LT41050T-3ETR13 [ETC]

Isolated High-Speed CAN Transceiver; 隔离的高速CAN收发器
LT41050T-3ETR13
型号: LT41050T-3ETR13
厂家: ETC    ETC
描述:

Isolated High-Speed CAN Transceiver
隔离的高速CAN收发器

文件: 总10页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IL41050  
Isolated High-Speed CAN Transceiver  
Functional Diagram  
Features  
Single-chip isolated CAN/DeviceNet transceiver  
Fully compliant with the ISO 11898 CAN standard  
Best-in-class loop delay (180 ns)  
3.0 V to 5.5 V input power supplies  
S
CANH  
TxD  
RxD  
>110-node fan-out  
High speed (up to 1 Mbps)  
2,500 VRMS isolation (1 minute)  
CANL  
Very low Electromagnetic Emission (EME)  
Differential signaling for excellent Electromagnetic Immunity (EMI)  
30 kV/µs transient immunity  
IL41050  
Silent mode to disable transmitter  
Unpowered nodes do not disturb the bus  
Transmit data (TxD) dominant time-out function  
Edge triggered, non-volatile input improves noise performance  
Bus pin transient protection for automotive environment  
Thermal shutdown protection  
Short-circuit protection for ground and bus power  
55°C to +125°C operating temperature  
0.15" and 0.3" and 16-pin JEDEC-standard SOIC packages  
UL1577 and IEC 61010-2001 approved  
TxD(1)  
VDD2 (V)  
S
CANH CANL Bus State RxD  
4.75 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
<2V (no pwr)  
X
Low(2) High  
Low  
Dominant Low  
Recessive High  
Recessive High  
High VDD2/2 VDD2/2  
X
X
X
VDD2/2 VDD2/2  
X
0<V<2.5 0<V<2.5 Recessive High  
0<V<2.5 0<V<2.5 Recessive High  
2>VDD2<4.75 >2V  
Table 1. Function table.  
Applications  
Noise-critical CAN  
Partially-powered CAN  
DeviceNet  
Notes:  
1. TxD input is edge triggered: = Logic Lo to Hi, = Hi to Lo  
2. Valid for logic state as described or open circuit  
X = don’t care  
Factory automation  
Description  
The IL41050 is a galvanically isolated, high-speed CAN (Controller  
Area Network) transceiver, designed as the interface between the  
CAN protocol controller and the physical bus. The IL41050 provides  
isolated differential transmit capability to the bus and isolated  
differential receive capability to the CAN controller via NVE’s  
patented* IsoLoop spintronic Giant Magnetoresistance (GMR)  
technology.  
Advanced features facilitate reliable bus operation. Unpowered nodes  
do not disturb the bus, and a unique non-volatile programmable  
power-up feature prevents unstable nodes. The devices also have a  
hardware-selectable silent mode that disables the transmitter.  
Designed for harsh CAN and DeviceNet environments, IL41050T  
transceivers have transmit data dominant time-out, bus pin transient  
protection, thermal shutdown protection, and short-circuit protection,  
Unique edge-triggered inputs improve noise performance. Unlike  
optocouplers or other isolation technologies, IsoLoop isolators have  
indefinite life at high voltage.  
IsoLoop® is a registered trademark of NVE Corporation.  
*U.S. Patent number 5,831,426; 6,300,617 and others.  
REV. F  
NVE Corporation 11409 Valley View Road, Eden Prairie, MN 55344-3617  
Phone: (952) 829-9217 Fax: (952) 829-9189 www.IsoLoop.com  
©NVE Corporation  
IL41050  
Absolute Maximum Ratings(1) (2)  
Parameters  
Storage temperature  
Ambient operating temperature  
Symbol  
TS  
TA  
Min.  
55  
55  
Typ.  
Max.  
150  
135  
Units  
°C  
°C  
Test Conditions  
0 V< VDD2 < 5.25 V;  
indefinite duration  
DC voltage at CANH and CANL pins  
VCANH VCANL  
27  
40  
V
Supply voltage  
Digital input voltage  
Digital output voltage  
DC voltage at VREF  
Transient Voltage at CANH or CANL  
Electrostatic discharge at all pins  
Electrostatic discharge at all pins  
V
DD1 , VDD2  
0.5  
0.3  
0.3  
6
V
V
V
V
V
V
V
VTxD , VS  
VRxD  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
200  
4,000  
200  
VREF  
0.3  
Vtrt(CAN)  
Vesd  
200  
4,000  
200  
Human body model  
Machine model  
Vesd  
Recommended Operating Conditions  
Parameters  
Symbol  
Min.  
3.0  
4.75  
Typ.  
Max.  
5.5  
5.25  
Units  
Test Conditions  
VDD1  
VDD2  
Supply voltage  
V
Input voltage at any bus terminal  
(separately or common mode)  
VCANH  
VCANL  
12  
12  
V
V
2.0  
2.4  
2.0  
0
8  
55  
VDD1  
VDD1  
VDD2  
0.8  
8
VDD1 = 3.3 V  
VDD1 = 5.0 V  
VDD2 = 5.0 V  
High-level digital input voltage (3) (4)  
VIH  
Low-level digital input voltage (3) (4)  
Digital output current (RxD)  
Ambient operating temperature  
Digital input signal rise and fall times  
VIL  
IOH  
TA  
V
mA  
°C  
μs  
VDD1 = 3.3V to 5V  
125  
1
tIR, tIF  
Insulation Specifications  
Parameters  
Creepage distance (external)  
Barrier impedance  
Symbol  
Min.  
8.08  
Typ.  
Max.  
Units  
mm  
|| pF  
μARMS  
Test Conditions  
> 1014 || 7  
0.2  
Leakage current  
240 VRMS, 60 Hz  
Safety and Approvals  
IEC61010-2001  
TUV Certificate Numbers:  
N1502812 (pending)  
Classification: Reinforced Insulation  
Model  
Package  
Pollution Degree  
Material Group  
Max. Working Voltage  
IL41050  
SOIC (0.15" and 0.3")  
II  
III  
300 VRMS  
UL 1577  
Component Recognition Program File Number: E207481 (pending)  
Rated 2,500VRMS for 1 minute  
Soldering Profile  
Per JEDEC J-STD-020C  
Moisture Sensitivity Level: MSL=2  
Notes:  
1. Absolute Maximum specifications mean the device will not be damaged if operated under these conditions. It does not guarantee performance.  
2. All voltages are with respect to network ground except differential I/O bus voltages.  
3. The TxD input is edge sensitive. Voltage magnitude of the input signal is specified, but edge rate specifications must also be met.  
4. The maximum time allowed for a logic transition at the TxD input is 1 μs.  
2
NVE Corporation 11409 Valley View Road, Eden Prairie, MN 55344-3617  
Phone: (952) 829-9217 Fax: (952) 829-9189 www.IsoLoop.com  
©NVE Corporation  
IL41050  
IL41050-3 Pin Connections (0.15" SOIC Package)  
1
2
3
4
5
6
7
8
VDD1  
GND1  
TxD  
RxD  
NC  
VDD1 power supply input  
VDD1 power supply ground return  
Transmit Data input  
Receive Data output  
VDD1  
GND1  
TxD  
RxD  
NC  
VDD2  
No internal connection  
No internal connection  
No internal connection  
No internal connection  
NC  
GND2  
IsoTxD  
S
NC  
NC  
Isolated RxD output.  
No connection should be made to this pin.  
9
IsoRxD  
CANH  
VDD2  
10  
11  
12  
CANL  
VDD2  
Low level CANbus line  
VDD2 power supply input  
High level CANbus line  
NC  
CANH  
NC  
CANL  
IsoRxD  
Mode select input. Leave open or set low for  
normal operation; set high for silent mode.  
13  
14  
S
NC  
Isolated TxD output.  
No connection should be made to this pin.  
IsoTxD  
15  
16  
GND2  
VDD2  
VDD2 power supply ground return  
VDD2 power supply input  
IL41050 Pin Connections (0.3" SOIC Package)  
1
2
VDD1  
VDD1 power supply input  
VDD1 power supply ground return  
(pin 2 is internally connected to pin 8)  
GND1  
3
4
5
6
7
TxD  
NC  
Transmit Data input  
No internal connection  
Receive Data output  
No internal connection  
No internal connection  
VDD1  
GND1  
TxD  
VDD2  
GND2  
S
RxD  
NC  
NC  
VDD1 power supply ground return  
(pin 8 is internally connected to pin 2)  
8
9
GND1  
GND2  
CANH  
CANL  
VDD2  
NC  
RxD  
NC  
VDD2 power supply ground return  
(pin 9 is internally connected to pin 15)  
10  
11  
12  
13  
VREF  
VDD2  
Reference voltage output  
VDD2 power supply input  
Low level CANbus line  
High level CANbus line  
NC  
VREF  
CANL  
CANH  
GND1  
GND2  
Mode select input. Leave open or set low for  
normal operation; set high for silent mode.  
14  
S
VDD2 power supply ground return  
(pin 15 is internally connected to pin 9)  
15  
16  
GND2  
VDD2  
VDD2 power supply input  
3
NVE Corporation 11409 Valley View Road, Eden Prairie, MN 55344-3617  
Phone: (952) 829-9217 Fax: (952) 829-9189 www.IsoLoop.com  
©NVE Corporation  
IL41050  
Specifications  
Electrical Specifications are Tmin to Tmax and VDD1, VDD2= 4.75 V to 5.25 V unless otherwise stated.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Power Supply Current  
1
0.7  
1.75  
1.4  
3.0  
2.0  
dr = 0 bps; VDD1 = 5 V  
dr = 0 bps; VDD1 = 3.3 V  
dr = 1 Mbps, RL= 60Ω;  
Quiescent supply current (recessive)  
Dynamic supply current (dominant)  
IQVDD1  
mA  
1.2  
0.9  
2.0  
1.6  
3.2  
2.2  
V
DD1 = 5 V  
dr = 1 Mbps, RL= 60Ω;  
DD1 = 3.3 V  
IVDD1  
mA  
mA  
V
0 bps  
1 Mbps, RL = 60Ω  
Quiescent supply current (recessive)  
Dynamic supply current (dominant)  
Transmitter Data input (TxD)(1)  
High level input voltage ↑  
High level input voltage ↑  
Low level input voltage ↓  
TxD input rise and fall time(2)  
High level input current  
IQVDD2  
IVDD2  
3.5  
26  
6.75  
52  
13  
78  
VIH  
VIH  
VIL  
tr  
IIH  
IIL  
2.4  
2.0  
0.3  
5.25  
3.6  
0.8  
1
10  
10  
V
V
V
μs  
μA  
μA  
V
V
DD1 = 5 V; recessive  
DD1 = 3.3 V; recessive  
Output dominant  
10% to 90%  
VTxD = VDD1  
VTxD = 0 V  
tr  
10  
10  
Low level input current  
Mode select input (S)  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VIH  
VIL  
IIH  
2.0  
0.3  
20  
VDD2 + 0.3  
V
V
μA  
μA  
Silent mode  
High-speed mode  
VS = 2 V  
0.8  
45  
10  
30  
30  
IIL  
15  
VS = 0 V  
Receiver Data output (RxD)  
High level output current  
Low level output current  
Failsafe supply voltage(4)  
IOH  
IOL  
VDD2  
2  
2
3.6  
8.5  
8.5  
20  
20  
3.9  
mA  
mA  
V
VRxD = 0.8 VDD1  
VRxD = 0.45 V  
Reference Voltage output (VREF  
)
Reference Voltage output  
VREF  
0.45 VDD2  
0.5 VDD2  
0.55 VDD2  
V
50 μA<IVREF< +50 μA  
Bus lines (CANH and CANL)  
Recessive voltage at CANH pin  
Recessive voltage at CANL pin  
VO(reces) CANH  
VO(reces) CANL  
2.0  
2.0  
2.5  
2.5  
3.0  
3.0  
V
V
VTxD = VDD1, no load  
VTxD = VDD1, no load  
27 V < VCANH< +32V;  
0V < VDD2<5.25V  
27 V < VCANL < +32V;  
0 V <VDD2 < 5.25 V  
VTxD = 0 V  
Recessive current at CANH pin  
Recessive current at CANL pin  
IO(reces) CANH  
IO(reces) CANL  
2.0  
2.0  
+2.5  
+2.5  
mA  
mA  
Dominant voltage at CANH pin  
Dominant voltage at CANL pin  
VO(dom) CANH  
VO(dom) CANL  
3.0  
0.5  
3.6  
1.4  
4.25  
1.75  
V
V
VTxD = 0 V  
VTxD = 0 V; dominant  
42.5 Ω < RL < 60 Ω  
1.5  
2.25  
0
3.0  
V
Differential bus input voltage  
Vi(dif)(bus)  
(VCANH VCANL  
)
VTxD = VDD1  
;
50  
+50  
mV  
recessive; no load  
Short-circuit output current at CANH  
Short-circuit output current at CANL  
IO(sc) CANH  
IO(sc) CANL  
45  
45  
70  
70  
95  
100  
mA  
mA  
VCANH = 0 V, VTxD = 0  
VCANL = 36 V, VTxD = 0  
12 V <VCANL< +12V;  
12 V <VCANH< +12 V  
12 V <VCANL< +12 V;  
12 V <VCANH< +12 V  
Differential receiver threshold voltage  
Vi(dif)(th)  
Vi(dif)(hys)  
0.5  
50  
15  
15  
0.7  
70  
25  
25  
0
0.9  
100  
35  
V
mV  
kΩ  
kΩ  
%
Differential receiver input voltage  
hysteresis  
Common Mode input resistance at  
CANH  
Common Mode input resistance at  
CANL  
Matching between Common Mode  
input resistance at CANH, CANL  
Differential input resistance  
Input capacitance, CANH  
Input capacitance, CANL  
Ri(CM)(CANH)  
Ri(CM)(CANL)  
Ri(CM)(m)  
35  
3  
+3  
VCANL = VCANH  
Ri(diff)  
Ci(CANH)  
Ci(CANL)  
25  
50  
7.5  
7.5  
75  
20  
20  
kΩ  
pF  
pF  
VTxD = VDD1  
VTxD = VDD1  
4
NVE Corporation 11409 Valley View Road, Eden Prairie, MN 55344-3617  
Phone: (952) 829-9217 Fax: (952) 829-9189 www.IsoLoop.com  
©NVE Corporation  
IL41050  
Specifications (...cont.)  
Electrical Specifications are Tmin to Tmax and VDD1, VDD2= 4.5 V to 5.5 V unless otherwise stated.  
Differential input capacitance  
Input leakage current at CANH  
Input leakage current at CANL  
Thermal Shutdown  
Ci(dif)  
ILI(CANH)  
ILI(CANL)  
3.75  
170  
170  
10  
250  
250  
pF  
μA  
μA  
VTxD = VDD1  
VCANH= 5 V, VDD2= 0 V  
VCANL= 5 V, VDD2= 0 V  
100  
100  
Shutdown junction temperature  
Timing Characteristics  
Tj(SD)  
155  
165  
180  
°C  
29  
32  
29  
32  
24  
27  
49  
52  
63  
66  
68  
71  
58  
61  
103  
106  
125  
128  
110  
113  
125  
128  
170  
173  
VS= 0 V; VDD1 = 5 V  
VS = 0 V; VDD1 = 3.3 V  
VS = 0 V; VDD1 = 5 V  
VS = 0 V; VDD1 = 3.3 V  
VS = 0 V; VDD1 = 5 V  
VS = 0 V; VDD1 = 3.3 V  
VS = 0 V; VDD1 = 5 V  
VS = 0 V; VDD1 = 3.3 V  
VTxD = 0 V  
TxD to bus active delay  
td(TxD-BUSon)  
td(TxD-BUSoff)  
td(BUSon-RxD)  
td(BUSoff-RxD)  
Tdom(TxD)  
ns  
ns  
ns  
ns  
μs  
TxD to bus inactive delay  
Bus active to RxD delay  
Bus inactive to RxD delay  
TxD dominant time for timeout  
250  
457  
765  
3.0 V > VDD1 < 5.5 V  
Magnetic Field Immunity(3)  
VDD1 = 5 V, VDD2 = 5 V  
Power frequency magnetic immunity  
Pulse magnetic field immunity  
Cross-axis immunity multiplier  
HPF  
HPM  
KX  
2,500  
3,000  
3,000  
3,500  
1.8  
A/m  
A/m  
50 Hz/60 Hz  
tp = 8 µs  
Figure 1  
VDD1 = 3.3 V, VDD2 = 5 V  
Power frequency magnetic immunity  
Pulse magnetic field immunity  
Cross-axis immunity multiplier  
HPF  
HPM  
KX  
1,000  
1,800  
1,500  
2,000  
1.5  
A/m  
A/m  
50 Hz/60 Hz  
tp = 8 µs  
Figure 1  
Notes:  
1. The TxD input is edge sensitive. Voltage magnitude of the input signal is specified, but edge rate specifications must also be met.  
2. The maximum time allowed for a logic transition at the TxD input is 1 μs.  
3. Uniform magnetic field applied across the pins of the device. Cross-axis multiplier effective when field is applied perpendicular to the pins.  
4. If VDD2 falls below the specified failsafe supply voltage, RxD will go High.  
Electrostatic Discharge Sensitivity  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated  
circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance  
degradation to complete failure.  
Electromagnetic Compatibility  
The IL41050 is fully compliant with generic EMC standards EN50081, EN50082-1 and the umbrella line-voltage standard for Information  
Technology Equipment (ITE) EN61000. The IsoLoop Isolator’s Wheatstone bridge configuration and differential magnetic field signaling ensure  
excellent EMC performance against all relevant standards. NVE conducted compliance tests in the categories below:  
EN50081-1  
Residential, Commercial & Light Industrial  
Methods EN55022, EN55014  
EN50082-2: Industrial Environment  
Methods EN61000-4-2 (ESD), EN61000-4-3 (Electromagnetic Field Immunity), EN61000-4-4 (Electrical Transient Immunity),  
EN61000-4-6 (RFI Immunity), EN61000-4-8 (Power Frequency Magnetic Field Immunity), EN61000-4-9 (Pulsed Magnetic  
Field), EN61000-4-10 (Damped Oscillatory Magnetic Field)  
ENV50204  
Radiated Field from Digital Telephones (Immunity Test)  
Immunity to external magnetic fields is higher if the field direction is “end-to-end” (rather than to “pin-to-pin”) as shown in the  
diagram at right.  
Fig. 1  
5
NVE Corporation 11409 Valley View Road, Eden Prairie, MN 55344-3617  
Phone: (952) 829-9217 Fax: (952) 829-9189 www.IsoLoop.com  
©NVE Corporation  
IL41050  
Application Information  
Power Supply Decoupling  
Both VDD1 and VDD2 must be bypassed with 100 nF ceramic capacitors. These supply the dynamic current required for the isolator switching and  
should be placed as close as possible to VDD and their respective ground return pins.  
Dominant Mode Time-out and Failsafe Receiver Functions  
CAN bus latch up is prevented by an integrated Dominant mode timeout function. If the TxD pin is forced permanently low by hardware or  
software application failure, the time-out returns the RxD output to the high state no more than 765 μs after TxD is asserted dominant. The timer  
is triggered by a negative edge on TxD. If the duration of the low is longer than the internal timer value, the transmitter is disabled, driving the  
bus to the recessive state. The timer is reset by a positive edge on pin TxD.  
If power is lost on Vdd2, the IL41050 asserts the RxD output high when the supply voltage falls below 3.8 V. RxD will return to normal  
operation as soon as Vdd2 rises above approximately 4.2 V.  
The Isolation Advantage  
Battery fire caused by over or under charging of individual lithium ion cells is a major concern in multi-cell high voltage electric and hybrid  
vehicle batteries. To combat this, each cell is monitored for current flow, cell voltage, and in some advanced batteries, magnetic susceptibility.  
The IL41050 allows seamless connection of the monitoring electronics of every cell to a common CAN bus by electrically isolating inputs from  
outputs, effectively isolating each cell from all other cells. Cell status is then monitored via the CAN controller in the Battery Management  
System (BMS).  
Another major advantage of isolation is the tremendous increase in noise immunity it affords the CAN node, even if the power source is a  
battery. Inductive drives and inverters can produce transient swings in excess of 20 kV/μs. The traditional, non-isolated CAN node provides some  
protection due to differential signaling and symmetrical driver/receiver pairs, but the IL41050 typically provides more than twice the dV/dt  
protection of a traditional CAN node.  
CANH  
ADR 0...7, CS  
TxD  
RxD  
Tx0  
Rx0  
XTAL1  
XTAL2  
CANL  
SJA1000  
IL41050  
Fig. 2. Isolated CAN node using the IL41050 and an SJA1000 MCU.  
Programmable Power-Up  
A unique non-volatile programmable power-up feature prevents unstable nodes. A state that needs to be present at node power up can be  
programmed at the last power down. For example if a CAN node is required to “pulse” dominant at power up, TxD can be sent low by the  
controller immediately prior to power down. When power is resumed, the node will immediately go dominant allowing self-check code in the  
microcontroller to verify node operation. If desired, the node can also power up silently by presetting the TxD line high at power down. At the  
next power on, the IL41050 will remain silent, awaiting a dominant state from the bus.  
The microcontroller can check that the CAN node powered down correctly before applying power at the next “power on” request. If the node  
powered down as intended, RxD will be set high and stored in IL41050’s non-volatile memory. The level stored in the RxD bit can be read  
before isolated node power is enabled, avoiding possible CAN bus disruption due to an unstable node.  
6
NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax (952) 829-9189 Internet: www.isoloop.com  
IL41050  
Package Drawings, Dimensions and Specifications  
0.15" 16-pin SOIC Package  
Dimensions in inches (mm)  
0.152 (3.86)  
0.157 (3.99)  
0.013 (0.3)  
0.020 (0.5)  
NOM  
0.016 (0.4)  
0.050 (1.3)  
0.007 (0.2)  
0.013 (0.3)  
0.386 (9.8)  
0.394 (10.0)  
Pin 1 identified  
by either an  
indent or a  
0.054 (1.4)  
0.072 (1.8)  
marked dot  
0.040 (1.02)  
0.050 (1.27)  
0.040 (1.0)  
0.060 (1.5)  
0.004 (0.1)  
0.012 (0.3)  
0.228 (5.8)  
0.244 (6.2)  
NOTE: Pin spacing is a BASIC  
dimension; tolerances  
do not accumulate  
0.3" 16-pin SOIC Package  
Dimensions in inches (mm)  
0.287 (7.29)  
0.300 (7.62)  
0.013 (0.3)  
0.020 (0.5)  
NOM  
0.016 (0.4)  
0.050 (1.3)  
0.007 (0.2)  
0.397 (10.1)  
0.413 (10.5)  
0.013 (0.3)  
0.092 (2.34)  
0.105 (2.67)  
Pin 1 identified by  
either an indent  
or a marked dot  
0.08 (2.0)  
0.10 (2.5)  
0.040 (1.0)  
0.060 (1.5)  
0.004 (0.1)  
0.012 (0.3)  
0.394 (10.00)  
0.419 (10.64)  
NOTE: Pin spacing is a BASIC  
dimension; tolerances  
do not accumulate  
7
NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax (952) 829-9189 Internet: www.isoloop.com  
IL41050  
Ordering Information and Valid Part Numbers  
IL 4 1050 T -3 E TR13  
Valid Part Numbers  
Bulk Packaging  
IL41050TE  
Blank = Tube (50 pcs)  
IL41050TE TR13  
IL41050T-3E  
TR7 = 7'' Tape and Reel  
IL41050T-3E TR7  
IL41050T-3E TR13  
(800 pcs; 0.15'' SOIC only)  
TR13 = 13'' Tape and Reel  
(3,000 pcs 0.15'' SOIC or  
1,500 pcs 0.3'' SOIC)  
Package  
E = RoHS Compliant  
Package Type  
Blank = 0.3'' SOIC  
-3 = 0.15'' SOIC  
Temperature Range  
T = Extended  
(-55˚C to +125˚C)  
Channel Configuration  
1050 = CAN Transceiver  
Base Part Number  
4 = Isolated Transceiver  
Product Family  
IL = Isolators  
RoHS  
COMPLIANT  
8
NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax (952) 829-9189 Internet: www.isoloop.com  
IL41050  
Revision History  
Changes  
ISB-DS-001-IL41050-F  
April 2010  
Added 7-inch tape-and-reel bulk packaging option (TR7) for narrow-body parts (p. 8).  
Changes  
ISB-DS-001-IL41050-E  
March 2010  
Changed narrow-body pinouts for pins 9, 10, 12, 13, and 14 (p. 3).  
Changes  
ISB-DS-001-IL41050-D  
March 2010  
Added 0.15" narrow-body SOIC package.  
Added failsafe supply voltage specification and related Note 4.  
Changes  
ISB-DS-001-IL41050-C  
February 2010  
Extended min. operating temperature to 55°C.  
Misc. changes and clarifications for final release.  
Change  
ISB-DS-001-IL41050-B  
January 2010  
Clarified TxD edge trigger mode. Added information to Applications section.  
Tightened timing specifications based on qualification data.  
Change  
ISB-DS-001-IL41050-A  
January 2010  
Initial release.  
9
NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax (952) 829-9189 Internet: www.isoloop.com  
IL41050  
About NVE  
An ISO 9001 Certified Company  
NVE Corporation manufactures innovative products based on unique spintronic Giant Magnetoresistive (GMR) technology. Products include  
Magnetic Field Sensors, Magnetic Field Gradient Sensors (Gradiometers), Digital Magnetic Field Sensors, Digital Signal Isolators, and Isolated  
Bus Transceivers.  
NVE pioneered spintronics and in 1994 introduced the world’s first products using GMR material, a line of ultra-precise magnetic sensors for  
position, magnetic media, gear speed and current sensing.  
NVE Corporation  
11409 Valley View Road  
Eden Prairie, MN 55344-3617 USA  
Telephone: (952) 829-9217  
Fax: (952) 829-9189  
Internet: www.nve.com  
e-mail: isoinfo@nve.com  
The information provided by NVE Corporation is believed to be accurate. However, no responsibility is assumed by NVE Corporation for its use,  
nor for any infringement of patents, nor rights or licenses granted to third parties, which may result from its use. No license is granted by  
implication, or otherwise, under any patent or patent rights of NVE Corporation. NVE Corporation does not authorize, nor warrant, any NVE  
Corporation product for use in life support devices or systems or other critical applications, without the express written approval of the  
President of NVE Corporation.  
Specifications are subject to change without notice.  
ISB-DS-001-IL41050-F  
April 2010  
10  
NVE Corporation 11409 Valley View Road Eden Prairie, MN 55344-3617 USA Telephone: (952) 829-9217 Fax (952) 829-9189 Internet: www.isoloop.com  

相关型号:

LT41050T-3ETR7

Isolated High-Speed CAN Transceiver
ETC

LT41050TE

Isolated High-Speed CAN Transceiver
ETC

LT41050TETR13

Isolated High-Speed CAN Transceiver
ETC

LT41050TETR7

Isolated High-Speed CAN Transceiver
ETC

LT4180

Virtual Remote Sense Controller
Linear

LT4180EGN#PBF

LT4180 - Virtual Remote Sense Controller; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4180EGN#TRPBF

LT4180 - Virtual Remote Sense Controller; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4180EGN-PBF

Virtual Remote Sense Controller
Linear

LT4180EGN-TRPBF

Virtual Remote Sense Controller
Linear

LT4180IGN#PBF

LT4180 - Virtual Remote Sense Controller; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4180IGN#TRPBF

LT4180 - Virtual Remote Sense Controller; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4180IGN-PBF

Virtual Remote Sense Controller
Linear