LZ1-00R400-0000 [ETC]

EMITTER IR 850NM 1.2A SMD;
LZ1-00R400-0000
型号: LZ1-00R400-0000
厂家: ETC    ETC
描述:

EMITTER IR 850NM 1.2A SMD

文件: 总17页 (文件大小:747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Luminous Efficacy  
850nm Infrared LED Emitter  
LZ1-00R400  
Key Features  
.
.
.
.
.
.
.
.
.
.
High Efficacy 850nm 1.9W Infrared LED  
Ultra-small foot print 4.4mm x 4.4mm  
Surface mount ceramic package with integrated glass lens  
Very low Thermal Resistance (10.5°C/W)  
Very high Radiant Flux density  
Autoclave complaint (JEDEC JESD22-A102-C)  
JEDEC Level 1 for Moisture Sensitivity Level  
Lead (Pb) free and RoHS compliant  
Reflow solderable (up to 6 cycles)  
Emitter available on Standard or Miniature MCPCB (optional)  
Typical Applications  
.
.
Inspection  
Security lighting  
Description  
The LZ1-00R400 850nm Infrared LED emitter generates 720mW nominal output at 1.9W power dissipation in an  
extremely small package. With a 4.4mm x 4.4mm ultra-small footprint, this package provides exceptional radiant  
flux density. The patent-pending design has unparalleled thermal and optical performance. The high quality  
materials used in the package are chosen to optimize light output and minimize stresses which results in  
monumental reliability and lumen maintenance. The robust product design thrives in outdoor applications with  
high ambient temperatures and high humidity.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1 - 02/06/15)  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Part number options  
Base part number  
Part number  
Description  
LZ1-00R400-xxxx  
LZ1-10R400-xxxx  
LZ1-30R400-xxxx  
LZ1 emitter  
LZ1 emitter on Standard Star MCPCB  
LZ1 emitter on Miniature round MCPCB  
Bin kit option codes  
R4, Infrared (850nm)  
Min  
Kit number  
flux  
Color Bin Range  
Description  
suffix  
Bin  
full distribution flux; full distribution  
wavelength  
0000  
J
F08 F08  
Notes:  
1.  
Default bin kit option is -0000  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
2
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Radiant Flux Bins  
Table 1:  
Minimum  
Radiant Flux (Φ)  
@ IF = 1000mA[1,2]  
(mW)  
Maximum  
Radiant Flux (Φ)  
@ IF = 1000mA[1,2]  
(mW)  
Bin  
Code  
J
512  
640  
800  
640  
800  
K
L
1000  
Notes for Table 1:  
1.  
2.  
Radiant flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements.  
Future products will have even higher levels of radiant flux performance. Contact LED Engin Sales for updated information.  
Peak Wavelength Bin  
Table 2:  
Minimum  
Maximum  
Peak Wavelength (λP)  
@ IF = 1000mA[1]  
(nm)  
Peak Wavelength (λP)  
@ IF = 1000mA[1]  
(nm)  
Bin Code  
F08  
835  
875  
Notes for Table 3:  
1.  
LED Engin maintains a tolerance of ± 2.0nm on peak wavelength measurements.  
Forward Voltage Bin  
Table 3:  
Minimum  
Forward Voltage (VF)  
@ IF = 1000mA [1]  
(V)  
Maximum  
Forward Voltage (VF)  
@ IF = 1000mA [1]  
(V)  
Bin Code  
0
1.7  
2.7  
Notes for Table 3:  
1.  
LED Engin maintains a tolerance of ± 0.04V for forward voltage measurements.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
3
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Absolute Maximum Ratings  
Table 4:  
Parameter  
Symbol  
Value  
Unit  
mA  
mA  
DC Forward Current at Tjmax=100°C[1]  
DC Forward Current at Tjmax=125°C[1]  
Peak Pulsed Forward Current[2]  
Reverse Voltage  
IF  
IF  
1200  
1000  
IFP  
VR  
Tstg  
TJ  
2000  
mA  
V
See Note 3  
-40 ~ +125  
125  
Storage Temperature  
°C  
°C  
°C  
Junction Temperature  
Soldering Temperature[4]  
Tsol  
260  
Allowable Reflow Cycles  
6
121°C at 2 ATM,  
100% RH for 168 hours  
Autoclave Conditions[5]  
> 8,000 V HBM  
Class 3B JESD22-A114-D  
ESD Sensitivity[6]  
Notes for Table 4:  
1.  
2:  
3.  
4.  
5.  
6.  
Maximum DC forward current is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current derating.  
Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.  
LEDs are not designed to be reverse biased.  
Solder conditions per JEDEC 020D. See Reflow Soldering Profile Figure 3.  
Autoclave Conditions per JEDEC JESD22-A102-C.  
LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ1-00R400 in an electrostatic protected area (EPA).  
An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.  
Optical Characteristics @ TC = 25°C  
Table 5:  
Parameter  
Symbol  
Typical  
Unit  
Radiant Flux (@ IF = 700mA)  
Radiant Flux (@ IF = 1000mA)  
Peak Wavelength  
Φ
Φ
515  
720  
850  
90  
mW  
mW  
λP  
nm  
Viewing Angle[1]  
1/2  
Θ0.9V  
Degrees  
Degrees  
Total Included Angle[2]  
130  
Notes for Table 5:  
1.  
Viewing Angle is the off axis angle from emitter centerline where the radiant power is ½ of the peak value.  
2.  
Total Included Angle is the total angle that includes 90% of the total radiant flux.  
Electrical Characteristics @ TC = 25°C  
Table 6:  
Parameter  
Symbol  
Typical  
Unit  
Forward Voltage (@ IF = 1000mA)  
Forward Voltage (@ IF = 1200mA)  
VF  
VF  
1.9  
2.0  
V
V
Temperature Coefficient  
of Forward Voltage  
ΔVF/ΔTJ  
J-C  
-2.0  
mV/°C  
°C/W  
Thermal Resistance  
(Junction to Case)  
10.5  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
4
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
IPC/JEDEC Moisture Sensitivity Level  
Table 7 - IPC/JEDEC J-STD-20 MSL Classification:  
Soak Requirements  
Floor Life  
Conditions  
Standard  
Conditions  
Accelerated  
Level  
1
Time  
Time (hrs)  
Time (hrs)  
Conditions  
≤ 30°C/  
60% RH  
168  
+5/-0  
85°C/  
60% RH  
1 Year  
n/a  
n/a  
Notes for Table 7:  
1.  
The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer’s exposure time (MET) between bake and bag  
and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility.  
Average Radiant Flux Maintenance Projections  
Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for  
solid state lighting devices (Power LEDs) is also defined as Radiant Flux Maintenance, with the percentage of the  
original light output remaining at a defined time period.  
Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Radiant Flux  
Maintenance at 65,000 hours of operation at a forward current of 1000 mA. This projection is based on constant  
current operation with junction temperature maintained at or below 110°C.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
5
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Mechanical Dimensions (mm)  
Pin Out  
Function  
Pad  
1
Cathode  
Anode  
2
3
Anode  
4
5[2]  
Cathode  
Thermal  
1
2
5
4
3
Figure 1: Package outline drawing.  
Notes for Figure 1:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
2.  
Thermal contact, Pad 5, is electrically connected to the Anode, Pads 2 and 3. Do not electrically connect any electrical pads to the thermal contact, Pad 5.  
LED Engin recommends mounting the LZ1-00R400 to a MCPCB that provides insulation between all electrical pads and the thermal contact, Pad 5. LED Engin  
offers LZ1-10R400 and LZ1-30R400 MCPCB options which provide both electrical and thermal contact insulation with low thermal resistance. Please refer to  
Application Note MCPCB Options 1 and 3, or contact a LED Engin sales representative for more information.  
Recommended Solder Pad Layout (mm)  
Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad  
Note for Figure 2a:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
6
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Recommended Solder Mask Layout (mm)  
Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad  
Note for Figure 2b:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Recommended 8mil Stencil Apertures Layout (mm)  
Figure 2c: Recommended 8mil stencil apertures layout for anode, cathode, and thermal pad  
Note for Figure 2c:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
7
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Reflow Soldering Profile  
Figure 3: Reflow soldering profile for lead free soldering.  
Typical Radiation Pattern  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
Angular Displacement (Degrees)  
Figure 4: Typical representative spatial radiation pattern.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
8
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Relative Spectral Power Distribution  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
600  
650  
700  
750  
800  
850  
900  
Wavelenght(nm)  
Figure 5: Relative spectral power vs. wavelength @ TC = 25°C.  
Typical Normalized Radiant Flux over Current  
140%  
120%  
100%  
80%  
60%  
40%  
20%  
0%  
0
200  
400  
600  
800  
1000  
1200  
IF - Forward Current (mA)  
Figure 6: Typical normalized radiant flux vs. forward current @ TC = 25°C.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
9
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Normalized Radiant Flux over Temperature  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
20  
40  
60  
80  
100  
Case Temperature (°C)  
Figure 7: Typical normalized radiant flux vs. case temperature.  
Typical Peak Wavelength Shift over Current  
3.00  
2.00  
1.00  
0.00  
-1.00  
-2.00  
-3.00  
0
200  
400  
600  
800  
1000  
1200  
IF - Forward Current (mA)  
Figure 8: Typical peak wavelength shift vs. forward current @ Tc = 25°C  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
10  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Peak Wavelength Shift over Temperature  
16  
14  
12  
10  
8
6
4
2
0
0
20  
40  
60  
80  
100  
Case Temperature (°C)  
Figure 9: Typical peak wavelength shift vs. case temperature.  
Typical Forward Current Characteristics  
1400  
1200  
1000  
800  
600  
400  
200  
0
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
VF - Forward Voltage (V)  
Figure 10: Typical forward current vs. forward voltage @ TC = 25°C  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
11  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Current De-rating  
Figure 11: Maximum forward current vs. ambient temperature based on TJ(MAX) = 125°C.  
Notes for Figure 11:  
1.  
2.  
J-C [Junction to Case Thermal Resistance] for the LZ1-00R400 is typically 10.5°C/W.  
J-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance].  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
12  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Emitter Tape and Reel Specifications (mm)  
Figure 12: Emitter carrier tape specifications (mm).  
Figure 12: Emitter reel specifications (mm).  
Notes for Figure 13:  
1.  
Reel quantity minimum: 200 emitters. Reel quantity maximum: 2500 emitters.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
13  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ1 MCPCB Family  
Emitter + MCPCB  
Thermal Resistance  
(oC/W)  
Diameter  
Typical Vf Typical If  
Part number Type of MCPCB  
(mm)  
(V)  
(mA)  
LZ1-1xxxxx  
LZ1-3xxxxx  
1-channel Star  
1-channel Mini  
19.9  
11.5  
10.5 + 1.5 = 12.0  
10.5 + 2.0 = 12.5  
2.3  
2.3  
1000  
1000  
Mechanical Mounting of MCPCB  
.
MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to  
substrate cracking and subsequently LED dies cracking.  
.
To avoid MCPCB bending:  
o
o
Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.  
Care must be taken when securing the board to the heat sink. This can be done by tightening three M3  
screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will  
increase the likelihood of board bending.  
o
o
It is recommended to always use plastics washers in combinations with the three screws.  
If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after  
tightening (with controlled torque) and then re-tighten the screws again.  
Thermal interface material  
.
.
.
To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when  
mounting the MCPCB on to the heat sink.  
There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal  
epoxies. An example of such material is Electrolube EHTC.  
It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating  
conditions.  
Wire soldering  
.
To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150oC.  
Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is  
recommended to use a solder iron of more than 60W.  
.
It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn:  
24-7068-7601)  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
14  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ1-1xxxxx  
1 channel, Standard Star MCPCB (1x1) Dimensions (mm)  
Notes:  
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
LED Engin recommends using thermal interface material when attaching the MCPCB to a heat sink.  
The thermal resistance of the MCPCB is: RΘC-B 1.5°C/W  
Components used  
MCPCB:  
HT04503  
(Bergquist)  
(Diodes, Inc., for 1 LED die)  
(Vishay Semiconductors, for 1 LED die)  
ESD/TVS Diode: BZT52C5V1LP-7  
VBUS05L1-DD1  
Pad layout  
MCPCB  
Pad  
Ch.  
String/die Function  
1,2,3  
4,5,6  
Cathode -  
Anode +  
1
1/A  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
15  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ1-3xxxxx  
1 channel, Mini Round MCPCB (1x1) Dimensions (mm)  
Notes:  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
LED Engin recommends using thermal interface material when attaching the MCPCB to a heat sink.  
The thermal resistance of the MCPCB is: RΘC-B 2.0°C/W  
Components used  
MCPCB:  
HT04503  
(Bergquist)  
(Diodes, Inc., for 1 LED die)  
(Vishay Semiconductors, for 1 LED die)  
ESD/TVS Diode: BZT52C5V1LP-7  
VBUS05L1-DD1  
Pad layout  
MCPCB  
Pad  
Ch.  
String/die Function  
1
2
Anode +  
Cathode -  
1
1/A  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
16  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Company Information  
LED Engin, Inc., based in California’s Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting  
solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient  
lighting experiences. The LuxiGen™ Platform an emitter and lens combination or integrated module solution,  
delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including  
whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small  
size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux  
density, directional light is required. LED Engin’s packaging technologies lead the industry with products that  
feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient  
solid state lighting solutions.  
LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.  
LED Engin reserves the right to make changes to improve performance without notice.  
Please contact sales@ledengin.com or (408) 922-7200 for more information.  
COPYRIGHT © 2015 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00R400 (3.1-02/06/14)  
17  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  

相关型号:

LZ1-00UA00

High Efficacy VIOLET LED Emitter
ETC

LZ1-00UA00-0000

EMITTER UV 395NM 1A SMD
ETC

LZ1-00UA00-00U4

EMITTER UV 390NM 1A SMD
ETC

LZ1-00UA00-00U5

EMITTER UV 395NM 1A SMD
ETC

LZ1-00UA00-00U6

EMITTER UV 400NM 1A SMD
ETC

LZ1-00UA00-00U7

EMITTER UV 405NM 1A SMD
ETC

LZ1-00UA00-00U8

EMITTER UV 410NM 1A SMD
ETC

LZ1-00UA00-J000

High Efficacy VIOLET LED Emitter
ETC

LZ1-00UA00-U4

High Efficacy VIOLET LED Emitter
ETC

LZ1-00UA00-U5

High Efficacy VIOLET LED Emitter
ETC

LZ1-00UA00-U6

High Efficacy VIOLET LED Emitter
ETC

LZ1-00UA00-U7

High Efficacy VIOLET LED Emitter
ETC