LX1992EVALKIT [ETC]

LED Driver ; LED驱动器\n
LX1992EVALKIT
型号: LX1992EVALKIT
厂家: ETC    ETC
描述:

LED Driver
LED驱动器\n

驱动器
文件: 总11页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
KEY FEATURES  
DESCRIPTION  
> 90% Efficiency  
The LX1992 is a compact high  
Programming the output current is  
80µA Typical Quiescent Supply  
Current  
efficiency step-up boost controller for readily achieved by using one external  
driving white or color LEDs in current sense resistor in series with the  
backlight or frontlight systems and LEDs. In this configuration, LED  
offers designers maximum flexibility current provides a feedback signal to  
with respect to efficiency and cost. the FB pin, maintaining constant current  
Externally Programmable Peak  
Inductor Current Limit For  
Maximum Efficiency  
Logic Controlled Shutdown  
< 1µA Shutdown Current  
Dynamic Output Current  
Adjustment Via Analog  
Reference Or Direct PWM Input  
8-Pin MSOP Package or 8-Pin  
MLP  
The LX1992 features  
a pseudo- regardless of varying LED forward  
hysteretic pulse frequency modulation voltage (VF). Moreover, the LX1992 is  
topology and uses an external N- capable of achieving output currents in  
Channel MOSFET.  
Further, the excess of 150mA, depending on the  
LX1992 features control circuitry that MOSFET selected.  
is optimized for portable systems (e.g.,  
The LX1992 has an additional feature  
quiescent supply current of 80µA for simple dynamic adjustment of the  
(typ) and a shutdown current of less output current (i.e., up to 100% of the  
APPLICATIONS/BENEFITS  
than  
1µA).  
These  
design maximum  
programmed  
current).  
Pagers  
enhancements provide for improved Designers can make this adjustment via  
performance in battery operated an analog reference signal or a direct  
Wireless Phones  
PDAs  
systems applications.  
PWM generated signal applied to the  
Handheld Computers  
General LCD Bias Applications  
LED Driver  
The device input voltage range is ADJ pin and any PWM amplitude is  
from 1.6V to 6.0, allowing for a wide easily accommodated with a single  
selection of system battery voltages external resistor.  
Digital Camera Displays  
and  
start-up  
operation  
is  
The LX1992 is available in both the 8-  
Pin MSOP, and the miniature 8-Pin MLP  
requiring minimal PCB area.  
guaranteed at 1.6V input.  
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com  
PRODUCT HIGHLIGHT  
L1  
VBAT = 1.6V to 6.0V  
47µH  
1206 Case Size  
C1  
4.7µF  
DRV  
IN  
SRC  
SHDN  
ON OFF  
LX1992  
FB  
ADJ  
CS  
GND  
RCS  
4kΩ  
VF = 3.6V typ.  
ILED = 20mA to 0mA  
RSET  
15Ω  
PACKAGE ORDER INFO  
Plastic MLP  
8-Pin  
LX1992CLM  
Plastic MSOP  
DU  
8-Pin  
TA (°C)  
0 to 70  
LM  
LX1992CDU  
Note: Available in Tape & Reel.  
Append the letter “T” to the part number. (i.e. LX1992CDUT)  
Copyright 2000  
Microsemi  
Page 1  
Rev. 1.1, 2002-11-21  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE PIN OUT  
Supply Voltage (VIN) ....................................................................... -0.3V to 7.0V  
Feedback Input Voltage (VFB).................................................-0.3V to VIN + 0.3V  
Shutdown Input Voltage (VSHDN) ...........................................-0.3V to VIN + 0.3V  
Analog Adjust Input Voltage (VADJ).......................................-0.3V to VIN + 0.3V  
Source Input Current (ISRC).................................................................... 0.80 ARMS  
Operating Junction Temperature.................................................................. 150°C  
Storage Temperature Range...........................................................-65°C to 150°C  
Lead Temperature (Soldering 180 seconds)................................................. 235°C  
1
2
3
4
8
7
6
5
SRC  
GND  
CS  
DRV  
IN  
FB  
SHDN  
ADJ  
DU PACKAGE  
(Top View)  
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to  
Ground. Currents are positive into, negative out of specified terminal.  
SRC  
GND  
CS  
1
2
3
4
8
7
6
5
DRV  
IN  
FB  
THERMAL DATA  
ADJ  
SHDN  
LM PACKAGE  
(Top View)  
Plastic MSOP 8-Pin  
DU  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
THERMAL RESISTANCE-JUNCTION TO CASE, θJC  
206°C/W  
39°C/W  
Plastic MLP 8-Pin  
LM  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
41°C/W  
5.2°C/W  
THERMAL RESISTANCE-JUNCTION TO CASE, θJC  
Junction Temperature Calculation: T = T + (P x θ ).  
JC  
J
A
D
The θJA numbers are guidelines for the thermal performance of the device/pc-board  
system. All of the above assume no ambient airflow.  
FUNCTIONAL PIN DESCRIPTION  
NAME  
DESCRIPTION  
Unregulated IC Supply Voltage Input – Input range from +1.6V to 6.0V. Bypass with a 1µF or greater capacitor  
IN  
for operation below 2.0V.  
Feedback Input – Connects to a current sense resistor between the output load and GND to set the output  
FB  
current.  
Active-Low Shutdown Input – A logic low shuts down the device and reduces the supply current to 0.2µA (Typ).  
SHDN  
Connect  
to VCC for normal operation.  
SHDN  
DRV  
CS  
GND  
MOSFET Gate Driver – Connects to an external N-Channel MOSFET.  
Current-Sense Amplifier Input – Connecting a resistor between CS and GND sets the peak inductor current limit.  
Common terminal for ground reference.  
Adjustment Signal Input – Provides the internal reference, via an internal filter and gain resistor, allowing a  
dynamic output current adjustment corresponding to a varying duty cycle. The actual ADJ pin voltage range is  
ADJ  
from VIN to GND. In order to minimize the current sense resistor power dissipation a practical range of VADJ  
0.0V to 0.5V should be used.  
=
SRC  
MOSFET Current Sense Input - Connects to the External N-Channel MOSFET Source.  
Note: ADJ pin should not be left floating.  
Copyright 2000  
Rev. 1.1, 2002-11-21  
Microsemi  
Page 2  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, the following specifications apply over the operating ambient temperature 0°C TA 70°C except where  
otherwise noted and the following test conditions: VIN = 3V, ILOAD = 20mA, = V and VADJ = 300mV.  
SHDN  
Test Conditions  
IN  
,
LX1992  
Typ  
Parameter  
Symbol  
Units  
Min  
Max  
`
Operating Voltage  
VIN  
1.6  
6.0  
1.6  
V
V
Minimum Start-up Voltage  
VSU  
TA = +25°C  
Start-up Voltage Temperature  
Coefficient  
kVST  
-2  
mV/°C  
VFB > 0.3V  
VSHDN < 0.4V  
50  
0.2  
300  
100  
0.5  
325  
100  
VIN  
0
µA  
µA  
mV  
nA  
V
Quiescent Current  
IQ  
FB Threshold Voltage  
FB Input Bias Current  
ADJ Input Voltage Range  
ADJ Input Bias Current  
VFB  
IFB  
275  
-100  
0.0  
VFB = 0.3V  
VADJ  
IADJ  
IOUT = (VADJ)/(RSET  
VADJ < 0.3V  
)
-150  
-50  
nA  
nA  
V
V
Shutdown Input Bias Current  
ISHDN  
50  
= GND  
SHDN  
Shutdown High Input Voltage  
Shutdown Low Input Voltage  
Current Sense Bias Current  
Minimum Peak Current  
Efficiency  
NDRV Sink Current  
NDRV Source Current  
Off-Time  
VSHDN  
VSHDN  
1.6  
0.4  
7.0  
83  
ICS  
IMIN  
η
ISNK  
ISRC  
tOFF  
VFB < 0.3V  
CS = 560Ω  
3.0  
53  
5.0  
µA  
mA  
%
R
VIN = 3.0V, ILOAD = 20mA  
VIN = 5V  
85  
50  
mA  
mA  
ns  
VIN = 5V  
100  
VFB = 0.3V; VADJ=0.5V  
100  
500  
SIMPLIFIED BLOCK DIAGRAM  
FB  
A
DRV  
SRC  
GND  
Reference  
Logic  
Control  
Logic  
Driver  
ADJ  
50pF  
2.5MΩ  
A  
B
CS  
Shutdown  
Logic  
IN  
SHDN  
Copyright 2000  
Microsemi  
Page 3  
Rev. 1.1, 2002-11-21  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
APPLICATION CIRCUITS  
Typical LED Driver Applications  
L1  
VBAT = 1.6V to 6.0V  
47µH  
1206 Case Size  
C1  
4.7µF  
DRV  
SRC  
IN  
SHDN  
ON OFF  
LX1992  
FB  
CS  
ADJ  
GND  
RCS  
4kΩ  
VF = 3.6V typ.  
ILED = 0mA to 20mA  
RSET  
15Ω  
Figure 1 – LED Driver with Full-Range Dimming Via PWM Input  
L1  
VBAT = 1.6V to 6.0V  
47µH  
1206 Case Size  
C1  
4.7µF  
DRV  
IN  
SRC  
SHDN  
ON OFF  
LX1992  
FB  
CS  
ADJ  
+
-
GND  
RCS  
4kΩ  
VADJ = 0.0V to 0.3V  
RSET  
15Ω  
VF = 3.6V typ.  
ILED = 0mA to 20mA  
Figure 2 – LED Driver with Full-Range Dimming Via Analog Voltage Input  
Note: The component values shown are only examples for a working system. Actual values will vary greatly depending on  
desired parameters, efficiency, and layout constraints.  
Copyright 2000  
Rev. 1.1, 2002-11-21  
Microsemi  
Page 4  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
APPLICATION INFORMATION  
OPERATING THEORY  
INDUCTOR SELECTION AND OUTPUT CURRENT LIMIT  
PROGRAMMING  
The LX1992 is a PFM boost converter that is  
optimized for driving a string of series connected LEDs. It  
operates in a pseudo-hysteretic mode with a fixed switch  
“off time” of 300ns. Converter switching is enabled as  
LED current decreases causing the voltage across RSET to  
decrease to a value less than the voltage at the VADJ pin.  
When the voltage across RSET (i.e., VFB) is less than VADJ,  
comparator A activates the control logic. The control logic  
activates the DRV output circuit that connects to the gate  
of the external FET. The DRV output is switched “on”  
(and remains “on”) until the inductor current ramps up to  
the peak current level. This current level is set via the  
external RCS resistor and monitored through the CS and  
SRC inputs by comparator B.  
Setting the level of peak inductor current to approximately  
2X the expected maximum DC input current will minimize  
the inductor size, the input ripple current, and the output  
ripple voltage. The designer is encouraged to use inductors  
that will not saturate at the peak inductor current level. An  
inductor value of 47µH is recommended. Choosing a lower  
value emphasizes peak current overshoot while choosing a  
higher value emphasizes output ripple voltage. The peak  
switch current is defined using a resistor placed between the  
CS terminal and ground and the IPEAK equation is:  
V
I
CS  
+   
t +   
R  
IN  
IPEAK = IMIN  
D
CS  
L
R
ICS  
The LED load is powered from energy stored in the  
output capacitor during the inductor charging cycle. Once  
the peak inductor current value is achieved, the NDRV  
output is turned off (off-time is typically 300ns) allowing a  
portion of the energy stored in the inductor to be delivered  
to the load (e.g., see Figure 5, channel 2). This causes the  
output voltage to continue to rise across RSET at the input to  
the feedback circuit. The LX1992 continues to switch until  
the voltage at the FB pin exceeds the control voltage at the  
ADJ pin.  
The maximum IPEAK value is limited by the ISRC value  
(max. = 0.8ARMS). The minimum IPEAK value is defined  
when RCS is zero. The value range for parameters IMIN and  
ICS  
section of this data sheet. The parameter tD  
are provided in the ELECTRICAL CHARiAsCrTeElRatIeSdTICtoS  
internal operation of the device. A typical value at 25oC is  
800ns. RICS is the internal current sense resistor connected to  
the SRC pin. A typical value at 25oC is 200m. All of these  
parameters have an effect on the final IPEAK value.  
DESIGN EXAMPLE:  
Determine IPEAK where VIN equals 3.0V and RCS equals  
4.02Kusing nominal values for all other parameters.  
The value of RSET is established by dividing the  
maximum adjust voltage by the maximum series LED  
current. A minimum value of 15is recommended for  
R
SET. The voltage at the FB pin is the product of IOUT (i.e.,  
5.0µA  
3.0V  
IPEAK = 73mA+  
×800ns+  
×4.02KΩ  
the current through the LED chain) and RSET  
V
.
47µH  
200mΩ  
The result of this example yields a nominal IPEAK of  
approximately 225mA.  
ADJmaxI  
RSET  
=
LEDmax  
The application of an external voltage source at the  
ADJ pin provides for output current adjustment over the  
entire dimming range and the designer can select one of  
two possible methods. The first option is to connect a  
PWM logic signal to the ADJ pin (e.g., see Figure 1). The  
LX1992 includes an internal 50pF capacitor to ground that  
works with an external resistor to create a low-pass filter  
(i.e., filter out the AC component of a pulse width  
modulated input of fPWM 100KHz). The second option is  
to adjust the reference voltage directly at the ADJ pin by  
applying a DC voltage from 0.0 to 0.3V (e.g., see Figure  
2). The adjustment voltage level is selectable (with limited  
accuracy) by implementing the voltage divider created  
between the external series resistor and the internal 2.5MΩ  
resistor. Disabling the LX1992 is achieved by driving the  
SHDN pin with a low-level logic signal thus reducing the  
device power consumption to less than 0.5µA (typ).  
OUTPUT RIPPLE AND CAPACITOR SELECTION  
Output voltage ripple is a function of the inductor value  
(L), the output capacitor value (COUT), the peak switch  
current setting (IPEAK), the load current (IOUT), the input  
voltage (VIN) and the output voltage (VOUT) for a this boost  
converter regulation scheme. When the switch is first turned  
on, the peak-to-peak voltage ripple is a function of the  
output droop (as the inductor current charges to IPEAK), the  
feedback transition error (i.e., typically 10mV), and the  
output overshoot (when the stored energy in the inductor is  
delivered to the load at the end of the charging cycle).  
Therefore the total ripple voltage is  
V
RIPPLE = VDROOP + VOVERSHOOT + 10mV  
The initial droop can be estimated as follows where the  
0.5 value in the denominator is an estimate of the voltage  
drop across the inductor and the FET’s RDS_ON: The  
Copyright 2000  
Rev. 1.1, 2002-11-21  
Microsemi  
Page 5  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
APPLICATION INFORMATION  
PCB LAYOUT  
formula for VDROOP is:  
The LX1992 produces high slew-rate voltage and current  
waveforms hence; the designer should take this into  
consideration when laying out the circuit. Minimizing trace  
lengths from the IC to the inductor, transistor, diode, input  
and output capacitors, and feedback connection (i.e., pin 6)  
are typical considerations. Moreover, the designer should  
maximize the DC input and output trace widths to  
accommodate peak current levels associated with this  
topology.  
L
×  
(
IPK × IOUT  
)
= COUT  
VDROOP  
(
VIN 0.5)  
The output overshoot can be estimated as follows where the  
0.5 value in the denominator is an estimate of the voltage  
drop across the diode:  
L
2
1
×
×
IPK IOUT  
( )  
2
EVALUATION BOARD  
COUT  
VOVERSHOOT  
DESIGN EXAMPLE:  
Determine the VRIPPLE where IPK equals 200mA, IOUT  
equals 12.8mA, L equals 47µH, COUT equals 4.7µF, VIN  
equals 3.0V, and VOUT equals 13.0V:  
=
The LXE1992 evaluation board is available from  
Microsemi for assessing overall circuit performance. The  
evaluation board, shown in Figure 3, is 3 by 3 inches (i.e.,  
7.6 by 7.6cm) square and programmed to drive 4 LEDs  
(provided). Designers can easily modify circuit parameters  
to suit their particular application by replacing RCS (as  
described in this section) RSET (i.e., R4) and diode load.  
Moreover, the inductor, FET, and switching diode are easily  
swapped out to promote design verification of a circuit that  
maximizes efficiency and minimizes cost for a specific  
(
VOUT + 0.5 V  
)
IN  
47µH  
4.7µF  
×
200mA×12.8mA  
( )  
VDROOP  
=
10.2mV  
(
3.0 0.5)  
application.  
The evaluation board input and output  
47µH  
4.7µF  
2
1
connections are described in Table 1.  
×
2
×
(
200mA 12.8mA  
)
The DC input voltage is applied to VBAT (not VCC)  
however the LX1992 IC may be driven from a separate DC  
source via the VCC input. The output current (i.e., LED  
brightness) is controlled by adjusting the on-board  
VOVERSHOOT  
=
18.4mV  
(
13.0 + 0.5 3.0)  
Therefore, VRIPPLE = 10.2mV + 18.4mV + 10mV = 38.6mV  
DIODE SELECTION  
potentiometer.  
The designer may elect to drive the  
brightness adjustment circuit from VBAT or via a separate  
voltage source by selecting the appropriate jumper position  
(see Table 2). Optional external adjustment of the output  
LED current is achieved by disengaging the potentiometer  
and applying either a DC voltage or a PWM-type signal to  
the VADJ input. The PWM signal frequency should be  
higher than 150KHz and contain a DC component les than  
350mV.  
A Schottky diode is recommended for most applications  
(e.g. Microsemi UPS5817). The low forward voltage drop  
and fast recovery time associated with this device supports  
the switching demands associated with this circuit  
topology. The designer is encouraged to consider the  
diode’s average and peak current ratings with respect to  
the application’s output and peak inductor current  
requirements. Further, the diode’s reverse breakdown  
voltage characteristic must be capable of withstanding a  
The LX1992 exhibits a low quiescent current (IQ < 0.5µA:  
typ) during shutdown mode. The SHDN pin is used to  
exercise the shutdown function on the evaluation board.  
This pin is pulled-up to VCC via a 10Kresistor.  
Grounding the SHDN pin shuts down the IC (not the circuit  
output). The output voltage (i.e., voltage across the LED  
string) is readily measured at the VOUT terminal and LED  
current is derived from measuring the voltage at the VFDBK  
pin and dividing this value by 15(i.e., R4).  
negative voltage transition that is greater than VOUT  
.
TRANSISTOR SELECTION  
The LX1992 can source up to 100mA of gate current.  
An N-channel MOSFET with a relatively low threshold  
voltage, low gate charge and low RDS(ON) is required to  
optimize overall circuit performance. The LXE1992  
Evaluation Board uses a Fairchild FDV303. This NMOS  
device was chosen because it demonstrates an RDS_ON of  
0.33and a total gate charge Qg of 1.64nC (typ.)  
The factory installed component list for this must-have  
design tool is provided in Table 3 and the schematic is  
shown in Figure 4  
Copyright 2000  
Rev. 1.1, 2002-11-21  
Microsemi  
Page 6  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
APPLICATION INFORMATION (CONTINUED)  
Figure 5: LXE1992 Engineering Evaluation Board  
Table 1: Input and Ouput Pin Assignments  
Pin Name  
Allowable Range  
Description  
VBAT  
VCC  
0 to 6V  
Main power supply for output. (Set external current limit to 0.5A)  
LX1992 power. May be strapped to VBAT or use a separate supply if VCC jumper is in  
1.6V to 6V  
the SEP position. Do not power output from VCC pin on board..  
Potentiometer power. May be strapped to VBAT or use a separate supply if VPOT  
jumper is in the SEP position. Do not power output from VPOT pin on board.  
Apply a DC voltage or a PWM voltage to this pin to adjust the LED current. PWM  
inputs should be greater than 120Hz and DC portion less than 350mV.  
VPOT  
1.6V to 6V  
0 to 350mV  
VADJ IN  
/SHDN  
VOUT  
0 to VCC  
0 to 18V  
Pulled up to VCC on board (10K), Ground to inhibit the LX1992.  
Power supply output voltage that is applied to LED string.  
VFDBK  
0 to 400mv  
Sense resistor voltage. Divide this voltage by 15 to determine LED current.  
Table 2: Jumper Pin Position Assignments  
Functional Description  
Jumper Position  
VCC/ BAT  
Use this position when powering VBAT and VCC from the same supply. Do not connect power to the VCC  
input when using this jumper position.  
VCC/ SEP  
Use this position when using a separate VCC supply (different from VBAT).  
Use this position when powering the potentiometer reference circuit from the VBAT supply. Do not connect  
power to the VCC input when using this jumper position.  
VPOT/ VBAT  
Use this position when using a separate power supply (different from VBAT) to power the potentiometer  
reference circuit. This will lower the VBAT current and provide a more accurate efficiency reading for the  
LX1992 circuit.  
VPOT/ SEP  
ADJ/ POT  
ADJ/ EXT  
Use this position when using the potentiometer to adjust LED current.  
Use this position when adjusting the LED current with an external PWM that has a repetition rate >120Hz. Or  
when using a DC adjustment voltage.  
Note: Always put jumpers in one of the two possible positions  
Copyright 2000  
Rev. 1.1, 2002-11-21  
Microsemi  
Page 7  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
APPLICATION INFORMATION (CONTINUED)  
Table 3: Factory Installed Component List for the LX1992 Evaluation Board  
Part  
Reference  
Part  
Number  
Quantity  
Description  
Manufacturer  
1
1
1
2
2
1
1
1
2
1
1
1
1
4
3
3
Q1  
Mosfet, N-Channel, 25V, SOT23 Type SMT  
Rectifier, Schottky, 1A, 20V, Powermite Type SMT  
Inductor, 47uH, 540mA, SMT  
Fairchild  
Microsemi  
Toko  
FDV303N  
CR1  
UPS5817  
L1  
A920CY-470  
C1, C2  
C3, C4  
R4  
Capacitor, Ceramic X5R, 4.7uF, 25V, 1210 Type SMT  
Capacitor, Ceramic X7R, 0.1uF, 50V, 0805 Type SMT  
Resistor, 15 Ohm, 1/10W, 0805 Type SMT  
Resistor, 1K, 1/16W, 0603 Type SMT  
Resistor, 4.02K, 1/16W, 0603 Type SMT  
Resistor, 100K, 1/16W, 0603 Type SMT  
Resistor, 10K, 1/16W, 0603 Type SMT  
Trimpot, 50K, 1/2W, Through Hole Type  
IC, Voltage Reference, 1.25 Volts, SOT23 Type SMT  
Diode, Zener, 24V, 3W Powermite Type SMT  
White LED  
Taiyo Yuden  
Murata  
CETMK325BJ475MN  
GRM40X7R104M050  
ERJ6ENF15R0  
ERJ3EKF1001  
ERJ3EKF4021  
ERJ3EKF1003  
ERJ3EKF1002  
3352E-1-503  
LX432CSC  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Bourns  
R5  
R2  
R3, R6  
R1  
R7  
VR1  
Microsemi  
Microsemi  
Chicago Miniature  
3M  
VR2  
1PMT5934B  
LED1 - 4  
JB1 - JB3  
CMD333UWC  
929647-09-36  
929955-06  
Header, 3 Pos Vertical Type  
Jumper  
3M  
Note: The minimum set of parts needed to build a working power supply are: Q1, CR1, L1, C2, C3, R2, R4, U1.  
CR1  
UPS5817  
L1  
47µH  
VBAT  
GND  
C2  
4.7µF  
25V  
C1  
4.7µF  
25V  
VPOT  
VCC  
VOUT  
Q1  
FDV303N  
CMD333UW C  
CMD333UW C  
C3  
0.1µF  
50V  
SRC  
NDRV  
VR2  
VCC  
20V  
GN  
D
IN  
FB  
1W  
1PMT4114  
R1  
10k  
CS  
R2  
4.02k  
ADJ  
SHDN  
CMD333UW C  
CMD333UW C  
SHDN  
VADJ  
R3  
100k  
VFDBK  
R4  
15Ω  
VADJ  
R5 1k  
C4  
0.1µF  
25V  
VPOT  
R6  
100k  
VR1  
LX432  
R7  
50k  
Figure 4 – LXE1992 Boost Evaluation Board Schematic  
Copyright 2000  
Microsemi  
Page 8  
Rev. 1.1, 2002-11-21  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
CHARACTERISTIC CURVES  
Figure 6: VOUT and Inductor Current Waveforms.  
Channel 1: VOUT (AC coupled; 100mV/div)  
Figure 5: VOUT and Inductor Current Waveforms.  
Channel 1: VOUT (AC coupled; 200mV/div)  
Channel 2: Inductor Current (100mA/div.)  
Channel 2: Inductor Current (100mA/div.)  
Configuration: VIN = 3.0V, VOUT = 13.7V, IIN = 120mA  
Configuration: VIN = 3.0V, VOUT = 13.0V, IIN = 65mA  
90%  
80%  
70%  
60%  
50%  
5
4
3
2
1
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
2
4
6
8
10  
12  
14  
16  
18  
Drive Current (mA)  
LED Current (mA)  
Figure 7: Gate Drive Voltage vs. Drive Current  
at T = 25oC.  
Figure 8: Efficiency vs. LED Output Current.  
Configuration: VIN = 3.0V, L = 47µH, RCS = 4KΩ  
Note: Data taken from LXE1992 Evaluation Board  
100%  
90%  
80%  
70%  
60%  
50%  
Efficiency Measurement Hint: When doing an efficiency  
evaluation using the LX1992 Evaluation Board, VPOT should  
be driven by a separate voltage supply to account for losses  
associated with the onboard reference (i.e., the 1.25V shunt  
regulator and 1Kresistor). This circuit will have VBAT -  
1.25V across it and at the higher input voltages the 1KΩ  
resistor could have as much as 4mA through it. This shunt  
regulator circuitry will adversely effect the overall efficiency  
measurement and is not normally used in an application.  
Therefore it should not be considered when measuring  
efficiency.  
0
2
4
6
8
10 12 14 16 18 20 22 24  
LED Current (mA)  
Figure 9: Efficiency vs. LED Output Current.  
Configuration: VIN = 5.0V, L = 47µH, RCS = 4KΩ  
Note: Data taken from LXE1992 Evaluation Board  
Copyright 2000  
Rev. 1.1, 2002-11-21  
Microsemi  
Page 9  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
PACKAGE DIMENSIONS  
8-Pin Miniature Shrink Outline Package (MSOP)  
DU  
A
MILLIMETERS  
INCHES  
Dim  
MIN  
2.85  
2.90  
MAX  
3.05  
3.10  
1.10  
0.40  
MIN  
.112  
.114  
MAX  
.120  
A
B
C
.122  
0.043  
0.160  
B
D
0.25  
0.009  
G
H
J
0.65 BSC  
0.025 BSC  
0.38  
0.13  
0.64  
0.18  
0.015  
0.005  
0.025  
0.007  
H
G
K
0.95 BSC  
0.037 BSC  
P
L
M
N
P
0.40  
0.70  
0.016  
0.027  
M
3°  
3°  
C
0.05  
4.75  
0.15  
5.05  
0.002  
0.187  
0.006  
0.198  
K
N
L
D
8-Pin Plastic MLP-Micro Exposed Pad  
LM  
MILLIMETERS  
INCHES  
Dim  
MIN  
0.80  
0.00  
0.65  
0.15  
0.28  
2.90  
2.90  
MAX  
1.00  
0.05  
0.75  
0.25  
0.38  
3.10  
3.10  
MIN  
MAX  
0.039  
0.002  
0.029  
0.009  
0.015  
0.122  
0.122  
A
A1  
A2  
A3  
b
0.031  
0.000  
0.025  
0.005  
0.011  
0.114  
0.114  
L
D
L2  
K
D
D2  
E
E
e
0.65 BSC  
0.025 BSC  
E2  
D2  
E2  
K
1.52  
1.02  
0.20  
0.20  
0
2.08  
1.31  
*
0.060  
0.040  
0.008  
0.008  
0
0.082  
0.052  
*
e
b
L2  
A
Θ
L
0.60  
0.13  
12°  
0.023  
0.005  
12°  
A2  
Internally Connected  
together, but isolated  
L2  
Θ
0°  
0°  
from all other terminals  
A1  
A3  
Note:  
1. Dimensions do not include mold flash or  
protrusions;  
these  
shall  
not  
exceed  
0.155mm(.006”) on any side. Lead dimension  
shall not include solder coverage.  
Copyright 2000  
Microsemi  
Page 10  
Rev. 1.1, 2002-11-21  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  
LX1992  
High Efficiency LED Driver  
L I N F I N I T Y D I V I S I O N  
PRODUCTION  
NOTES  
PRODUCTION DATA – Information contained in this document is proprietary to  
Microsemi and is current as of publication date. This document may not be modified in  
any way without the express written consent of Microsemi. Product processing does not  
necessarily include testing of all parameters. Microsemi reserves the right to change the  
configuration and performance of the product and to discontinue product at any time.  
Copyright 2000  
Microsemi  
Page 11  
Rev. 1.1, 2002-11-21  
Linfinity Microelectronics Division  
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570  

相关型号:

LX1993

High Efficiency LED Driver
MICROSEMI
ETC

LX1993CDU

High Efficiency LED Driver
MICROSEMI

LX1993CDUT

暂无描述
MICROSEMI

LX1993EVALKIT

LED Driver
ETC

LX1994

High Efficiency LED Driver
MICROSEMI

LX1994-CDU

暂无描述
MICROSEMI

LX1994-CLD

LED DISPLAY DRIVER, DSO10, MLP-10
MICROSEMI

LX1994CDU

High Efficiency LED Driver
MICROSEMI

LX1994CDU-TR

High Efficiency LED Driver
MICROSEMI

LX1994CLD

High Efficiency LED Driver
MICROSEMI

LX1994CLD-TR

High Efficiency LED Driver
MICROSEMI