LZ9-J0NW00 [ETC]

High Luminous Efficacy Neutral White LED Emitter; 高光效中性白光LED发射器
LZ9-J0NW00
型号: LZ9-J0NW00
厂家: ETC    ETC
描述:

High Luminous Efficacy Neutral White LED Emitter
高光效中性白光LED发射器

文件: 总22页 (文件大小:1424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Luminous Efficacy  
Neutral White LED Emitter  
LZ9-00NW00  
Key Features  
.
.
.
.
.
.
.
.
.
.
.
.
.
High Luminous Efficacy, Neutral White LED  
CRI 80 minimum  
Can dissipate up to 20W  
Ultra-small foot print 7.0mm x 7.0mm  
Surface mount ceramic package with integrated glass lens  
Low Thermal Resistance (1.3°C/W)  
Very high Luminous Flux density  
JEDEC Level 1 for Moisture Sensitivity Level  
Autoclave complaint (JEDEC JESD22-A102-C)  
Lead (Pb) free and RoHS compliant  
Reflow solderable (up to 6 cycles)  
Emitter available on MCPCB (optional)  
Full suite of TIR secondary optics family available  
Part Number Options  
Base part number  
Part number  
Description  
LZ9-00NW00-xxxx  
LZ9-J0NW00-xxxx  
LZ9-K0NW00-xxxx  
9-die emitter CRI 80 minimum  
9-die emitter CRI 80 minimum on Star MCPCB in 1x9 electrical configuration  
9-die emitter CRI 80 minimum on Star MCPCB in 3x3 electrical configuration  
Notes:  
1. See “Part Number Nomenclature” for full overview on LED Engin part number.  
LZ9-00NW00 (1.2-02/07/13)  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Bin Kit Option Codes  
NW, Neutral-White (4000K)  
Min  
flux  
Bin  
Kit number  
Color Bin Ranges  
Description  
suffix  
0000  
0040  
5V, 5X, 5B2, 5C2, 5B1, 5C1, 5A2, 5D2, 5A1, 5D1,  
5U, 5Y  
Y
Y
full distribution flux; full distribution CCT  
full distribution flux; 4000K ANSI CCT bin  
5B2, 5C2, 5B1, 5C1, 5A2, 5D2, 5A1, 5D1  
Note:  
1.  
Default bin kit option is -0000  
LZ9-00NW00 (1.2-02/07/13)  
2
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Neutral White Chromaticity Groups  
0.44  
0.42  
0.40  
5X  
5V  
5C2  
5B2  
5B1  
5A2  
5A1  
5C1  
5D2  
5D1  
Planckian Locus  
0.38  
0.36  
0.34  
0.32  
5Y  
5U  
0.35  
0.37  
0.39  
0.41  
CIEx  
Standard Chromaticity Groups plotted on excerpt from the CIE 1931 (2°) x-y Chromaticity Diagram.  
Coordinates are listed below in the table.  
LZ9-00NW00 (1.2-02/07/13)  
3
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Neutral White Bin Coordinates  
Bin code CIEx  
0.3736  
CIEy  
Bin code CIEx  
0.3869  
CIEy  
0.3874  
0.4034  
0.4118  
0.3958  
0.3874  
0.3797  
0.3874  
0.3958  
0.3877  
0.3797  
0.3722  
0.3797  
0.3877  
0.3798  
0.3722  
0.3649  
0.3722  
0.3798  
0.3721  
0.3649  
0.3578  
0.3649  
0.3721  
0.3646  
0.3578  
0.344  
0.3958  
0.4118  
0.4184  
0.4044  
0.3958  
0.3877  
0.3958  
0.4044  
0.3958  
0.3877  
0.3798  
0.3877  
0.3958  
0.3875  
0.3798  
0.3721  
0.3798  
0.3875  
0.3794  
0.3721  
0.3646  
0.3721  
0.3794  
0.3716  
0.3646  
0.3508  
0.3646  
0.3716  
0.3568  
0.3508  
0.3771  
0.3913  
0.3869  
0.3736  
0.3719  
0.3736  
0.3869  
0.3847  
0.3719  
0.3702  
0.3719  
0.3847  
0.3825  
0.3702  
0.3686  
0.3702  
0.3825  
0.3804  
0.3686  
0.367  
0.3913  
0.4052  
0.4006  
0.3869  
0.3847  
0.3869  
0.4006  
0.3978  
0.3847  
0.3825  
0.3847  
0.3978  
0.395  
5V  
5X  
5B2  
5B1  
5A2  
5A1  
5U  
5C2  
5C1  
5D2  
5D1  
5Y  
0.3825  
0.3804  
0.3825  
0.395  
0.3924  
0.3804  
0.3783  
0.3804  
0.3924  
0.3898  
0.3783  
0.3745  
0.3783  
0.3898  
0.3853  
0.3745  
0.3686  
0.3804  
0.3783  
0.367  
0.364  
0.367  
0.3783  
0.3745  
0.364  
0.3578  
0.3646  
0.3508  
0.344  
LZ9-00NW00 (1.2-02/07/13)  
4
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Luminous Flux Bins  
Table 1:  
Minimum  
Maximum  
Radiant Flux v)  
@ IF = 700mA[1,2]  
(lm)  
Radiant Flux v)  
@ IF = 700mA[1,2]  
(lm)  
Bin Code  
Y
1357  
1696  
1696  
2120  
Z
Notes for Table 1:  
1.  
Luminous flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements.  
Forward Voltage Range per String  
Table 2:  
Minimum  
Maximum  
Forward Voltage (VF)  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Bin Code  
@ IF = 700mA[1,2]  
(V)  
0
9.0  
10.8  
Notes for Table 2:  
1.  
2.  
LED Engin maintains a tolerance of ± 0.04V for forward voltage measurements.  
Forward Voltage per string of 3 LED dies in series.  
LZ9-00NW00 (1.2-02/07/13)  
5
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Absolute Maximum Ratings  
Table 3:  
Parameter  
Symbol  
Value  
Unit  
mA  
mA  
mA  
V
°C  
°C  
°C  
DC Forward Current at Tjmax=135°C[1]  
DC Forward Current at Tjmax=150°C[1]  
Peak Pulsed Forward Current[2]  
Reverse Voltage  
IF  
IF  
IFP  
VR  
Tstg  
TJ  
800  
700  
1000  
See Note 3  
-40 ~ +150  
150  
Storage Temperature  
Junction Temperature  
Soldering Temperature[4]  
Allowable Reflow Cycles  
Tsol  
260  
6
121°C at 2 ATM,  
100% RH for 168 hours  
Autoclave Conditions[5]  
> 8,000 V HBM  
Class 3B JESD22-A114-D  
ESD Sensitivity[6]  
Notes for Table 3:  
1.  
Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current  
de-rating.  
2:  
3.  
4.  
5.  
6.  
Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.  
LEDs are not designed to be reverse biased.  
Solder conditions per JEDEC 020c. See Reflow Soldering Profile Figure 3.  
Autoclave Conditions per JEDEC JESD22-A102-C.  
LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ9-00NW00  
in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.  
Optical Characteristics @ TC = 25°C  
Table 4:  
Typical  
Parameter  
Symbol  
Unit  
Luminous Flux (@ IF = 700mA)[1]  
Luminous Efficacy (@ IF =350mA)  
Correlated Color Temperature  
Color Rendering Index (CRI)  
Viewing Angle[2]  
Φv  
lm  
lm/W  
K
1500  
89  
CCT  
Ra  
4000  
82  
110  
120  
2Θ  
Degrees  
Degrees  
½
Total Included Angle[3]  
Θ0.9  
Notes for Table 4:  
1.  
2.  
3.  
Luminous flux typical value is for all 9 LED dies operating concurrently at rated current.  
Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the peak value.  
Total Included Angle is the total angle that includes 90% of the total luminous flux.  
Electrical Characteristics @ TC = 25°C  
Table 5:  
Parameter  
Symbol  
Typical  
Unit  
Forward Voltage per String (@ IF = 700mA)  
VF  
9.7  
V
Temperature Coefficient  
of Forward Voltage (per String)  
ΔVF/ΔTJ  
-6.0  
1.3  
mV/°C  
Thermal Resistance  
(Junction to Case)  
J-C  
°C/W  
LZ9-00NW00 (1.2-02/07/13)  
6
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
IPC/JEDEC Moisture Sensitivity Level  
Table 6 - IPC/JEDEC J-STD-20 MSL Classification:  
Soak Requirements  
Floor Life  
Conditions  
Standard  
Conditions  
Accelerated  
Level  
1
Time  
Time (hrs)  
Time (hrs)  
Conditions  
≤ 30°C/  
168  
+5/-0  
85°C/  
85% RH  
Unlimited  
n/a  
n/a  
85% RH  
Notes for Table 6:  
1.  
The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer’s exposure time (MET) between bake and bag  
and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility.  
Average Lumen Maintenance Projections  
Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for  
solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original  
light output remaining at a defined time period.  
Based on accelerated lifetime testing, LED Engin projects that the LZ Series will deliver, on average, 70% Lumen  
Maintenance at 65,000 hours of operation at a forward current of 700 mA per die. This projection is based on  
constant current operation with junction temperature maintained at or below 120°C.  
LZ9-00NW00 (1.2-02/07/13)  
7
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Mechanical Dimensions (mm)  
Emitter pin layout  
Emitter Emitter  
channel pin  
Die  
Color  
Ch1 -  
Ch1  
23, 24  
A
B
E
D
F
White  
White  
White  
White  
White  
White  
White  
White  
White  
Ch1 +  
Ch2 -  
Ch2  
17, 18  
2, 3  
Ch2 +  
Ch3 -  
Ch3  
14, 15  
5, 6  
H
C
G
I
Ch3+  
11, 12  
NC pins: 1, 4, 7, 8, 9, 10, 13, 16, 19, 20,  
21, 22  
DNC pins: none  
Figure 1: Package outline drawing.  
Notes for Figure 1:  
Notes:  
NC = Not internally Connected (Electrically isolated)  
DNC = Do Not Connect (Electrically Non isolated)  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Recommended Solder Pad Layout (mm)  
Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad.  
Note for Figure 2a:  
1.  
2.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
This pad layout is “patent pending”.  
LZ9-00NW00 (1.2-02/07/13)  
8
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Recommended Solder Mask Layout (mm)  
Figure 2b: Recommended solder mask opening (hatched area) for anode, cathode, and thermal pad.  
Note for Figure 2b:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Reflow Soldering Profile  
Figure 3: Reflow soldering profile for lead free soldering.  
LZ9-00NW00 (1.2-02/07/13)  
9
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Radiation Pattern  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-90 -80 -70 -60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Angular Displacement (Degrees)  
Figure 4: Typical representative spatial radiation pattern.  
Typical Relative Spectral Power Distribution  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
380 430 480 530 580 630 680 730 780 830 880  
Wavelength (nm)  
Figure 5: Typical relative spectral power vs. wavelength @ TC = 25°C  
LZ9-00NW00 (1.2-02/07/13)  
10  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Dominant CCT Shift over Temperature  
0.02  
0.015  
0.01  
Cx  
Cy  
0.005  
3E-17  
-0.005  
-0.01  
-0.015  
-0.02  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Case Temperature (°C)  
Figure 6: Typical dominant wavelength shift vs. Case temperature.  
Typical Relative Light Output  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
IF - Forward Current (mA)  
Figure 7: Typical relative light output vs. forward current @ TC = 25°C.  
LZ9-00NW00 (1.2-02/07/13)  
11  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Normalized Radiant Flux over Temperature  
110  
100  
90  
80  
70  
60  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Case Temperature (°C)  
Figure 8: Typical relative light output vs. case temperature.  
Typical Forward Voltage Characteristics per String  
1200  
1000  
800  
600  
400  
200  
0
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
VF - Forward Voltage (V)  
Figure 9: Typical forward current vs. forward voltage1 @ TC = 25°C.  
Note for Figure 9:  
1. Forward Voltage per string of 3 LED dies connected in series.  
LZ9-00NW00 (1.2-02/07/13)  
12  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Current De-rating  
1000  
800  
700  
(Rated)  
600  
400  
200  
R J-A = 4°C/W  
R J-A = 5°C/W  
R J-A = 6°C/W  
0
0
25  
50  
75  
100  
125  
150  
Maximum Ambient Temperature (°C)  
Figure 10: Maximum forward current vs. ambient temperature based on TJ(MAX) = 150°C.  
Notes for Figure 10:  
1.  
2.  
3.  
Maximum current assumes that all 9 LED dice are operating concurrently at the same current.  
J-C [Junction to Case Thermal Resistance] for the LZ9-00NW00 is typically 1.3°C/W.  
J-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance].  
LZ9-00NW00 (1.2-02/07/13)  
13  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Emitter Tape and Reel Specifications (mm)  
Figure 11: Emitter carrier tape specifications (mm).  
Figure 12: Emitter Reel specifications (mm).  
LZ9-00NW00 (1.2-02/07/13)  
14  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Part-number Nomenclature  
The LZ Series base part number designation is defined as follows:  
L Z A B C D E F G H I J K  
A designates the number of LED die in the package  
1
4
9
C
P
for single die emitter package  
for 4-die emitter package  
for 9-die emitter package  
for 12-die emitter package  
for 25-die emitter package  
B designates the package level  
0
for Emitter only  
Other letters indicate the addition of a MCPCB. See appendix “MCPCB options” for details  
C designates the radiation pattern  
0
1
3
for Clear domed lens (Lambertian radiation pattern)  
for Flat-top  
for Frosted domed lens  
D and E designates the color  
U6  
Ultra Violet (365nm)  
Violet (400nm)  
Dental Blue (460nm)  
UA  
DB  
B2  
Blue (465nm)  
G1  
A1  
Green (525nm)  
Amber (590nm)  
R1  
R2  
R3  
Red (623nm)  
Deep Red (660nm)  
Far Red (740nm)  
R4  
Infrared (850nm)  
WW  
W9  
NW  
CW  
W2  
MC  
MA  
MD  
Warm White (2700K-3500K)  
Warm White CRI 90 Minimum (2700K-3500K)  
Neutral White (4000K)  
Cool White (5500K-6500K)  
Warm & Cool White mixed dies  
RGB  
RGBA  
RGBW (6500K)  
F and G designates the package options if applicable  
See “Base part number” on page 2 for details. Default is “00”  
H, I, J, K designates kit options  
See “Bin kit options” on page 2 for details. Default is “0000”  
Ordering information:  
For ordering LED Engin products, please reference the base part number above. The base part number represents  
our standard full distribution flux and wavelength range. Other standard bin combinations can be found on page 2.  
For ordering products with custom bin selections, please contact a LED Engin sales representative or authorized  
distributor.  
LZ9-00NW00 (1.2-02/07/13)  
15  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ9 MCPCB Family  
Emitter + MCPCB  
Thermal Resistance  
(oC/W)  
Diameter  
Typical Vf Typical If  
Part number Type of MCPCB  
(mm)  
19.9  
19.9  
(V)  
(mA)  
1-channel  
LZ9-Jxxxxx  
1.3 + 0.2 = 1.5  
1.3 + 0.2 = 1.5  
29.1  
9.7  
700  
(1x9 string)  
1-channel  
(3x3 strings)  
LZ9-Kxxxxx  
2100  
.
Mechanical Mounting of MCPCB  
o
o
o
Mechanical stress on the emitter that could be caused by bending the MCPCB should be avoided. The  
stress can cause the substrate to crack and as a result might lead to cracks in the dies.  
Therefore special attention needs to be paid to the flatness of the heat sink surface and the torque  
on the screws. Maximum torque should not exceed 1 Nm (8.9 lbf/in).  
Care must be taken when securing the board to the heatsink to eliminate bending of the MCPCB. This  
can be done by tightening the three M3 screws (or #4-40) in steps and not all at once. This is  
analogous to tightening a wheel of an automobile  
o
o
It is recommended to always use plastic washers in combination with three screws. Two screws could  
more easily lead to bending of the board.  
If non taped holes are used with self-tapping screws it is advised to back out the screws slightly after  
tighten (with controlled torque) and retighten the screws again.  
.
Thermal interface material  
o
To properly transfer the heat from the LED to the heatsink a thermally conductive material is required  
when mounting the MCPCB to the heatsink  
o
There are several materials which can be used as thermal interface material, such as thermal paste,  
thermal pads, phase change materials and thermal epoxies. Each has pro’s and con’s depending on  
the application. For our emitter it is critical to verify that the thermal resistance is sufficient for the  
selected emitter and its environment.  
o
To properly transfer the heat from the MCPCB to the heatsink also special attention should be paid to  
the flatness of the heatsink.  
.
Wire soldering  
For easy soldering of wires to the MCPCB it is advised to preheat the MCPCB on a hot plate to a  
o
maximum of 150°. Subsequently apply the solder and additional heat from the solder iron to initiate a  
good solder reflow. It is recommended to use a solder iron of more than 60W. We advise to use lead  
free, no-clean solder. For example SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601)  
LZ9-00NW00 (1.2-02/07/13)  
16  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ9-Jxxxxx  
1 channel, Standard Star MCPCB (1x9) Dimensions (mm)  
Notes:  
.
.
.
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.  
The thermal resistance of the MCPCB is: RΘC-B 0.2°C/W. This low thermal resistance is possible by utilizing a copper based MCPCB with pedestal design. The  
emitter thermal slug is in direct contact with the copper core. There are several vendors that offer similar solutions, some of them are: Bridge-Semiconductor,  
Rayben, Bergquist, SinkPad.  
Components used  
MCPCB:  
ESD chips: BZX585-C47  
MHE-301 copper  
(Rayben)  
(NXP, for 9 LED die)  
Jumpers:  
CRCW06030000Z0 (Vishay)  
Pad layout  
MCPCB  
Pad  
Ch.  
String/die Function  
1
2
Cathode -  
Anode +  
1/ABCDEF  
GHI  
1
LZ9-00NW00 (1.2-02/07/13)  
17  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ9-Kxxxxx  
1 channel, Standard Star MCPCB (3x3) Dimensions (mm)  
Notes:  
.
.
.
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.  
The thermal resistance of the MCPCB is: RΘC-B 0.2°C/W. This low thermal resistance is possible by utilizing a copper based MCPCB with pedestal design. The  
emitter thermal slug is in direct contact with the copper core. There are several vendors that offer similar solutions, some of them are: Bridge-Semiconductor,  
Rayben, Bergquist, SinkPad.  
Components used  
MCPCB:  
ESD chips: PESD1LIN,115  
MHE-301 copper  
(Rayben)  
(NXP, for 3 LED die)  
Pad layout  
MCPCB  
Pad  
Ch.  
String/die Function  
1/ABE  
2/DFH  
3/CGI  
1
Cathode -  
Anode +  
1
2
LZ9-00NW00 (1.2-02/07/13)  
18  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
LZ9 secondary TIR optics family  
LLxx-3T06-H  
Optical Specification  
Optical  
efficiency 4  
%
On-axis  
intensity 5  
cd/lm  
Beam angle 2  
degrees  
17  
Field angle 3  
Part number 1  
degrees  
LLSP-3T06-H  
LLNF-3T06-H  
LLFL-3T06-H  
36  
90  
90  
90  
5.4  
2.2  
1.2  
26  
39  
49  
83  
Notes:  
1.  
2.  
3.  
4.  
5.  
Lenses can also be ordered without the holder. Replace H with O for this option.  
Beam angle is defined as the full width at 50% of the max intensity (FWHM).  
Field angle is defined as the full width at 10% of the max intensity.  
Optical efficiency is defined as the ratio between the incoming flux and the outgoing flux.  
On-axis intensity is defined as the ratio between the total input lumen and the intensity in the optical center of the lens.  
LZ9-00NW00 (1.2-02/07/13)  
19  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Typical Relative Intensity over Angle  
100%  
LZ9 emitter  
LLSP-3T06-H  
LLNF-3T06-H  
LLFL-3T06-H  
80%  
60%  
40%  
20%  
0%  
-90  
-60  
-30  
0
30  
60  
90  
Angle (degrees)  
General Characteristics  
Symbol  
Value  
Rating  
Unit  
Mechanical  
Height from Seating Plane  
Width  
19.20  
38.90  
Typical  
Typical  
mm  
mm  
Material  
Lens  
PMMA  
Holder  
Polycarbonate  
Optical  
Transmission1 (>90%)  
Environmental  
Storage Temperature  
Operating Temperature  
λ
410-1100  
Min-Max.  
nm  
Tstg  
Tsol  
-40 ~ +110  
-40 ~ +110  
Min-Max.  
Min-Max.  
°C  
°C  
Notes:  
1.  
It is not recommended to use a UV emitter with this lens due to lower transmission at wavelengths < 410nm.  
LZ9-00NW00 (1.2-02/07/13)  
20  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Mechanical Dimensions  
Lens with Holder  
Lens  
LZ9-00NW00 (1.2-02/07/13)  
21  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  
Company Information  
LED Engin, Inc., based in California’s Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting  
solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient  
lighting experiences. The LuxiGen™ Platform an emitter and lens combination or integrated module solution,  
delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including  
whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small  
size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux  
density, directional light is required. LED Engin’s packaging technologies lead the industry with products that  
feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient  
solid state lighting solutions.  
LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.  
LED Engin reserves the right to make changes to improve performance without notice.  
Please contact sales@ledengin.com or (408) 922-7200 for more information.  
LZ9-00NW00 (1.2-02/07/13)  
22  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em sales@ledengin.com | www.ledengin.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY