LXT9784BC [ETC]

LAN TRANSCEIVER|OCTAL|BGA|324PIN|PLASTIC ; LAN收发器|八路| BGA | 324PIN |塑料\n
LXT9784BC
型号: LXT9784BC
厂家: ETC    ETC
描述:

LAN TRANSCEIVER|OCTAL|BGA|324PIN|PLASTIC
LAN收发器|八路| BGA | 324PIN |塑料\n

电信集成电路 局域网 以太网:16GBASE-T
文件: 总68页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT9784  
Low-Power Octal PHY  
Datasheet  
The LXT9784 is an eight-port Fast Ethernet PHY Transceiver supporting IEEE 802.3 10Mbps  
and 100Mbps physical layer applications. It provides both a Reduced Media Independent  
Interface (RMII) and a Serial Media Independent Interface (SMII) for switching and other  
independent port applications. In RMII mode, each PHY has a discrete exposed RMII interface,  
and in SMII mode a discrete exposed SMII interface. All network ports provide a Twisted-Pair  
(TP) interface for a 10/100BASE-TX connection.  
The LXT9784 provides three discrete LED driver outputs for each port. The device supports  
both half- and full-duplex 10Mbps and 100Mbps operation, and requires only a single 3.3V  
power supply. For low power applications the devices may be powered by a single 3.0V power  
supply. Advanced design techniques result in very low power requirements.  
The LXT9784 also supports an auto-MDIX feature as well as an integrated Hardware Integrity  
(HWI) feature that utilizes a Time Domain Reflectometry (TDR) technique to locate and report  
problems with the cable plant.  
Product Features  
Eight IEEE 802.3 Standard-compliant  
10BASE-T or 100BASE-TX ports with  
integrated filters.  
Automatic polarity correction at 10M data  
rate.  
Robust baseline wander correction for  
Automatic MDI/MDIX switch over  
improved 100BASE-TX performance.  
capability.  
Eight Reduced MII (RMII) and Serial MII  
(SMII) ports for independent PHY port  
operation.  
Integrated Hardware Integrity (HWI):  
device ports detect and report cabling  
problems via MDIO.  
Low power consumption, 3.0V and 3.3V  
Uses 1:1 magnetic device for 10/100 Mbps  
operation.  
operation, allowing low-cost design.  
324-lead PBGA package.  
Supports both IEEE 802.3u Auto-  
Negotiation and parallel detection  
operation.  
Controls all 8 ports through one single  
IEEE 802.3 Standard compliant MII  
management bus.  
LXT9784BC - Commercial (0° to 70°C  
ambient).  
LXT9784BE - Extended (-40° to 85°C  
ambient).  
As of January 15, 2001, this document replaces the Level One document  
LXT9784 Low-Power Octal PHY Datasheet.  
Order Number: 249272-001  
January 2001  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT9784 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current  
characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Low-Power Octal PHY — LXT9784  
Contents  
1.0  
2.0  
Pin Assignments and Signal Descriptions....................................................10  
Functional Description...........................................................................................29  
2.1  
2.2  
2.3  
Introduction..........................................................................................................29  
LXT9784 Configuration .......................................................................................29  
100BASE-TX Mode.............................................................................................30  
2.3.1 100BASE-TX Receiver...........................................................................30  
2.3.1.1 Digital Adaptive Equalizer .........................................................30  
2.3.1.2 Receive Clock and Data Recovery............................................30  
2.3.1.3 Baseline Wander Correction .....................................................31  
2.3.1.4 Decoder.....................................................................................31  
2.3.1.5 100BASE-TX Receive Framing.................................................31  
2.3.1.6 100BASE-TX RMII Data Reception...........................................31  
2.3.1.7 100BASE-TX SMII Data Reception...........................................31  
2.3.1.8 100BASE-TX Receive Error Detection and Reporting ..............32  
2.3.2 100BASE-TX Transmitter.......................................................................33  
2.3.2.1 100BASE-TX 4B/5B Encoder....................................................33  
2.3.2.2 100BASE-TX Scrambler and MLT-3 Encoder...........................33  
2.3.2.3 Transmit Driver..........................................................................35  
2.3.2.4 100BASE-TX Transmit Framing................................................35  
10BASE-T Mode .................................................................................................36  
2.4.1 10BASE-T Receiver ...............................................................................36  
2.4.1.1 10BASE-T Manchester Decoder...............................................36  
2.4.1.2 10BASE-T Receive Buffer and Filter.........................................37  
2.4.1.3 10BASE-T Error Detection and Reporting.................................37  
2.4.1.4 10BASE-T Link Integrity............................................................37  
2.4.1.5 10BASE-T Jabber Control Function ..........................................37  
2.4.1.6 10BASE-T Full Duplex ..............................................................38  
2.4.2 10BASE-T Transmit ...............................................................................38  
2.4.2.1 10BASE-T Manchester Encoder ...............................................38  
2.4.2.2 10BASE-T Driver and Filter.......................................................38  
MDI/MDI-X Function............................................................................................38  
2.5.1 MDI/MDI-X Auto Switching Activation ....................................................39  
2.5.2 MDI/MDI-X Algorithm .............................................................................39  
Hardware Control Interface .................................................................................40  
2.6.1 MDI-X (MDI Crossover)..........................................................................40  
2.6.2 FRCLNK (Force Link).............................................................................40  
2.6.3 FRC34 (Force 34 Transmit Pattern).......................................................40  
2.6.4 BP4B5B (4B/5B Bypass)........................................................................40  
2.6.5 SCRMBP (Scrambler Bypass) ...............................................................41  
PHY Addresses...................................................................................................41  
Link Status Interrupt ............................................................................................41  
Reset...................................................................................................................42  
LED Operation.....................................................................................................42  
MII Management Interface Operation..................................................................43  
Test Port Operation.............................................................................................44  
2.12.1 NAND-Tree Test.....................................................................................44  
2.12.2 XNOR-Tree Test ....................................................................................45  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
Datasheet  
3
LXT9784 — Low-Power Octal PHY  
2.12.3 NAND/XNOR Tree Chain Order.............................................................45  
Application Information.........................................................................................48  
3.0  
4.0  
3.1  
3.2  
3.3  
Magnetics............................................................................................................48  
Analog References (RBIAS) ...............................................................................48  
RMII Applications ................................................................................................48  
3.3.1 RMII Clock..............................................................................................49  
SMII Applications ................................................................................................49  
3.4.1 SMII Clock..............................................................................................50  
3.4  
Test Specifications..................................................................................................51  
4.1  
4.2  
DC Characteristics ..............................................................................................52  
AC Characteristics ..............................................................................................53  
4.2.1 Common Characteristics........................................................................54  
RMII Interface......................................................................................................56  
SMII Interface......................................................................................................57  
Reset Timing Parameters ...................................................................................58  
Clock Specifications............................................................................................59  
4.6.1 MCLK Specifications..............................................................................59  
4.3  
4.4  
4.5  
4.6  
5.0  
6.0  
Register Definitions ................................................................................................60  
Mechanical Specifications ...................................................................................68  
4
Datasheet  
Low-Power Octal PHY LXT9784  
Figures  
1
2
3
4
5
6
7
8
LXT9784 Block Diagram .......................................................................................9  
LXT9784 Ball Assignments - RMII Mode ............................................................10  
LXT9784 Ball Assignments - SMII Mode.............................................................11  
LXT9784 PHY in a 10/100 Mbps Ethernet Solution ............................................29  
RMII Data Reception...........................................................................................32  
False Carrier Detect ............................................................................................32  
SMII Received Serial Data Stream......................................................................33  
NRZ to MLT-3 encoding diagram........................................................................34  
RMII Data Transmission......................................................................................36  
SMII Transmit Data Serial Stream.......................................................................36  
Simplified Interrupt Structure...............................................................................42  
Typical RBIAS Circuit..........................................................................................48  
Typical RMII Application......................................................................................49  
Typical SMII Application......................................................................................50  
AC Testing Level Conditions...............................................................................54  
MDC Clock AC Timing ........................................................................................54  
MII Management Timing Parameters: MDC/MDIO .............................................54  
Normal Link Pulse Timings..................................................................................55  
Fast Link Pulse Timings ......................................................................................55  
RMII AC Testing Level Conditions ......................................................................56  
RMII Rise and Fall Timings .................................................................................56  
RMII Timing Parameters .....................................................................................57  
SMII Mode - AC Testing Level Conditions ..........................................................57  
SMII Timing Parameters......................................................................................58  
Reset Timing Parameters....................................................................................58  
Master Clock Specifications ................................................................................59  
Master Clock Slope Specifications......................................................................59  
Package Specifications .......................................................................................68  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Datasheet  
5
LXT9784 Low-Power Octal PHY  
Tables  
1
Signal Types .......................................................................................................11  
2
3
4
5
6
7
8
9
Numeric Pad Assignments..................................................................................12  
Network Interface Signal Descriptions ................................................................22  
MDIO Signal Descriptions...................................................................................23  
LED Signal Descriptions .....................................................................................23  
Power Supply Signal Descriptions ......................................................................24  
Miscellaneous Signal Descriptions......................................................................25  
RMII Mode Signal Descriptions...........................................................................26  
SMII Mode Signal Descriptions...........................................................................27  
Unused Pins........................................................................................................28  
LXT9784 Modes of Operation.............................................................................30  
SMII RXD_[7:0] Contents....................................................................................32  
4B/5B Coding......................................................................................................34  
Straight-through Pin Assignments.......................................................................39  
Crossed-over Pin Assignments...........................................................................39  
PHY Addresses...................................................................................................41  
LED Functionality................................................................................................43  
Activity LED Blink Rates......................................................................................43  
MII Management Frame Format .........................................................................43  
Glossary of Protocol Terms.................................................................................44  
Test Mode Configuration.....................................................................................44  
Test Scan Chain..................................................................................................45  
Magnetics Module Vendor ..................................................................................48  
Absolute Maximum Ratings ................................................................................51  
Operating Conditions ..........................................................................................51  
Clock DC Characteristics ....................................................................................52  
RMII/SMII and General Interface1 DC Characteristics .......................................52  
LED DC Characteristics ......................................................................................52  
10BASE-T Receiver Voltage/Current DC Characteristics...................................52  
10BASE-T Transmitter Voltage/Current DC Characteristics...............................53  
100BASE-TX Receiver Voltage/Current DC Characteristics ..............................53  
100BASE-TX Transmitter Voltage/Current DC Characteristics ..........................53  
MII Management Clock Specifications................................................................54  
MII Management Interface Timing Parameters...................................................55  
10BASE-T Normal Link Pulse (NLP) Timing Parameters ...................................55  
Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters ..............................55  
100BASE-TX Transmitter AC Specifications ......................................................56  
RMII Interface Timing Parameters ......................................................................57  
SMII Interface Timing Parameters ......................................................................58  
Reset Timing Parameters ...................................................................................58  
MCLK Specifications...........................................................................................59  
Bit Type Designations .........................................................................................60  
Control Register (Register 0) Bit Definitions .......................................................60  
Status Register (Register 1) Bit Definitions.........................................................61  
PHY Identifier Register (Register 2) Bit Definitions.............................................62  
PHY Identifier Register (Register 3) Bit Definitions.............................................62  
Auto-Negotiation Advertisement Register (Register 4) Bit Definitions ................62  
Auto-Negotiation Link Partner Ability Register (Base Page)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
(Register 5) Bit Definitions ..................................................................................63  
6
Datasheet  
Low-Power Octal PHY LXT9784  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
Auto-Negotiation Expansion Register (Register 6) Bit Definitions.......................63  
Register 16 (10 Hex) Status and Control ............................................................64  
Register 17 (11 Hex) Special Control..................................................................64  
Register 18 (12 Hex) PHY Interrupt Register......................................................65  
Reg 19 (13 Hex) 100 BASE-TX RCV False Carrier Counter ..............................65  
Reg 20 (14 Hex) 100BASETx Receive Disconnect Counter...............................66  
Reg 21 (15 Hex) 100BASETx Receive Error Frame Counter .............................66  
Reg 22 (16 Hex) Receive Symbol Error Counter ................................................66  
Reg 23 (17 Hex) 100BASETx Receive Premature End of Frame Error Counter 66  
Reg 24 (18 Hex) 10BASET Receive End of Frame Error Counter......................66  
Reg 25 (19 Hex) 10BASET Transmit Jabber Detect Counter.............................66  
Reg 26 (1A Hex) Reserved .................................................................................67  
Register 27 (1B Hex) PHY Special Control.........................................................67  
Datasheet  
7
LXT9784 Low-Power Octal PHY  
Revision History  
Revision  
Date  
Description  
8
Datasheet  
Low-Power Octal PHY LXT9784  
Figure 1. LXT9784 Block Diagram  
Digital  
Equalizer  
MODE [2:0]  
LXT9784  
Adaptation  
Equalizer &  
BLW Correction  
Digital Clock  
Recovery (100)  
100BASE-  
TX PCS  
RMII  
I/F  
TPIP/TPIN  
RMII / SMII  
CRS/Link10  
Detection  
Digital Clock  
Recovery (10)  
10BASE-T  
PCS  
SMII  
I/F  
XMIT DAC  
TPOP/TPON  
10/100  
Auto-  
LEDA  
Negotiation  
Per-Port  
LEDB  
LED Drivers  
LEDC  
MDIO  
MII MGMT I/F  
MDC  
MII Register Set  
Port 1 of 8  
ID<1:0>  
Datasheet  
9
LXT9784 Low-Power Octal PHY  
1.0  
Pin Assignments and Signal Descriptions  
Figure 2. LXT9784 Ball Assignments - RMII Mode  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
RBIAS  
100_1  
RBIAS  
10_1  
NC  
TXD7_1  
TXEN7  
NC  
NC  
NC  
TPON7  
NC  
TPOP7  
NC  
NC  
NC  
TPON6  
NC  
TPOP6  
NC  
TPON5  
NC  
TPOP5  
NC  
NC  
NC  
TPON4  
NC  
TPOP4  
NC  
NC  
NC  
NC  
NC  
NC  
A
B
C
D
E
F
A
B
C
D
E
F
CRSDV7  
TXD7_0  
VCC  
VCC  
INT  
MDC  
TOUT  
RXD6_0  
RXD7_0  
RXD7_1  
NC  
TPIN7  
TPIP7  
NC  
NC  
TPIN6  
GND  
GND  
TPIP6  
VCCR  
VCC  
GND  
VCC  
GND  
GND  
GND  
GND  
TPIN5  
GND  
GND  
TPIP5  
VCCR  
VCC  
NC  
TPIN4  
TPIP4  
NC  
LED7_B  
LED7_A  
MDIO  
TXEN6  
TXD5_1  
CRSDV5  
CRSDV6  
TXD6_1  
TXEN5  
RXD6_1  
TXD6_0  
TXD5_0  
NC  
GND  
GND  
NC  
VCCR  
VCC  
NC  
NC  
GND  
NC  
GND  
GND  
NC  
VCCR  
VCC  
NC  
NC  
LED6_B  
LED5_B  
LED4_B  
LED6_A  
LED5_A  
LED4_A  
LED7_C  
LED6_C  
LED5_C  
VCCIO  
GND  
GND  
VCCIO  
GND  
RXD4_0  
TXEN4  
RXD5_0  
CRSDV4  
TXD4_1  
RXD5_1  
RXD4_1  
TXD4_0  
VCCIO  
GND  
VCC  
VCC  
VCC  
NC  
VCC  
VCC  
VCC  
VCCIO  
GND  
MDI-X  
TEXEC  
NC  
LED3_A  
LED4_C  
TCK  
G
H
J
G
H
J
TI  
MODE_0  
VCCIO  
GND  
GND  
GND  
GND  
VCC  
NC  
NC  
FRCLNK  
TXD4  
MODE_1  
MODE_2  
MCLK  
FRC34  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
GND  
RESET  
RXER0  
BP4B5B  
ID_1  
SCRMBP  
ID_0  
K
L
K
L
VCCIO  
VCCIO  
TXEN3  
TXD3_0  
RXD3_1  
TXD3_1  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
VCC  
GND  
RXER3  
RXER6  
RXER2  
RXER5  
RXER1  
RXER4  
M
N
P
R
T
M
N
P
R
T
RXD3_0  
CRSDV3  
VCCIO  
VCCIO  
CRSDV2  
RXD2_1  
RXD2_0  
GND  
VCC  
NC  
VCC  
GND  
LED3_C  
LED3_B  
RXER7  
TXD2_1  
TXEN1  
TXD2_0  
TXD1_0  
RXD1_1  
TXEN2  
TXD1_1  
CRSDV1  
VCCIO  
GND  
NC  
NC  
NC  
NC  
GND  
NC  
NC  
NC  
VCCIO  
GND  
NC  
LED2_C  
LED1_C  
LED0_C  
LED2_B  
LED1_B  
LED0_B  
LED2_A  
LED1_A  
LED0_A  
GND  
GND  
VCC  
GND  
GND  
VCC  
GND  
VCC  
GND  
GND  
GND  
GND  
VCC  
GND  
NC  
GND  
GND  
VCC  
RXD1_0  
VCCR  
VCCR  
VCCR  
VCCR  
U
V
W
Y
U
V
W
Y
CRSDV0  
TXD0_1  
RXD0_1  
TXD0_0  
RXD0_0  
TXEN0  
NC  
NC  
TPIPO  
NC  
TPINO  
NC  
NC  
NC  
TPIP1  
NC  
TPIN1  
NC  
GND  
VCC  
GND  
VCC  
TPIP2  
NC  
TPIN2  
NC  
NC  
NC  
TPIP3  
NC  
TPIN3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
RBIAS  
100_0  
RBIAS  
10_0  
NC  
NC  
NC  
NC  
TPOP0  
TPON0  
NC  
TPOP1  
TPON1  
TPOP2  
TPON2  
NC  
TPOP3  
TPON3  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
10  
Datasheet  
Low-Power Octal PHY LXT9784  
Figure 3. LXT9784 Ball Assignments - SMII Mode  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
RBIAS  
100_1  
RBIAS  
10_1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TPON7  
NC  
TPOP7  
NC  
NC  
NC  
TPON6  
NC  
TPOP6  
NC  
TPON5  
NC  
TPOP5  
NC  
NC  
NC  
TPON4  
NC  
TPOP4  
NC  
NC  
NC  
NC  
NC  
NC  
A
B
C
D
E
F
A
B
C
D
E
F
TXD7  
VCC  
VCC  
INT  
MDC  
TOUT  
RXD6  
NC  
RXD7  
NC  
NC  
NC  
NC  
NC  
TPIN7  
GND  
GND  
NC  
TPIP7  
VCCR  
VCC  
NC  
NC  
NC  
TPIN6  
GND  
GND  
TPIP6  
VCCR  
VCC  
GND  
VCC  
GND  
GND  
GND  
GND  
TPIN5  
GND  
GND  
TPIP5  
VCCR  
VCC  
NC  
NC  
TPIN4  
GND  
GND  
NC  
TPIP4  
VCCR  
VCC  
NC  
NC  
NC  
LED7_B  
LED6_B  
LED5_B  
LED4_B  
LED7_A  
LED6_A  
LED5_A  
LED4_A  
MDIO  
LED7_C  
LED6_C  
LED5_C  
NC  
NC  
TXD6  
TXD5  
VCCIO  
GND  
GND  
GND  
NC  
VCCIO  
GND  
NC  
NC  
RXD4  
NC  
RXD5  
NC  
NC  
NC  
VCCIO  
GND  
VCC  
VCC  
VCC  
NC  
VCC  
VCC  
VCC  
VCCIO  
GND  
MDI-X  
TEXEC  
NC  
LED3_A  
LED4_C  
TCK  
G
H
J
G
H
J
TI  
MODE_0  
NC  
TXD4  
VCCIO  
GND  
GND  
GND  
GND  
VCC  
NC  
NC  
FRCLNK  
SYNC  
MODE_1  
MODE_2  
MCLK  
FRC34  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
GND  
RESET  
NC  
BP4B5B  
ID_1  
SCRMBP  
ID_0  
K
L
K
L
VCCIO  
VCCIO  
NC  
TXD3  
NC  
NC  
NC  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
VCC  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
M
N
P
R
T
M
N
P
R
T
RXD3  
VCCIO  
VCCIO  
NC  
NC  
RXD2  
GND  
VCC  
NC  
VCC  
GND  
LED3_C  
LED3_B  
NC  
NC  
NC  
TXD2  
TXD1  
NC  
NC  
NC  
NC  
VCCIO  
GND  
NC  
NC  
NC  
NC  
GND  
NC  
NC  
NC  
VCC  
VCCIO  
GND  
NC  
LED2_C  
LED1_C  
LED0_C  
LED2_B  
LED1_B  
LED0_B  
LED2_A  
LED1_A  
LED0_A  
GND  
GND  
VCC  
GND  
GND  
VCC  
GND  
VCC  
GND  
GND  
GND  
GND  
VCC  
GND  
NC  
GND  
GND  
RXD1  
VCCR  
VCCR  
VCCR  
VCCR  
U
V
W
Y
U
V
W
Y
NC  
NC  
NC  
RXD0  
NC  
NC  
NC  
TPIPO  
NC  
TPINO  
NC  
NC  
NC  
TPIP1  
NC  
TPIN1  
NC  
GND  
VCC  
GND  
VCC  
TPIP2  
NC  
TPIN2  
NC  
NC  
NC  
TPIP3  
NC  
TPIN3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TXD0  
RBIAS  
100_0  
RBIAS  
10_0  
NC  
NC  
NC  
NC  
TPOP0  
TPON0  
NC  
TPOP1  
TPON1  
TPOP2  
TPON2  
NC  
TPOP3  
TPON3  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
Table 1. Signal Types  
Type  
Name  
Definition  
I
Input  
Standard input only signal.  
Standard output-only signal.  
This is an input and output ball.  
O
I/O  
Output  
Bidirectional  
Datasheet  
11  
LXT9784 Low-Power Octal PHY  
Table 1. Signal Types  
Type  
OD  
Name  
Definition  
This open drain ball allows multiple devices to share this signal as a  
wired-ORed.  
Open-drain output  
OZ  
Tri-state output  
High impedance  
PU  
Internal weak pull-up  
Input ball, external pull-up device is not required.  
PD  
Internal weak pull-down Input ball, external pull-down device is not required.  
EPU  
EPD  
MLT  
External pull up  
Pull this ball up to 3.3V through a 10K ohm resistor.  
Pull this ball down to ground through a 10K ohm resistor.  
Presented on MDI balls while in 100M mode of operation.  
Connect the marked balls to separate analog planes.  
This ball is not used and can be left floating.  
External pull down  
Multi-level analog I/O  
A_PWR Power (analog)  
NC No Connect  
Table 2. Numeric Pad Assignments  
Ball  
Symbol  
Type1  
Reference for Full Description  
A1  
-
NC  
I
-
TXD7_1 (RMII)  
Table 8 on page 26  
-
A2  
Not Used (SMII)  
NC  
NC  
NC  
MLT  
MLT  
NC  
MLT  
MLT  
I
A3  
A4  
-
-
-
-
A5  
TPON7  
Table 3 on page 22  
Table 3 on page 22  
-
A6  
TPOP7  
A7  
-
A8  
TPON6  
Table 3 on page 22  
Table 3 on page 22  
Table 7 on page 25  
Table 7 on page 25  
Table 3 on page 22  
Table 3 on page 22  
-
A9  
TPOP6  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
RBIAS100_1  
RBIAS10_1  
I
TPON5  
MLT  
MLT  
NC  
MLT  
MLT  
NC  
NC  
NC  
NC  
O
TPOP5  
-
TPON4  
Table 3 on page 22  
Table 3 on page 22  
TPOP4  
-
-
-
-
-
-
-
CRSDV7 (RMII)  
Not Used (SMII)  
Table 3 on page 22  
-
B1  
NC  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
12  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
TXEN7 (RMII)  
I
Table 8 on page 26  
B2  
Not Used (SMII)  
NC  
I
TXD7_0 (RMII)  
Table 9 on page 27  
B3  
TXD7 (SMII)  
I
Table 9 on page 27  
B4  
B5  
-
NC  
NC  
NC  
NC  
NC  
NC  
-
-
-
B6  
-
-
B7  
-
-
B8  
-
-
B9  
-
-
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
VCC  
Table 6 on page 24  
VCC  
Table 6 on page 24  
-
-
NC  
NC  
NC  
NC  
NC  
NC  
OD  
I
-
-
-
-
-
INT  
Table 7 on page 25  
Table 4 on page 23  
Table 7 on page 25  
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
MDC  
TOUT  
O
RXD6_0 (RMII)  
RXD6 (SMII)  
RXD7_0 (RMII)  
RXD7 (SMII)  
RXD7_1 (RMII)  
Not Used (SMII)  
-
O
C1  
C2  
C3  
O
O
O
O
NC  
NC  
MLT  
MLT  
NC  
MLT  
MLT  
C4  
C5  
TPIN7  
Table 3 on page 22  
Table 3 on page 22  
C6  
TPIP7  
C7  
-
C8  
TPIN6  
Table 3 on page 22  
Table 3 on page 22  
C9  
TPIP6  
C10  
C11  
C12  
C13  
GND  
GND  
TPIN5  
MLT  
MLT  
Table 3 on page 22  
Table 3 on page 22  
TPIP5  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
Datasheet  
13  
LXT9784 Low-Power Octal PHY  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
-
NC  
MLT  
MLT  
NC  
O
TPIN4  
Table 3 on page 22  
Table 3 on page 22  
TPIP4  
-
LED7_B  
LED7_A  
MDIO  
Table 5 on page 23  
Table 5 on page 23  
Table 4 on page 23  
Table 8 on page 26  
O
I/O  
I
TXEN6 (RMII)  
Not Used (SMII)  
CRSDV6 (RMII)  
Not Used (SMII)  
RXD6_1 (RMII)  
Not Used (SMII)  
-
D1  
NC  
O
Table 8 on page 26  
Table 8 on page 26  
D2  
D3  
NC  
O
NC  
NC  
D4  
D5  
GND  
D6  
VCCR  
A_PWR  
NC  
D7  
-
D8  
GND  
D9  
VCCR  
A_PWR  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
VCC  
GND  
GND  
VCCR  
A_PWR  
NC  
-
GND  
VCCR  
A_PWR  
-
NC  
O
O
O
I
LED6_B  
LED6_A  
LED7_C  
TXD5_1 (RMII)  
Not Used (SMII)  
TXD6_1 (RMII)  
Not Used (SMII)  
TXD6_0 (RMII)  
TXD6 (SMII)  
VCCIO  
Table 5 on page 23  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
E1  
E2  
NC  
I
Table 8 on page 26  
NC  
I
Table 8 on page 26  
Table 9 on page 27  
E3  
E4  
I
1. Refer to Table 1 on page 11 for Signal Type definitions.  
14  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
E5  
E6  
GND  
VCC  
GND  
GND  
VCC  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
VCCIO  
LED5_B  
LED5_A  
LED6_C  
CRSDV5 (RMII)  
Not Used (SMII)  
TXEN5 (RMII)  
Not Used (SMII)  
TXD5_0 (RMII)  
TXD5  
O
O
O
O
NC  
I
Table 5 on page 23  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
F1  
F2  
F3  
Table 8 on page 26  
NC  
I
Table 8 on page 26  
Table 9 on page 27  
I
F4  
F5  
GND  
-
NC  
NC  
NC  
NC  
NC  
F6  
-
F14  
F15  
F16  
F17  
F18  
F19  
F20  
-
-
-
GND  
LED4_B  
LED4_A  
LED5_C  
RXD4_0 (RMII)  
RXD4 (SMII)  
RXD5_0 (RMII)  
RXD5 (SMII)  
O
O
O
O
O
O
O
Table 5 on page 23  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
Table 9 on page 27  
G1  
G2  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
Datasheet  
15  
LXT9784 Low-Power Octal PHY  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
RXD5_1 (RMII)  
Not Used (SMII)  
VCCIO  
O
Table 8 on page 26  
G3  
NC  
G4  
G5  
VCC  
G6  
-
NC  
G16  
G17  
G18  
G19  
G20  
H1  
VCC  
VCCIO  
MDI-X  
I-PU  
O
Table 7 on page 25  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
LED3_A  
LED4_C  
TXEN4 (RMII)  
NC (SMII)  
CRSDV4 (RMII)  
NC (SMII)  
RXD4_1 (RMII)  
NC (SMII)  
GND  
O
I
PD  
O
Table 8 on page 26  
Table 8 on page 26  
H2  
H3  
PD  
O
PD  
H4  
H5  
VCC  
H16  
H17  
H18  
H19  
H20  
J1  
VCC  
GND  
TEXEC  
TI  
I
Table 7 on page 25  
Table 7 on page 25  
Table 7 on page 25  
Table 7 on page 25  
Table 7 on page 25  
I
TCK  
I
MODE_0  
TXD4_1 (RMII)  
Not Used (SMII)  
TXD4_0 (RMII)  
TXD4 (SMII)  
VCCIO  
I
I
J2  
J3  
NC  
I
I
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
J4  
J5  
VCC  
J9  
GND  
J10  
J11  
J12  
J16  
J17  
J18  
GND  
GND  
GND  
VCC  
VCC  
-
NC  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
16  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
J19  
J20  
K1  
-
-
NC  
NC  
I-PD  
I
FRCLNK  
MODE_1  
MCLK  
Table 7 on page 25  
Table 7 on page 25  
Table 7 on page 25  
K2  
K3  
I
K4  
GND  
K5  
VCC  
K9  
GND  
K10  
K11  
K12  
K16  
K17  
K18  
K19  
K20  
GND  
GND  
GND  
VCC  
GND  
RESET  
BP4B5B  
SCRMBP  
TXD4 (RMII)  
SYNC (SMII)  
MODE_2  
FRC34  
I
I-PD  
I-PD  
I
Table 7 on page 25  
Table 7 on page 25  
Table 7 on page 25  
Table 8 on page 26  
Table 9 on page 27  
Table 7 on page 25  
Table 7 on page 25  
L1  
I
L2  
L3  
Ext-PD  
I-PD  
L4  
VCCIO  
L5  
VCC  
L9  
GND  
L10  
L11  
L12  
L16  
L17  
GND  
GND  
GND  
VCC  
VCCIO  
RXER0 (RMII)  
Not Used (SMII)  
ID_1  
O
NC  
I-PD  
I-PD  
I
Table 8 on page 26  
L18  
L19  
L20  
Table 7 on page 25  
Table 7 on page 25  
Table 8 on page 26  
ID_0  
TXEN3 (RMII)  
Not Used (SMII)  
TXD3_0 (RMII)  
TXD3 (SMII)  
M1  
M2  
NC  
I
Table 8 on page 26  
Table 9 on page 27  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
Datasheet  
17  
LXT9784 Low-Power Octal PHY  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
TXD3_1 (RMII)  
Not Used (SMII)  
GND  
I
Table 8 on page 26  
M3  
NC  
M4  
M5  
VCC  
M9  
GND  
M10  
M11  
M12  
M16  
M17  
M18  
M19  
M20  
GND  
GND  
GND  
VCC  
GND  
RXER3  
O
O
Table 8 on page 26  
Table 8 on page 26  
Table 8 on page 26  
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
RXER2  
RXER1  
O
RXD3_0 (RMII)  
RXD3 (SMII)  
RXD3_1 (RMII)  
Not Used (SMII)  
CRSDV3 (RMII)  
Not Used (SMII)  
VCCIO  
O
N1  
N2  
N3  
O
O
NC  
O
Table 8 on page 26  
NC  
N4  
N5  
VCC  
N16  
N17  
VCC  
VCCIO  
RXER6 (RMII)  
Not Used (SMII)  
RXER5 (RMII)  
Not Used (SMII)  
RXER4 (RMII)  
Not Used (SMII)  
CRSDV2 (RMII)  
Not Used (SMII)  
RXD2_1 (RMII)  
Not Used (SMII)  
RXD2_0  
O
NC  
O
Table 8 on page 26  
Table 8 on page 26  
Table 8 on page 26  
Table 8 on page 26  
Table 8 on page 26  
N18  
N19  
N20  
P1  
NC  
O
NC  
O
NC  
O
P2  
P3  
NC  
O
Table 8 on page 26  
Table 8 on page 26  
RXD2  
O
P4  
P5  
GND  
VCC  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
18  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
P15  
P16  
P17  
P18  
P19  
P20  
-
NC  
VCC  
GND  
LED3_C  
LED3_B  
RXER7  
O
O
O
I
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
Table 8 on page 26  
TXD2_1 (RMII)  
Not Used (SMII)  
TXD2_0 (RMII)  
TXD2 (SMII)  
TXEN2 (RMII)  
Not Used (SMII)  
VCCIO  
R1  
R2  
NC  
I
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
I
I
R3  
NC  
R4  
R5  
Table 8 on page 26  
-
NC  
NC  
NC  
NC  
NC  
R6  
-
R7  
-
R15  
R16  
R17  
R18  
R19  
R20  
-
-
VCCIO  
LED2_C  
LED2_B  
LED2_A  
TXEN1 (RMII)  
Not Used (SMII)  
TXD1_0 (RMII)  
TXD1 (SMII)  
TXD1_1 (RMII)  
Not Used (SMII)  
GND  
O
O
O
I
Table 5 on page 23  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
T1  
T2  
T3  
NC  
I
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
I
I
NC  
T4  
T5  
GND  
T6  
VCC  
T7  
GND  
T8  
GND  
T9  
VCC  
T10  
T11  
T12  
GND  
GND  
GND  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
Datasheet  
19  
LXT9784 Low-Power Octal PHY  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
VCC  
GND  
GND  
VCC  
GND  
LED1_C  
LED1_B  
LED1_A  
RXD1_0 (RMII)  
RXD1 (SMII)  
RXD1_1 (RMII)  
Not Used (SMII)  
CRSDV1 (RMII)  
Not Used (SMII)  
-
O
O
Table 5 on page 23  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
Table 9 on page 27  
Table 8 on page 26  
O
O
U1  
U2  
U3  
O
O
NC  
O
Table 8 on page 26  
NC  
NC  
U4  
U5  
GND  
U6  
VCCR  
A_PWR  
NC  
U7  
-
U8  
GND  
U9  
VCCR  
A_PWR  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
VCC  
GND  
GND  
VCCR  
A_PWR  
NC  
-
GND  
VCCR  
A_PWR  
-
NC  
O
LED0_C  
LED0_B  
LED0_A  
CRSDV0 (RMII)  
Not Used (SMII)  
RXD0_1 (RMII)  
Not Used (SMII)  
RXD0_0 (RMII)  
RXD0 (SMII)  
Table 5 on page 23  
Table 5 on page 23  
Table 5 on page 23  
Table 8 on page 26  
O
O
O
V1  
V2  
V3  
NC  
O
Table 8 on page 26  
NC  
O
Table 8 on page 26  
Table 9 on page 27  
O
1. Refer to Table 1 on page 11 for Signal Type definitions.  
20  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
V4  
V5  
-
NC  
MLT  
MLT  
NC  
TPIP0  
Table 3 on page 22  
Table 3 on page 22  
V6  
TPIN0  
V7  
-
V8  
TPIP1  
MLT  
MLT  
Table 3 on page 22  
Table 3 on page 22  
V9  
TPIN1  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
GND  
GND  
TPIP2  
MLT  
MLT  
NC  
MLT  
MLT  
NC  
NC  
NC  
NC  
I
Table 3 on page 22  
Table 3 on page 22  
TPIN2  
-
TPIP3  
Table 3 on page 22  
Table 3 on page 22  
TPIN3  
-
-
-
-
TXD0_1 (RMII)  
Table 8 on page 26  
W1  
W2  
W3  
Not Used (SMII)  
NC  
I
TXD0_0 (RMII)  
Table 8 on page 26  
TXD0 (SMII)  
I
Table 9 on page 27  
TXEN0 (RMII)  
I
Table 8 on page 26  
Not Used (SMII)  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
W4  
W5  
-
-
W6  
-
W7  
-
W8  
-
W9  
-
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
VCC  
VCC  
-
-
-
-
-
-
NC  
NC  
NC  
NC  
NC  
NC  
1. Refer to Table 1 on page 11 for Signal Type definitions.  
Datasheet  
21  
LXT9784 Low-Power Octal PHY  
Table 2. Numeric Pad Assignments (Continued)  
Ball  
Symbol  
Type1  
Reference for Full Description  
W18  
W19  
W20  
Y1  
-
-
-
-
-
-
-
NC  
NC  
NC  
NC  
NC  
NC  
NC  
MLT  
MLT  
NC  
MLT  
MLT  
I
-
-
-
-
-
-
Y2  
Y3  
Y4  
Y5  
TPOP0  
Table 3 on page 22  
Table 3 on page 22  
Y6  
TPON0  
Y7  
-
Y8  
TPOP1  
Table 3 on page 22  
Table 3 on page 22  
Table 7 on page 25  
Table 7 on page 25  
Table 3 on page 22  
Table 3 on page 22  
Y9  
TPON1  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
RBIAS100_0  
RBIAS10_0  
I
TPOP2  
MLT  
MLT  
NC  
MLT  
MLT  
NC  
NC  
NC  
NC  
TPON2  
-
TPOP3  
Table 3 on page 22  
TPON3  
Table 3 on page 22  
-
-
-
-
-
-
-
-
1. Refer to Table 1 on page 11 for Signal Type definitions.  
Table 3. Network Interface Signal Descriptions  
Ball ID  
Y5, Y6  
Signal Name  
Type1  
Signal Description  
TPOP0, TPON0  
TPOP1, TPON1  
TPOP2, TPON2  
TPOP3, TPON3  
TPOP4, TPON4  
TPOP5, TPON5  
TPOP6, TPON6  
TPOP7, TPON7  
Y8, Y9  
Y12, Y13  
Y15, Y16  
A16, A15  
A13, A12  
A9, A8  
Transmit Differential Pair, Ports 0-7. These pins transmit the  
serial bit-stream on an unshielded twisted pair (UTP) cable. The  
MLT differential pair is a two-level signal in 10BASE-T mode  
(Manchester) or a three-level signal in 100BASE-TX mode (MLT-  
3). These signals interface directly with an isolation transformer.  
A6, A5  
1. Refer to Table 1 on page 11 for Signal Type Definitions.  
22  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 3. Network Interface Signal Descriptions (Continued)  
Ball ID  
V5, V6  
Signal Name  
Type1  
Signal Description  
TPIP0, TPIN0  
TPIP1, TPIN1  
TPIP2, TPIN2  
TPIP3, TPIN3  
TPIP4, TPIN4  
TPIP5, TPIN5  
TPIP6, TPIN6  
TPIP7, TPIN7  
V8, V9  
V12, V13  
V15, V16  
C16, C15  
C13, C12  
C9, C8  
Receive Differential Pair, Ports 0-7. These pins receive the  
serial bit-stream on an unshielded twisted pair (UTP) cable. The  
MLT differential pair is a two-level signal in 10BASE-T mode  
(Manchester) or a three-level signal in 100BASE-TX mode (MLT-  
3). These signals interface directly with an isolation transformer.  
C6, C5  
1. Refer to Table 1 on page 11 for Signal Type Definitions.  
Table 4. MDIO Signal Descriptions  
Ball ID Signal Name Type1  
Signal Description  
Management Data Input/Output. The MDIO signal is a bi-directional data  
pin for the Management Data Interface. When this signal is not used, a pull-  
up resistor is required.  
C20  
B19  
MDIO  
MDC  
I/O  
I
Management Data Clock. The MDC signal functions as a clock reference  
for the MDIO signal. MDC can operate at a maximum frequency of 3 MHz.  
When this signal is not used, a pull-up resistor is required.  
1. Refer to Table 1 on page 6 for Signal Type Definitions.  
Table 5. LED Signal Descriptions  
Ball ID Signal Name  
Type1  
Signal Description  
U20  
T20  
LED0_A  
LED1_A  
R20  
G19  
F19  
E19  
D19  
C19  
LED2_A  
LED3_A  
LED4_A  
LED5_A  
LED6_A  
LED7_A  
Link/Activity LED, Ports 0-7. With a good link the output is Low. The  
output blinks at a rate related to the utilization.  
O
1. O = Output. Refer to Table 1 for additional Signal Type Definitions.  
Datasheet  
23  
LXT9784 Low-Power Octal PHY  
Table 5. LED Signal Descriptions (Continued)  
Ball ID Signal Name  
Type1  
Signal Description  
U19  
T19  
R19  
P19  
F18  
E18  
D18  
C18  
U18  
T18  
R18  
P18  
G20  
F20  
E20  
D20  
LED0_B  
LED1_B  
LED2_B  
LED3_B  
LED4_B  
LED5_B  
LED6_B  
LED7_B  
LED0_C  
LED1_C  
LED2_C  
LED3_C  
LED4_C  
LED5_C  
LED6_C  
LED7_C  
Speed LED, Ports 0-7. Indicates speed of operation. The output is Low  
for 100 Mbps, and High for 10 Mbps.  
O
Collision LED, Ports 0-7. When in RMII or SMII modes of operation,  
the output blinks Low with collisions stretch rate of 10 ms.  
O
1. O = Output. Refer to Table 1 for additional Signal Type Definitions.  
Table 6. Power Supply Signal Descriptions  
Ball ID  
Symbol Type  
VCCR Analog  
Signal Description  
D6, D9, D13, D16,  
U6, U9, U13, U16  
Receiver Power Supply. +3.3V  
supply for core analog circuits.  
E4, E17, G4, G17, J4, L4, L17, N4, N17, R4,  
R17  
I/O Power Supply. +3.3V supply for  
core digital circuits.  
VCCI/O Digital  
B10, B11, D10, E6, E9, E13, E16, G5, G16, H5,  
H16, J5, J16, J17, K5, K16, L5, L16, M5, M16,  
N5, N16, P5, P16, T6, T9, T13, T16, U10, W10,  
W11  
Primary Power Supply. +3.3V  
supply for all circuits except Receiver  
and I/O.  
VCC  
A/D  
C10, C11,  
D8, D5, D11, D12, D15,  
E5, E7, E8, E10,E11,E12, E14, E15,  
F4, F17,  
H4, H17,  
J9, J10, J11, J12,  
K4, K9, K10, K11, K12, K17,  
L9, L10, L11, L12,  
GND  
Return Ground. Power supply return.  
M4, M9, M10, M11, M12, M17,  
P4, P17,  
T4, T5, T7, T8, T10,T11, T12, T14, T15, T17,  
U5, U8, U11, U12, U15,  
V10, V11  
24  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 7. Miscellaneous Signal Descriptions  
Ball ID  
Signal Name Type1  
Description  
RBIAS10_0  
B
Bias Reference Resistor 10. A 464 Ω 1% resistor should be connected  
from this pin to ground. This determines the current source in 10M mode.  
Y11, A11  
RBIAS10_1  
Bias Reference Resistor 100. A 619 Ω 1% resistor should be connected  
from this pin to ground. This determines the current source in 100M  
mode.  
RBIAS100_0  
B
Y10, A10  
RBIAS100_1  
Master Clock. The LXT9784 master input clock, 35/65 duty cycle,  
±50ppm.  
The MCLK frequency varies, based on the mode. Mode is set by the  
MODE<2:0> pins.  
K3  
MCLK  
I
In RMII mode, MODE<2:0> = 001, MCLK = 50 MHz  
In SMII mode, MODE<2:0> = 010, MCLK = 125 MHz  
Reset. The Reset signal is active high and resets the LXT9784. A reset  
pulse width of at least 500µs should be used.  
K18  
RESET  
I
I
MODE_0  
J1, K2, L2 MODE_1  
MODE_2  
Mode of Operation. Sets the LXT9784 mode of operation. See Table 10.  
ID. Sets the two most significant bits of the PHY addresses.  
ID_0  
L20, L19  
I-PD  
The ID<1:0> pins are used to set the PHY addresses for accessing the  
PHY registers through the MII management interface.  
ID_1  
B18  
K19  
INT  
OD  
Link Status Interrupt. The Link status change interrupt line.  
4B5B encoder Bypass. If BP4B5B is high, the 4B5B encoder / 5B4B  
decoder will be bypassed in 100 Mbps mode of operation.  
BP4B5B  
I-PD  
Scrambler/Descrambler Bypass. If SCRMBP is high, the scrambler/  
K20  
SCRMBP  
I-PD  
descrambler of TP-PMD will be bypassed in 100 Mbps mode of  
operation.  
K1  
L3  
FRCLNK  
FRC34  
I-PD Force Link. When high, force good link at speed of operation.  
I-PD Force 34 Pattern. When high, force the 34 pattern in 100M only.  
MDI-X Enable. When high, enable the MDI/MDI-X automatic detection  
and switch-over feature.  
G18  
H19  
MDI-X  
TI  
I-PU  
Test Input. Sets the device into manufacturing test mode  
(MODE<2:0>=111). Should be externally pulled low when not in use.  
I
Test Execute Command. Sets the device into async test mode  
(MODE<2:0>=111). Should be externally pulled low when not in use.  
H18  
TEXEC  
I
Test Clock. The test clock signal. Should be externally pulled low when  
not in use.  
H20  
B20  
TCK  
I
TOUT  
O
Test Output. The test output port.  
1. Refer to Table 1 on page 11 for Signal Type Definitions.  
Datasheet  
25  
LXT9784 Low-Power Octal PHY  
Table 8. RMII Mode Signal Descriptions  
Ball ID  
Signal Name  
CRSDV0  
Type1  
Signal Description  
V1  
U3  
CRSDV1  
P1  
CRSDV2  
Carrier Sense / Receive Data Valid, Ports 0-7. CRS  
and RXDV signals of the MII interface are collapsed  
into one signal. This signal indicates to the LXT9784  
that traffic is present on the link, and that the incoming  
data on the RXD<1:0> pins is valid.  
N3  
CRSDV3  
O
H2  
CRSDV4  
F1  
CRSDV5  
D2  
CRSDV6  
B1  
CRSDV7  
L18  
M20  
M19  
M18  
N20  
N19  
N18  
P20  
RXER0  
RXER1  
RXER2  
Receive Error, Ports 0-7. The RXER signal indicates  
to the LXT9784 that an error has occurred during  
frame reception.  
RXER3  
O
O
I
RXER4  
RXER5  
RXER6  
RXER7  
V2, V3  
U2, U1  
P2, P3  
N2, N1  
H3, G1  
G3, G2  
D3, C1  
C3, C2  
W1, W2  
T3, T2  
R1, R2  
M3, M2  
J2, J3  
RXD0_1, RXD0_0  
RXD1_1, RXD1_0  
RXD2_1, RXD2_0  
RXD3_1, RXD3_0  
RXD4_1, RXD4_0  
RXD5_1, RXD5_0  
RXD6_1, RXD6_0  
RXD7_1, RXD7_0  
TXD0_1, TXD0_0  
TXD1_1, TXD1_0  
TXD2_1, TXD2_0  
TXD3_1, TXD3_0  
TXD4_1, TXD4_0  
TXD5_1, TXD5_0  
TXD6_1, TXD6_0  
TXD7_1, TXD7_0  
Receive Data, Ports 0-7. In 100 Mbps and 10 Mbps  
mode, data is transferred across these two lines.  
Transmit Data, Ports 0-7. In 100 Mbps and 10 Mbps  
mode, data is transferred across these two lines  
E1, F3  
E2, E3  
A2, B3  
1. Refer to Table 1 on page 11 for Signal Type Definitions.  
26  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 8. RMII Mode Signal Descriptions (Continued)  
Ball ID  
Signal Name  
TXEN0  
Type1  
Signal Description  
W3  
T1  
TXEN1  
TXEN2  
TXEN3  
TXEN4  
TXEN5  
TXEN6  
TXEN7  
R3  
M1  
H1  
F2  
Transmit Enable, Ports 0-7. The transmit enable  
signal indicates to the LXT9784 that valid data is  
present on the TXD[1:0] pins of the appropriate port.  
I
D1  
B2  
Fifth Transmit Data Bit. When the LXT9784 is in a  
4B5B by-pass mode, the TXD4 pin is used as the fifth  
transmit data bit of all eight ports. This signal allows for  
limited symbol interface functionality.  
L1  
TXD4  
I
1. Refer to Table 1 on page 11 for Signal Type Definitions.  
Table 9. SMII Mode Signal Descriptions  
Ball ID  
V3  
Signal Name  
RXD0  
Type1  
Signal Description  
U1  
P3  
N1  
G1  
G2  
C1  
C2  
W2  
T2  
R2  
M2  
J3  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
SYNC  
Receive Data and Control, Ports 0-7. Receive data stream,  
that contains all of the information found on the receive path of  
the standard MII.  
O
Transmit Data and Control, Ports 0-7. Transmit data stream,  
that contains all of the information found on the transmit path  
of the standard MII.  
I
I
F3  
E3  
B3  
L1  
Synchronization. Defines the SMII segment boundaries.  
1. Refer to Table 1 on page 11 for Signal Type Definitions.  
Datasheet  
27  
LXT9784 Low-Power Octal PHY  
Table 10. Unused Pins  
Ball ID  
Symbol  
Type  
Description  
A1,A3,A4,A7,A14,A17,A18,A,19,A20,  
B4,B5,B6,B7,B8,B9,B12,B13,B14,B15,  
B16,B17,C4,C7,C14,C17,D4,D7,D14,  
D17,F5,F6,F14,F15,F16,G6,J18,J19,J20,  
P15,R5,R6,R7,R15,R16,U4,U7,U14,U17,V4, V7,  
V14, V17,V18,V19,V20,W4,W5,W6,  
W7,W8,W9,W12,W13,W14,W15,W16,  
W17,W18,W19,W20,Y1,Y2,Y3,Y4,Y7,  
Y14,Y17,Y18,Y19,Y20.  
No Connection- These pins  
are not used in RMII mode  
and should not be  
RMII  
Mode  
NC  
connected.  
A1,A2,A3,A4,A7,A14,A17,A18,A,19,  
A20,B1,B2,B4,B5,B6,B7,B8,B9,B12,B13,  
B14,B15,B16,B17,C3,C4,C7,C14,C17,  
D1,D2,D3,D4,D7,D14,D17,E1,E2,F1,F2,  
F5,F6,F14,F15,F16,G3,G6,J2,J18,J19,J20,L18,M1,M  
3,N2,N3,N18,N19,N20,P1,P2,  
No Connection- These pins  
are not used in SMII mode  
and should not be  
NC  
SMII Mode  
P15,R1,R3,R5,R6,R7,R15,R16,T1,T3,U2,U4,U7,U14,  
U17,V1,V2,V4,V7, V14,  
connected.  
V17,V18,V19,V20,W1,W3,W4,W5,W6,W7, W8,  
W9,W12,W13,W14,W15,W16,  
W17,W18,W19,W20,Y1,Y2,Y3,Y4,Y7,  
Y14,Y17,Y18,Y19,Y20.  
28  
Datasheet  
Low-Power Octal PHY LXT9784  
2.0  
Functional Description  
2.1  
Introduction  
The LXT9784 is a single chip transceiver device containing eight independent 10/100 Ethernet  
transceivers with RMII and/or SMII Interfaces. The LXT9784 supports per-port speed auto-  
configuration. Each of the eight PHYs represents a highly-integrated, physical-layer interface  
solution designed for 10Mbps and/or 100 Mbps Ethernet systems based on the IEEE 802.3  
Standard 10BASE-T and 100BASE-TX specifications.  
100BASE-TX is an IEEE 802.3 Standard physical layer specification for use over two pairs of  
Category 5 unshielded twisted-pair (UTP CAT 5) or Type 1 shielded twisted pair (STP Type 1)  
cable. 100BASE-TX defines a signaling scheme not only for 100 Mbps, but also provides CSMA/  
CD compatibility with the 10Mbps IEEE 802.3 Standard 10BASE-T signaling standard.  
Each PHY of the LXT9784 complies with the IEEE 802.3u Auto-Negotiation section, and with the  
IEEE 802.3x Full- Duplex Flow Control section. The interface to each PHY complies with the  
current RMII and SMII specifications.  
The LXT9784 PHYs incorporate all active circuitry required to interface 10/100 Mbps Ethernet  
controllers and CSMA/CD MAC components to 100BASE-TX and 10BASE-T networks. Each  
PHY supports a direct glue less interface to all standard RMII or SMII components. Figure 4 shows  
how the LXT9784 PHY fits into a typical 10/100 Mbps Ethernet switch design.  
Figure 4. LXT9784 PHY in a 10/100 Mbps Ethernet Solution  
SMII  
or  
Tx D  
Rx D  
RMII  
RMII / SMII  
LXT9784  
Controller or  
MAC  
1 of 8  
Magnetics  
System Bus Interface  
2.2  
LXT9784 Configuration  
The LXT9784 has a common Management Data Interface (MDI) for the eight PHYs. This is a  
serial interface and complies with the IEEE 802.3Standard MII for MDC and MDIO signals. In all  
modes of operation the PHYs can be configured individually using the MII management interface.  
Datasheet  
29  
LXT9784 Low-Power Octal PHY  
The PHYs can individually auto-negotiate with their link partners, and thereby auto-configure their  
speeds of operation. The MDI/MDIX auto-switching configuration is done prior to Auto-  
Negotiation.  
The RMII or SMII mode is selected by mode select balls MODE<2:0>.  
Three balls select the general operation of the device. Table 11 shows the balls settings for the  
different modes of operation.  
Table 11. LXT9784 Modes of Operation  
Mode Pins  
1
MII  
Mode  
MCLK  
Frequency  
1
2
0
0
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Reserved  
0
0
0
1
1
1
RMll  
50 MHz  
125 MHz  
SMII  
Reserved  
Reserved  
Reserved  
Reserved  
Manufacturing  
Test Mode  
1
1
1
1. MODE 2 pin must be set to zero for normal operation.  
2.3  
100BASE-TX Mode  
2.3.1  
100BASE-TX Receiver  
Each receive subsection of the LXT9784 PHYs accepts 100BASE-TX MLT-3 data on TPIPn and  
TPINn (where nis the port number). Due to the advanced digital signal processing design  
techniques employed, the PHYs accurately receive valid data from CAT5 UTP and type 1 STP  
cable over distances well in excess of 100 meters.  
2.3.1.1  
2.3.1.2  
Digital Adaptive Equalizer  
The distorted MLT-3 signal at the end of the wire is restored by the equalizer. The equalizer filter  
coefficients are digitally adapted based on the shape of the received signal, equalizing the signal to  
exceed IEEE specification bit error rate (BER) performance for transmission over 100 meters of  
CAT 5 twisted pair.  
Receive Clock and Data Recovery  
The clock recovery circuit uses advanced DSP technology to compensate for signal distortion and  
jitter. The circuitry recovers the 125 MHz clock and data from the equalizer output and presents the  
data to the NRZI-to-NRZ converter.  
30  
Datasheet  
Low-Power Octal PHY LXT9784  
2.3.1.3  
Baseline Wander Correction  
The baseline wander effect is the wandering of the DC offset of the receive signal. The wander of  
the DC offset happens when the 100BASE-TX data is not DC-balanced. Baseline wander can  
greatly reduce BER performance. The LXT9784 Equalizer has an automatic baseline wander  
correction circuit, thereby preserving outstanding BER performance in case of extreme baseline  
wander conditions.  
2.3.1.4  
2.3.1.5  
Decoder  
The LXT9784 PHYs first convert the data from the clock recovery circuitry to NRZ format. The  
NRZ serial data stream is assembled to 5-bit symbols, de-scrambled and aligned to symbol  
boundaries. The de-scrambling is based on synchronization to the transmitted Idle pattern  
generated by an 11-bit LFSR during idle. The data is then decoded at the 5B/4B decoder.  
100BASE-TX Receive Framing  
The LXT9784 PHYs do not differentiate between the fields of the MAC frame containing  
preamble, SFD, data and CRC. During 100 Mbps reception, the PHY detects Start-of-Stream  
Delimiter (SSD) (/J/K/) and End-of-Stream Delimiter ESD) (/T/R/) pairs. The PHY strips those  
symbols from the data stream before passing the packet to the MAC. CRSDVn is asserted on a  
detection of a non-idle symbol.  
2.3.1.6  
100BASE-TX RMII Data Reception  
When the receive medium is idle, CRSDVn is de-asserted and the data on RXDn_<1:0> is 00.  
When carrier is detected, CRSDVn signal asserts asynchronously. After the internal FIFO is half  
full, the PHY transfers two bits of recovered data on RXDn_<1:0> at each clock period,  
synchronous to MCLK.  
If the PHY has additional bits to present on RXDn_<1:0> (accumulated in the FIFO) after  
CRSDVn initial de-assertion, then CRSDVn toggles at 25 MHz, starting on a nibble boundary.  
See Figure 5  
If false carrier is detected (bad SSD), then RXDn_<1:0> will be 10until the end of the receive  
event. See Figure 6.  
2.3.1.7  
100BASE-TX SMII Data Reception  
The data is signaled in ten-bit segments, where each segment represents a new byte of data. Each  
segment is delimited by a SYNC pulse (every 10 clocks).  
RXD_[7:0] in the serial bit stream are used to convey packet data, receive error status from the  
previous frame, and PHY status, decoded by two SMII control bits (CRS and RX_DV). See Table  
12 for bit definitions. Figure 7 shows the SMII receive data stream.  
When the receive medium is busy receiving a frame, SMII control bit CRS is asserted. RX_ER  
(inter-frame status bit RXD0) is asserted if during a frame reception the internal FIFO overflows or  
underflows.  
If false carrier is detected (bad Start-of-Stream Delimiter), then inter-frame status bit RXD6 is  
asserted.  
Datasheet  
31  
LXT9784 Low-Power Octal PHY  
2.3.1.8  
100BASE-TX Receive Error Detection and Reporting  
In 100BASE-TX mode, the PHYs detect errors in the receive data in a number of ways. Any of the  
following conditions is considered an error:  
If the SSD ("JK") symbol is not fully detected after idle  
If an invalid symbol is detected at the 4B/5B decoder  
If IDLE is detected in the middle of a frame (before "TR" symbol pair are detected)  
When any of the above error conditions occurs, the PHY immediately indicates a receive error for  
reception. In RMII mode the PHY asserts RXERn, and in SMII mode the PHY asserts the RXD_0  
status bit.  
Figure 5. RMII Data Reception  
MCLK  
∫∫  
∫∫  
CRSDV_n  
∫∫  
∫∫  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
1
1
x
x
x
x
x
x
x
x
x
x
0
0
RXD1_n  
RXD0_n  
∫∫  
∫∫  
Preamble  
SFD  
Data  
Figure 6. False Carrier Detect  
MCLK  
∫∫  
∫∫  
∫∫  
CRSDV_n  
∫∫  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
1
1
1
1
0
1
0
0
RXD1_n  
RXD0_n  
∫∫  
∫∫  
0
0
0
0
0
0
0
0
0
False Carrier detected  
Table 12. SMII RXD_[7:0] Contents  
CRS  
RX_DV  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
Speed  
Duplex  
Link  
Jabber Upper Nibble  
receive error  
status, from  
previous frame  
False Carrier  
Detect  
X
X
O
1
0 = 10Mbps 0=down 0=down  
1=100Mbps 1 = up 1 = up  
0 =OK  
1=error  
0 = invalid  
1 = valid  
1
One Data Byte (two MII data nibbles)  
32  
Datasheet  
Low-Power Octal PHY LXT9784  
Figure 7. SMII Received Serial Data Stream  
Receive stream direction  
MCLK  
SYNC  
RXD_n  
CRS  
RX_DV RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
2.3.2  
100BASE-TX Transmitter  
The transmit subsection of the LXT9784 PHY device accepts di-bit data on TXDn_[1:0] (RMII  
interface) or serial stream data on TXDn (SMII interface) while TXENn is asserted (High). The  
data is assembled into nibbles and passed to the 4B/5B encoder as long as TXENn is active.  
The 4B/5B encoder compiles the data into 5-bit-wide parallel symbols. These symbols are  
scrambled and serialized into a 125 Mbps bit stream, converted by the analog transmit driver into  
an MLT-3 waveform format, and transmitted onto the unshielded twisted pair (UTP) or Type 1  
shielded twisted pair (STP) wire.  
2.3.2.1  
2.3.2.2  
100BASE-TX 4B/5B Encoder  
The 4B/5B encoder complies with the IEEE 802.3u 100BASE-TX standard. Four bits at a time are  
accepted and encoded according to the TX 4B/5B look-up table. The lookup table matches a 5-bit  
code to each 4-bit code. Refer to Table 12.  
100BASE-TX Scrambler and MLT-3 Encoder  
Data is scrambled in 100BASE-TX to reduce electromagnetic emissions during long transmissions  
of high-frequency data codes. The scrambler logic accepts 5 bits from the 4B/5B encoder block,  
then presents scrambled data to the MLT-3 encoder. The LXT9784 PHYs implement the 11-bit  
Stream Cipher scrambler as adopted by the ANSI XT3T9.5 committee for unshielded twisted-pair  
operation. The cipher equation used is: X[n] = X[n-11] + X[n-9] (mod 2).  
The encoder receives the scrambled NRZ data stream from the scrambler and encodes the stream  
into MLT-3 for presentation to the driver. MLT3 is similar to NRZI coding, but three levels are  
output instead of two. There are three output levels +, 0 and -. When an NRZ 0arrives at the  
input of the encoder, the last output level is maintained unchanged (either +, 0 or -) When an NRZ  
1arrives at the input of the encoder, the output steps to the next level. The order of steps is -  
,0,+,0,-,0...See Figure 8.  
Datasheet  
33  
LXT9784 Low-Power Octal PHY  
Figure 8. NRZ to MLT-3 encoding diagram  
Clock  
NRZ  
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
NRZI  
1
MLT-3  
1
1
0
0
1
0
0
1
Table 13. 4B/5B Coding  
4B Code  
3 2 1 0  
5B Code  
4 3 2 1 0  
Code Type  
Name  
Interpretation  
0 0 0 0  
0 0 0 1  
0
1
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 11  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
0 0 0 0 0  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
0 0 1 0  
2
0 0 1 1  
3
0 1 0 0  
4
0 1 0 1  
5
0 1 1 0  
6
DATA  
0 1 1 1  
7
1 0 0 0  
8
1 0 0 1  
9
1 0 1 0  
A
1 0 1 1  
B
1 1 0 0  
C
1 1 0 1  
D
1 1 1 0  
E
1 1 1 1  
F
IDLE  
undefined  
0 1 0 1  
I 1  
J 2  
K 2  
T 3  
R 3  
H 4  
Invalid  
Idle. Used as inter-stream fill code  
Start-of-Stream Delimiter (SSD), part 1 of 2  
Start-of-Stream Delimiter (SSD), part 2 of 2  
End-of-Stream Delimiter (ESD), part 1 of 2  
End-of-Stream Delimiter (ESD), part 2 of 2  
Transmit Error. Used to force signaling errors  
Invalid  
CONTROL  
0 1 0 1  
undefined  
undefined  
undefined  
undefined  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
34  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 13. 4B/5B Coding (Continued)  
4B Code  
3 2 1 0  
5B Code  
4 3 2 1 0  
Code Type  
Name  
Interpretation  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 1 0 0 0  
0 1 1 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
2.3.2.3  
Transmit Driver  
The TPOPn and TPONn lines are implemented with a highly slope-controlled driver that meets the  
TP-PMD specifications. The driver either sinks, floats, or drives the TPOPn and TPONn outputs  
with 20 ma of current, depending on whether the ternary signal is -1, 0, or +1. The magnetics  
external to the LXT9784 converts this current to voltage levels of 2.0 Vptp, as required by the TP-  
PMD specification.  
There are four inputs (RBIAS10_0, RBIAS10_1, and RBIAS100_0, RBIAS100_1) to the  
LXT9784 that must have external resistor connections to set up voltage biases for the internal  
analog section of the LXT9784 PHYs. RBIAS10_0 and RBIAS100_0 provide the bias for PHYs 0  
through 3. RBIAS10_1 and RBIAS100_1 provide the bias for PHYs 4 through 7.  
2.3.2.4  
100BASE-TX Transmit Framing  
The LXT9784 PHYs do not differentiate between the fields of the MAC frame containing  
preamble, SFD, data and CRC. When TXENn is asserted, the PHY accepts di-bit data on the RMII  
TXDn_[1:0] lines, or serial stream data on the SMII TXDn line.  
The PHY encodes the data, and sends it out onto the wire. The PHY substitutes the first byte of the  
preamble with the "JK" symbol pair, encodes all other pieces of data according to the 4B/5B  
lookup table, and adds the "TR" code after the end of the packet (de-assertion of TXENn transmit  
enable indication). The PHY scrambles and serializes the data into a 125 Mbps stream, encodes it  
as MLT-3, and drives it onto the wire. If TXER bit in the SMII control word is asserted while  
TXENn bit is active, the LXT9784 transmits an invalid "H" symbol.  
100BASE-TX RMII Data Transmission  
When TXENn is de-asserted, the data on TXDn_[1:0] shall be "00" to indicate idle. When TXENn  
asserts, the PHY accepts di-bit data on the TXDn_[1:0] lines. See Figure 9.  
Datasheet  
35  
LXT9784 Low-Power Octal PHY  
Figure 9. RMII Data Transmission  
MCLK  
∫∫  
∫∫  
TXENn  
∫∫  
∫∫  
∫∫  
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
x
x
x
x
x
x
x
x
x
x
0
0
TXDn_1  
TXDn_0  
∫∫  
Preamble  
SFD  
Data  
100BASE-TX SMII Data Transmission  
The data is signaled in ten-bit segments, where each segment represents a new byte of data. Each  
segment is delimited by a SYNC pulse (every 10 clocks).  
When TX_EN in the serial bit stream is de-asserted, then TXD[7:0] are the inter-frame control bits  
(for a direct MAC to MAC connection). When the TX_EN bit asserts, the PHY accepts the data  
stream on the TXDn line. Figure 10 shows the format of the SMII transmit serial stream.  
Figure 10. SMII Transmit Data Serial Stream  
Transmit stream direction  
MCLK  
SYNC  
TXDn  
TX_EN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
TX_ER  
2.4  
10BASE-T Mode  
2.4.1  
10BASE-T Receiver  
2.4.1.1  
10BASE-T Manchester Decoder  
The LXT9784 PHYs perform Manchester decoding and timing recovery when in 10BASE-T  
mode. The Manchester-encoded data stream is decoded from TPIPn and TPINn to separate  
Receive Clock and Receive Data signals from the differential signal. This data is assembled to  
nibbles and transferred to the RMII/SMII.  
10BASE-T RMII Data Reception  
RMII data is transferred in di-bits at a 50 MHz rate. Therefore the data on RXDn_<1:0> is changed  
every 10 clock cycles.  
36  
Datasheet  
Low-Power Octal PHY LXT9784  
10BASE-T SMII Data Reception  
SMII data is signaled in ten-bit segments. Each segment is delimited by a SYNC pulse (every 10  
clocks). In 10BASE-T mode, the data rate is one-tenth the 100 Mbps rate, therefore each segment  
is repeated ten times so that every 10 segments represent a new byte of data.  
2.4.1.2  
10BASE-T Receive Buffer and Filter  
In 10 Mbps mode, data is received on TPIPn and TPINn, after passing through isolation  
transformers. The filters implemented inside each LXT9784 PHY for 10BASE-T operation are  
tuned for supporting a single magnetics that are shared with the 100BASE-TX side. The receive  
buffer distinguishes valid receive data, link test pulses, and the idle condition, according to the  
requirements of the 10BASE-T standard. The filters are responsible for noise immunity, data  
acceptance and rejection conditions.  
The filter rejects the differential pulses listed next. These rejectable single-cycle sine waves are  
discarded only if they are preceded by 4-bit times (400 ns) of silence. All other activity is  
determined to be either data, link test pulses, auto-negotiation fast link pulses, or the idle condition  
of peak magnitude less than 300 mV.  
Differential pulses with a peak magnitude of less than 300 mV.  
Continuous sinusoids with a differential amplitude less than 6.2 V peak to peak and frequency  
less than 2 MHz.  
Sine waves of a single cycle duration, starting with phase 0 or 180, that have a differential  
amplitude less than 6.2 V peak to peak and a frequency of at least 2 MHz and not more than 16  
MHz.  
2.4.1.3  
2.4.1.4  
10BASE-T Error Detection and Reporting  
In 10BASE-T mode, the LXT9784 can detect errors in the receive data. As error is defined only in  
cases that TP-IDLE is not detected at the end of the frame (200 ns without mid-bit transitions).  
10BASE-T Link Integrity  
The link integrity in 10 Mbps works with link pulses. Each LXT9784 PHY senses and  
differentiates those link pulses from fast link pulses and from 100BASE-TX idles. For link pulse  
and for 100BASE-TX idles, the PHY uses parallel detection of the respective technology.  
For fast link pulses, the PHY uses auto-negotiation. The 10BASE-T link pulses or NLPs are driven  
on the TPOn line. The link beat pulse is also used to determine if the receive pair polarity is  
reversed. If reversed the polarity is corrected internally.  
2.4.1.5  
10BASE-T Jabber Control Function  
Each LXT9784 PHY contains a jabber control function that when enabled, inhibits transmission  
after a specified time window. The jabber timer is set to a value between 26.2 and 39 ms. When the  
PHY detects continuous transmission for longer than this time, it prevents further transmissions  
from going out in the wire until it detects that the MAC TXENn signal (in RMII mode) or the  
TX_EN signal (in SMII mode) has been inactive for at least 314 ms.  
Datasheet  
37  
LXT9784 Low-Power Octal PHY  
2.4.1.6  
10BASE-T Full Duplex  
The LXT9784 PHYs support 10 Mbps full duplex by disabling the collision and the carrier sense  
functions. This allows each LXT9784 PHY to transmit and receive simultaneously, achieving up to  
20 Mbps of network bandwidth. The configuration is done through auto-negotiation.  
2.4.2  
10BASE-T Transmit  
2.4.2.1  
10BASE-T Manchester Encoder  
When TXENn is asserted, the PHY accepts di-bit data on the RMII TXDn_[1:0] lines, or serial  
stream data on the SMII TXDn line. After the clocked data is serialized into a 10 Mbps serial  
stream, the 20 MHz clock performs the Manchester encoding. The Manchester code always has a  
mid-bit transition. If the data to be transmitted is "1", then the transition is from low to high. If the  
value is "0" then the transition is from high to low. The boundary transition (such as between cell  
times) occurs only when the data changes from bit to bit: if "10" then the change is from high to  
low; if "01" then the change is from low to high.  
10BASE-T RMII Data Transmission  
The data is transferred in di-bits at a 50 MHz rate. Therefore the data on TXDn_[1:0] is valid for 10  
clock cycles for each di-bits.  
10BASE-T SMII Data Transmission  
The data is signaled in ten-bit segments. Each segment is delimited by a SYNC pulse (every 10  
clocks). In 10M mode, the data rate is one-tenth the 100M rate, therefore each segment is repeated  
ten times so that every 10 segments represent a new byte of data.  
2.4.2.2  
10BASE-T Driver and Filter  
Since 10BASE-T and 100BASE-TX have different filtration needs, both filters are implemented  
inside the chip. This allows the two technologies to share the same magnetics. The LXT9784  
supports both technologies through one pair of TPOPn and TPONn pins and by externally sharing  
the same magnetics.  
In 10 Mbps mode, the LXT9784 PHYs begin transmitting the serial Manchester bit stream within 3  
bit times (300 ns) after the assertion TXENn. In 10-Mbps mode the line drivers use a pre-distortion  
algorithm to improve jitter tolerance. The line drivers reduce their drive level during the second  
half of wide(100 ns) Manchester pulses and maintain a full drive level during all narrow (50 ns)  
pulses and the first half of the wide pulses. The LXT9784s advanced wave-shaping circuitry  
prevents overcharging during wide pulses, a major source of jitter.  
2.5  
MDI/MDI-X Function  
When connecting Ethernet devices together, there are two types of cables in use: straight-through  
and crossed-over cables. In a typical connection, DTE to Switch, cross-over is implemented in the  
Switch MAU. In this case a straight-through cable is required. However, in case that a connection  
is required between two MAUs of the same type, then an external cross-over cable is required. In  
38  
Datasheet  
Low-Power Octal PHY LXT9784  
cases that the cable type does not match the two ends MAUs configurations, replacement of the  
cable is required. With the MDI/MDI-X feature enabled, switching is performed automatically by  
the LXT9784, to adjust the MAU to the cable type.  
This advanced feature enables auto-correction of a specific wiring problem of incorrect cabling  
with respect to crossed-over versus straight-through cables. The LXT9784 PHY can identify the  
cable connection type and adjust its MDI port to the cable by switching between the TPO and TPI  
pairs. The auto switching is done prior to the auto-negotiation algorithm.  
Table 14 shows the standard DTE straight-through RJ-45 port configuration, with the transmit pair  
on contacts 1 and 2, and the receive pair on contacts 3 and 6. Table 15 shows the MAU  
configuration of a crossed-over RJ-45 port.  
2.5.1  
2.5.2  
MDI/MDI-X Auto Switching Activation  
The external MDI-X input, sampled during reset, enables or disables auto-switching. When this  
input is externally pulled up, or left unconnected, auto-switching is enabled. When MDI-X is  
externally pulled down, auto switching is disabled. In the case that auto-switching was disabled  
during reset, after reset the MDI-X pin is used to configure the connection type (straight-through or  
crossed-over). A 1forces a crossed-over connection, a 0forces a straight-through connection.  
MDI/MDI-X Algorithm  
In the case that auto-switching was enabled during reset, the PHY attempts to detect link activity in  
a given configuration (MDI or MDI-X) for a duration of 80 - 100 ms. If no link activity is detected  
during this slot time, the PHY waits a random amount of time greater then 80 ms, and switches the  
MDI pairs to the other configuration.  
Table 14. Straight-through Pin Assignments  
Contact  
MDI Signal  
1
2
3
4
5
6
7
8
TDP_n  
TDN_n  
RDP_n  
Not used  
Not used  
RDN_n  
Not used  
Not used  
Table 15. Crossed-over Pin Assignments  
Contact  
MDI Signal  
1
2
3
4
RDP_n  
RDN_n  
TDP_n  
Not used  
Datasheet  
39  
LXT9784 Low-Power Octal PHY  
Table 15. Crossed-over Pin Assignments  
Contact  
MDI Signal  
5
6
7
8
Not used  
TDN_n  
Not used  
Not used  
2.6  
Hardware Control Interface  
The LXT9784 can be configured for unmanaged applications, using external pins (hardware  
control) as described in the following paragraphs.  
2.6.1  
MDI-X (MDI Crossover)  
During RESET, enables the auto-switch feature. If this feature was disabled, then after reset the  
MDI-X pin controls the manual MDI/MDI-X switching.  
When MDI-X = 1, the MDI port is forced to MDI-X  
(cross- over mode).  
When MDI-X = 0, the MDI port is forced to MDI  
(straight-through mode).  
2.6.2  
FRCLNK (Force Link)  
During RESET:  
When FRCLNK = 1, it forces good link (PHY reg17, bit 11), link integrity (PHY reg17, bit 1),  
and disables auto-negotiation (PHY reg0, bit 12)  
When FRCLNK = 0, Normal Operation.  
If FRCLNK was set, then after reset the FRCLNK pin will control speed selection (PHY reg0, bit  
13), where:  
When FRCLNK = 1, it forces 100 Mbps.  
When FRCLNK = 0, it forces 10 Mbps.  
The FRCLNK pin and bit 11 in PHY register 11h are ORed together.  
2.6.3  
2.6.4  
FRC34 (Force 34 Transmit Pattern)  
The FRC34 pin and bit 12 in PHY register 11h are ORed together.  
BP4B5B (4B/5B Bypass)  
To enter 4B/5B bypass mode, this pin must be set high after the end of reset. During reset, this pin  
must be pulled down to ensure proper operation of the LXT9784.  
40  
Datasheet  
Low-Power Octal PHY LXT9784  
The BP4B5B pin and bit 14 in PHY register 11h are ORed together. This pin bypasses the 4B5B  
encoder/decoder in the transmit and receive sections. In 4B5B bypass mode the data is transmitted  
in 5-bit symbols. In RMII mode, the fifth bit (MSB) of all eight ports is driven through the TXD4  
pin. The TXD4 pin is a static pin and should be pulled up or pulled down. In SMII mode, TXER  
represents the fifth bit.  
2.6.5  
SCRMBP (Scrambler Bypass)  
In order to enter scrambler by-pass this pin must be set high after the end of reset. During reset this  
pin must be pulled-down to ensure proper operation of the LXT9784.  
The SCRMBP pin and bit 15 in PHY register 11'h are ORed together.  
2.7  
PHY Addresses  
The ID<1:0> pins are used to set the PHY addresses for the MII management interface.  
The PHYs are assigned consecutive addresses in increasing order, starting with PHY0. The address  
of PHY0 is determined by the setting of ID<1:0>. This allows up to  
four LXT9784s to be connected on a single MII management bus. Up to thirty-two ports are  
available when using all the combinations of ID<1:0>. Table 16 shows the internal PHY addresses  
for each of the possible combinations of ID<1:0>.  
Table 16. PHY Addresses  
ID_1  
ID_0  
PHY0  
PHY1  
PHY2  
PHY3  
PHY4  
PHY5  
PHY6  
PHY7  
0
0
00000  
01000  
10000  
11000  
00001  
01001  
10001  
11001  
00010  
01010  
10010  
11010  
00011  
01011  
10011  
11011  
00100  
01100  
10100  
11100  
00101  
01101  
10101  
11101  
00110  
01110  
10110  
11110  
00111  
01111  
10111  
11111  
0
1
1
1
0
1
2.8  
Link Status Interrupt  
The LXT9784 provides an open-drain interrupt pin (INT), which is driven low by the LXT9784  
when one or more of its internal PHYs has a change in link status. Figure 11 is a simplified  
diagram of the interrupt structure.  
When INT is driven low, all of the PHY interrupt registers should be read, to determine which port  
or ports caused the interrupt (Refer to Table 51). Once a PHY interrupt bit has been read, it is self-  
cleared. The interrupt line becomes inactive only after reading the Link Status Interrupt bits of all  
the PHYs that caused the interrupt. In the case of more than one PHY having an interrupt pending,  
INT remains asserted until after reading the last PHY with a Link Status Interrupt bit set to 1.  
If during the procedure of reading the interrupt registers a new change of link status occurred on a  
PHY which has already been accessed, the interrupt line remains asserted after completing the read  
procedure.  
This feature can be used instead of polling the PHYs for link status change.  
Datasheet  
41  
LXT9784 Low-Power Octal PHY  
2.9  
Reset  
When the LXT9784 RESET signal is asserted (active high) all internal circuits are reset. The PHY  
can also be reset individually via the PHY register reset bit (register 0 h bit 15). Device clock  
should be stable and running prior to HW RESET. Reset must be asserted for a minimum of 500 µs  
for proper operation after de-assertion.  
Figure 11. Simplified Interrupt Structure  
Phy register 12h bit 0  
Read  
Port 0 Status Changed = 1  
Port Interrupt Enable from register 12h  
Phy register 12h bit 0  
Read  
INT_L  
Port 1 Status Changed = 1  
Port Interrupt Enable from register 12h  
.
.
.
Port 7 Status Changed = 1  
Port Interrupt Enable from register 12h  
2.10  
LED Operation  
The LXT9784 has three pins per port dedicated to driving the LEDs. These drivers can indicate  
link/activity, speed, and collision. The drivers also indicate that the PHY port was disabled by  
management. The activity LED in this mode is triggered by both transmit and receive activities. All  
three drivers are active Low.  
The algorithm for computing media utilization is an average of the activity on the media over the  
time of 8 maximum length packets, with minimum IPG spacing. The utilization is averaged over:  
(8 packets * 1518 bytes * 8 bytes/bit * bit time) + (8 IPG * 96 bits * bit time)  
The percent utilization is indicated by a specific frequency on the LEDn_A (as shown in Table 17)  
for a period of 600 ms (LED refresh rate), based on the activity of the prior 600 ms period.  
In case the port is disabled, register 0.10 = 1, drivers LEDn_A and LEDn_B blink in unison, at a  
rate of 1 Hz, 500 ms on and 500 ms off. Eliminate the indication of PHY port disable by setting the  
PHY register 1Bh, bit 4. There is full controllability on all drivers through PHY register 1Bh, bits  
[2:0].  
The LEDn_B state is frozen when a link is lost and is changed only after the link is re-established.  
42  
Datasheet  
Low-Power Octal PHY LXT9784  
During reset, all LED drivers are active for approximately 2 seconds, then turned off.  
Table 17. LED Functionality  
LED driver  
Function  
Description  
With a good link the output is low, the output toggles at a rate  
related to the utilization.  
LEDn_A  
link solid /activity blink  
Refer to Table 18 for the actual numbers.  
LEDn_B  
LEDn_C  
speed  
The output is low for 100 Mbps, high for 10 Mbps  
The output blinks low with collisions stretch rate of 10 ms.  
collision  
1. n indicates Port Number.  
Table 18. Activity LED Blink Rates  
Percent Utilization  
Blink Rate 1  
Frequency  
0-5%  
slow  
medium  
fast  
3 Hz  
5 Hz  
7 Hz  
5-30%  
+30%  
1. Note: Duty Cycle = 50%  
2.11  
MII Management Interface Operation  
The LXT9784 provides PHY status and accepts PHY management information via the MII  
management interface. This is accomplished via read and write operations to various registers  
according to the IEEE802.3u Standard. A read or write of a particular register is called a  
management frame, which is sent serially over the MDIO pin synchronous to MDC at a maximum  
rate of 3 MHz. Read and write cycles are from the perspective of the controller. Therefore, the  
controller would always drive the Start, Opcode, PHY Address and Register Address on to the  
MDIO pin. For a write, the controller would also drive the transition bits and data. For a read, the  
LXT9784 drives the transition bits and data onto the MDIO pin. The controller should drive  
address and data on the falling edge of MDC and the LXT9784 latches that data on the rising edge  
of MDC. The PHY addresses in the LXT9784 can be configured from 0-31. The management  
frame structure is shown in Table 19.  
This structure allows a controller or other management hardware, to query a PHY for status of the  
link, auto-negotiation registers, or configure the PHY to one of many modes. Table 20 defines the  
protocol terms.  
When MDIO and MDC are not in use, they should be connected to pull-up devices.  
Table 19. MII Management Frame Format  
Start  
Frame  
Function  
Preamble  
Opcode  
PHY Adr  
Reg adr  
Turnaround  
Data  
Idle  
READ  
1...1  
1...1  
10  
01  
10  
01  
AAAAA  
AAAAA  
RRRRR  
RRRRR  
Z0  
10  
D[15:0]  
D[15:0]  
Z
Z
WRITE  
Datasheet  
43  
LXT9784 Low-Power Octal PHY  
Table 20. Glossary of Protocol Terms  
Term  
Definition  
Sequence of 32 contiguous logic one bits on the MDIO pin at the beginning of each transaction  
with corresponding cycles on the MDC clock pin for synchronization of the PHY.  
Preamble  
Start  
A start of Frame pattern of 01”  
An Operation Code which can assume one of two values:  
10 Read instruction.  
Opcode  
01 Write instruction.  
5-bit address of the PHY device with MSB transmitted first, which provides support for 32 unique  
PHY addresses.  
PHY Adr  
Reg Adr  
5-bit address of the specific register within the PHY device with MSB transmitted first. This  
provides support for 32 unique registers.  
A two-bit turnaround time during which no device actively drives the MDIO signal on a read  
Turnaround cycle. During a read transaction the PHY should not drive MDIO in the first bit time and the drive  
a zero in the second bit time. During a write transaction a "10" pattern is driven to PHY.  
16 bits of data driven by the PHY on read transaction, and will be driven to PHY on write  
transaction. In either case, the MSB is transmitted first.  
Data  
The IDLE condition on MDIO is a high impedance state. The MDIO driver is disabled and the  
PHY should pull-up the MDIO line to logic one.  
Idle  
2.12  
Test Port Operation  
The LXT9784 can be set to one of two manufacturing testing modes, depending on TI, TEXEC,  
and TCK input pins combination, as shown in Table 20.  
The MODE[2:0] pins are used to enable the manufacturing testing modes, and should be set to  
"111".  
The test mode can be used only for manufacturing testing.  
Table 21. Test Mode Configuration  
Mode Select Pins 1  
Test Enable Pins  
TCK TI TEXEC  
Mode  
Comments  
2
1
0
0
0
1
1
0
1
1
1
1
0
1
1
X
X
X
RMII  
SMII  
Normal System Mode  
X
0
0
X
0
1
X
1
0
NAND Tree (+ Hi Z)  
XNOR Tree (+ Hi Z)  
Manufacturing test mode  
1. Note: All other combinations are reservedand should not be used.  
2.12.1  
NAND-Tree Test  
This command connects all the outputs of the input-buffers in the device periphery into a NAND-  
Tree scheme. All the I/O and outputs, except for MODE[2:0], TI, TEXEC, TCK, INT, and TOUT  
pins, are put into a Tri-State mode.  
44  
Datasheet  
Low-Power Octal PHY LXT9784  
There are two NAND-Tree chains, with two separate inputs, assigned to UCA1 (Chain 1) and  
COLED (chain 2), and two separate outputs, assigned to INT (Chain 1) and TOUT (Chain 2)  
respectively.  
To enable NAND-tree manufacturing test mode, set MODE[2:0] = "111", TCK = "0", TI = "0",  
TEXEC = "1" and power-up or reset the chip. Toggling the chain input pin will be reflected at the  
chain output after a delay of about 20ns.  
2.12.2  
XNOR-Tree Test  
This command connects all the outputs of the input-buffers in the device periphery into a XNOR-  
Tree scheme. All the I/O and outputs, except for MODE[2:0], TI, TEXEC, TCK, INT, and TOUT  
pins, are put into a Tri-State mode.  
There are two XNOR-Tree chains, with two separate inputs, assigned to UCA1 (Chain 1) and  
COLED (chain 2), and two separate outputs, assigned to INT (Chain 1) and TOUT (Chain 2),  
respectively.  
In order to set up the device into XNOR tree manufacturing test mode set MODE[2:0] = "111",  
TCK = "0", TI = "1", TEXEC = "0" and power-up or reset the chip. Toggling the chain input pin  
will be reflected at the chain output after a delay of about 20 ns.  
2.12.3  
NAND/XNOR Tree Chain Order  
A combination of 111on the MODE_[2:0] pins indicates that the LXT9784 is configured to an  
asynchronous test mode (NAND-TREE or XNOR-TREE). Test pins combinations for the  
asynchronous test modes are:  
MODE_[2:0] = 111, TCK = 0, TI= 0, TEXEC =1for NAND - TREE  
MODE_[2:0] = 111, TCK = 0, TI= 1, TEXEC =0for XNOR - TREE  
The NAND-TREE / XNOR-TREE commands connect all outputs of the input-buffers in the device  
periphery into a  
NAND-TREE / XNOR-TREE scheme. All the input/output pins and output pins except for:  
MODE_[2.0], TI, TEXEC, TCK, INT#, and TOUT pins are put into a Tri-State mode.  
There are two NAND-TREE / XNOR-TREE chains, with two separate outputs, assigned to INT#  
(Chain 1) and TOUT (Chain 2).  
The following table lists the chains order / direction (pin no. 1 in the chain, is the farthest from the  
NAND-TREE / XNOR-TREE outputs).]  
Table 22. Test Scan Chain  
Chain Order  
Ball ID  
Chain #1  
TXD0_1  
Ball ID  
Chain #2  
1
2
3
4
5
W1  
W2  
W3  
V1  
W18  
W19  
W20  
V18  
V19  
NC  
NC  
NC  
NC  
NC  
TXD0_1  
TXEN0  
CRSDV0  
RXD0_1  
V2  
Datasheet  
45  
LXT9784 Low-Power Octal PHY  
Table 22. Test Scan Chain (Continued)  
Chain Order  
Ball ID  
Chain #1  
RXD0_0  
Ball ID  
Chain #2  
6
V3  
U1  
U2  
U3  
T1  
T2  
T3  
R1  
R2  
R3  
P1  
P2  
P3  
N1  
N2  
N3  
M1  
M2  
M3  
L1  
V20  
U18  
U19  
U20  
T18  
T19  
T20  
R18  
R19  
R20  
P18  
P19  
P20  
N18  
N19  
N20  
M18  
M19  
M20  
L18  
L19  
L20  
K18  
K19  
K20  
J18  
NC  
7
RXD1_0  
RXD1_1  
CRSDV1  
TXEN1  
LED0-C#  
LED0_B#  
LED0_A#  
LED1_C#  
LED1_B#  
LED1_A#  
LED2_C#  
LED2_B#  
LED2_A#  
LED3_C#  
LED3_B#  
RXER7  
RXER6  
RXER5  
RXER4  
RXER3  
RXER2  
RXER1  
RXER0  
ID_1  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
TXD1_0  
TXD1_1  
TXD2_1  
TXD2_0  
TXEN2  
CRSDV2  
RXD2_1  
RXD2_0  
RXD3_0  
RXD3_1  
CRSDV3  
TXEN3  
TXD3_0  
TXD3_1  
TXD4  
L3  
FRC34  
K3  
K1  
J2  
MCLK  
ID_0  
FRCLNK  
TXD4_1  
TXD4_0  
TXEN4  
RESET  
BP4B5B  
SCRMBP  
NC  
J3  
H1  
H2  
H3  
G1  
G2  
G3  
F1  
F2  
F3  
E1  
E2  
E3  
D1  
CRSDV4  
RXD4_1  
RXD4_0  
RXD5_0  
RXD5_1  
CRSDV5  
TXEN5  
J19  
NC  
J20  
NC  
G18  
G19  
G20  
F18  
F19  
F20  
E18  
E19  
E20  
D18  
MDIX  
LED3_A#  
LED4_C#  
LED4_B#  
LED4_A#  
LED5_C#  
LED5_B#  
LED5_A#  
LED6_C#  
LED6_B#  
TXD5_0  
TXD5_1  
TXD6_1  
TXD6_0  
TXEN6  
46  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 22. Test Scan Chain (Continued)  
Chain Order  
Ball ID  
Chain #1  
CRSDV6  
Ball ID  
Chain #2  
LED6_A#  
44  
45  
46  
47  
48  
49  
50  
51  
52  
D2  
D3  
C1  
C2  
C3  
B1  
B2  
B3  
A2  
D19  
D20  
C18  
C19  
C20  
B19  
-
RXD6_1  
RXD6_0  
RXD7_0  
RXD7_1  
CRSDV7  
TXEN7  
LED7_C#  
LED7_B#  
LED7_A#  
MDIO  
MDC  
-
-
-
TXD7_0  
TXD7_1  
-
-
NAND-TREE /  
XNOR-TREE  
Output  
B18  
INT#  
B20  
TOUT  
Datasheet  
47  
LXT9784 Low-Power Octal PHY  
3.0  
Application Information  
3.1  
Magnetics  
Table 23 lists of magnetics modules available from various vendors. All modules listed support  
both 10M and 100M operation.  
Table 23. Magnetics Module Vendor  
Vendor  
Model/Type  
Bel Fuse  
0558-5999-N7 (quad)  
H1141T (single)  
Pulse Engineering  
H1140T (quad)  
3.2  
Analog References (RBIAS)  
The four RBIAS inputs (RBIAS10_0, RBIAS10_1, and RBIAS100_0, RBIAS100_1) must have  
external resistor connections. The inputs are sensitive to the resistor value and some  
experimentation is required to select the correct values for any given layout. Resistors of 1%  
tolerance are to be used. See Figure 12 for a circuit example.  
Figure 12. Typical RBIAS Circuit  
LXT9784  
464 1%  
619 1%  
RBIAS10_0  
RBIAS100_0  
464 1%  
619 1%  
RBIAS10_1  
RBIAS100_1  
3.3  
RMII Applications  
The RMII ports provide eight low pin-count interfaces between the eight PHYs and an ASIC  
switch, as an alternative to the SMII interface. The RMII interface is composed of seven signals per  
port, and a global reference clock.  
48  
Datasheet  
Low-Power Octal PHY LXT9784  
3.3.1  
RMII Clock  
In RMII mode of operation, the master input clock (MCLK) frequency should be 50 MHz ± 50  
ppm, with a duty-cycle between 35% and 65% inclusive.  
Figure 13. Typical RMII Application  
TPIP  
TPIN  
TPOP  
TPON  
P0_MDI  
P1_MDI  
P2_MDI  
P3_MDI  
P4_MDI  
P5_MDI  
P6_MDI  
P7_MDI  
MODE[2:0]  
RESET  
MCLK  
MDI Ports  
FRC34  
Configuration  
FRCLNK  
BP4B5B  
SCRMBP  
MDIX  
RBIAS10_0  
RBIAS100_0  
RBIAS10_1  
Analog pins  
TCK  
TI  
RBIAS100_1  
Test Port  
TEXEC  
TOUT  
LED0_[A:C]  
LED1_[A:C]  
LXT9784  
SYNC  
LED2_[A:C]  
LED3_[A:C]  
LED4_[A:C]  
LED5_[A:C]  
LED6_[A:C]  
LED7_[A:C]  
RMII0_[6:0]  
RMII1_[6:0]  
RMII2_[6:0]  
RMII3_[6:0]  
RMII4_[6:0]  
RMII5_[6:0]  
RMII6_[6:0]  
RMII7_[6:0]  
Per Port  
LEDs  
RMII  
Interfaces  
Interrupt  
INT  
MII Management  
Interface  
MDIO  
MDC  
RXD[1:0]  
CRSDV  
TXD[1:0]  
TXEN  
ID[1:0]  
PHY ID  
RXER  
3.4  
SMII Applications  
The SMII ports provide eight low pin-count interfaces between the LXT9784s eight PHYs and an  
ASIC switch, as an alternative to the RMII interface. The SMII interface is composed of two  
signals per port, a global synchronization signal, and a global reference clock.  
Datasheet  
49  
LXT9784 Low-Power Octal PHY  
Data and control bits are transmitted and received serially synchronous to MCLK, in ten bit  
segments delimited by a pulse on SYNC, on RXDn and TXDn respectively.  
3.4.1  
SMII Clock  
In SMII mode of operation, the master input clock (MCLK) frequency should be 125 MHz, ±  
50ppm, with a duty-cycle between 35% and 65% inclusive.  
Figure 14. Typical SMII Application  
TPIP  
TPIN  
TPOP  
TPON  
P0_MDI  
P1_MDI  
P2_MDI  
P3_MDI  
P4_MDI  
P5_MDI  
P6_MDI  
P7_MDI  
MODE[2:0]  
RESET  
MCLK  
MDI Ports  
FRC34  
Configuration  
FRCLNK  
BP4B5B  
SCRMBP  
MDIX  
RBIAS10_0  
RBIAS100_0  
RBIAS10_1  
Analog pins  
TCK  
TI  
RBIAS100_1  
Test Port  
TEXEC  
TOUT  
LED0_[A:C]  
LED1_[A:C]  
LXT9784  
SYNC  
LED2_[A:C]  
LED3_[A:C]  
LED4_[A:C]  
LED5_[A:C]  
LED6_[A:C]  
LED7_[A:C]  
SMII0_[1:0]  
SMII1_[1:0]  
SMII2_[1:0]  
SMII3_[1:0]  
SMII4_[1:0]  
SMII5_[1:0]  
SMII6_[1:0]  
SMII7_[1:0]  
Per Port  
LEDs  
SMII  
Interfaces  
Interrupt  
INT  
MII Management  
Interface  
MDIO  
MDC  
RXD  
TXD  
ID[1:0]  
PHY ID  
50  
Datasheet  
Low-Power Octal PHY LXT9784  
4.0  
Test Specifications  
Note: Table 24 through Table 41 and Figure 15 through Figure 27 represent the performance  
specifications of the LXT9784 and are guaranteed by test, except where noted, by design. The  
minimum and maximum values listed in Table 26 through Table 41 are guaranteed over the  
recommended operating conditions specified in Table 25.  
.
Table 24. Absolute Maximum Ratings  
Parameter  
Minimum  
Maximum  
Units  
Ambient - Commercial  
0
+ 100  
+ 100  
+ 120  
+ 120  
+ 3.45  
+ 3.45  
+ 3.45  
oC  
oC  
oC  
oC  
V
Ambient - Extended  
Case - Commercial  
Case - Extended  
-40  
0
Temperature Under Bias  
-40  
-0.5  
-0.5  
-1.0  
Supply Voltage with respect to V  
Outputs Voltages  
SS  
V
Input Voltages  
V
Caution: Exceeding these values may cause permanent damage.  
Caution: Functional operation under these conditions is not implied.  
Caution: Exposure to maximum rating conditions for extended periods may affect device reliability.  
Table 25. Operating Conditions  
Parameter  
Symbol  
Min  
Typ1  
Max2  
Units  
Condition  
TOPA  
TOPC  
TOPA  
TOPC  
0
70  
105  
85  
C
C
C
C
Ambient  
Case  
Recommended Operating  
Temperatures - Commercial  
0
- 40  
- 40  
Ambient  
Case  
Recommended Operating  
Temperatures - Extended  
120  
Recommended Supply  
Voltage - Commercial  
V
2.85  
3.15  
3.0 / 3.3  
3.45  
3.45  
V
V
CC  
Recommended Supply  
Voltage - Extended  
Vcc  
-
-
-
-
-
-
680 /750  
775  
-
100 Mbps, RMII Mode  
10 Mbps, RMII Mode  
100Mbs, SMII Mode  
10Mbs, SMII Mode  
635 / 680  
Current Consumption  
I
mA  
CC  
715 / 800  
850  
-
710 / 760  
-
-
334  
367  
mW  
W
Per port 100Mbps RMII Mode  
Per port 100Mbps SMII Mode  
Auto-Negotiation  
Power Dissipation  
P
1.0  
1. Tested at a supply voltage of 3.0V/3.3V.  
2. Tested at a supply voltage of 3.45V.  
Datasheet  
51  
LXT9784 Low-Power Octal PHY  
4.1  
DC Characteristics  
Table 26. Clock DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
Input Low Voltage (TTL)  
Input High Voltage (TTL)  
Input Leakage Currents  
Input Capacitance  
V
0.8  
V
V
IL  
V
2.0  
IH  
I
± 10  
8
µA  
pF  
0< Vin< Vcc  
See Note 1.  
ILIH  
C
IN  
1. Characterized, not tested. Valid for digital pins only.  
Table 27. RMII/SMII and General Interface1 DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
Input Low Voltage (TTL)  
Input High Voltage (TTL)  
Output Low Voltage  
Output High Voltage  
Input Leakage Current  
Input Capacitance  
V
0.8  
V
V
IL  
V
2.0  
2.4  
IH  
V
0.4  
V
I
I
= 4 mA  
OL  
OH  
ILIH  
out  
V
V
= -4 mA  
out  
I
± 10  
8
µA  
pF  
0< Vin< Vcc  
Note 2.  
C
IN  
1. General Interfacerefers to the following: MII management, configuration and PHY ID.  
2. Characterized, not tested. Valid for digital pins only.  
Table 28. LED DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
Output Low Voltage  
Output High Voltage  
V
0.7  
V
V
I
I
= 10 mA  
OLLED  
out  
out  
V
Vcc - 0.7  
= -10 mA  
OHLED  
Table 29. 10BASE-T Receiver Voltage/Current DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
DC. Note 1.  
Input Differential Resistance  
R
10  
kΩ  
mV  
mV  
V
ID10  
Input Differential Accept Peak Voltage  
Input Differential Reject Peak Voltage  
Input Common Mode Voltage  
V
V
585  
3100  
300  
5 MHz f 10 MHz  
5 MHz f 10 MHz  
IDA10  
IDR10  
ICM10  
V
Vcc/2  
1. This value is measured across the receive differential pins, TPIP and TPIN.  
52  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 30. 10BASE-T Transmitter Voltage/Current DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
R = 100 Ω  
Note 1.  
L
Output differential Peak Voltage  
V
2.2  
2.8  
V
OD10  
R
= 464 Ω  
BIAS10  
Line Driver Supply Peak Current per port  
I
57  
mA  
CCT10  
Notes 2 and 3.  
1. R is the resistive load across the transmit differential pins, TPOP and TPON.  
L
2. Current is measured on all Vcc pins @ Vcc = 3.3 V.  
3. Transmitter current is measured with a 1:1 transformer. Transmitter peak current is governed by the following equation:  
maximum differential output peak voltage divided by the load resistance value.  
Table 31. 100BASE-TX Receiver Voltage/Current DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
DC. Note 1.  
Input Differential Resistance  
R
10  
kΩ  
mV  
mV  
V
ID100  
Input Differential Accept Peak Voltage  
Input Differential Reject Peak Voltage  
Input Common Mode Voltage  
V
V
500  
1200  
100  
IDA100  
IDR100  
ICM100  
V
Vcc/2  
1. This value is measured across the receive differential pins, TPIP and TPIN.  
Table 32. 100BASE-TX Transmitter Voltage/Current DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
R = 100 Ω  
Note 1.  
L
Output differential Peak Voltage  
V
0.95  
1.00  
1.05  
V
OD100  
R
= 619 Ω  
BIAS100  
Line Driver Supply Peak Current per port  
I
20  
mA  
CCT100  
Notes 2 and 3.  
1. R is the resistive load across the transmit differential pins, TPOP and TPON.  
L
2. Current is measured on all Vcc pins @ Vcc = 3.3 V.  
3. Transmitter current is measured with a 1:1 transformer. Transmitter peak current is governed by the following equation:  
maximum differential output peak voltage divided by the load resistance value.  
4.2  
AC Characteristics  
Figure 15 defines the conditions under which timing measurements are done. The design must  
guarantee proper operation for voltage swings and slew rates that exceed the specified test  
conditions.  
Datasheet  
53  
LXT9784 Low-Power Octal PHY  
Figure 15. AC Testing Level Conditions  
Input Levels  
1.4v  
4.2.1  
Common Characteristics  
Figure 16. MDC Clock AC Timing  
1.4v  
T2  
T2  
T1  
Table 33. MII Management Clock Specifications  
Parameter  
MDC Frequency  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
f
0
3.0  
MHz  
ns  
MDC clock period  
MDC duty cycle  
T1  
T2  
300  
35  
65  
%
Figure 17. MII Management Timing Parameters: MDC/MDIO  
MDC  
T3  
T4  
MDIO (Input)  
Data Invalid  
T5  
Data Valid  
Data Invalid  
Data Invalid  
Data Valid  
Data Invalid  
MDIO (Output)  
54  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 34. MII Management Interface Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
MDIO setup time to MDC rising edge  
MDIO hold time from MDC rising edge  
MDIO valid from MDC rising edge  
T3  
T4  
T5  
10  
10  
0
ns  
ns  
ns  
200  
Figure 18. Normal Link Pulse Timings  
T7  
T6  
Normal Link Pulse  
Table 35. 10BASE-T Normal Link Pulse (NLP) Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
NLP width  
T6  
T7  
100  
16  
ns  
10 Mbps  
10 Mbps  
NLP Period  
8
24  
ms  
Figure 19. Fast Link Pulse Timings  
T9  
T10  
T8  
Fast Link Pulse  
Clock Pulse  
Data Pulse  
Clock Pulse  
T13  
T12  
FLP Bursts  
Table 36. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters  
Parameter  
FLP width (clock/data)  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
T8  
T9  
100  
125  
62.5  
ns  
µs  
µs  
Clock pulse to clock pulse period  
Clock pulse to Data pulse period  
111  
139  
T10  
55.5  
69.5  
Datasheet  
55  
LXT9784 Low-Power Octal PHY  
Table 36. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
Number of pulses in one burst  
Burst width  
T11  
T12  
T13  
17  
33  
#
2
ms  
ms  
FLP Burst period  
8
16  
24  
Table 37. 100BASE-TX Transmitter AC Specifications  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
HLS data  
TPOP/TPON Differential Output Peak Jitter  
T
1400  
ps  
JIT  
4.3  
RMII Interface  
Figure 20. RMII AC Testing Level Conditions  
1.4V  
1.4V  
MCLK  
2.0V  
2.0V  
0.8V  
rMII I/O  
0.8V  
Figure 21. RMII Rise and Fall Timings  
2.0V  
0.8V  
2.0V  
0.8V  
T57  
T57  
56  
Datasheet  
Low-Power Octal PHY LXT9784  
Figure 22. RMII Timing Parameters  
MCLK  
T54  
T55  
Data Invalid  
Data Valid  
Data Invalid  
Data Valid  
TXD[1:0],TXEN  
Input  
T56  
T56a  
RXD[1:0],RXER,  
CRSDV  
Data  
Invalid  
Output  
Previous Data Valid  
Table 38. RMII Interface Timing Parameters  
Parameter  
Symbol  
T54 (T  
Min  
Typ  
Max  
Units  
Condition  
TXD[1:0],TXEN Data setup to MCLK rising edge  
TXD[1:0],TXEN Data hold to MCLK rising edge  
RXD[1:0], RXER,CRSDV min valid time  
)
4
2
3
ns  
ns  
ns  
ns  
RMSU  
T55 (T  
)
RMHD  
T56 (T  
)
RMVLM  
RXD[1:0], RXER,CRSDV max valid time  
T56a (T  
T57 (T  
)
14  
5
RMVLX  
TXD[1:0],TXEN,RXD[1:0],  
)
1
ns  
RMFR  
RXER,CRSDV rise and fall time  
4.4  
SMII Interface  
Figure 23. SMII Mode - AC Testing Level Conditions  
1.4V  
1.4V  
MCLK  
2.0V  
2.0V  
0.8V  
sMII I/O  
0.8V  
Datasheet  
57  
LXT9784 Low-Power Octal PHY  
Figure 24. SMII Timing Parameters  
MCLK  
T64  
T65  
Data Invalid  
Data Valid  
Data Invalid  
Data Valid  
TXD  
RXD  
Input  
T66  
T66a  
Data  
Invalid  
Previous Data Valid  
Output  
Table 39. SMII Interface Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
TXD setup to MCLK rising edge  
TXD hold from MCLK rising edge  
RXD min. Valid time  
T64 (T  
)
1.5  
1
ns  
ns  
ns  
ns  
SMSU  
T65 (T  
T66 (T  
)
SMHD  
)
2
SMVLM  
RXD max. Valid time  
T66a (T  
)
5
SMVLx  
4.5  
Reset Timing Parameters  
Figure 25. Reset Timing Parameters  
Power Up (Vcc)  
RESET  
T59  
T58  
Table 40. Reset Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
Reset pulse width  
Power Up to falling edge of Reset  
T58 (T  
)
500  
µs  
µs  
RST_WID  
T59 (T  
)
1000  
POP_RST  
58  
Datasheet  
Low-Power Octal PHY LXT9784  
4.6  
Clock Specifications  
4.6.1  
MCLK Specifications  
MCLK is the LXT9784 master clock. It is externally sourced by an oscillator. Table 41 defines the  
LXT9784 requirements from this signal.  
Figure 26. Master Clock Specifications  
1.4v  
T60  
T60  
T61  
Figure 27. Master Clock Slope Specifications  
90%  
10%  
T62  
T62  
Table 41. MCLK Specifications  
Parameter  
MCLK Duty Cycle  
Symbol  
Min  
Typ  
Max  
Units  
Condition  
T60 (T  
T61 (T  
T61 (T  
T62 (T  
T63 (T  
)
35  
65  
%
ns  
MCLK_DC  
MCLK period  
MCLK period  
MCLK slope  
MCLK jitter  
)
20  
8
RMII Mode - 50 MHz  
SMII Mode - 125 MHz  
MCLK_PR  
)
ns  
MCLK_PR  
)
3
V/ns  
ps  
MCLK_SL  
MCLK_JIT  
)
100  
Peak  
1. The MCLK frequency shall be ±50 PPM.  
2. Trace characteristic impedance (Z ), 60W ±10%.  
0
Datasheet  
59  
LXT9784 Low-Power Octal PHY  
5.0  
Register Definitions  
The PHY registers can be accessed through the MII management interface.  
Table 42 defines the bit type designations used in the following tables.  
Table 42. Bit Type Designations  
Designator  
Definition  
SC  
RO  
P
Self Cleared  
Read Only  
external Pin affects content  
Latch Low  
LL  
LH  
Latch High.  
Table 43. Control Register (Register 0) Bit Definitions  
Bit(s)  
Name  
Description  
Type1  
Sets the status and control register of the PHY to their default states and is self-  
clearing. The PHY returns a value of 1when this register is read until the reset  
process has completed and accepts a read or write transaction.  
RW  
SC  
0.15  
Reset  
1 = PHY reset.  
default 0 = normal operation.  
Enable loopback of transmit data to the receive data path. The PHY receive circuitry  
is isolated from the network.  
Note that this may cause the de-scrambler to lose synchronization and produce 560  
ns of dead time.  
0.14  
0.13  
0.12  
Loopback  
RW  
1 = Loopback enabled.  
default 0 = Loopback disabled (normal operation).  
Controls speed when auto-negotiation is disabled.  
RW  
P
Speed Selection default 1 = 100 MBPS  
0 = 10 MBPS  
Bits 0.13 & 0.8 (Speed Selection and Duplex Mode, respectively) are ignored when  
auto-negotiation is enabled.  
Bits 4.12:5 (Technology Ability Field) depends on the PHY ability (Register 0) to  
define the preferred link configuration.  
RW  
P
Auto-Negotiation  
Enable  
default 1 = auto-negotiation enable.  
0 = auto-negotiation disable.  
1 = Analog section only power-down enabled.  
0.11  
0.10  
Power Down  
Isolate  
RW  
RW  
default 0 = Power-down disabled (normal operation).  
Allows the PHY to isolate the Media Independent Interface. The PHY doesn't  
respond on the both transmit and receive activities.  
1 = Logical isolate of internal MII interface.  
default 0 = Normal operation.  
1. Refer to Table 42 for Type definitions.  
60  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 43. Control Register (Register 0) Bit Definitions (Continued)  
Bit(s)  
Name  
Description  
Type1  
Restarts the auto-negotiation process and is self cleared after 300 ns  
1 = Restart auto-negotiation process.  
RW  
SC  
Restart Auto-  
Negotiation  
0.9  
default 0 = normal operation.  
Controls the duplex mode when auto-negotiation is disabled. If the PHY reports that  
it only able to operate in one duplex mode (via bits 1.15:11), the value of this bit shall  
correspond to the mode which the PHY can operate.  
When the PHY is placed in Loopback mode, the behavior of the PHY shall not be  
affected by the status of this bit, bit 0.8.  
0.8  
Duplex Mode  
RW  
1 = Full Duplex.  
default 0 = Half Duplex.  
Force collision in response to the assertion of TXEN.  
1 = Force COL.  
0.7  
Collision Test  
Reserved  
RW  
RO  
default 0 = disable Collision signal test.  
0.6:0  
Constant 0.  
1. Refer to Table 42 for Type definitions.  
Table 44. Status Register (Register 1) Bit Definitions  
Bit(s)  
Name  
Description  
Type1  
1.15  
1.14  
100BASE-T4  
Reserved  
Constant 0 = PHY not able to perform 100BASE-T4.  
RO  
RO  
Constant 0.  
1 = PHY able to perform half duplex 100BASE-TX  
0 = PHY not able to operate in 100BASE-TX  
100BASE-TX Half  
Duplex  
1.13  
1.12  
1.11  
RO  
RO  
RO  
RO  
RO  
Reserved  
Constant 0.  
1 = PHY able to operate at 10 Mbps in half duplex mode  
0 = PHY not able to operate in 10BASE-T  
10 Mbps Half Duplex  
Reserved  
1.10:7  
1.6  
Constant 0.  
MF Preamble  
Suppression  
Constant 0 = PHY will not accept management frames with preamble  
suppressed.  
Auto-Negotiation  
Complete  
1 = Auto-Negotiation process completed  
1.5  
RO  
default 0 = Auto-Negotiation process has not completed.  
1.4  
1.3  
Remote Fault  
Reserved  
Constant 0 = no remote fault condition detected  
Constant 0  
RO  
RO  
RO  
LL  
1 = Valid link has been established.  
default 0 = Invalid link detected.  
1.2  
Link Status  
SC  
This bit has meaning only in 10 Mbps mode.  
1 = Jabber condition detected.  
RO  
LH  
SC  
1.1  
1.0  
Jabber Detect  
default 0 = No jabber condition detected.  
Extended Capability  
Constant 1 = Extended register capabilities enabled  
RO  
1. Refer to Table 42 for Type definitions.  
Datasheet  
61  
LXT9784 Low-Power Octal PHY  
Table 45. PHY Identifier Register (Register 2) Bit Definitions  
Bit(s)  
Name  
Description  
Type1  
2.15:0  
PHY ID (word MSB)  
Value: 02A8 h  
RO  
1. RO = Read Only.  
Table 46. PHY Identifier Register (Register 3) Bit Definitions  
Bit(s)  
3.15:0  
Name  
Description  
Value: 0250 h  
Type1  
PHY ID (word LSB)  
RO  
1. RO = Read Only.  
Table 47. Auto-Negotiation Advertisement Register (Register 4) Bit Definitions  
Bit(s)  
4.15  
Name  
Description  
Type1  
Next Page  
Reserved  
Constant 0 = Transmitting primary capability data page.  
RO  
RO  
4.14  
4.13  
Constant 0.  
1 = Indicates link partners remote fault.  
Remote Fault  
RW  
RW  
default 0 = No remote fault.  
An 8-bit field containing information indicating supported technologies  
specific to the Selector Field value.  
4.12:5  
Technology Ability Field  
4.12  
4.11  
Reserved  
Reserved  
Ignore.  
Ignore  
R/W  
R/W  
1 = Pause operation enabled for full-duplex links.  
0 = Pause operation disabled.  
4.10  
Pause  
R/W  
1 = 100BASE-T4 capability is available.  
0 = 100BASE-T4 capability is not available.  
(The LXT9784 does not support 100BASE-T4 but allows this bit to be set  
to advertise in the Auto-Negotiation sequence for 100BASE-T4  
operation. An external 100BASE-T4 transceiver could be switched in if  
this capability is desired.)  
4.9  
100BASE-T4  
R/W  
100BASE-TX  
full-duplex  
1 = Port is 100BASE-TX full duplex capable.  
0 = Port is not 100BASE-TX full duplex capable.  
4.8  
4.7  
R/W  
R/W  
1 = Port is 100BASE-TX capable.  
0 = Port is not 100BASE-TX capable.  
100BASE-TX  
1 = Port is 10BASE-T full duplex capable.  
0 = Port is not 10BASE-T full duplex capable.  
10BASE-T  
full-duplex  
4.6  
4.5  
R/W  
R/W  
1 = Port is 10BASE-T capable.  
10BASE-T  
0 = Port is not 10BASE-T capable.  
A 5-bit field identifying the type of message to be sent via Auto-  
Negotiation.  
4.4:0  
Selector Field  
RO  
default 00001b (IEEE Standard 802.3)  
1. Refer to Table 42 on page 60 for Type definitions.  
62  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 48. Auto-Negotiation Link Partner Ability Register (Base Page)  
(Register 5) Bit Definitions  
Bit(s)  
5.15  
Name  
Description  
Type1  
Next Page  
Reflects the PHYs link partners Auto-Negotiation ability  
RO  
Indicates that the PHY has successfully received its link partners Auto-  
Negotiation advertising ability.  
5.14  
Acknowledge  
Remote Fault  
RO  
5.13  
5.12:5  
5.12  
5.11  
Reflects the PHYs link partners Auto-Negotiation ability.  
RO  
RO  
RO  
RO  
Technology Ability Field Reflects the PHYs link partners Auto-Negotiation ability.  
Reserved  
Reserved  
Ignore.  
Ignore  
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
5.10  
5.9  
Pause  
RO  
RO  
RO  
RO  
1 = Link Partner is 100BASE-T4 capable.  
0 = Link Partner is not 100BASE-T4 capable.  
100BASE-T4  
100BASE-TX  
full duplex  
1 = Link Partner is 100BASE-TX full duplex capable.  
0 = Link Partner is not 100BASE-TX full duplex capable.  
5.8  
5.7  
1 = Link Partner is 100BASE-TX capable.  
0 = Link Partner is not 100BASE-TX capable.  
100BASE-TX  
10BASE-T  
full duplex  
1 = Link Partner is 10BASE-T full duplex capable.  
0 = Link Partner is not 10BASE-T full duplex capable.  
5.6  
RO  
1 = Link Partner is 10BASE-T capable.  
0 = Link Partner is not 10BASE-T capable.  
5.5  
10BASE-T  
RO  
RO  
5.4:0  
Selector Field  
Reflects the PHYs link partners Auto-Negotiation ability.  
1. RO = Read Only.  
Table 49. Auto-Negotiation Expansion Register (Register 6) Bit Definitions  
Bit(s)  
Bit(s)  
Name  
Description  
Type1  
Name  
Description  
R/W  
RO  
6:15:5  
Reserved  
Constant 0.  
RO  
LH  
SC  
1 = Fault detected via parallel detection (multiple link fault occurred).  
default 0 = No fault detected via the parallel detection.  
6.4  
Parallel detection fault  
1 = Link Partner is Next Page able.  
Link Partner Next Page  
Able  
6.3  
6.2  
RO  
RO  
default 0 = Link Partner is not Next Page able.  
Next Page Able  
Constant 0 = Local device is not Next Page able.  
RO  
LH  
SC  
1 = New Page received.  
6.1  
6.0  
Page Received  
default 0 = New Page not received.  
1 = Link Partner is Auto-Negotiation able  
Link Partner Auto-  
Negotiation Able  
RO  
default 0 = Link Partner is not Auto-Negotiation able  
1. Refer to Table 42 on page 60 for Type definitions.  
Note: Registers 8-15 are IEEE reserved  
Datasheet  
63  
LXT9784 Low-Power Octal PHY  
Table 50. Register 16 (10 Hex) Status and Control  
Bit(s)  
Bit(s)  
Name  
Description  
Type1  
Name  
Description  
R/W  
RO  
RW  
RO  
16.15:14  
16.13  
Reserved  
Reserved  
Reserved  
Constant 0.  
Constant 0.  
Constant 0.  
16.12  
Receive De-Serializer In- Indicates status of the 100BASE-TX Receive De-Serializer In-Sync  
16.11  
16.10  
RO  
RO  
Sync Indication  
Indication.  
Indicates the power state of 100BASE-TX.  
1 = Power-Down.  
0 = Normal operation.  
100BASE-TX Power-  
Down  
Indicates the power state of 10BASE-T.  
1= Power-Down.  
0= Normal operation.  
16.9  
16.8  
10BASE-T Power-Down  
Polarity  
RO  
RO  
Indicates 10BASE-T polarity.  
1 = Reverse polarity.  
0 = normal polarity.  
16.7  
Reserved  
Must be set to zero during write.  
RO  
RO  
16.6:2  
PHY Address  
Value determined by ID[1:0] and PHY port number (which of 8)  
Indicates the Auto-Negotiation result.  
1 = 100 Mbps.  
0 = 10 Mbps.  
16.1  
16.0  
Speed  
RO  
RO  
Indicates the Auto-Negotiation result.  
1 = Full Duplex.  
Full Duplex  
0 = Half Duplex.  
1. Refer to Table 42 on page 60 for Type definitions.  
Table 51. Register 17 (11 Hex) Special Control  
Bit(s)  
Name  
Description  
Type1  
Scrambler by-pass control.  
1 = By-pass Scrambler.  
RW  
P
17.15  
Scrambler By-pass  
default 0 = Normal Operation.  
1= 4 bit to 5 bit encoder by-pass.  
default 0 = Normal Operation.  
RW  
P
17.14  
17.13  
17.12  
By-pass 4B/5B  
Force Transmit  
H-Pattern  
1 = Force transmit H-pattern.  
default 0 = Normal Operation.  
RW  
1 = Force 34 transmit pattern.  
default 0 = Normal Operation.  
RW  
P
Force 34 Transmit  
Pattern  
1 = 100BASE-TX good link indication forcing to ASD output.  
default 0 = Normal operation.  
RW  
P
17.11  
17.10  
Good Link  
Reserved  
Must be set to zero during write  
RW  
1. Refer to Table 42 on page 60 for Type definitions.  
64  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 51. Register 17 (11 Hex) Special Control (Continued)  
Bit(s)  
Name  
Description  
Type1  
Controls the RX100 CRS disable function  
Carrier Sense  
Disable  
17.9  
1 = CRS disable.  
RW  
default 0 = CRS enable.  
17.8  
17.7  
Reserved  
Must be set to zero during write  
RW  
RW  
1 = Auto-Negotiation Loopback.  
Auto-Negotiation  
Loopback  
default 0 = Auto-Negotiation normal mode.  
1 = MDI Tri-state (transmit driver tri-states)  
default 0 = Normal operation  
17.6  
17.5  
17.4  
17.3  
MDI Tri-state  
RW  
RW  
RW  
RW  
1 = Reversed polarity  
Force Polarity  
Auto Polarity Disable  
SQE Disable  
default 0 = Normal polarity operation.  
1 = Auto Polarity disabled.  
default 0 = Auto Polarity enabled.  
1 = 10BASE-T squelch test disabled.  
default 0 = Normal squelch operation  
Extended Squelch control.  
17.2  
Extended Squelch  
1 = 10BASE-T extended squelch control enabled.  
0 = 10BASE-T extended squelch control disabled.  
RW  
1 = Link disabled.  
RW  
P
17.1  
17.0  
Link Integrity Disable  
default 0 = Normal Link Integrity operation.  
1 = Jabber disabled.  
Jabber Function  
Disable  
RW  
default 0 = Normal Jabber operation.  
1. Refer to Table 42 on page 60 for Type definitions.  
Table 52. Register 18 (12 Hex) PHY Interrupt Register  
Bit(s)  
Name  
Reserved  
Description  
Type1  
18.15:2  
Constant 0.  
RO  
Enables the assertion of a specific PHY Interrupt line. However, bit 0 is not masked,  
and the interrupt bit will remain visible.  
18.1  
Interrupt Enable  
RW  
1 = enable the assertion of the interrupt line.  
default 0 = disable the interrupt line.  
Reflects the PHY link integrity changing. The bit is self-cleared after any read cycle.  
1 = a change on PHY link status was detected.  
RO  
SC  
Link Status  
Interrupt  
18.0  
1. Refer to Table 42 on page 60 for Type definitions.  
Table 53. Reg 19 (13 Hex) 100 BASE-TX RCV False Carrier Counter  
Bit(s)  
Name  
Description  
Type1  
RO  
SC  
False Carrier  
Sense  
A 16 bit counter that increments for each false carrier event (bad SSD). The counter  
stops when full (and does not roll over.) Self clears on read.  
19[15:0]  
1. Refer to Table 42 on page 60 for Type definitions.  
Datasheet  
65  
LXT9784 Low-Power Octal PHY  
Table 54. Reg 20 (14 Hex) 100BASETx Receive Disconnect Counter  
Bit(s)  
Name  
Description  
Type1  
A 16 bit counter that increments for each disconnect event. The counter stops when  
full (and does not roll over). Self clears on read.  
RO  
SC  
Disconnect  
Event  
20[15:0]  
Two or more consecutive False carrier events causes this counter to increment.  
1. RO = Read Only; SC = Self Cleared.  
Table 55. Reg 21 (15 Hex) 100BASETx Receive Error Frame Counter  
Bit(s)  
Name  
Description  
Type1  
A 16 bit counter that increments once per frame for any receive error condition, such  
as a symbol error or premature end of frame, in that frame. The counter stops when  
full (and does not roll over). Self clears on read.  
RO  
SC  
Receive Error  
Frame  
21[15:0]  
1. RO = Read Only; SC = Self Cleared.  
Table 56. Reg 22 (16 Hex) Receive Symbol Error Counter  
Bit(s)  
Name  
Description  
Type1  
RO  
SC  
Symbol Error  
Counter  
A 16-bit counter that increments for each symbol error. The counter stops when full  
(and does not roll over). Self clears on read.  
22[15:0]  
1. RO = Read Only; SC = Self Cleared.  
Table 57. Reg 23 (17 Hex) 100BASETx Receive Premature End of Frame Error Counter  
Bit(s)  
Name  
Description  
Type1  
A 16-bit counter that increments for each premature end of frame event. The counter  
stops when full (and does not roll over). Self clears on read.  
RO  
SC  
Premature End  
of Frame  
23[15:0]  
A frame without a TRat the end is considered a premature end of frame event.  
1. RO = Read Only; SC = Self Cleared.  
Table 58. Reg 24 (18 Hex) 10BASET Receive End of Frame Error Counter  
Bit(s)  
Name  
Description  
Type1  
RO  
SC  
End of Frame  
Counter  
A 16-bit counter which increments for each end of frame error event. The counter  
stops when full (and does not roll over). Self clears on read.  
24[15:0]  
1. RO = Read Only; SC = Self Cleared.  
Table 59. Reg 25 (19 Hex) 10BASET Transmit Jabber Detect Counter  
Bit(s)  
Name  
Description  
Type1  
RO  
SC  
Jabber detect  
counter  
A 16-bit counter which increments for each jabber detection event. The counter stops  
when full (and does not roll over). Self clears on read.  
25[15:0]  
1. RO = Read Only; SC = Self Cleared.  
66  
Datasheet  
Low-Power Octal PHY LXT9784  
Table 60. Reg 26 (1A Hex) Reserved  
Bit(s)  
Name  
Description  
Data read from this should be ignored.  
Type1  
26[15:0] Reserved  
1. RO = Read Only.  
RO  
Table 61. Register 27 (1B Hex) PHY Special Control  
Bit(s)  
Name  
Reserved  
Description  
Type1  
27.15:5  
27.4  
Constant 0.  
RO  
1 = LED blink disabled.  
LED Blink  
RW  
default 0 = LED blink enabled (normal operation).  
Enables carrier sense disconnection while PHY in jabber at 100Mbps.  
1 = Carrier sense disconnection enabled.  
100RX Jabber  
Enable  
27.3  
RO  
RW  
default 0 = Carrier sense disconnection disabled.  
[2:0] LEDA  
LEDB  
LEDC  
Collision  
Speed  
Speed  
Activity  
OFF  
000 Link/Activity Speed  
(RMII, SMII modes)  
001 Collision  
010 Link  
011 Collision  
100 OFF  
101 ON  
Speed  
Speed  
Speed  
Speed  
Speed  
Speed  
Speed  
LED Switch  
Control  
27.2:0  
OFF  
110 OFF  
111 ON  
ON  
ON  
1. RO = Read Only; RW = Read/Write.  
Datasheet  
67  
LXT9784 Low-Power Octal PHY  
6.0  
Mechanical Specifications  
Figure 28. Package Specifications  
Parameter  
Min  
Max  
N
A
Ball Count  
Overall Height  
324  
1.94  
0.50  
2.32  
0.70  
A
Stand Off  
1
2
A
Encapsulation Height  
Package Body Length  
Encapsulant Length  
1.12  
1.22  
D
26.80  
23.75  
27.20  
24.25  
D
1
Outer Ball Center to Edge  
of Body  
S
1.44 REF  
0.60 0.90  
1
B
Ball Diameter  
Substrate Thickness  
Ball Pitch  
C
.32/.52 .40/.60  
1.27mm  
(2L/4L)  
E
1. All dimensions in millimeters  
68  
Datasheet  

相关型号:

LXT9784BE

LAN TRANSCEIVER|OCTAL|BGA|324PIN|PLASTIC
ETC

LXT9785

Advanced 8-Port 10/100 Mbps PHY Transceivers
INTEL

LXT9785BC

LAN TRANSCEIVER|OCTAL|BGA|241PIN|PLASTIC
ETC

LXT9785HC

LAN TRANSCEIVER|OCTAL|QFP|208PIN|PLASTIC
ETC

LXT980AHC

LAN HUB CONTROLLER
ETC

LXT980QC

LAN HUB CONTROLLER
ETC

LXT981QC

Ethernet Transceiver, CMOS, PQFP208, QFP-208
LevelOne

LXT981QC

Ethernet Transceiver, CMOS, PQFP208, PLASTIC, QFP-208
INTEL

LXT983AHC

Ethernet Transceiver, PQFP208, PLASTIC, QFP-208
INTEL

LXT983AHC

Ethernet Transceiver, PQFP208, PLASTIC, QFP-208
LevelOne

LXT983QC

Ethernet Transceiver, PQFP208, PLASTIC, QFP-208
INTEL

LXT9860

Advanced 10/100 Repeater with Intergrated Management
INTEL