  
Preliminary  
Analog Comparators  
15  
Analog Comparators  
An analog comparator is a peripheral that compares two analog voltages, and provides a logical  
output that signals the comparison result.  
The LM3S2110 controller provides three independent integrated analog comparators that can be  
configured to drive an output or generate an interrupt.  
Note: Not all comparators have the option to drive an output pin. See the Comparator Operating  
Mode tables for more information.  
A comparator can compare a test voltage against any one of these voltages:  
An individual external reference voltage  
A shared single external reference voltage  
A shared internal reference voltage  
The comparator can provide its output to a device pin, acting as a replacement for an analog  
comparator on the board, or it can be used to signal the application via interrupts to cause it to start  
capturing a sample sequence.  
388  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
15.1  
Block Diagram  
Figure 15-1. Analog Comparator Module Block Diagram  
C2-  
-ve input  
+ve input  
Comparator 2  
output  
C2+  
<none>  
+ve input (alternate)  
ACCTL2  
ACSTAT2  
interrupt  
interrupt  
reference input  
C1-  
-ve input  
Comparator 1  
output  
+ve input  
C1+  
<none>  
interrupt  
+ve input (alternate)  
ACCTL1  
ACSTAT1  
interrupt  
reference input  
C0-  
-ve input  
Comparator 0  
output  
C0+  
+ve input  
C0o  
+ve input (alternate)  
ACCTL0  
ACSTAT0  
interrupt  
interrupt  
reference input  
Voltage  
Ref  
internal  
bus  
ACREFCTL  
15.2  
Functional Description  
Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module)  
for the analog input pin be disabled to prevent excessive current draw from the I/O  
pads.  
The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.  
VIN- < VIN+, VOUT = 1  
VIN- > VIN+, VOUT = 0  
As shown in Figure 15-2 on page 390, the input source for VIN- is an external input. In addition to  
an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.  
November 29, 2007  
389  
Preliminary  
Analog Comparators  
Figure 15-2. Structure of Comparator Unit  
-ve input  
+ve input  
0
1
2
output  
CINV  
+ve input (alternate)  
reference input  
IntGen  
ACCTL  
ACSTAT  
A comparator is configured through two status/control registers (ACCTL and ACSTAT ). The internal  
reference is configured through one control register (ACREFCTL). Interrupt status and control is  
configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the  
comparators are shown in the Comparator Operating Mode tables.  
Typically, the comparator output is used internally to generate controller interrupts. It may also be  
used to drive an external pin.  
Important: Certain register bit values must be set before using the analog comparators. The proper  
pad configuration for the comparator input and output pins are described in the  
Comparator Operating Mode tables.  
Table 15-1. Comparator 0 Operating Modes  
ACCNTL0 Comparator 0  
ASRCP  
00  
VIN- VIN+  
Output Interrupt  
C0-  
C0-  
C0-  
C0+  
C0o/C1+  
C0o/C1+  
C0o/C1+  
yes  
yes  
yes  
yes  
01  
C0+  
Vref  
10  
11  
C0- reserved C0o/C1+  
Table 15-2. Comparator 1 Operating Modes  
ACCNTL1 Comparator 1  
ASRCP  
00  
VIN- VIN+  
C1- C0o/C1+a n/a  
Output Interrupt  
yes  
yes  
yes  
yes  
01  
C1-  
C1-  
C0+  
Vref  
n/a  
n/a  
n/a  
10  
11  
C1- reserved  
a. C0o and C1+ signals share a single pin and may only be used as one or the other.  
390  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table 15-3. Comparator 2 Operating Modes  
ACCNTL2 Comparator 2  
ASRCP  
00  
VIN- VIN+  
Output Interrupt  
C2-  
C2-  
C2-  
C2+  
n/a  
n/a  
n/a  
yes  
yes  
yes  
yes  
01  
C0+  
Vref  
10  
11  
C2- reserved n/a  
15.2.1  
Internal Reference Programming  
The structure of the internal reference is shown in Figure 15-3 on page 391. This is controlled by a  
single configuration register (ACREFCTL). Table 15-4 on page 391 shows the programming options  
to develop specific internal reference values, to compare an external voltage against a particular  
voltage generated internally.  
Figure 15-3. Comparator Internal Reference Structure  
8R  
AVDD  
8R  
R
R
R
R
•••  
EN  
15  
14  
1
0
•••  
Decoder  
internal  
reference  
VREF  
RNG  
Table 15-4. Internal Reference Voltage and ACREFCTL Field Values  
ACREFCTL Register  
Output Reference Voltage Based on VREF Field Value  
EN Bit Value RNG Bit Value  
EN=0  
RNG=X  
0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0  
for the least noisy ground reference.  
November 29, 2007  
391  
Preliminary  
Analog Comparators  
ACREFCTL Register  
EN Bit Value RNG Bit Value  
EN=1 RNG=0  
Output Reference Voltage Based on VREF Field Value  
Total resistance in ladder is 32 R.  
RVREF  
RT  
VREF = AVDD ----------------  
×
VREF + 8  
(
)
VREF = AVDD ------------------------------  
×
32  
VR EF = 0.825 + 0.103 VREF  
The range of internal reference in this mode is 0.825-2.37 V.  
Total resistance in ladder is 24 R.  
RNG=1  
RVREF  
RT  
VREF = AVDD ----------------  
×
VREF  
24  
(
)
VREF = AVDD --------------------  
×
VREF = 0.1375 x VREF  
The range of internal reference for this mode is 0.0-2.0625 V.  
15.3  
Initialization and Configuration  
The following example shows how to configure an analog comparator to read back its output value  
from an internal register.  
1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the RCGC1 register  
in the System Control module.  
2. In the GPIO module, enable the GPIO port/pin associated with C0- as a GPIO input.  
3. Configure the internal voltage reference to 1.65 V by writing the ACREFCTL register with the  
value 0x0000.030C.  
4. Configure comparator 0 to use the internal voltage reference and to not invert the output on the  
C0o pin by writing the ACCTL0 register with the value of 0x0000.040C.  
5. Delay for some time.  
6. Read the comparator output value by reading the ACSTAT0 register’s OVAL value.  
Change the level of the signal input on C0- to see the OVAL value change.  
15.4  
Register Map  
Table 15-5 on page 393 lists the comparator registers. The offset listed is a hexadecimal increment  
to the register’s address, relative to the Analog Comparator base address of 0x4003.C000.  
392  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table 15-5. Analog Comparators Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x00  
0x04  
0x08  
0x10  
0x20  
0x24  
0x40  
0x44  
0x60  
0x64  
ACMIS  
R/W1C  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
Analog Comparator Masked Interrupt Status  
Analog Comparator Raw Interrupt Status  
Analog Comparator Interrupt Enable  
Analog Comparator Reference Voltage Control  
Analog Comparator Status 0  
394  
395  
396  
397  
398  
399  
398  
399  
398  
399  
ACRIS  
ACINTEN  
ACREFCTL  
ACSTAT0  
ACCTL0  
ACSTAT1  
ACCTL1  
ACSTAT2  
ACCTL2  
R/W  
R/W  
RO  
R/W  
RO  
Analog Comparator Control 0  
Analog Comparator Status 1  
R/W  
RO  
Analog Comparator Control 1  
Analog Comparator Status 2  
R/W  
Analog Comparator Control 2  
15.5  
Register Descriptions  
The remainder of this section lists and describes the Analog Comparator registers, in numerical  
order by address offset.  
November 29, 2007  
393  
Preliminary  
Analog Comparators  
Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00  
This register provides a summary of the interrupt status (masked) of the comparator.  
Analog Comparator Masked Interrupt Status (ACMIS)  
Base 0x4003.C000  
Offset 0x00  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN2  
IN1  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
IN2  
IN1  
IN0  
R/W1C  
R/W1C  
R/W1C  
0
Comparator 2 Masked Interrupt Status  
Gives the masked interrupt state of this interrupt. Write 1 to this bit to  
clear the pending interrupt.  
0
0
Comparator 1 Masked Interrupt Status  
Gives the masked interrupt state of this interrupt. Write 1 to this bit to  
clear the pending interrupt.  
Comparator 0 Masked Interrupt Status  
Gives the masked interrupt state of this interrupt. Write 1 to this bit to  
clear the pending interrupt.  
394  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04  
This register provides a summary of the interrupt status (raw) of the comparator.  
Analog Comparator Raw Interrupt Status (ACRIS)  
Base 0x4003.C000  
Offset 0x04  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN2  
IN1  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
IN2  
IN1  
IN0  
RO  
RO  
RO  
0
Comparator 2 Interrupt Status  
When set, indicates that an interrupt has been generated by comparator  
2.  
0
0
Comparator 1 Interrupt Status  
When set, indicates that an interrupt has been generated by comparator  
1.  
Comparator 0 Interrupt Status  
When set, indicates that an interrupt has been generated by comparator  
0.  
November 29, 2007  
395  
Preliminary  
Analog Comparators  
Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08  
This register provides the interrupt enable for the comparator.  
Analog Comparator Interrupt Enable (ACINTEN)  
Base 0x4003.C000  
Offset 0x08  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN2  
IN1  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
IN2  
IN1  
IN0  
R/W  
R/W  
R/W  
0
0
0
Comparator 2 Interrupt Enable  
When set, enables the controller interrupt from the comparator 2 output  
Comparator 1 Interrupt Enable  
When set, enables the controller interrupt from the comparator 1 output.  
Comparator 0 Interrupt Enable  
When set, enables the controller interrupt from the comparator 0 output.  
396  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset  
0x10  
This register specifies whether the resistor ladder is powered on as well as the range and tap.  
Analog Comparator Reference Voltage Control (ACREFCTL)  
Base 0x4003.C000  
Offset 0x10  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
EN  
RNG  
reserved  
VREF  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
9
EN  
R/W  
0
Resistor Ladder Enable  
The EN bit specifies whether the resistor ladder is powered on. If 0, the  
resistor ladder is unpowered. If 1, the resistor ladder is connected to  
the analog VDD  
.
This bit is reset to 0 so that the internal reference consumes the least  
amount of power if not used and programmed.  
8
RNG  
R/W  
0
Resistor Ladder Range  
The RNG bit specifies the range of the resistor ladder. If 0, the resistor  
ladder has a total resistance of 32 R. If 1, the resistor ladder has a total  
resistance of 24 R.  
7:4  
3:0  
reserved  
VREF  
RO  
0x00  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Resistor Ladder Voltage Ref  
The VREF bit field specifies the resistor ladder tap that is passed through  
an analog multiplexer. The voltage corresponding to the tap position is  
the internal reference voltage available for comparison. See Table  
15-4 on page 391 for some output reference voltage examples.  
November 29, 2007  
397  
Preliminary  
Analog Comparators  
Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20  
Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40  
Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x60  
These registers specify the current output value of the comparator.  
Analog Comparator Status 0 (ACSTAT0)  
Base 0x4003.C000  
Offset 0x20  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OVAL  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
OVAL  
RO  
RO  
0
0
Comparator Output Value  
The OVAL bit specifies the current output value of the comparator.  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
398  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x24  
Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x44  
Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x64  
These registers configure the comparator’s input and output.  
Analog Comparator Control 0 (ACCTL0)  
Base 0x4003.C000  
Offset 0x24  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ASRCP  
reserved  
ISLVAL  
ISEN  
CINV  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10:9  
ASRCP  
R/W  
0x00  
Analog Source Positive  
The ASRCP field specifies the source of input voltage to the VIN+ terminal  
of the comparator. The encodings for this field are as follows:  
Value Function  
0x0 Pin value  
0x1 Pin value of C0+  
0x2 Internal voltage reference  
0x3 Reserved  
8:5  
4
reserved  
ISLVAL  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Interrupt Sense Level Value  
The ISLVAL bit specifies the sense value of the input that generates  
an interrupt if in Level Sense mode. If 0, an interrupt is generated if the  
comparator output is Low. Otherwise, an interrupt is generated if the  
comparator output is High.  
November 29, 2007  
399  
Preliminary  
Analog Comparators  
Bit/Field  
3:2  
Name  
ISEN  
Type  
R/W  
Reset  
0x0  
Description  
Interrupt Sense  
The ISEN field specifies the sense of the comparator output that  
generates an interrupt. The sense conditioning is as follows:  
Value Function  
0x0 Level sense, see ISLVAL  
0x1 Falling edge  
0x2 Rising edge  
0x3 Either edge  
1
CINV  
R/W  
RO  
0
0
Comparator Output Invert  
The CINV bit conditionally inverts the output of the comparator. If 0, the  
output of the comparator is unchanged. If 1, the output of the comparator  
is inverted prior to being processed by hardware.  
0
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
400  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
16  
Pulse Width Modulator (PWM)  
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.  
High-resolution counters are used to generate a square wave, and the duty cycle of the square  
wave is modulated to encode an analog signal. Typical applications include switching power supplies  
and motor control.  
The Stellaris® PWM module consists of one PWM generator block and a control block. The PWM  
generator block contains one timer (16-bit down or up/down counter), two PWM comparators, a  
PWM signal generator, a dead-band generator, and an interrupt selector. The control block determines  
the polarity of the PWM signals, and which signals are passed through to the pins.  
The PWM generator block produces two PWM signals that can either be independent signals (other  
than being based on the same timer and therefore having the same frequency) or a single pair of  
complementary signals with dead-band delays inserted. The output of the PWM generation block  
is managed by the output control block before being passed to the device pins.  
The Stellaris® PWM module provides a great deal of flexibility. It can generate simple PWM signals,  
such as those required by a simple charge pump. It can also generate paired PWM signals with  
dead-band delays, such as those required by a half-H bridge driver.  
16.1  
Block Diagram  
Figure 16-1 on page 401 provides a block diagram of a Stellaris® PWM module. The LM3S2110  
controller contains one generator block (PWM0) and generates two independent PWM signals or  
one paired PWM signal with dead-band delays inserted.  
Figure 16-1. PWM Module Block Diagram  
PWM Generator Block  
PWMnLOAD  
zero  
PWMnGENA  
PWM Clock  
load  
dir  
PWMnGENB  
Timer  
Fault  
PWMnCOUNT  
16  
PWMnCMPA  
PWMnDBCTL  
PWMnDBRISE  
PWMnDBFALL  
PWMENABLE  
PWMINVERT  
PWMFAULT  
cmpA  
cmpB  
PWM  
Generator  
pwma  
pwmb  
Comparator A  
Dead-Band  
Generator  
PWM Output  
Control  
PWMnCMPB  
Comparator B  
PWMnINTEN  
Interrupt  
Interrupt and  
Trigger Generate  
PWMnRIS  
PWMnISC  
16.2  
Functional Description  
16.2.1  
PWM Timer  
The timer runs in one of two modes: Count-Down mode or Count-Up/Down mode. In Count-Down  
mode, the timer counts from the load value to zero, goes back to the load value, and continues  
counting down. In Count-Up/Down mode, the timer counts from zero up to the load value, back  
down to zero, back up to the load value, and so on. Generally, Count-Down mode is used for  
November 29, 2007  
401  
Preliminary  
Pulse Width Modulator (PWM)  
generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used for generating  
center-aligned PWM signals.  
The timers output three signals that are used in the PWM generation process: the direction signal  
(this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down  
mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width  
High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero  
pulse is immediately followed by the load pulse.  
16.2.2  
PWM Comparators  
There are two comparators in the PWM generator that monitor the value of the counter; when either  
match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down  
mode, these comparators match both when counting up and when counting down; they are therefore  
qualified by the counter direction signal. These qualified pulses are used in the PWM generation  
process. If either comparator match value is greater than the counter load value, then that comparator  
never outputs a High pulse.  
Figure 16-2 on page 402 shows the behavior of the counter and the relationship of these pulses  
when the counter is in Count-Down mode. Figure 16-3 on page 403 shows the behavior of the counter  
and the relationship of these pulses when the counter is in Count-Up/Down mode.  
Figure 16-2. PWM Count-Down Mode  
Load  
CompA  
CompB  
Zero  
Load  
Zero  
A
B
Dir  
BDown  
ADown  
402  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 16-3. PWM Count-Up/Down Mode  
Load  
CompA  
CompB  
Zero  
Load  
Zero  
A
B
Dir  
BUp  
BDown  
ADown  
AUp  
16.2.3  
PWM Signal Generator  
The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM  
signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load,  
match A down, and match B down. In Count-Up/Down mode, there are six events that can affect  
the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match  
A or match B events are ignored when they coincide with the zero or load events. If the match A  
and match B events coincide, the first signal, PWMA, is generated based only on the match A event,  
and the second signal, PWMB, is generated based only on the match B event.  
For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring  
the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be  
used to generate a pair of PWM signals of various positions and duty cycles, which do or do not  
overlap. Figure 16-4 on page 403 shows the use of Count-Up/Down mode to generate a pair of  
center-aligned, overlapped PWM signals that have different duty cycles.  
Figure 16-4. PWM Generation Example In Count-Up/Down Mode  
Load  
CompA  
CompB  
Zero  
PWMA  
PWMB  
In this example, the first generator is set to drive High on match A up, drive Low on match A down,  
and ignore the other four events. The second generator is set to drive High on match B up, drive  
Low on match B down, and ignore the other four events. Changing the value of comparator A  
November 29, 2007  
403  
Preliminary  
Pulse Width Modulator (PWM)  
changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the  
duty cycle of the PWMB signal.  
16.2.4  
Dead-Band Generator  
The two PWM signals produced by the PWM generator are passed to the dead-band generator. If  
disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is  
lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal  
is the input signal with the rising edge delayed by a programmable amount. The second output  
PWM signal is the inversion of the input signal with a programmable delay added between the falling  
edge of the input signal and the rising edge of this new signal.  
This is therefore a pair of active High signals where one is always High, except for a programmable  
amount of time at transitions where both are Low. These signals are therefore suitable for driving  
a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the  
power electronics. Figure 16-5 on page 404 shows the effect of the dead-band generator on an input  
PWM signal.  
Figure 16-5. PWM Dead-Band Generator  
Input  
PWMA  
PWMB  
Rising Edge  
Delay  
Falling Edge  
Delay  
16.2.5  
16.2.6  
Interrupt Selector  
The PWM generator also takes the same four (or six) counter events and uses them to generate  
an interrupt. Any of these events or a set of these events can be selected as a source for an interrupt;  
when any of the selected events occur, an interrupt is generated. The selection of events allows  
the interrupt to occur at a specific position within the PWM signal. Note that interrupts are based on  
the raw events; delays in the PWM signal edges caused by the dead-band generator are not taken  
into account.  
Synchronization Methods  
There is a global reset capability that can reset the counter of the PWM generator.  
The counter load values and comparator match values of the PWM generator can be updated in  
two ways. The first is immediate update mode, where a new value is used as soon as the counter  
reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and overly  
short or overly long output PWM pulses are prevented.  
The other update method is synchronous, where the new value is not used until a global synchronized  
update signal is asserted, at which point the new value is used as soon as the counter reaches  
zero. This second mode allows multiple items to be updated simultaneously without odd effects  
during the update; everything runs from the old values until a point at which they all run from the  
new values.  
16.2.7  
Fault Conditions  
There are two external conditions that affect the PWM block; the signal input on the Fault pin and  
the stalling of the controller by a debugger. There are two mechanisms available to handle such  
404  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
conditions: the output signals can be forced into an inactive state and/or the PWM timers can be  
stopped.  
Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal  
to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an  
extended period of time, this keeps the output signal from driving the outside world in a dangerous  
manner during the fault condition. A fault condition can also generate a controller interrupt.  
Each PWM generator can also be configured to stop counting during a stall condition. The user can  
select for the counters to run until they reach zero then stop, or to continue counting and reloading.  
A stall condition does not generate a controller interrupt.  
16.2.8  
Output Control Block  
With the PWM generator block producing two raw PWM signals, the output control block takes care  
of the final conditioning of the PWM signals before they go to the pins. Via a single register, the set  
of PWM signals that are actually enabled to the pins can be modified; this can be used, for example,  
to perform commutation of a brushless DC motor with a single register write (and without modifying  
the individual PWM generators, which are modified by the feedback control loop). Similarly, fault  
control can disable any of the PWM signals as well. A final inversion can be applied to any of the  
PWM signals, making them active Low instead of the default active High.  
16.3  
Initialization and Configuration  
The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and  
with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes  
the system clock is 20 MHz.  
1. Enable the PWM clock by writing a value of 0x0010.0000 to the RCGC0 register in the System  
Control module.  
2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control  
module.  
3. In the GPIO module, enable the appropriate pins for their alternate function using the  
GPIOAFSEL register.  
4. Configure the Run-Mode Clock Configuration (RCC) register in the System Control module  
to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).  
5. Configure the PWM generator for countdown mode with immediate updates to the parameters.  
Write the PWM0CTL register with a value of 0x0000.0000.  
Write the PWM0GENA register with a value of 0x0000.008C.  
Write the PWM0GENB register with a value of 0x0000.080C.  
6. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM  
clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per  
period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the Load field  
in the PWM0LOAD register to the requested period minus one.  
Write the PWM0LOAD register with a value of 0x0000.018F.  
7. Set the pulse width of the PWM0 pin for a 25% duty cycle.  
November 29, 2007  
405  
Preliminary  
Pulse Width Modulator (PWM)  
Write the PWM0CMPA register with a value of 0x0000.012B.  
8. Set the pulse width of the PWM1 pin for a 75% duty cycle.  
Write the PWM0CMPB register with a value of 0x0000.0063.  
9. Start the timers in PWM generator 0.  
Write the PWM0CTL register with a value of 0x0000.0001.  
10. Enable PWM outputs.  
Write the PWMENABLE register with a value of 0x0000.0003.  
16.4  
Register Map  
Table 16-1 on page 406 lists the PWM registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to the PWM base address of 0x4002.8000.  
Table 16-1. PWM Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
0x040  
0x044  
0x048  
0x04C  
0x050  
0x054  
0x058  
0x05C  
0x060  
0x064  
0x068  
PWMCTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
PWM Master Control  
PWM Time Base Sync  
PWM Output Enable  
PWM Output Inversion  
PWM Output Fault  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
419  
421  
422  
423  
424  
425  
426  
427  
430  
433  
PWMSYNC  
PWMENABLE  
PWMINVERT  
PWMFAULT  
PWMINTEN  
PWMRIS  
PWM Interrupt Enable  
PWM Raw Interrupt Status  
PWM Interrupt Status and Clear  
PWM Status  
PWMISC  
R/W1C  
RO  
PWMSTATUS  
PWM0CTL  
R/W  
R/W  
RO  
PWM0 Control  
PWM0INTEN  
PWM0RIS  
PWM0 Interrupt Enable  
PWM0 Raw Interrupt Status  
PWM0 Interrupt Status and Clear  
PWM0 Load  
PWM0ISC  
R/W1C  
R/W  
RO  
PWM0LOAD  
PWM0COUNT  
PWM0CMPA  
PWM0CMPB  
PWM0GENA  
PWM0GENB  
PWM0DBCTL  
PWM0 Counter  
R/W  
R/W  
R/W  
R/W  
R/W  
PWM0 Compare A  
PWM0 Compare B  
PWM0 Generator A Control  
PWM0 Generator B Control  
PWM0 Dead-Band Control  
406  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x06C  
0x070  
PWM0DBRISE  
PWM0DBFALL  
R/W  
R/W  
0x0000.0000  
0x0000.0000  
PWM0 Dead-Band Rising-Edge Delay  
PWM0 Dead-Band Falling-Edge-Delay  
434  
435  
16.5  
Register Descriptions  
The remainder of this section lists and describes the PWM registers, in numerical order by address  
offset.  
November 29, 2007  
407  
Preliminary  
Pulse Width Modulator (PWM)  
Register 1: PWM Master Control (PWMCTL), offset 0x000  
This register provides master control over the PWM generation block.  
PWM Master Control (PWMCTL)  
Base 0x4002.8000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GlobalSync0  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
GlobalSync0  
R/W  
0
Update PWM Generator 0  
Setting this bit causes any queued update to a load or comparator  
register in PWM generator 0 to be applied the next time the  
corresponding counter becomes zero. This bit automatically clears when  
the updates have completed; it cannot be cleared by software.  
408  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004  
This register provides a method to perform synchronization of the counters in the PWM generation  
blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing  
multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred;  
reading them back as zero indicates that the synchronization has completed.  
PWM Time Base Sync (PWMSYNC)  
Base 0x4002.8000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Sync0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
Sync0  
R/W  
0
Reset Generator 0 Counter  
Performs a reset of the PWM generator 0 counter.  
November 29, 2007  
409  
Preliminary  
Pulse Width Modulator (PWM)  
Register 3: PWM Output Enable (PWMENABLE), offset 0x008  
This register provides a master control of which generated PWM signals are output to device pins.  
By disabling a PWM output, the generation process can continue (for example, when the time bases  
are synchronized) without driving PWM signals to the pins. When bits in this register are set, the  
corresponding PWM signal is passed through to the output stage, which is controlled by the  
PWMINVERT register. When bits are not set, the PWM signal is replaced by a zero value which is  
also passed to the output stage.  
PWM Output Enable (PWMENABLE)  
Base 0x4002.8000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWM1En PWM0En  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
PWM1En  
PWM0En  
R/W  
R/W  
0
0
PWM1 Output Enable  
When set, allows the generated PWM1 signal to be passed to the device  
pin.  
PWM0 Output Enable  
When set, allows the generated PWM0 signal to be passed to the device  
pin.  
410  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C  
This register provides a master control of the polarity of the PWM signals on the device pins. The  
PWM signals generated by the PWM generator are active High; they can optionally be made active  
Low via this register. Disabled PWM channels are also passed through the output inverter (if so  
configured) so that inactive channels maintain the correct polarity.  
PWM Output Inversion (PWMINVERT)  
Base 0x4002.8000  
Offset 0x00C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWM1Inv PWM0Inv  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
PWM1Inv  
PWM0Inv  
R/W  
R/W  
0
0
Invert PWM1 Signal  
When set, the generated PWM1 signal is inverted.  
Invert PWM0 Signal  
When set, the generated PWM0 signal is inverted.  
November 29, 2007  
411  
Preliminary  
Pulse Width Modulator (PWM)  
Register 5: PWM Output Fault (PWMFAULT), offset 0x010  
This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the  
fault input and debug events are considered fault conditions. On a fault condition, each PWM signal  
can either be passed through unmodified or driven Low. For outputs that are configured for  
pass-through, the debug event handling on the corresponding PWM generator also determines if  
the PWM signal continues to be generated.  
Fault condition control happens before the output inverter, so PWM signals driven Low on fault are  
inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault condition).  
PWM Output Fault (PWMFAULT)  
Base 0x4002.8000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Fault1  
Fault0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
Fault1  
Fault0  
R/W  
R/W  
0
0
PWM1 Driven Low on Fault  
When set, the PWM1 output signal is driven Low on a fault condition.  
PWM0 Driven Low on Fault  
When set, the PWM0 output signal is driven Low on a fault condition.  
412  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014  
This register controls the global interrupt generation capabilities of the PWM module. The events  
that can cause an interrupt are the fault input and the individual interrupts from the PWM generator.  
PWM Interrupt Enable (PWMINTEN)  
Base 0x4002.8000  
Offset 0x014  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
IntFault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntPWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
16  
IntFault  
R/W  
RO  
0
Fault Interrupt Enable  
When 1, an interrupt occurs when the fault input is asserted.  
15:1  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IntPWM0  
R/W  
0
PWM0 Interrupt Enable  
When 1, an interrupt occurs when the PWM generator 0 block asserts  
an interrupt.  
November 29, 2007  
413  
Preliminary  
Pulse Width Modulator (PWM)  
Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018  
This register provides the current set of interrupt sources that are asserted, regardless of whether  
they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection;  
it must be cleared through the PWM Interrupt Status and Clear (PWMISC) register (see page 415).  
The PWM generator interrupts simply reflect the status of the PWM generator; they are cleared via  
the interrupt status register in the PWM generator block. Bits set to 1 indicate the events that are  
active; a zero bit indicates that the event in question is not active.  
PWM Raw Interrupt Status (PWMRIS)  
Base 0x4002.8000  
Offset 0x018  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
IntFault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntPWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
16  
IntFault  
RO  
RO  
0
Fault Interrupt Asserted  
Indicates that the fault input has been asserted.  
15:1  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IntPWM0  
RO  
0
PWM0 Interrupt Asserted  
Indicates that the PWM generator 0 block is asserting its interrupt.  
414  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C  
This register provides a summary of the interrupt status of the PWM generator block. A bit set to 1  
indicates that the generator block is asserting an interrupt. The individual interrupt status registers  
must be consulted to determine the reason for the interrupt, and used to clear the interrupt. For the  
fault interrupt, a write of 1 to that bit position clears the latched interrupt status.  
PWM Interrupt Status and Clear (PWMISC)  
Base 0x4002.8000  
Offset 0x01C  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
IntFault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntPWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
16  
IntFault  
R/W1C  
RO  
0
Fault Interrupt Asserted  
Indicates if the fault input is asserting an interrupt.  
15:1  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IntPWM0  
RO  
0
PWM0 Interrupt Status  
Indicates if the PWM generator 0 block is asserting an interrupt.  
November 29, 2007  
415  
Preliminary  
Pulse Width Modulator (PWM)  
Register 9: PWM Status (PWMSTATUS), offset 0x020  
This register provides the status of the Fault input signal.  
PWM Status (PWMSTATUS)  
Base 0x4002.8000  
Offset 0x020  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Fault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
Fault  
RO  
0
Fault Interrupt Status  
When set to 1, indicates the fault input is asserted.  
416  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 10: PWM0 Control (PWM0CTL), offset 0x040  
This register configures the PWM signal generation block. The Register Update mode, Debug mode,  
Counting mode, and Block Enable mode are all controlled via this register. The block produces the  
PWM signals, which can be either two independent PWM signals (from the same counter), or a  
paired set of PWM signals with dead-band delays added.  
These registers configure the PWM signal generation blocks (PWM0CTL controls the PWM generator  
0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable  
mode are all controlled via these registers. The blocks produce the PWM signals, which can be  
either two independent PWM signals (from the same counter), or a paired set of PWM signals with  
dead-band delays added.  
The PWM0 block produces the PWM0 and PWM1 outputs.  
PWM0 Control (PWM0CTL)  
Base 0x4002.8000  
Offset 0x040  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CmpBUpd CmpAUpd LoadUpd Debug  
Mode  
Enable  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
4
CmpBUpd  
CmpAUpd  
R/W  
R/W  
0
0
Comparator B Update Mode  
Same as CmpAUpd but for the comparator B register.  
Comparator A Update Mode  
The Update mode for the comparator A register. If 0, updates to the  
register are reflected to the comparator the next time the counter is 0.  
If 1, updates to the register are delayed until the next time the counter  
is 0 after a synchronous update has been requested through the PWM  
Master Control (PWMCTL) register (see page 408).  
3
2
LoadUpd  
R/W  
R/W  
0
0
Load Register Update Mode  
The Update mode for the load register. If 0, updates to the register are  
reflected to the counter the next time the counter is 0. If 1, updates to  
the register are delayed until the next time the counter is 0 after a  
synchronous update has been requested through the PWM Master  
Control (PWMCTL) register.  
Debug  
Debug Mode  
The behavior of the counter in Debug mode. If 0, the counter stops  
running when it next reaches 0, and continues running again when no  
longer in Debug mode. If 1, the counter always runs.  
November 29, 2007  
417  
Preliminary  
Pulse Width Modulator (PWM)  
Bit/Field  
1
Name  
Mode  
Type  
R/W  
Reset  
0
Description  
Counter Mode  
The mode for the counter. If 0, the counter counts down from the load  
value to 0 and then wraps back to the load value (Count-Down mode).  
If 1, the counter counts up from 0 to the load value, back down to 0, and  
then repeats (Count-Up/Down mode).  
0
Enable  
R/W  
0
PWM Block Enable  
Master enable for the PWM generation block. If 0, the entire block is  
disabled and not clocked. If 1, the block is enabled and produces PWM  
signals.  
418  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 11: PWM0 Interrupt Enable (PWM0INTEN), offset 0x044  
This register controls the interrupt generation capabilities of the PWM generator. The events that  
can cause an interrupt are:  
The counter being equal to the load register  
The counter being equal to zero  
The counter being equal to the comparator A register while counting up  
The counter being equal to the comparator A register while counting down  
The counter being equal to the comparator B register while counting up  
The counter being equal to the comparator B register while counting down  
Any combination of these events can generate either an interrupt.  
PWM0 Interrupt Enable (PWM0INTEN)  
Base 0x4002.8000  
Offset 0x044  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IntCntLoad IntCntZero  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
4
3
2
IntCmpBD  
IntCmpBU  
IntCmpAD  
IntCmpAU  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Interrupt for Counter=Comparator B Down  
When 1, an interrupt occurs when the counter matches the comparator B  
value and the counter is counting down.  
Interrupt for Counter=Comparator B Up  
When 1, an interrupt occurs when the counter matches the comparator B  
value and the counter is counting up.  
Interrupt for Counter=Comparator A Down  
When 1, an interrupt occurs when the counter matches the comparator A  
value and the counter is counting down.  
Interrupt for Counter=Comparator A Up  
When 1, an interrupt occurs when the counter matches the comparator A  
value and the counter is counting up.  
November 29, 2007  
419  
Preliminary  
Pulse Width Modulator (PWM)  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
IntCntLoad  
Interrupt for Counter=Load  
When 1, an interrupt occurs when the counter matches the PWMnLOAD  
register.  
0
IntCntZero  
R/W  
0
Interrupt for Counter=0  
When 1, an interrupt occurs when the counter is 0.  
420  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 12: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048  
This register provides the current set of interrupt sources that are asserted, regardless of whether  
they cause an interrupt to be asserted to the controller. Bits set to 1 indicate the latched events that  
have occurred; a 0 bit indicates that the event in question has not occurred.  
PWM0 Raw Interrupt Status (PWM0RIS)  
Base 0x4002.8000  
Offset 0x048  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IntCntLoad IntCntZero  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
4
3
2
IntCmpBD  
IntCmpBU  
IntCmpAD  
IntCmpAU  
RO  
RO  
RO  
RO  
0
0
0
0
Comparator B Down Interrupt Status  
Indicates that the counter has matched the comparator B value while  
counting down.  
Comparator B Up Interrupt Status  
Indicates that the counter has matched the comparator B value while  
counting up.  
Comparator A Down Interrupt Status  
Indicates that the counter has matched the comparator A value while  
counting down.  
Comparator A Up Interrupt Status  
Indicates that the counter has matched the comparator A value while  
counting up.  
1
0
IntCntLoad  
IntCntZero  
RO  
RO  
0
0
Counter=Load Interrupt Status  
Indicates that the counter has matched the PWMnLOAD register.  
Counter=0 Interrupt Status  
Indicates that the counter has matched 0.  
November 29, 2007  
421  
Preliminary  
Pulse Width Modulator (PWM)  
Register 13: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C  
This register provides the current set of interrupt sources that are asserted to the controller. Bits set  
to 1 indicate the latched events that have occurred; a 0 bit indicates that the event in question has  
not occurred. These are R/W1C registers; writing a 1 to a bit position clears the corresponding  
interrupt reason.  
PWM0 Interrupt Status and Clear (PWM0ISC)  
Base 0x4002.8000  
Offset 0x04C  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IntCntLoad IntCntZero  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
4
3
2
IntCmpBD  
IntCmpBU  
IntCmpAD  
IntCmpAU  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
Comparator B Down Interrupt  
Indicates that the counter has matched the comparator B value while  
counting down.  
Comparator B Up Interrupt  
Indicates that the counter has matched the comparator B value while  
counting up.  
Comparator A Down Interrupt  
Indicates that the counter has matched the comparator A value while  
counting down.  
Comparator A Up Interrupt  
Indicates that the counter has matched the comparator A value while  
counting up.  
1
0
IntCntLoad  
IntCntZero  
R/W1C  
R/W1C  
0
0
Counter=Load Interrupt  
Indicates that the counter has matched the PWMnLOAD register.  
Counter=0 Interrupt  
Indicates that the counter has matched 0.  
422  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 14: PWM0 Load (PWM0LOAD), offset 0x050  
This register contains the load value for the PWM counter. Based on the counter mode, either this  
value is loaded into the counter after it reaches zero, or it is the limit of up-counting after which the  
counter decrements back to zero. If the Load Value Update mode is immediate, this value is used  
the next time the counter reaches zero; if the mode is synchronous, it is used the next time the  
counter reaches zero after a synchronous update has been requested through the PWM Master  
Control (PWMCTL) register (see page 408). If this register is re-written before the actual update  
occurs, the previous value is never used and is lost.  
PWM0 Load (PWM0LOAD)  
Base 0x4002.8000  
Offset 0x050  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Load  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
Load  
R/W  
0
Counter Load Value  
The counter load value.  
November 29, 2007  
423  
Preliminary  
Pulse Width Modulator (PWM)  
Register 15: PWM0 Counter (PWM0COUNT), offset 0x054  
This register contains the current value of the PWM counter. When this value matches the load  
register, a pulse is output; this can drive the generation of a PWM signal (via the  
PWMnGENA/PWMnGENB registers, see page 427 and page 430) or drive an interrupt (via the  
PWMnINTEN register, see page 419). A pulse with the same capabilities is generated when this  
value is zero.  
PWM0 Counter (PWM0COUNT)  
Base 0x4002.8000  
Offset 0x054  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Count  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
Count  
RO  
0x00  
Counter Value  
The current value of the counter.  
424  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 16: PWM0 Compare A (PWM0CMPA), offset 0x058  
This register contains a value to be compared against the counter . When this value matches the  
counter, a pulse is output; this can drive the generation of a PWM signal (via the  
PWMnGENA/PWMnGENB registers) or drive an interrupt (via the PWMnINTEN register). If the  
value of this register is greater than the PWMnLOAD register (see page 423), then no pulse is ever  
output.  
If the comparator A update mode is immediate (based on the CmpAUpd bit in the PWMnCTL register),  
then this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is  
synchronous, it is used the next time the counter reaches zero after a synchronous update has been  
requested through the PWM Master Control (PWMCTL) register (see page 408). If this register is  
rewritten before the actual update occurs, the previous value is never used and is lost.  
PWM0 Compare A (PWM0CMPA)  
Base 0x4002.8000  
Offset 0x058  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CompA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
CompA  
R/W  
0x00  
Comparator A Value  
The value to be compared against the counter.  
November 29, 2007  
425  
Preliminary  
Pulse Width Modulator (PWM)  
Register 17: PWM0 Compare B (PWM0CMPB), offset 0x05C  
This register contains a value to be compared against the counter. When this value matches the  
counter, a pulse is output; this can drive the generation of a PWM signal (via the  
PWMnGENA/PWMnGENB registers) or drive an interrupt (via the PWMnINTEN register). If the  
value of this register is greater than the PWMnLOAD register, then no pulse is ever output.  
IF the comparator B update mode is immediate (based on the CmpBUpd bit in the PWMnCTL  
register), then this 16-bit CompB value is used the next time the counter reaches zero. If the update  
mode is synchronous, it is used the next time the counter reaches zero after a synchronous update  
has been requested through the PWM Master Control (PWMCTL) register (see page 408). If this  
register is rewritten before the actual update occurs, the previous value is never used and is lost.  
PWM0 Compare B (PWM0CMPB)  
Base 0x4002.8000  
Offset 0x05C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CompB  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
CompB  
R/W  
0x00  
Comparator B Value  
The value to be compared against the counter.  
426  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 18: PWM0 Generator A Control (PWM0GENA), offset 0x060  
This register controls the generation of the PWMnA signal based on the load and zero output pulses  
from the counter, as well as the compare A and compare B pulses from the comparators. When the  
counter is running in Count-Down mode, only four of these events occur; when running in  
Count-Up/Down mode, all six occur. These events provide great flexibility in the positioning and  
duty cycle of the PWM signal that is produced.  
The PWM0GENA register controls generation of the PWM0A signal.  
If a zero or load event coincides with a compare A or compare B event, the zero or load action is  
taken and the compare A or compare B action is ignored. If a compare A event coincides with a  
compare B event, the compare A action is taken and the compare B action is ignored.  
PWM0 Generator A Control (PWM0GENA)  
Base 0x4002.8000  
Offset 0x060  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ActCmpBD  
ActCmpBU  
ActCmpAD  
ActCmpAU  
ActLoad  
ActZero  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11:10  
ActCmpBD  
R/W  
0x0  
Action for Comparator B Down  
The action to be taken when the counter matches comparator B while  
counting down.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
November 29, 2007  
427  
Preliminary  
Pulse Width Modulator (PWM)  
Bit/Field  
9:8  
Name  
Type  
R/W  
Reset  
0x0  
Description  
ActCmpBU  
Action for Comparator B Up  
The action to be taken when the counter matches comparator B while  
counting up. Occurs only when the Mode bit in the PWMnCTL register  
(see page 417) is set to 1.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
7:6  
ActCmpAD  
R/W  
0x0  
Action for Comparator A Down  
The action to be taken when the counter matches comparator A while  
counting down.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
5:4  
ActCmpAU  
R/W  
0x0  
Action for Comparator A Up  
The action to be taken when the counter matches comparator A while  
counting up. Occurs only when the Mode bit in the PWMnCTL register  
is set to 1.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
3:2  
ActLoad  
R/W  
0x0  
Action for Counter=Load  
The action to be taken when the counter matches the load value.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
428  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
1:0  
Name  
Type  
R/W  
Reset  
0x0  
Description  
ActZero  
Action for Counter=0  
The action to be taken when the counter is zero.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
November 29, 2007  
429  
Preliminary  
Pulse Width Modulator (PWM)  
Register 19: PWM0 Generator B Control (PWM0GENB), offset 0x064  
This register controls the generation of the PWMnB signal based on the load and zero output pulses  
from the counter, as well as the compare A and compare B pulses from the comparators. When the  
counter is running in Down mode, only four of these events occur; when running in Up/Down mode,  
all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM  
signal that is produced.  
The PWM0GENB register controls generation of the PWM0B signal.  
If a zero or load event coincides with a compare A or compare B event, the zero or load action is  
taken and the compare A or compare B action is ignored. If a compare A event coincides with a  
compare B event, the compare B action is taken and the compare A action is ignored.  
PWM0 Generator B Control (PWM0GENB)  
Base 0x4002.8000  
Offset 0x064  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ActCmpBD  
ActCmpBU  
ActCmpAD  
ActCmpAU  
ActLoad  
ActZero  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11:10  
ActCmpBD  
R/W  
0x0  
Action for Comparator B Down  
The action to be taken when the counter matches comparator B while  
counting down.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
430  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Bit/Field  
9:8  
Name  
Type  
R/W  
Reset  
0x0  
Description  
ActCmpBU  
Action for Comparator B Up  
The action to be taken when the counter matches comparator B while  
counting up. Occurs only when the Mode bit in the PWMnCTL register  
is set to 1.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
7:6  
ActCmpAD  
R/W  
0x0  
Action for Comparator A Down  
The action to be taken when the counter matches comparator A while  
counting down.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
5:4  
ActCmpAU  
R/W  
0x0  
Action for Comparator A Up  
The action to be taken when the counter matches comparator A while  
counting up. Occurs only when the Mode bit in the PWMnCTL register  
is set to 1.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
3:2  
ActLoad  
R/W  
0x0  
Action for Counter=Load  
The action to be taken when the counter matches the load value.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
November 29, 2007  
431  
Preliminary  
Pulse Width Modulator (PWM)  
Bit/Field  
1:0  
Name  
Type  
R/W  
Reset  
0x0  
Description  
ActZero  
Action for Counter=0  
The action to be taken when the counter is 0.  
The table below defines the effect of the event on the output signal.  
Value Description  
0x0 Do nothing.  
0x1 Invert the output signal.  
0x2 Set the output signal to 0.  
0x3 Set the output signal to 1.  
432  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 20: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068  
The PWM0DBCTL register controls the dead-band generator, which produces the PWM0 and PWM1  
signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through  
to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and  
inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by  
delaying the rising edge(s) of the PWM0A signal by the value in the PWM0DBRISE register (see  
page 434), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by  
the value in the PWM0DBFALL register (see page 435).  
PWM0 Dead-Band Control (PWM0DBCTL)  
Base 0x4002.8000  
Offset 0x068  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Enable  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
Enable  
R/W  
0
Dead-Band Generator Enable  
When set, the dead-band generator inserts dead bands into the output  
signals; when clear, it simply passes the PWM signals through.  
November 29, 2007  
433  
Preliminary  
Pulse Width Modulator (PWM)  
Register 21: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset  
0x06C  
The PWM0DBRISE register contains the number of clock ticks to delay the rising edge of the PWM0A  
signal when generating the PWM0 signal. If the dead-band generator is disabled through the  
PWMnDBCTL register, the PWM0DBRISE register is ignored. If the value of this register is larger  
than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire  
High time of the signal, resulting in no High time on the output. Care must be taken to ensure that  
the input High time always exceeds the rising-edge delay.  
PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)  
Base 0x4002.8000  
Offset 0x06C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RiseDelay  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11:0  
RiseDelay  
R/W  
0
Dead-Band Rise Delay  
The number of clock ticks to delay the rising edge.  
434  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Register 22: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset  
0x070  
The PWM0DBFALL register contains the number of clock ticks to delay the falling edge of the  
PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register  
is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM  
signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time  
on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge  
delay.  
PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)  
Base 0x4002.8000  
Offset 0x070  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
FallDelay  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11:0  
FallDelay  
R/W  
0x00  
Dead-Band Fall Delay  
The number of clock ticks to delay the falling edge.  
November 29, 2007  
435  
Preliminary  
Pin Diagram  
17  
Pin Diagram  
Figure 17-1 on page 436 shows the pin diagram and pin-to-signal-name mapping.  
Figure 17-1. Pin Connection Diagram  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
2
NC  
3
PE1  
VDDA  
GNDA  
NC  
4
PE0  
5
PB3/I2C0SDA  
PB2/I2C0SCL  
GND  
6
NC  
7
LDO  
8
VDD  
VDD  
9
PB1/CCP2  
PB0/CCP0  
CMOD0  
RST  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PD0/CAN0Rx  
PD1/CAN0Tx  
PD2  
GND  
PD3  
VDD25  
PF1/PWM1  
PF2  
VDD25  
GND  
NC  
NC  
NC  
NC  
PG1  
GND  
PG0  
VDD  
VDD  
VDD  
GND  
GND  
PC7/C2-  
PC6/C2+  
PC5/C1+  
PC4  
NC  
NC  
NC  
LM3S2110  
436  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
18  
Signal Tables  
The following tables list the signals available for each pin. Functionality is enabled by software with  
the GPIOAFSEL register.  
Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7  
and PC[3:0]) which default to the JTAG functionality.  
Table 18-1 on page 437 shows the pin-to-signal-name mapping, including functional characteristics  
of the signals. Table 18-2 on page 441 lists the signals in alphabetical order by signal name.  
Table 18-3 on page 444 groups the signals by functionality, except for GPIOs. Table 18-4 on page  
447 lists the GPIO pins and their alternate functionality.  
Table 18-1. Signals by Pin Number  
Pin Number  
Pin Name  
NC  
Pin Type  
Buffer Type Description  
1
2
3
-
-
-
-
-
No connect  
No connect  
NC  
VDDA  
Power  
The positive supply (3.3 V) for the analog  
circuits (ADC, Analog Comparators, etc.).  
These are separated from VDD to minimize  
the electrical noise contained on VDD from  
affecting the analog functions.  
4
GNDA  
-
Power  
The ground reference for the analog circuits  
(ADC, Analog Comparators, etc.). These are  
separated from GND to minimize the electrical  
noise contained on VDD from affecting the  
analog functions.  
5
6
7
NC  
NC  
-
-
-
-
-
No connect  
No connect  
LDO  
Power  
Low drop-out regulator output voltage. This  
pin requires an external capacitor between  
the pin and GND of 1 µF or greater. When the  
on-chip LDO is used to provide power to the  
logic, the LDO pin must also be connected to  
the VDD25 pins at the board level in addition  
to the decoupling capacitor(s).  
8
9
VDD  
GND  
-
-
Power  
Power  
TTL  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
GPIO port D bit 0  
10  
PD0  
I/O  
I
CAN0Rx  
PD1  
TTL  
CAN module 0 receive  
GPIO port D bit 1  
11  
I/O  
O
TTL  
CAN0Tx  
PD2  
TTL  
CAN module 0 transmit  
GPIO port D bit 2  
12  
13  
14  
I/O  
I/O  
-
TTL  
PD3  
TTL  
GPIO port D bit 3  
VDD25  
Power  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
15  
16  
17  
GND  
NC  
NC  
-
-
-
Power  
Ground reference for logic and I/O pins.  
No connect  
-
-
No connect  
November 29, 2007  
437  
Preliminary  
Signal Tables  
Pin Number  
Pin Name  
PG1  
Pin Type  
Buffer Type Description  
18  
19  
20  
21  
22  
I/O  
I/O  
-
TTL  
TTL  
GPIO port G bit 1  
PG0  
GPIO port G bit 0  
VDD  
Power  
Power  
TTL  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
GPIO port C bit 7  
GND  
-
PC7  
I/O  
I
C2-  
Analog  
TTL  
Analog comparator 2 negative input  
GPIO port C bit 6  
23  
24  
PC6  
I/O  
I
C2+  
Analog  
TTL  
Analog comparator positive input  
GPIO port C bit 5  
PC5  
I/O  
I
C1+  
Analog  
TTL  
Analog comparator positive input  
GPIO port C bit 4  
25  
26  
PC4  
I/O  
I/O  
I
PA0  
TTL  
GPIO port A bit 0  
U0Rx  
TTL  
UART module 0 receive. When in IrDA mode,  
this signal has IrDA modulation.  
27  
PA1  
I/O  
O
TTL  
TTL  
GPIO port A bit 1  
U0Tx  
UART module 0 transmit. When in IrDA mode,  
this signal has IrDA modulation.  
28  
29  
30  
31  
PA2  
SSI0Clk  
PA3  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Power  
Power  
TTL  
TTL  
-
GPIO port A bit 2  
SSI module 0 clock  
GPIO port A bit 3  
SSI0Fss  
PA4  
SSI module 0 frame  
GPIO port A bit 4  
SSI0Rx  
PA5  
SSI module 0 receive  
GPIO port A bit 5  
I/O  
O
SSI0Tx  
VDD  
SSI module 0 transmit  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
GPIO port A bit 6  
32  
33  
34  
-
GND  
-
PA6  
I/O  
I/O  
-
CCP1  
NC  
Capture/Compare/PWM 1  
No connect  
35  
36  
37  
38  
NC  
-
-
No connect  
NC  
-
-
No connect  
VDD25  
-
Power  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
39  
40  
41  
42  
43  
44  
45  
46  
GND  
NC  
NC  
NC  
NC  
VDD  
GND  
NC  
-
-
-
-
-
-
-
-
Power  
Ground reference for logic and I/O pins.  
No connect  
-
-
No connect  
-
No connect  
-
No connect  
Power  
Power  
-
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
No connect  
438  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Pin Number  
Pin Name  
PF0  
Pin Type  
Buffer Type Description  
47  
I/O  
O
I
TTL  
TTL  
GPIO port F bit 0  
PWM 0  
PWM0  
48  
OSC0  
Analog  
Main oscillator crystal input or an external  
clock reference input.  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
OSC1  
NC  
I
Analog  
Main oscillator crystal output.  
No connect  
-
-
NC  
-
-
-
No connect  
NC  
-
No connect  
NC  
-
-
-
No connect  
GND  
VDD  
VDD  
GND  
NC  
Power  
Power  
Power  
Power  
-
Ground reference for logic and I/O pins.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
No connect  
-
-
-
-
NC  
-
-
No connect  
PF2  
PF1  
PWM1  
VDD25  
I/O  
I/O  
O
-
TTL  
TTL  
TTL  
Power  
GPIO port F bit 2  
GPIO port F bit 1  
PWM 1  
62  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
63  
64  
65  
GND  
RST  
-
I
Power  
TTL  
Ground reference for logic and I/O pins.  
System reset input.  
CMOD0  
I/O  
TTL  
CPU Mode bit 0. Input must be set to logic 0  
(grounded); other encodings reserved.  
66  
67  
PB0  
CCP0  
PB1  
I/O  
I/O  
I/O  
I/O  
-
TTL  
TTL  
TTL  
TTL  
Power  
Power  
TTL  
OD  
GPIO port B bit 0  
Capture/Compare/PWM 0  
GPIO port B bit 1  
CCP2  
VDD  
Capture/Compare/PWM 2  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
GPIO port B bit 2  
68  
69  
70  
GND  
-
PB2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
I2C0SCL  
PB3  
I2C module 0 clock  
GPIO port B bit 3  
71  
TTL  
OD  
I2C0SDA  
PE0  
I2C module 0 data  
72  
73  
74  
75  
76  
TTL  
TTL  
-
GPIO port E bit 0  
PE1  
GPIO port E bit 1  
NC  
No connect  
NC  
-
-
No connect  
CMOD1  
I/O  
TTL  
CPU Mode bit 1. Input must be set to logic 0  
(grounded); other encodings reserved.  
77  
PC3  
TDO  
SWO  
I/O  
O
TTL  
TTL  
TTL  
GPIO port C bit 3  
JTAG TDO and SWO  
JTAG TDO and SWO  
O
November 29, 2007  
439  
Preliminary  
Signal Tables  
Pin Number  
Pin Name  
PC2  
Pin Type  
Buffer Type Description  
78  
I/O  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Power  
Power  
-
GPIO port C bit 2  
TDI  
I
I/O  
I/O  
I/O  
I/O  
I
JTAG TDI  
79  
80  
PC1  
GPIO port C bit 1  
TMS  
JTAG TMS and SWDIO  
JTAG TMS and SWDIO  
GPIO port C bit 0  
SWDIO  
PC0  
TCK  
JTAG/SWD CLK  
SWCLK  
VDD  
I
JTAG/SWD CLK  
81  
82  
83  
84  
85  
86  
87  
88  
-
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
No connect  
GND  
-
NC  
-
NC  
-
-
No connect  
PH1  
I/O  
I/O  
-
TTL  
TTL  
Power  
Power  
GPIO port H bit 1  
PH0  
GPIO port H bit 0  
GND  
Ground reference for logic and I/O pins.  
VDD25  
-
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
89  
90  
91  
92  
PB7  
TRST  
PB6  
C0+  
PB5  
C1-  
PB4  
C0-  
VDD  
GND  
PD4  
CCP3  
PD5  
GNDA  
I/O  
I
TTL  
TTL  
GPIO port B bit 7  
JTAG TRSTn  
I/O  
I
TTL  
GPIO port B bit 6  
Analog  
TTL  
Analog comparator 0 positive input  
GPIO port B bit 5  
I/O  
I
Analog  
TTL  
Analog comparator 1 negative input  
GPIO port B bit 4  
I/O  
I
Analog  
Power  
Power  
TTL  
Analog comparator 0 negative input  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
GPIO port D bit 4  
93  
94  
95  
-
-
I/O  
I/O  
I/O  
-
TTL  
Capture/Compare/PWM 3  
GPIO port D bit 5  
96  
97  
TTL  
Power  
The ground reference for the analog circuits  
(ADC, Analog Comparators, etc.). These are  
separated from GND to minimize the electrical  
noise contained on VDD from affecting the  
analog functions.  
98  
VDDA  
-
Power  
The positive supply (3.3 V) for the analog  
circuits (ADC, Analog Comparators, etc.).  
These are separated from VDD to minimize  
the electrical noise contained on VDD from  
affecting the analog functions.  
99  
PD6  
Fault  
PD7  
I/O  
I
TTL  
TTL  
TTL  
TTL  
GPIO port D bit 6  
PWM Fault  
100  
I/O  
O
GPIO port D bit 7  
Analog comparator 0 output  
C0o  
440  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Table 18-2. Signals by Signal Name  
Pin Name  
C0+  
Pin Number  
Pin Type  
Buffer Type Description  
90  
92  
100  
24  
91  
23  
22  
10  
11  
I
I
Analog  
Analog  
TTL  
Analog comparator 0 positive input  
Analog comparator 0 negative input  
C0-  
C0o  
O
I
Analog comparator 0 output  
Analog comparator positive input  
Analog comparator 1 negative input  
Analog comparator positive input  
Analog comparator 2 negative input  
CAN module 0 receive  
C1+  
Analog  
Analog  
Analog  
Analog  
TTL  
C1-  
I
C2+  
I
C2-  
I
CAN0Rx  
CAN0Tx  
CCP0  
CCP1  
CCP2  
CCP3  
CMOD0  
I
O
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
CAN module 0 transmit  
66  
34  
67  
95  
65  
TTL  
Capture/Compare/PWM 0  
TTL  
Capture/Compare/PWM 1  
TTL  
Capture/Compare/PWM 2  
TTL  
Capture/Compare/PWM 3  
TTL  
CPU Mode bit 0. Input must be set to logic 0  
(grounded); other encodings reserved.  
CMOD1  
76  
I/O  
TTL  
CPU Mode bit 1. Input must be set to logic 0  
(grounded); other encodings reserved.  
Fault  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GNDA  
99  
9
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TTL  
PWM Fault  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
15  
21  
33  
39  
45  
54  
57  
63  
69  
82  
87  
94  
4
The ground reference for the analog circuits  
(ADC, Analog Comparators, etc.). These are  
separated from GND to minimize the electrical  
noise contained on VDD from affecting the  
analog functions.  
GNDA  
97  
-
Power  
The ground reference for the analog circuits  
(ADC, Analog Comparators, etc.). These are  
separated from GND to minimize the electrical  
noise contained on VDD from affecting the  
analog functions.  
I2C0SCL  
I2C0SDA  
70  
71  
I/O  
I/O  
OD  
OD  
I2C module 0 clock  
I2C module 0 data  
November 29, 2007  
441  
Preliminary  
Signal Tables  
Pin Name  
Pin Number  
Pin Type  
Buffer Type Description  
LDO  
7
-
Power  
Low drop-out regulator output voltage. This  
pin requires an external capacitor between  
the pin and GND of 1 µF or greater. When the  
on-chip LDO is used to provide power to the  
logic, the LDO pin must also be connected to  
the VDD25 pins at the board level in addition  
to the decoupling capacitor(s).  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
OSC0  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I
-
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
No connect  
2
-
5
-
6
-
16  
17  
35  
36  
37  
40  
41  
42  
43  
46  
50  
51  
52  
53  
58  
59  
74  
75  
83  
84  
48  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Analog  
Main oscillator crystal input or an external  
clock reference input.  
OSC1  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PB0  
PB1  
PB2  
PB3  
49  
26  
27  
28  
29  
30  
31  
34  
66  
67  
70  
71  
I
Analog  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Main oscillator crystal output.  
GPIO port A bit 0  
GPIO port A bit 1  
GPIO port A bit 2  
GPIO port A bit 3  
GPIO port A bit 4  
GPIO port A bit 5  
GPIO port A bit 6  
GPIO port B bit 0  
GPIO port B bit 1  
GPIO port B bit 2  
GPIO port B bit 3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
442  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Pin Name  
PB4  
Pin Number  
92  
Pin Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Buffer Type Description  
GPIO port B bit 4  
GPIO port B bit 5  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
PB5  
91  
PB6  
90  
GPIO port B bit 6  
GPIO port B bit 7  
GPIO port C bit 0  
GPIO port C bit 1  
GPIO port C bit 2  
GPIO port C bit 3  
GPIO port C bit 4  
GPIO port C bit 5  
GPIO port C bit 6  
GPIO port C bit 7  
GPIO port D bit 0  
GPIO port D bit 1  
GPIO port D bit 2  
GPIO port D bit 3  
GPIO port D bit 4  
GPIO port D bit 5  
GPIO port D bit 6  
GPIO port D bit 7  
GPIO port E bit 0  
GPIO port E bit 1  
GPIO port F bit 0  
GPIO port F bit 1  
GPIO port F bit 2  
GPIO port G bit 0  
GPIO port G bit 1  
GPIO port H bit 0  
GPIO port H bit 1  
PWM 0  
PB7  
89  
PC0  
80  
PC1  
79  
PC2  
78  
PC3  
77  
PC4  
25  
PC5  
24  
PC6  
23  
PC7  
22  
PD0  
10  
PD1  
11  
PD2  
12  
PD3  
13  
PD4  
95  
PD5  
96  
PD6  
99  
PD7  
100  
72  
PE0  
PE1  
73  
PF0  
47  
PF1  
61  
PF2  
60  
PG0  
19  
PG1  
18  
PH0  
86  
PH1  
85  
PWM0  
PWM1  
RST  
47  
61  
O
PWM 1  
64  
I
System reset input.  
SSI module 0 clock  
SSI module 0 frame  
SSI module 0 receive  
SSI module 0 transmit  
JTAG/SWD CLK  
JTAG TMS and SWDIO  
JTAG TDO and SWO  
JTAG/SWD CLK  
JTAG TDI  
SSI0Clk  
SSI0Fss  
SSI0Rx  
SSI0Tx  
SWCLK  
SWDIO  
SWO  
28  
I/O  
I/O  
I
29  
30  
31  
O
80  
I
79  
I/O  
O
77  
TCK  
80  
I
TDI  
78  
I
TDO  
77  
O
JTAG TDO and SWO  
November 29, 2007  
443  
Preliminary  
Signal Tables  
Pin Name  
TMS  
Pin Number  
Pin Type  
Buffer Type Description  
79  
89  
26  
I/O  
TTL  
TTL  
TTL  
JTAG TMS and SWDIO  
TRST  
I
I
JTAG TRSTn  
U0Rx  
UART module 0 receive. When in IrDA mode,  
this signal has IrDA modulation.  
U0Tx  
27  
O
TTL  
UART module 0 transmit. When in IrDA mode,  
this signal has IrDA modulation.  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD25  
8
-
-
-
-
-
-
-
-
-
-
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
20  
32  
44  
55  
56  
68  
81  
93  
14  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
VDD25  
VDD25  
VDD25  
VDDA  
38  
62  
88  
3
-
-
-
-
Power  
Power  
Power  
Power  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
Positive supply for most of the logic function,  
including the processor core and most  
peripherals.  
The positive supply (3.3 V) for the analog  
circuits (ADC, Analog Comparators, etc.).  
These are separated from VDD to minimize  
the electrical noise contained on VDD from  
affecting the analog functions.  
VDDA  
98  
-
Power  
The positive supply (3.3 V) for the analog  
circuits (ADC, Analog Comparators, etc.).  
These are separated from VDD to minimize  
the electrical noise contained on VDD from  
affecting the analog functions.  
Table 18-3. Signals by Function, Except for GPIO  
Function  
Pin Name  
Pin  
Pin Type  
Buffer  
Description  
Number  
Type  
Analog  
Analog  
TTL  
Analog  
Comparators  
C0+  
C0-  
C0o  
C1+  
C1-  
C2+  
C2-  
90  
92  
I
I
Analog comparator 0 positive input  
Analog comparator 0 negative input  
Analog comparator 0 output  
100  
24  
O
I
Analog  
Analog  
Analog  
Analog  
Analog comparator positive input  
Analog comparator 1 negative input  
Analog comparator positive input  
Analog comparator 2 negative input  
91  
I
23  
I
22  
I
444  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Function  
Pin Name  
Pin  
Number  
Pin Type  
Buffer  
Type  
Description  
Controller Area  
Network  
CAN0Rx  
CAN0Tx  
10  
11  
66  
34  
67  
95  
70  
71  
80  
79  
77  
80  
78  
77  
79  
99  
47  
61  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
OD  
CAN module 0 receive  
O
CAN module 0 transmit  
Capture/Compare/PWM 0  
Capture/Compare/PWM 1  
Capture/Compare/PWM 2  
Capture/Compare/PWM 3  
I2C module 0 clock  
I2C module 0 data  
JTAG/SWD CLK  
General-Purpose CCP0  
Timers  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
CCP1  
CCP2  
CCP3  
I2C  
I2C0SCL  
I2C0SDA  
OD  
JTAG/SWD/SWO SWCLK  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
SWDIO  
SWO  
I/O  
O
JTAG TMS and SWDIO  
JTAG TDO and SWO  
JTAG/SWD CLK  
TCK  
I
TDI  
I
JTAG TDI  
TDO  
O
JTAG TDO and SWO  
JTAG TMS and SWDIO  
PWM Fault  
TMS  
I/O  
I
PWM  
Fault  
PWM0  
PWM1  
O
PWM 0  
O
PWM 1  
November 29, 2007  
445  
Preliminary  
Signal Tables  
Function  
Power  
Pin Name  
Pin  
Number  
Pin Type  
Buffer  
Type  
Description  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GNDA  
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
15  
21  
33  
39  
45  
54  
57  
63  
69  
82  
87  
94  
4
The ground reference for the analog circuits (ADC,  
Analog Comparators, etc.). These are separated  
from GND to minimize the electrical noise contained  
on VDD from affecting the analog functions.  
GNDA  
LDO  
97  
7
-
-
Power  
Power  
The ground reference for the analog circuits (ADC,  
Analog Comparators, etc.). These are separated  
from GND to minimize the electrical noise contained  
on VDD from affecting the analog functions.  
Low drop-out regulator output voltage. This pin  
requires an external capacitor between the pin and  
GND of 1 µF or greater. When the on-chip LDO is  
used to provide power to the logic, the LDO pin  
must also be connected to the VDD25 pins at the  
board level in addition to the decoupling  
capacitor(s).  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD25  
8
-
-
-
-
-
-
-
-
-
-
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
Positive supply for I/O and some logic.  
20  
32  
44  
55  
56  
68  
81  
93  
14  
Positive supply for most of the logic function,  
including the processor core and most peripherals.  
VDD25  
VDD25  
VDD25  
VDDA  
38  
62  
88  
3
-
-
-
-
Power  
Power  
Power  
Power  
Positive supply for most of the logic function,  
including the processor core and most peripherals.  
Positive supply for most of the logic function,  
including the processor core and most peripherals.  
Positive supply for most of the logic function,  
including the processor core and most peripherals.  
446  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Function  
Pin Name  
Pin  
Number  
Pin Type  
Buffer  
Type  
Description  
The positive supply (3.3 V) for the analog circuits  
(ADC, Analog Comparators, etc.). These are  
separated from VDD to minimize the electrical noise  
contained on VDD from affecting the analog  
functions.  
VDDA  
98  
-
Power  
The positive supply (3.3 V) for the analog circuits  
(ADC, Analog Comparators, etc.). These are  
separated from VDD to minimize the electrical noise  
contained on VDD from affecting the analog  
functions.  
SSI  
SSI0Clk  
SSI0Fss  
SSI0Rx  
SSI0Tx  
28  
29  
30  
31  
65  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
SSI module 0 clock  
SSI module 0 frame  
SSI module 0 receive  
SSI module 0 transmit  
O
System Control & CMOD0  
Clocks  
I/O  
CPU Mode bit 0. Input must be set to logic 0  
(grounded); other encodings reserved.  
CMOD1  
OSC0  
76  
48  
I/O  
I
TTL  
CPU Mode bit 1. Input must be set to logic 0  
(grounded); other encodings reserved.  
Analog  
Main oscillator crystal input or an external clock  
reference input.  
OSC1  
RST  
49  
64  
89  
26  
I
I
I
I
Analog  
TTL  
Main oscillator crystal output.  
System reset input.  
JTAG TRSTn  
TRST  
TTL  
UART  
U0Rx  
TTL  
UART module 0 receive. When in IrDA mode, this  
signal has IrDA modulation.  
U0Tx  
27  
O
TTL  
UART module 0 transmit. When in IrDA mode, this  
signal has IrDA modulation.  
Table 18-4. GPIO Pins and Alternate Functions  
GPIO Pin  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
Pin Number  
Multiplexed Function  
Multiplexed Function  
26  
27  
28  
29  
30  
31  
34  
66  
67  
70  
71  
92  
91  
90  
89  
80  
U0Rx  
U0Tx  
SSI0Clk  
SSI0Fss  
SSI0Rx  
SSI0Tx  
CCP1  
CCP0  
CCP2  
I2C0SCL  
I2C0SDA  
C0-  
C1-  
C0+  
TRST  
TCK  
SWCLK  
November 29, 2007  
447  
Preliminary  
Signal Tables  
GPIO Pin  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE0  
PE1  
PF0  
PF1  
PF2  
PG0  
PG1  
PH0  
PH1  
Pin Number  
Multiplexed Function  
Multiplexed Function  
79  
78  
77  
25  
24  
23  
22  
10  
11  
TMS  
TDI  
TDO  
SWDIO  
SWO  
C1+  
C2+  
C2-  
CAN0Rx  
CAN0Tx  
12  
13  
95  
96  
99  
100  
72  
73  
47  
61  
60  
19  
18  
86  
85  
CCP3  
Fault  
C0o  
PWM0  
PWM1  
448  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
19  
Operating Characteristics  
Table 19-1. Temperature Characteristics  
Characteristic  
Symbol Value  
Unit  
Operating temperature rangea TA  
-40 to +85 °C  
a. Maximum storage temperature is 150°C.  
Table 19-2. Thermal Characteristics  
Characteristic  
Thermal resistance (junction to ambient)a ΘJA  
Average junction temperatureb  
Symbol Value  
Unit  
°C/W  
°C  
55.3  
TJ  
TA + (PAVG • ΘJA)  
a. Junction to ambient thermal resistance θJA numbers are determined by a package simulator.  
b. Power dissipation is a function of temperature.  
November 29, 2007  
449  
Preliminary  
Electrical Characteristics  
20  
Electrical Characteristics  
20.1  
DC Characteristics  
20.1.1  
Maximum Ratings  
The maximum ratings are the limits to which the device can be subjected without permanently  
damaging the device.  
Note: The device is not guaranteed to operate properly at the maximum ratings.  
Table 20-1. Maximum Ratings  
Characteristic  
Symbol Value Unit  
Min Max  
a
I/O supply voltage (VDD  
)
VDD  
VDD25  
VDDA  
VIN  
0
0
0
4
4
4
V
V
V
V
Core supply voltage (VDD25  
)
Analog supply voltage (VDDA  
)
Input voltage  
-0.3 5.5  
Maximum current per output pins  
I
-
25 mA  
a. Voltages are measured with respect to GND.  
Important: This device contains circuitry to protect the inputs against damage due to high-static  
voltages or electric fields; however, it is advised that normal precautions be taken to  
avoid application of any voltage higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are  
connected to an appropriate logic voltage level (for example, either GND or VDD).  
20.1.2  
Recommended DC Operating Conditions  
Table 20-2. Recommended DC Operating Conditions  
Parameter Parameter Name  
Min  
3.0  
Nom  
Max  
3.6  
Unit  
V
VDD  
VDD25  
VDDA  
VIH  
I/O supply voltage  
3.3  
Core supply voltage  
Analog supply voltage  
High-level input voltage  
Low-level input voltage  
2.25  
3.0  
2.5  
2.75  
3.6  
V
3.3  
V
2.0  
-
-
-
-
-
-
5.0  
V
VIL  
-0.3  
1.3  
V
VSIH  
VSIL  
VOH  
VOL  
IOH  
High-level input voltage for Schmitt trigger inputs 0.8 * VDD  
VDD  
0.2 * VDD  
-
V
Low-level input voltage for Schmitt trigger inputs  
High-level output voltage  
Low-level output voltage  
High-level source current, VOH=2.4 V  
2-mA Drive  
0
2.4  
-
V
V
0.4  
V
2.0  
4.0  
8.0  
-
-
-
-
-
-
mA  
4-mA Drive  
mA  
mA  
8-mA Drive  
450  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Parameter Parameter Name  
IOL Low-level sink current, VOL=0.4 V  
Min  
Nom  
Max  
Unit  
2-mA Drive  
4-mA Drive  
8-mA Drive  
2.0  
4.0  
8.0  
-
-
-
-
-
-
mA  
mA  
mA  
20.1.3  
On-Chip Low Drop-Out (LDO) Regulator Characteristics  
Table 20-3. LDO Regulator Characteristics  
Parameter Parameter Name  
Min Nom Max Unit  
VLDOOUT Programmable internal (logic) power supply output value 2.25 2.5 2.75  
V
Output voltage accuracy  
-
2%  
-
%
tPON  
tON  
Power-on time  
-
-
-
100 µs  
200 µs  
100 µs  
Time on  
-
-
tOFF  
Time off  
-
VSTEP  
CLDO  
Step programming incremental voltage  
External filter capacitor size for internal power supply  
-
50  
-
-
mV  
1.0  
3.0 µF  
20.1.4  
Power Specifications  
The power measurements specified in the tables that follow are run on the core processor using  
SRAM with the following specifications (except as noted):  
VDD = 3.3 V  
VDD25 = 2.50 V  
VDDA = 3.3 V  
Temperature = 25°C  
Clock Source (MOSC) =3.579545 MHz Crystal Oscillator  
Main oscillator (MOSC) = enabled  
Internal oscillator (IOSC) = disabled  
November 29, 2007  
451  
Preliminary  
Electrical Characteristics  
Table 20-4. Detailed Power Specifications  
Parameter Parameter Name  
Conditions  
3.3 V VDD, VDDA  
,
2.5 V VDD25 Unit  
VDDPHY  
Nom  
Max  
Nom  
Max  
IDD_RUN  
Run mode 1 (Flash  
loop)  
VDD25 = 2.50 V  
3
pendinga  
pendinga  
pendinga  
pendinga  
pendinga  
64 pendinga mA  
Code= while(1){} executed in Flash  
Peripherals = All ON  
System Clock = 25 MHz (with PLL)  
VDD25 = 2.50 V  
Run mode 2 (Flash  
loop)  
0
3
0
33 pendinga mA  
57 pendinga mA  
27 pendinga mA  
12 pendinga mA  
Code= while(1){} executed in Flash  
Peripherals = All OFF  
System Clock = 25 MHz (with PLL)  
VDD25 = 2.50 V  
Run mode 1 (SRAM  
loop)  
Code= while(1){} executed in SRAM  
Peripherals = All ON  
System Clock = 25 MHz (with PLL)  
VDD25 = 2.50 V  
Run mode 2 (SRAM  
loop)  
Code= while(1){} executed in SRAM  
Peripherals = All OFF  
System Clock = 25 MHz (with PLL)  
VDD25 = 2.50 V  
IDD_SLEEP  
Sleep mode  
0
Peripherals = All OFF  
System Clock = 25 MHz (with PLL)  
LDO = 2.25 V  
IDD_DEEPSLEEP Deep-Sleep mode  
0.14  
pendinga 0.18 pendinga mA  
Peripherals = All OFF  
System Clock = IOSC30KHZ/64  
a. Pending characterization completion.  
20.1.5  
Flash Memory Characteristics  
Table 20-5. Flash Memory Characteristics  
Parameter Parameter Name  
Min  
Nom Max Unit  
PECYC  
TRET  
Number of guaranteed program/erase cycles before failurea 10,000 100,000  
-
-
-
-
-
cycles  
years  
µs  
Data retention at average operating temperature of 85˚C  
Word program time  
10  
20  
-
-
-
-
TPROG  
TERASE Page erase time  
TME Mass erase time  
20  
ms  
200  
ms  
a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.  
452  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
20.2  
AC Characteristics  
20.2.1  
Load Conditions  
Unless otherwise specified, the following conditions are true for all timing measurements. Timing  
measurements are for 4-mA drive strength.  
Figure 20-1. Load Conditions  
pin  
CL = 50 pF  
GND  
20.2.2  
Clocks  
Table 20-6. Phase Locked Loop (PLL) Characteristics  
Parameter Parameter Name  
Min  
Nom Max Unit  
fref_crystal  
fref_ext  
fpll  
Crystal referencea  
3.579545  
-
8.192 MHz  
8.192 MHz  
External clock referencea 3.579545  
PLL frequencyb  
-
400  
-
-
-
-
MHz  
TREADY  
PLL lock time  
0.5 ms  
a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration  
(RCC) register.  
b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.  
Table 20-7. Clock Characteristics  
Parameter Parameter Name  
fIOSC Internal 12 MHz oscillator frequency  
fIOSC30KHZ  
fMOSC  
Min Nom Max Unit  
8.4 12 15.6 MHz  
Internal 30 KHz oscillator frequency  
Main oscillator frequency  
Main oscillator period  
21 30  
39 KHz  
MHz  
1000 ns  
MHz  
1
125  
1
-
-
-
-
-
8
tMOSC_per  
fref_crystal_bypass Crystal reference using the main oscillator (PLL in BYPASS mode)  
8
fref_ext_bypass  
fsystem_clock  
External clock reference (PLL in BYPASS mode)  
System clock  
0
25 MHz  
25 MHz  
0
Table 20-8. Crystal Characteristics  
Parameter Name  
Value  
Units  
MHz  
Frequency  
8
6
4
3.5  
±50  
±5  
Frequency tolerance  
Aging  
±50  
±5  
±50  
±5  
±50  
±5  
ppm  
ppm/yr  
Oscillation mode  
Parallel Parallel Parallel Parallel  
Temperature stability (0 - 85 °C)  
Motional capacitance (typ)  
±25  
±25  
±25  
±25  
ppm  
pF  
27.8  
37.0  
55.6  
63.5  
November 29, 2007  
453  
Preliminary  
Electrical Characteristics  
Parameter Name  
Value  
19.1  
Units  
mH  
Motional inductance (typ)  
14.3  
28.6  
200  
10  
32.7  
220  
10  
Equivalent series resistance (max) 120  
160  
10  
Shunt capacitance (max)  
Load capacitance (typ)  
Drive level (typ)  
10  
16  
pF  
16  
16  
16  
pF  
100  
100  
100  
100  
µW  
20.2.3  
Analog Comparator  
Table 20-9. Analog Comparator Characteristics  
Parameter Parameter Name  
Min Nom Max Unit  
VOS  
VCM  
CMRR  
TRT  
Input offset voltage  
-
0
50  
-
±10  
±25  
mV  
V
Input common mode voltage range  
Common mode rejection ratio  
Response time  
-
-
-
-
VDD-1.5  
-
dB  
µs  
µs  
1
TMC  
Comparator mode change to Output Valid  
-
10  
Table 20-10. Analog Comparator Voltage Reference Characteristics  
Parameter Parameter Name  
Min Nom Max Unit  
RHR  
RLR  
AHR  
ALR  
Resolution high range  
-
-
-
-
VDD/32  
-
-
LSB  
LSB  
Resolution low range  
VDD/24  
Absolute accuracy high range  
Absolute accuracy low range  
-
-
±1/2 LSB  
±1/4 LSB  
20.2.4  
I2C  
Table 20-11. I2C Characteristics  
Parameter No. Parameter Parameter Name  
Min Nom  
Max  
Unit  
I1a  
I2a  
I3b  
I4a  
I5c  
I6a  
I7a  
I8a  
tSCH  
tLP  
tSRT  
tDH  
tSFT  
tHT  
Start condition hold time  
Clock Low period  
36  
36  
-
-
-
-
system clocks  
system clocks  
ns  
-
I2CSCL/I2CSDA rise time (VIL =0.5 V to V IH =2.4 V)  
Data hold time  
-
(see note b)  
2
-
-
10  
-
system clocks  
ns  
I2CSCL/I2CSDA fall time (VIH =2.4 V to V IL =0.5 V)  
Clock High time  
-
9
-
24  
18  
system clocks  
system clocks  
system clocks  
tDS  
Data setup time  
-
-
tSCSR  
Start condition setup time (for repeated start condition 36  
only)  
-
-
I9a  
tSCS  
Stop condition setup time  
24  
-
-
system clocks  
a. Values depend on the value programmed into the TPR bit in the I2C Master Timer Period (I2CMTPR) register; a TPR  
programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table  
above. The I 2C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low  
period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above  
values are minimum values.  
b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time  
I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.  
c. Specified at a nominal 50 pF load.  
454  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Figure 20-2. I2C Timing  
I2  
I6  
I5  
I2CSCL  
I1  
I4  
I7  
I8  
I3  
I9  
I2CSDA  
20.2.5  
Synchronous Serial Interface (SSI)  
Table 20-12. SSI Characteristics  
Parameter No. Parameter Parameter Name  
Min Nom Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
tclk_per  
SSIClk cycle time  
2
-
-
65024 system clocks  
tclk_high SSIClk high time  
1/2  
-
-
t clk_per  
tclk_low  
tclkrf  
SSIClk low time  
-
1/2  
t clk_per  
SSIClk rise/fall time  
-
7.4  
26  
20  
-
ns  
ns  
ns  
ns  
ns  
ns  
tDMd  
tDMs  
tDMh  
tDSs  
Data from master valid delay time  
Data from master setup time  
Data from master hold time  
Data from slave setup time  
Data from slave hold time  
0
-
-
-
-
-
20  
40  
20  
40  
-
-
tDSh  
-
Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement  
S1  
S2  
S4  
SSIClk  
SSIFss  
S3  
SSITx  
SSIRx  
MSB  
LSB  
4 to 16 bits  
November 29, 2007  
455  
Preliminary  
Electrical Characteristics  
Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
Figure 20-5. SSI Timing for SPI Frame Format (FRF=00), with SPH=1  
S1  
S4  
S2  
SSIClk  
(SPO=0)  
S3  
SSIClk  
(SPO=1)  
S6  
S7  
S9  
SSITx  
(master)  
MSB  
LSB  
S5  
S8  
SSIRx  
(slave)  
MSB  
LSB  
SSIFss  
20.2.6  
JTAG and Boundary Scan  
Table 20-13. JTAG Characteristics  
Parameter No.  
Parameter  
fTCK  
Parameter Name  
Min Nom Max Unit  
J1  
J2  
J3  
TCK operational clock frequency  
TCK operational clock period  
TCK clock Low time  
0
100  
-
-
-
10 MHz  
tTCK  
-
-
ns  
ns  
tTCK_LOW  
tTCK  
456  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Parameter No.  
Parameter  
Parameter Name  
TCK clock High time  
TCK rise time  
Min Nom Max Unit  
J4  
J5  
tTCK_HIGH  
-
tTCK  
-
-
ns  
tTCK_R  
0
10 ns  
10 ns  
J6  
tTCK_F  
TCK fall time  
0
-
J7  
tTMS_SU  
TMS setup time to TCK rise  
TMS hold time from TCK rise  
TDI setup time to TCK rise  
TDI hold time from TCK rise  
2-mA drive  
20  
20  
25  
25  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
J8  
tTMS_HLD  
tTDI_SU  
-
J9  
-
J10  
J11  
tTDI_HLD  
-
TCK fall to Data Valid from High-Z  
23  
15  
14  
18  
21  
14  
13  
18  
9
35 ns  
26 ns  
25 ns  
29 ns  
35 ns  
25 ns  
24 ns  
28 ns  
11 ns  
4-mA drive  
t TDO_ZDV  
8-mA drive  
8-mA drive with slew rate control  
2-mA drive  
J12  
TCK fall to Data Valid from Data Valid  
TCK fall to High-Z from Data Valid  
-
-
4-mA drive  
t TDO_DV  
8-mA drive  
8-mA drive with slew rate control  
2-mA drive  
J13  
4-mA drive  
7
9
8
9
-
ns  
ns  
ns  
ns  
ns  
t TDO_DVZ  
8-mA drive  
6
8-mA drive with slew rate control  
TRST assertion time  
TRST setup time to TCK rise  
7
J14  
J15  
tTRST  
100  
10  
-
tTRST_SU  
-
-
Figure 20-6. JTAG Test Clock Input Timing  
J2  
J3  
J4  
TCK  
J6  
J5  
November 29, 2007  
457  
Preliminary  
Electrical Characteristics  
Figure 20-7. JTAG Test Access Port (TAP) Timing  
TCK  
TMS  
TDI  
J7  
TMS Input Valid  
J9 J10  
TDI Input Valid  
J8  
J7  
TMS Input Valid  
J9 J10  
TDI Input Valid  
J8  
J11  
J12  
J13  
TDO Output Valid  
TDO Output Valid  
TDO  
Figure 20-8. JTAG TRST Timing  
TCK  
J14  
J15  
TRST  
20.2.7  
General-Purpose I/O  
Note: All GPIOs are 5 V-tolerant.  
Table 20-14. GPIO Characteristics  
Parameter Parameter Name  
Condition  
Min Nom Max Unit  
tGPIOR  
GPIO Rise Time (from 20% to 80% of VDD  
)
2-mA drive  
4-mA drive  
8-mA drive  
-
17  
9
26 ns  
13 ns  
6
9
ns  
8-mA drive with slew rate control  
GPIO Fall Time (from 80% to 20% of VDD) 2-mA drive  
10  
17  
8
12 ns  
25 ns  
12 ns  
10 ns  
13 ns  
tGPIOF  
-
4-mA drive  
8-mA drive  
6
8-mA drive with slew rate control  
11  
20.2.8  
Reset  
Table 20-15. Reset Characteristics  
Parameter No. Parameter Parameter Name  
Min Nom Max Unit  
2.0  
R1  
VTH  
Reset threshold  
-
-
V
458  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Parameter No. Parameter Parameter Name  
Min Nom Max Unit  
R2  
VBTH  
TPOR  
TBOR  
Brown-Out threshold  
Power-On Reset timeout  
Brown-Out timeout  
2.85 2.9 2.95  
V
R3  
-
10  
-
-
ms  
µs  
R4  
-
500  
R5  
TIRPOR Internal reset timeout after POR  
TIRBOR Internal reset timeout after BORa  
6
0
0
-
-
-
-
-
-
-
11 ms  
R6  
1
1
µs  
R7  
TIRHWR Internal reset timeout after hardware reset (RST pin)  
ms  
R8  
TIRSWR Internal reset timeout after software-initiated system reset a 2.5  
20 µs  
20 µs  
100 ms  
R9  
R10  
TIRWDR Internal reset timeout after watchdog reseta  
2.5  
-
TVDDRISE Supply voltage (VDD) rise time (0V-3.3V)  
R11  
TMIN  
Minimum RST pulse width  
2
-
µs  
a. 20 * t MOSC_per  
Figure 20-9. External Reset Timing (RST)  
RST  
R11  
R7  
/Reset  
(Internal)  
Figure 20-10. Power-On Reset Timing  
R1  
VDD  
R3  
/POR  
(Internal)  
R5  
/Reset  
(Internal)  
Figure 20-11. Brown-Out Reset Timing  
R2  
VDD  
R4  
/BOR  
(Internal)  
R6  
/Reset  
(Internal)  
November 29, 2007  
459  
Preliminary  
Electrical Characteristics  
Figure 20-12. Software Reset Timing  
SW Reset  
R8  
/Reset  
(Internal)  
Figure 20-13. Watchdog Reset Timing  
WDOG  
Reset  
(Internal)  
R9  
/Reset  
(Internal)  
460  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
21  
Package Information  
Figure 21-1. 100-Pin LQFP Package  
Note: The following notes apply to the package drawing.  
1. All dimensions shown in mm.  
2. Dimensions shown are nominal with tolerances indicated.  
3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.  
November 29, 2007  
461  
Preliminary  
Package Information  
Body +2.00 mm Footprint, 1.4 mm package thickness  
Symbols  
Leads  
Max.  
100L  
1.60  
A
A1  
A2  
D
0.05 Min./0.15 Max.  
1.40  
±0.05  
±0.20  
16.00  
D1  
E
±0.05  
14.00  
±0.20  
16.00  
E1  
L
±0.05  
14.00  
±0.15/-0.10  
BASIC  
±0.05  
0.60  
e
0.50  
b
0.22  
θ
===  
0˚~7˚  
ddd  
ccc  
Max.  
0.08  
Max.  
0.08  
JEDEC Reference Drawing  
Variation Designator  
MS-026  
BED  
462  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
A
Serial Flash Loader  
A.1  
Serial Flash Loader  
The Stellaris® serial flash loader is a preprogrammed flash-resident utility used to download code  
to the flash memory of a device without the use of a debug interface. The serial flash loader uses  
a simple packet interface to provide synchronous communication with the device. The flash loader  
runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used.  
The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both  
the data format and communication protocol are identical for both serial interfaces.  
A.2  
Interfaces  
Once communication with the flash loader is established via one of the serial interfaces, that interface  
is used until the flash loader is reset or new code takes over. For example, once you start  
communicating using the SSI port, communications with the flash loader via the UART are disabled  
until the device is reset.  
A.2.1  
UART  
The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial  
format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is  
automatically detected by the flash loader and can be any valid baud rate supported by the host  
and the device. The auto detection sequence requires that the baud rate should be no more than  
1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the  
same as the hardware limitation for the maximum baud rate for any UART on a Stellaris® device  
which is calculated as follows:  
Max Baud Rate = System Clock Frequency / 16  
In order to determine the baud rate, the serial flash loader needs to determine the relationship  
between its own crystal frequency and the baud rate. This is enough information for the flash loader  
to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows  
the host to use any valid baud rate that it wants to communicate with the device.  
The method used to perform this automatic synchronization relies on the host sending the flash  
loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can  
use to calculate the ratios needed to program the UART to match the host’s baud rate. After the  
host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader  
returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received  
after at least twice the time required to transfer the two bytes, the host can resend another pattern  
of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has  
received a synchronization pattern correctly. For example, the time to wait for data back from the  
flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate  
of 115200, this time is 2*(20/115200) or 0.35 ms.  
A.2.2  
SSI  
The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications,  
with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See “Frame  
Formats” on page 277 in the SSI chapter for more information on formats for this transfer protocol.  
Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI  
clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running  
November 29, 2007  
463  
Preliminary  
Serial Flash Loader  
the flash loader. Since the host device is the master, the SSI on the flash loader device does not  
need to determine the clock as it is provided directly by the host.  
A.3  
Packet Handling  
All communications, with the exception of the UART auto-baud, are done via defined packets that  
are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same  
format for receiving and sending packets, including the method used to acknowledge successful or  
unsuccessful reception of a packet.  
A.3.1  
Packet Format  
All packets sent and received from the device use the following byte-packed format.  
struct  
{
unsigned char ucSize;  
unsigned char ucCheckSum;  
unsigned char Data[];  
};  
ucSize  
The first byte received holds the total size of the transfer including  
the size and checksum bytes.  
ucChecksum  
Data  
This holds a simple checksum of the bytes in the data buffer only.  
The algorithm is Data[0]+Data[1]+…+ Data[ucSize-3].  
This is the raw data intended for the device, which is formatted in  
some form of command interface. There should be ucSize–2  
bytes of data provided in this buffer to or from the device.  
A.3.2  
Sending Packets  
The actual bytes of the packet can be sent individually or all at once; the only limitation is that  
commands that cause flash memory access should limit the download sizes to prevent losing bytes  
during flash programming. This limitation is discussed further in the section that describes the serial  
flash loader command, COMMAND_SEND_DATA (see “COMMAND_SEND_DATA  
(0x24)” on page 466).  
Once the packet has been formatted correctly by the host, it should be sent out over the UART or  
SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned  
from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from  
the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This  
does not indicate that the actual contents of the command issued in the data portion of the packet  
were valid, just that the packet was received correctly.  
A.3.3  
Receiving Packets  
The flash loader sends a packet of data in the same format that it receives a packet. The flash loader  
may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte  
is the size of the packet followed by a checksum byte, and finally followed by the data itself. There  
is no break in the data after the first non-zero byte is sent from the flash loader. Once the device  
communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to  
indicate that the transmission was successful. The appropriate response after sending a NAK to  
the flash loader is to resend the command that failed and request the data again. If needed, the  
host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the  
464  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
flash loader only accepts the first non-zero data as a valid response. This zero padding is needed  
by the SSI interface in order to receive data to or from the flash loader.  
A.4  
Commands  
The next section defines the list of commands that can be sent to the flash loader. The first byte of  
the data should always be one of the defined commands, followed by data or parameters as  
determined by the command that is sent.  
A.4.1  
COMMAND_PING (0X20)  
This command simply accepts the command and sets the global status to success. The format of  
the packet is as follows:  
Byte[0] = 0x03;  
Byte[1] = checksum(Byte[2]);  
Byte[2] = COMMAND_PING;  
The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one  
byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status,  
the receipt of an ACK can be interpreted as a successful ping to the flash loader.  
A.4.2  
COMMAND_GET_STATUS (0x23)  
This command returns the status of the last command that was issued. Typically, this command  
should be sent after every command to ensure that the previous command was successful or to  
properly respond to a failure. The command requires one byte in the data of the packet and should  
be followed by reading a packet with one byte of data that contains a status code. The last step is  
to ACK or NAK the received data so the flash loader knows that the data has been read.  
Byte[0] = 0x03  
Byte[1] = checksum(Byte[2])  
Byte[2] = COMMAND_GET_STATUS  
A.4.3  
COMMAND_DOWNLOAD (0x21)  
This command is sent to the flash loader to indicate where to store data and how many bytes will  
be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit  
values that are both transferred MSB first. The first 32-bit value is the address to start programming  
data into, while the second is the 32-bit size of the data that will be sent. This command also triggers  
an erase of the full area to be programmed so this command takes longer than other commands.  
This results in a longer time to receive the ACK/NAK back from the board. This command should  
be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size  
are valid for the device running the flash loader.  
The format of the packet to send this command is a follows:  
Byte[0] = 11  
Byte[1] = checksum(Bytes[2:10])  
Byte[2] = COMMAND_DOWNLOAD  
Byte[3] = Program Address [31:24]  
Byte[4] = Program Address [23:16]  
Byte[5] = Program Address [15:8]  
Byte[6] = Program Address [7:0]  
Byte[7] = Program Size [31:24]  
November 29, 2007  
465  
Preliminary  
Serial Flash Loader  
Byte[8] = Program Size [23:16]  
Byte[9] = Program Size [15:8]  
Byte[10] = Program Size [7:0]  
A.4.4  
COMMAND_SEND_DATA (0x24)  
This command should only follow a COMMAND_DOWNLOAD command or another  
COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands  
automatically increment address and continue programming from the previous location. The caller  
should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program  
successfully and not overflow input buffers of the serial interfaces. The command terminates  
programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been  
received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to  
ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK  
to this command, the flash loader does not increment the current address to allow retransmission  
of the previous data.  
Byte[0] = 11  
Byte[1] = checksum(Bytes[2:10])  
Byte[2] = COMMAND_SEND_DATA  
Byte[3] = Data[0]  
Byte[4] = Data[1]  
Byte[5] = Data[2]  
Byte[6] = Data[3]  
Byte[7] = Data[4]  
Byte[8] = Data[5]  
Byte[9] = Data[6]  
Byte[10] = Data[7]  
A.4.5  
COMMAND_RUN (0x22)  
This command is used to tell the flash loader to execute from the address passed as the parameter  
in this command. This command consists of a single 32-bit value that is interpreted as the address  
to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK  
signal back to the host device before actually executing the code at the given address. This allows  
the host to know that the command was received successfully and the code is now running.  
Byte[0] = 7  
Byte[1] = checksum(Bytes[2:6])  
Byte[2] = COMMAND_RUN  
Byte[3] = Execute Address[31:24]  
Byte[4] = Execute Address[23:16]  
Byte[5] = Execute Address[15:8]  
Byte[6] = Execute Address[7:0]  
A.4.6  
COMMAND_RESET (0x25)  
This command is used to tell the flash loader device to reset. This is useful when downloading a  
new image that overwrote the flash loader and wants to start from a full reset. Unlike the  
COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set  
up for the new code. It can also be used to reset the flash loader if a critical error occurs and the  
host device wants to restart communication with the flash loader.  
466  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Byte[0] = 3  
Byte[1] = checksum(Byte[2])  
Byte[2] = COMMAND_RESET  
The flash loader responds with an ACK signal back to the host device before actually executing the  
software reset to the device running the flash loader. This allows the host to know that the command  
was received successfully and the part will be reset.  
November 29, 2007  
467  
Preliminary  
Register Quick Reference  
B
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
System Control  
Base 0x400F.E000  
DID0, type RO, offset 0x000, reset -  
VER  
CLASS  
MINOR  
MAJOR  
PBORCTL, type R/W, offset 0x030, reset 0x0000.7FFD  
LDOPCTL, type R/W, offset 0x034, reset 0x0000.0000  
RIS, type RO, offset 0x050, reset 0x0000.0000  
IMC, type R/W, offset 0x054, reset 0x0000.0000  
MISC, type R/W1C, offset 0x058, reset 0x0000.0000  
RESC, type R/W, offset 0x05C, reset -  
BORIOR  
VADJ  
PLLLRIS  
PLLLIM  
BORRIS  
BORIM  
BORMIS  
POR  
PLLLMIS  
LDO  
SW  
WDT  
BOR  
EXT  
RCC, type R/W, offset 0x060, reset 0x07AE.3AD1  
USESYSDIV  
USEPWMDIV  
ACG  
SYSDIV  
PWMDIV  
PWRDN  
BYPASS  
XTAL  
OSCSRC  
IOSCDIS MOSCDIS  
PLLCFG, type RO, offset 0x064, reset -  
F
R
RCC2, type R/W, offset 0x070, reset 0x0780.2800  
USERCC2  
SYSDIV2  
PWRDN2  
BYPASS2  
OSCSRC2  
DSLPCLKCFG, type R/W, offset 0x144, reset 0x0780.0000  
DSDIVORIDE  
FAM  
DSOSCSRC  
DID1, type RO, offset 0x004, reset -  
VER  
PARTNO  
PKG  
PINCOUNT  
TEMP  
ROHS  
QUAL  
DC0, type RO, offset 0x008, reset 0x003F.001F  
SRAMSZ  
FLASHSZ  
DC1, type RO, offset 0x010, reset 0x0110.709F  
CAN0  
PWM  
PLL  
MINSYSDIV  
MPU  
WDT  
SWO  
SWD  
JTAG  
DC2, type RO, offset 0x014, reset 0x0707.1011  
COMP2  
COMP1 COMP0  
TIMER2 TIMER1 TIMER0  
UART0  
I2C0  
SSI0  
DC3, type RO, offset 0x018, reset 0x0F00.B7C3  
CCP3  
CCP2  
CCP1  
CCP0  
C0O  
PWMFAULT  
C2PLUS C2MINUS  
C1PLUS C1MINUS  
C0PLUS C0MINUS  
PWM1  
PWM0  
468  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
DC4, type RO, offset 0x01C, reset 0x0000.00FF  
RCGC0, type R/W, offset 0x100, reset 0x00000040  
SCGC0, type R/W, offset 0x110, reset 0x00000040  
DCGC0, type R/W, offset 0x120, reset 0x00000040  
RCGC1, type R/W, offset 0x104, reset 0x00000000  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
PWM  
GPIOD  
WDT  
GPIOC  
GPIOB  
GPIOA  
CAN0  
CAN0  
CAN0  
PWM  
PWM  
WDT  
WDT  
COMP2  
COMP2  
COMP2  
COMP1 COMP0  
COMP1 COMP0  
COMP1 COMP0  
TIMER2 TIMER1 TIMER0  
UART0  
I2C0  
SSI0  
SSI0  
SCGC1, type R/W, offset 0x114, reset 0x00000000  
TIMER2 TIMER1 TIMER0  
UART0  
I2C0  
DCGC1, type R/W, offset 0x124, reset 0x00000000  
TIMER2 TIMER1 TIMER0  
UART0  
I2C0  
SSI0  
RCGC2, type R/W, offset 0x108, reset 0x00000000  
GPIOH  
GPIOH  
GPIOH  
GPIOG  
GPIOG  
GPIOG  
GPIOF  
GPIOF  
GPIOF  
GPIOE  
GPIOE  
GPIOD  
GPIOD  
GPIOD  
WDT  
GPIOC  
GPIOC  
GPIOC  
GPIOB  
GPIOB  
GPIOB  
GPIOA  
GPIOA  
GPIOA  
SCGC2, type R/W, offset 0x118, reset 0x00000000  
DCGC2, type R/W, offset 0x128, reset 0x00000000  
SRCR0, type R/W, offset 0x040, reset 0x00000000  
SRCR1, type R/W, offset 0x044, reset 0x00000000  
GPIOE  
PWM  
CAN0  
COMP2  
COMP1 COMP0  
TIMER2 TIMER1 TIMER0  
UART0  
I2C0  
SSI0  
SRCR2, type R/W, offset 0x048, reset 0x00000000  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Internal Memory  
Flash Control Offset  
Base 0x400F.D000  
FMA, type R/W, offset 0x000, reset 0x0000.0000  
FMD, type R/W, offset 0x004, reset 0x0000.0000  
FMC, type R/W, offset 0x008, reset 0x0000.0000  
OFFSET  
DATA  
DATA  
WRKEY  
COMT MERASE ERASE  
WRITE  
November 29, 2007  
469  
Preliminary  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
FCRIS, type RO, offset 0x00C, reset 0x0000.0000  
FCIM, type R/W, offset 0x010, reset 0x0000.0000  
FCMISC, type R/W1C, offset 0x014, reset 0x0000.0000  
PRIS  
PMASK  
PMISC  
ARIS  
AMASK  
AMISC  
Internal Memory  
System Control Offset  
Base 0x400F.E000  
USECRL, type R/W, offset 0x140, reset 0x16  
USEC  
FMPRE0, type R/W, offset 0x130 and 0x200, reset 0xFFFF.FFFF  
FMPPE0, type R/W, offset 0x134 and 0x400, reset 0xFFFF.FFFF  
READ_ENABLE  
READ_ENABLE  
PROG_ENABLE  
PROG_ENABLE  
USER_DBG, type R/W, offset 0x1D0, reset 0xFFFF.FFFE  
NW  
DATA  
DATA  
DBG1  
DBG0  
USER_REG0, type R/W, offset 0x1E0, reset 0xFFFF.FFFF  
NW  
DATA  
DATA  
USER_REG1, type R/W, offset 0x1E4, reset 0xFFFF.FFFF  
NW  
DATA  
DATA  
FMPRE1, type R/W, offset 0x204, reset 0x0000.0000  
FMPRE2, type R/W, offset 0x208, reset 0x0000.0000  
FMPRE3, type R/W, offset 0x20C, reset 0x0000.0000  
FMPPE1, type R/W, offset 0x404, reset 0x0000.0000  
FMPPE2, type R/W, offset 0x408, reset 0x0000.0000  
FMPPE3, type R/W, offset 0x40C, reset 0x0000.0000  
READ_ENABLE  
READ_ENABLE  
READ_ENABLE  
READ_ENABLE  
READ_ENABLE  
READ_ENABLE  
PROG_ENABLE  
PROG_ENABLE  
PROG_ENABLE  
PROG_ENABLE  
PROG_ENABLE  
PROG_ENABLE  
General-Purpose Input/Outputs (GPIOs)  
470  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIO Port D base: 0x4000.7000  
GPIO Port E base: 0x4002.4000  
GPIO Port F base: 0x4002.5000  
GPIO Port G base: 0x4002.6000  
GPIO Port H base: 0x4002.7000  
GPIODATA, type R/W, offset 0x000, reset 0x0000.0000  
GPIODIR, type R/W, offset 0x400, reset 0x0000.0000  
GPIOIS, type R/W, offset 0x404, reset 0x0000.0000  
GPIOIBE, type R/W, offset 0x408, reset 0x0000.0000  
GPIOIEV, type R/W, offset 0x40C, reset 0x0000.0000  
GPIOIM, type R/W, offset 0x410, reset 0x0000.0000  
GPIORIS, type RO, offset 0x414, reset 0x0000.0000  
GPIOMIS, type RO, offset 0x418, reset 0x0000.0000  
GPIOICR, type W1C, offset 0x41C, reset 0x0000.0000  
GPIOAFSEL, type R/W, offset 0x420, reset -  
DATA  
DIR  
IS  
IBE  
IEV  
IME  
RIS  
MIS  
IC  
AFSEL  
DRV2  
DRV4  
DRV8  
ODE  
PUE  
GPIODR2R, type R/W, offset 0x500, reset 0x0000.00FF  
GPIODR4R, type R/W, offset 0x504, reset 0x0000.0000  
GPIODR8R, type R/W, offset 0x508, reset 0x0000.0000  
GPIOODR, type R/W, offset 0x50C, reset 0x0000.0000  
GPIOPUR, type R/W, offset 0x510, reset -  
November 29, 2007  
471  
Preliminary  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
GPIOPDR, type R/W, offset 0x514, reset 0x0000.0000  
GPIOSLR, type R/W, offset 0x518, reset 0x0000.0000  
GPIODEN, type R/W, offset 0x51C, reset -  
PDE  
SRL  
DEN  
GPIOLOCK, type R/W, offset 0x520, reset 0x0000.0001  
GPIOCR, type -, offset 0x524, reset -  
LOCK  
LOCK  
CR  
GPIOPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000  
GPIOPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000  
GPIOPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000  
GPIOPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000  
GPIOPeriphID0, type RO, offset 0xFE0, reset 0x0000.0061  
GPIOPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000  
GPIOPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018  
GPIOPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001  
GPIOPCellID0, type RO, offset 0xFF0, reset 0x0000.000D  
GPIOPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0  
GPIOPCellID2, type RO, offset 0xFF8, reset 0x0000.0005  
GPIOPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1  
PID4  
PID5  
PID6  
PID7  
PID0  
PID1  
PID2  
PID3  
CID0  
CID1  
CID2  
CID3  
General-Purpose Timers  
472  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Timer2 base: 0x4003.2000  
GPTMCFG, type R/W, offset 0x000, reset 0x0000.0000  
GPTMTAMR, type R/W, offset 0x004, reset 0x0000.0000  
GPTMTBMR, type R/W, offset 0x008, reset 0x0000.0000  
GPTMCTL, type R/W, offset 0x00C, reset 0x0000.0000  
GPTMCFG  
TAAMS  
TBAMS  
TACMR  
TBCMR  
TAMR  
TBMR  
TBPWML TBOTE  
TBEVENT  
TBSTALL  
CBMIM  
TBEN  
TAPWML TAOTE  
RTCEN  
TAEVENT  
TASTALL  
CAMIM  
TAEN  
GPTMIMR, type R/W, offset 0x018, reset 0x0000.0000  
CBEIM  
TBTOIM  
RTCIM  
CAEIM  
TATOIM  
GPTMRIS, type RO, offset 0x01C, reset 0x0000.0000  
GPTMMIS, type RO, offset 0x020, reset 0x0000.0000  
GPTMICR, type W1C, offset 0x024, reset 0x0000.0000  
CBERIS CBMRIS TBTORIS  
CBEMIS CBMMIS TBTOMIS  
CBECINT CBMCINT TBTOCINT  
RTCRIS CAERIS CAMRIS TATORIS  
RTCMIS CAEMIS CAMMIS TATOMIS  
RTCCINT CAECINT CAMCINT TATOCINT  
GPTMTAILR, type R/W, offset 0x028, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)  
TAILRH  
TAILRL  
GPTMTBILR, type R/W, offset 0x02C, reset 0x0000.FFFF  
TBILRL  
GPTMTAMATCHR, type R/W, offset 0x030, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)  
TAMRH  
TAMRL  
GPTMTBMATCHR, type R/W, offset 0x034, reset 0x0000.FFFF  
TBMRL  
GPTMTAPR, type R/W, offset 0x038, reset 0x0000.0000  
TAPSR  
GPTMTBPR, type R/W, offset 0x03C, reset 0x0000.0000  
GPTMTAPMR, type R/W, offset 0x040, reset 0x0000.0000  
GPTMTBPMR, type R/W, offset 0x044, reset 0x0000.0000  
TBPSR  
TAPSMR  
TBPSMR  
November 29, 2007  
Preliminary  
473  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
GPTMTAR, type RO, offset 0x048, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)  
TARH  
TARL  
GPTMTBR, type RO, offset 0x04C, reset 0x0000.FFFF  
TBRL  
Watchdog Timer  
Base 0x4000.0000  
WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF  
WDTLoad  
WDTLoad  
WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF  
WDTValue  
WDTValue  
WDTCTL, type R/W, offset 0x008, reset 0x0000.0000  
RESEN  
INTEN  
WDTICR, type WO, offset 0x00C, reset -  
WDTIntClr  
WDTIntClr  
WDTRIS, type RO, offset 0x010, reset 0x0000.0000  
WDTRIS  
WDTMIS  
WDTMIS, type RO, offset 0x014, reset 0x0000.0000  
WDTTEST, type R/W, offset 0x418, reset 0x0000.0000  
STALL  
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000  
WDTLock  
WDTLock  
WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000  
PID4  
PID5  
PID6  
PID7  
PID0  
PID1  
PID2  
WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000  
WDTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000  
WDTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000  
WDTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0005  
WDTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0018  
WDTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018  
474  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
WDTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001  
WDTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D  
WDTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0  
WDTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005  
WDTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1  
PID3  
CID0  
CID1  
CID2  
CID3  
Universal Asynchronous Receivers/Transmitters (UARTs)  
UART0 base: 0x4000.C000  
UARTDR, type R/W, offset 0x000, reset 0x0000.0000  
OE  
BE  
PE  
FE  
DATA  
UARTRSR/UARTECR, type RO, offset 0x004, reset 0x0000.0000  
UARTRSR/UARTECR, type WO, offset 0x004, reset 0x0000.0000  
UARTFR, type RO, offset 0x018, reset 0x0000.0090  
UARTILPR, type R/W, offset 0x020, reset 0x0000.0000  
UARTIBRD, type R/W, offset 0x024, reset 0x0000.0000  
UARTFBRD, type R/W, offset 0x028, reset 0x0000.0000  
UARTLCRH, type R/W, offset 0x02C, reset 0x0000.0000  
UARTCTL, type R/W, offset 0x030, reset 0x0000.0300  
UARTIFLS, type R/W, offset 0x034, reset 0x0000.0012  
UARTIM, type R/W, offset 0x038, reset 0x0000.0000  
OE  
BE  
PE  
FE  
DATA  
TXFE  
RXFF  
TXFF  
RXFE  
BUSY  
ILPDVSR  
DIVINT  
DIVFRAC  
SPS  
LBE  
WLEN  
FEN  
STP2  
EPS  
PEN  
BRK  
RXE  
TXE  
SIRLP  
SIREN UARTEN  
TXIFLSEL  
RXIFLSEL  
RXIM  
OEIM  
BEIM  
PEIM  
FEIM  
RTIM  
TXIM  
UARTRIS, type RO, offset 0x03C, reset 0x0000.000F  
OERIS  
BERIS  
PERIS  
FERIS  
RTRIS  
TXRIS  
RXRIS  
November 29, 2007  
475  
Preliminary  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
UARTMIS, type RO, offset 0x040, reset 0x0000.0000  
OEMIS  
BEMIS  
BEIC  
PEMIS  
PEIC  
FEMIS  
FEIC  
RTMIS  
RTIC  
TXMIS  
TXIC  
RXMIS  
RXIC  
UARTICR, type W1C, offset 0x044, reset 0x0000.0000  
OEIC  
UARTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000  
UARTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000  
UARTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000  
UARTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000  
UARTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0011  
UARTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000  
UARTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018  
UARTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001  
UARTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D  
UARTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0  
UARTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005  
UARTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1  
PID4  
PID5  
PID6  
PID7  
PID0  
PID1  
PID2  
PID3  
CID0  
CID1  
CID2  
CID3  
Synchronous Serial Interface (SSI)  
SSI0 base: 0x4000.8000  
SSICR0, type R/W, offset 0x000, reset 0x0000.0000  
SCR  
SPH  
SPO  
FRF  
DSS  
SSICR1, type R/W, offset 0x004, reset 0x0000.0000  
SOD  
MS  
SSE  
LBM  
SSIDR, type R/W, offset 0x008, reset 0x0000.0000  
DATA  
476  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
SSISR, type RO, offset 0x00C, reset 0x0000.0003  
SSICPSR, type R/W, offset 0x010, reset 0x0000.0000  
SSIIM, type R/W, offset 0x014, reset 0x0000.0000  
SSIRIS, type RO, offset 0x018, reset 0x0000.0008  
SSIMIS, type RO, offset 0x01C, reset 0x0000.0000  
SSIICR, type W1C, offset 0x020, reset 0x0000.0000  
SSIPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000  
SSIPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000  
SSIPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000  
SSIPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000  
SSIPeriphID0, type RO, offset 0xFE0, reset 0x0000.0022  
SSIPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000  
SSIPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018  
SSIPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001  
SSIPCellID0, type RO, offset 0xFF0, reset 0x0000.000D  
SSIPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0  
SSIPCellID2, type RO, offset 0xFF8, reset 0x0000.0005  
BSY  
RFF  
RNE  
TNF  
TFE  
CPSDVSR  
TXIM  
TXRIS  
TXMIS  
RXIM  
RXRIS  
RXMIS  
RTIM  
RTRIS  
RTMIS  
RTIC  
RORIM  
RORRIS  
RORMIS  
RORIC  
PID4  
PID5  
PID6  
PID7  
PID0  
PID1  
PID2  
PID3  
CID0  
CID1  
CID2  
November 29, 2007  
477  
Preliminary  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
SSIPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1  
CID3  
Inter-Integrated Circuit (I2C) Interface  
I2C Master  
I2C Master 0 base: 0x4002.0000  
I2CMSA, type R/W, offset 0x000, reset 0x0000.0000  
I2CMCS, type RO, offset 0x004, reset 0x0000.0000  
I2CMCS, type WO, offset 0x004, reset 0x0000.0000  
I2CMDR, type R/W, offset 0x008, reset 0x0000.0000  
I2CMTPR, type R/W, offset 0x00C, reset 0x0000.0001  
I2CMIMR, type R/W, offset 0x010, reset 0x0000.0000  
I2CMRIS, type RO, offset 0x014, reset 0x0000.0000  
I2CMMIS, type RO, offset 0x018, reset 0x0000.0000  
I2CMICR, type WO, offset 0x01C, reset 0x0000.0000  
I2CMCR, type R/W, offset 0x020, reset 0x0000.0000  
SA  
R/S  
BUSY  
RUN  
BUSBSY  
IDLE  
ARBLST DATACK ADRACK ERROR  
ACK  
STOP  
START  
DATA  
TPR  
IM  
RIS  
MIS  
IC  
SFE  
MFE  
LPBK  
Inter-Integrated Circuit (I2C) Interface  
I2C Slave  
I2C Slave 0 base: 0x4002.0800  
I2CSOAR, type R/W, offset 0x000, reset 0x0000.0000  
I2CSCSR, type RO, offset 0x004, reset 0x0000.0000  
I2CSCSR, type WO, offset 0x004, reset 0x0000.0000  
I2CSDR, type R/W, offset 0x008, reset 0x0000.0000  
OAR  
FBR  
TREQ  
RREQ  
DA  
DATA  
478  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
I2CSIMR, type R/W, offset 0x00C, reset 0x0000.0000  
I2CSRIS, type RO, offset 0x010, reset 0x0000.0000  
I2CSMIS, type RO, offset 0x014, reset 0x0000.0000  
I2CSICR, type WO, offset 0x018, reset 0x0000.0000  
IM  
RIS  
MIS  
IC  
Controller Area Network (CAN) Module  
CAN0 base: 0x4004.0000  
CANCTL, type R/W, offset 0x000, reset 0x0000.0001  
CANSTS, type R/W, offset 0x004, reset 0x0000.0000  
CANERR, type RO, offset 0x008, reset 0x0000.0000  
Test  
BOff  
CCE  
DAR  
EIE  
SIE  
IE  
INIT  
EWarn  
EPass  
RxOK  
TxOK  
LEC  
RP  
REC  
TEC  
CANBIT, type R/W, offset 0x00C, reset 0x0000.2301  
TSeg2  
TSeg1  
SJW  
BRP  
CANINT, type RO, offset 0x010, reset 0x0000.0000  
IntId  
CANTST, type R/W, offset 0x014, reset 0x0000.0000  
CANBRPE, type R/W, offset 0x018, reset 0x0000.0000  
CANIF1CRQ, type RO, offset 0x020, reset 0x0000.0001  
Rx  
Tx  
LBack  
Silent  
Basic  
BRPE  
Busy  
MNUM  
MNUM  
CANIF2CRQ, type RO, offset 0x080, reset 0x0000.0001  
Busy  
CANIF1CMSK, type RO, offset 0x024, reset 0x0000.0000  
ClrIntPnd TxRqst/NewDat  
ClrIntPnd TxRqst/NewDat  
WRNRD  
WRNRD  
Mask  
Mask  
Arb  
Arb  
Control  
Control  
DataA  
DataA  
DataB  
DataB  
CANIF2CMSK, type RO, offset 0x084, reset 0x0000.0000  
CANIF1MSK1, type RO, offset 0x028, reset 0x0000.FFFF  
CANIF2MSK1, type RO, offset 0x088, reset 0x0000.FFFF  
Msk  
Msk  
November 29, 2007  
479  
Preliminary  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
CANIF1MSK2, type RO, offset 0x02C, reset 0x0000.FFFF  
MXtd  
MDir  
Msk  
Msk  
CANIF2MSK2, type RO, offset 0x08C, reset 0x0000.FFFF  
MXtd  
MDir  
CANIF1ARB1, type RO, offset 0x030, reset 0x0000.0000  
CANIF2ARB1, type RO, offset 0x090, reset 0x0000.0000  
CANIF1ARB2, type RO, offset 0x034, reset 0x0000.0000  
ID  
ID  
MsgVal  
Xtd  
Dir  
ID  
ID  
CANIF2ARB2, type RO, offset 0x094, reset 0x0000.0000  
MsgVal  
Xtd  
Dir  
CANIF1MCTL, type RO, offset 0x038, reset 0x0000.0000  
NewDat  
MsgLst  
IntPnd  
UMask  
TxIE  
RxIE  
RxIE  
RmtEn  
RmtEn  
TxRqst  
TxRqst  
EoB  
EoB  
DLC  
DLC  
CANIF2MCTL, type RO, offset 0x098, reset 0x0000.0000  
NewDat  
MsgLst  
IntPnd  
UMask  
TxIE  
CANIF1DA1, type R/W, offset 0x03C, reset 0x0000.0000  
CANIF1DA2, type R/W, offset 0x040, reset 0x0000.0000  
CANIF1DB1, type R/W, offset 0x044, reset 0x0000.0000  
CANIF1DB2, type R/W, offset 0x048, reset 0x0000.0000  
CANIF2DA1, type R/W, offset 0x09C, reset 0x0000.0000  
CANIF2DA2, type R/W, offset 0x0A0, reset 0x0000.0000  
CANIF2DB1, type R/W, offset 0x0A4, reset 0x0000.0000  
CANIF2DB2, type R/W, offset 0x0A8, reset 0x0000.0000  
CANTXRQ1, type RO, offset 0x100, reset 0x0000.0000  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
TxRqst  
480  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
CANTXRQ2, type RO, offset 0x104, reset 0x0000.0000  
CANNWDA1, type RO, offset 0x120, reset 0x0000.0000  
CANNWDA2, type RO, offset 0x124, reset 0x0000.0000  
CANMSG1INT, type RO, offset 0x140, reset 0x0000.0000  
CANMSG2INT, type RO, offset 0x144, reset 0x0000.0000  
CANMSG1VAL, type RO, offset 0x160, reset 0x0000.0000  
CANMSG2VAL, type RO, offset 0x164, reset 0x0000.0000  
TxRqst  
NewDat  
NewDat  
IntPnd  
IntPnd  
MsgVal  
MsgVal  
Analog Comparators  
Base 0x4003.C000  
ACMIS, type R/W1C, offset 0x00, reset 0x0000.0000  
ACRIS, type RO, offset 0x04, reset 0x0000.0000  
ACINTEN, type R/W, offset 0x08, reset 0x0000.0000  
ACREFCTL, type R/W, offset 0x10, reset 0x0000.0000  
ACSTAT0, type RO, offset 0x20, reset 0x0000.0000  
ACSTAT1, type RO, offset 0x40, reset 0x0000.0000  
ACSTAT2, type RO, offset 0x60, reset 0x0000.0000  
ACCTL0, type R/W, offset 0x24, reset 0x0000.0000  
ACCTL1, type R/W, offset 0x44, reset 0x0000.0000  
ACCTL2, type R/W, offset 0x64, reset 0x0000.0000  
IN2  
IN2  
IN2  
IN1  
IN1  
IN1  
IN0  
IN0  
IN0  
EN  
RNG  
VREF  
OVAL  
OVAL  
OVAL  
CINV  
CINV  
CINV  
ASRCP  
ASRCP  
ASRCP  
ISLVAL  
ISLVAL  
ISLVAL  
ISEN  
ISEN  
ISEN  
November 29, 2007  
481  
Preliminary  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
Pulse Width Modulator (PWM)  
Base 0x4002.8000  
PWMCTL, type R/W, offset 0x000, reset 0x0000.0000  
PWMSYNC, type R/W, offset 0x004, reset 0x0000.0000  
PWMENABLE, type R/W, offset 0x008, reset 0x0000.0000  
PWMINVERT, type R/W, offset 0x00C, reset 0x0000.0000  
PWMFAULT, type R/W, offset 0x010, reset 0x0000.0000  
PWMINTEN, type R/W, offset 0x014, reset 0x0000.0000  
PWMRIS, type RO, offset 0x018, reset 0x0000.0000  
PWMISC, type R/W1C, offset 0x01C, reset 0x0000.0000  
PWMSTATUS, type RO, offset 0x020, reset 0x0000.0000  
PWM0CTL, type R/W, offset 0x040, reset 0x0000.0000  
PWM0INTEN, type R/W, offset 0x044, reset 0x0000.0000  
PWM0RIS, type RO, offset 0x048, reset 0x0000.0000  
PWM0ISC, type R/W1C, offset 0x04C, reset 0x0000.0000  
PWM0LOAD, type R/W, offset 0x050, reset 0x0000.0000  
PWM0COUNT, type RO, offset 0x054, reset 0x0000.0000  
PWM0CMPA, type R/W, offset 0x058, reset 0x0000.0000  
PWM0CMPB, type R/W, offset 0x05C, reset 0x0000.0000  
GlobalSync0  
Sync0  
PWM1En PWM0En  
PWM1Inv PWM0Inv  
Fault1  
Fault0  
IntFault  
IntPWM0  
IntFault  
IntPWM0  
IntFault  
IntPWM0  
Fault  
CmpBUpd CmpAUpd LoadUpd  
Debug  
Mode  
Enable  
IntCntLoad IntCntZero  
IntCntLoad IntCntZero  
IntCntLoad IntCntZero  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU  
Load  
Count  
CompA  
CompB  
482  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
PWM0GENA, type R/W, offset 0x060, reset 0x0000.0000  
ActCmpBD  
PWM0GENB, type R/W, offset 0x064, reset 0x0000.0000  
ActCmpBU  
ActCmpAD  
ActCmpAU  
ActLoad  
ActLoad  
ActZero  
ActZero  
ActCmpBD  
PWM0DBCTL, type R/W, offset 0x068, reset 0x0000.0000  
ActCmpBU  
ActCmpAD  
ActCmpAU  
Enable  
PWM0DBRISE, type R/W, offset 0x06C, reset 0x0000.0000  
PWM0DBFALL, type R/W, offset 0x070, reset 0x0000.0000  
RiseDelay  
FallDelay  
November 29, 2007  
483  
Preliminary  
Ordering and Contact Information  
C
Ordering and Contact Information  
C.1  
Ordering Information  
L M 3 S n n n n – g p p s s – r r m  
Part Number  
Shipping Medium  
T = Tape-and-reel  
Omitted = Default shipping (tray or tube)  
Temperature  
I = -40 C to 85 C  
Revision  
Package  
Omitted = Default to current shipping  
revision  
A0 = First all-layer mask  
A1 = Metal layers update to A0  
A2 = Metal layers update to A1  
B0 = Second all-layer mask revision  
RN = 28-pin SOIC  
QN = 48-pin LQFP  
QC = 100-pin LQFP  
Speed  
20 = 20 MHz  
25 = 25 MHz  
50 = 50 MHz  
Table C-1. Part Ordering Information  
Orderable Part Number Description  
LM3S2110-IQC25  
Stellaris® LM3S2110 Microcontroller  
Stellaris® LM3S2110 Microcontroller  
LM3S2110-IQC25(T)  
C.2  
Kits  
The Luminary Micro Stellaris® Family provides the hardware and software tools that engineers need  
to begin development quickly.  
Reference Design Kits accelerate product development by providing ready-to-run hardware, and  
comprehensive documentation including hardware design files:  
http://www.luminarymicro.com/products/reference_design_kits/  
Evaluation Kits provide a low-cost and effective means of evaluating Stellaris® microcontrollers  
before purchase:  
http://www.luminarymicro.com/products/evaluation_kits/  
Development Kits provide you with all the tools you need to develop and prototype embedded  
applications right out of the box:  
http://www.luminarymicro.com/products/boards.html  
See the Luminary Micro website for the latest tools available or ask your Luminary Micro distributor.  
C.3  
Company Information  
Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs).  
Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the  
world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the  
484  
November 29, 2007  
Preliminary  
LM3S2110 Microcontroller  
Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit  
microcontroller designs. With entry-level pricing at $1.00 for an ARM technology-based MCU,  
Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural  
upgrades or software tool changes.  
Luminary Micro, Inc.  
108 Wild Basin, Suite 350  
Austin, TX 78746  
Main: +1-512-279-8800  
Fax: +1-512-279-8879  
http://www.luminarymicro.com  
sales@luminarymicro.com  
C.4  
Support Information  
For support on Luminary Micro products, contact:  
support@luminarymicro.com +1-512-279-8800, ext. 3  
November 29, 2007  
485  
Preliminary  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY