MAX15040降压型调节器 [ETC]

; - 12号的铝制车身绘( RAL 7032 )
MAX15040降压型调节器
型号: MAX15040降压型调节器
厂家: ETC    ETC
描述:


- 12号的铝制车身绘( RAL 7032 )

文件: 总18页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX15040 高效、4A、降压型  
调 节器,集成开关,采用2mm x 2mm封装 - 概述  
ENGLISH 简体中文 日本語 한국어 РУССКИЙ  
Login | Register  
最新内容  
产品 设计 应用 技术支持 销售联络 公司简介 我的Maxim  
方案  
Maxim > 产品 > 和电池管理 > MAX15040  
MAX15040  
高效、4A、降压型  
节器,集成开关,采用2mm x 2mm封装  
定频率DC-DC转换器,效率高达95%  
定购信 相关产品 用户说 所有内容  
1MHz、固  
(0)  
概述  
技术文档  
状况  
:生产中。  
概述  
The MAX15040 high-efficiency switching regulator delivers up to 4A load current at output voltages  
数据资料  
完整的数据资料  
from 0.6V to (0.9 x V ). The device operates from 2.4V to 3.6V, making it ideal for on-board point-  
IN  
下载  
英文  
Rev. 2 (PDF, 324kB)  
of-load and postregulation applications. Total output-voltage accuracy is within ±1% over load, line,  
and temperature.  
The MAX15040 features 1MHz fixed-frequency PWM mode operation. The high operating  
frequency allows for small-size external components.  
The low-resistance on-chip nMOS switches ensure high efficiency at heavy loads while minimizing  
critical parasitic inductances, making the layout a much simpler task with respect to discrete  
solutions. Following a simple layout and footprint ensures first-pass success in new designs.  
The MAX15040 incorporates a high-bandwidth (> 15MHz) voltage-error amplifier. The voltage-  
mode control architecture and the voltage-error amplifier permit a Type III compensation scheme to  
achieve maximum loop bandwidth, up to 200kHz. High loop bandwidth provides fast transient  
response, resulting in less required output capacitance and allowing for all-ceramic capacitor  
designs.  
The MAX15040 features an output overload hiccup protection and peak current limit on both high-  
side (sourcing current) and low-side (sinking and sourcing current) MOSFETs, for ultra-safe  
operations in case of high output prebias, short-circuit conditions, severe overloads, or in  
converters with bulk electrolytic capacitors.  
The MAX15040 features an adjustable output voltage. The output voltage is adjustable by using  
two external resistors at the feedback or by applying an external reference voltage to the  
REFIN/SS input. The MAX15040 offers programmable soft-start time using one capacitor to reduce  
input inrush current. A built-in thermal shutdown protection assures safe operation under all  
conditions. The MAX15040 is available in a 2mm x 2mm, 16-bump (4 x 4 array), 0.5mm pitch WLP  
package.  
现备有评估板:MAX15040EVKIT  
关键特性  
应用/使用  
Internal 15mΩ R  
MOSFETs  
ASIC/CPU/DSP核与I/O供电  
DS(ON)  
基站电源  
Continuous 4A Output Current  
DDR电源  
负载点  
±1% Output-Voltage Accuracy Over Load, Line, and Temperature  
Operates from 2.4V to 3.6V Supply  
RAID控制  
服务器电源  
与网络电源  
电源  
Adjustable Output from 0.6V to (0.9 x V  
)
IN  
Adjustable Soft-Start Reduces Inrush Supply Current  
Factory-Trimmed 1MHz Switching Frequency  
Compatible with Ceramic, Polymer, and Electrolytic Output Capacitors  
Safe Startup into Prebias Output  
Enable Input/Power-Good Output  
Fully Protected Against Overcurrent and Overtemperature  
Overload Hiccup Protection  
Sink/Source Current in DDR Applications  
2mm × 2mm, 16-Bump (4 x 4 Array), 0.5mm Pitch WLP Package  
图表  
http://china.maxim-ic.com/datasheet/index.mvp/id/5859[2011-1-14 6:36:06]  
 
MAX15040 高效、4A、降压型  
调 节器,集成开关,采用2mm x 2mm封装 - 概述  
典型 工作电路  
更多信  
发布 [ 2011-01-12 ]  
没有找到你需要的产品  
吗?  
应用工程师帮助选型 ,下个工作日回复  
参数搜索  
应用帮助  
概述  
技术文档  
数据资料  
应用笔记  
评估板  
设计指南  
可靠性报告  
定购相关产品  
概述  
价格与供货  
样品  
在线订购 评估板  
封装信 类似型 号器件  
无铅信 配合该器件使用的产品  
类似功能器件  
关键特性  
应用/使用  
关键指标  
图表  
类似应用器件  
注释、注解  
软件/型  
参考文献: 19-4426 Rev. 2; 2010-09-21  
本页最后一次更新: 2010-09-21  
联络我们:信  
息反馈、提出问题  
对该网页的评价  
发送本网页  
隐私权政策  
法律声明  
© 2011 Maxim Integrated Products版权所有  
http://china.maxim-ic.com/datasheet/index.mvp/id/5859[2011-1-14 6:36:06]  
:尺寸最小的4A开关调 节器,有效简化设计、提高系统可靠性  
ENGLISH 简体中文 日本語 한국어 РУССКИЙ  
登录 | 注册  
最新内容  
产品 方案 设计 应用 技术支持 销售联络 公司简介 我的Maxim  
[?]  
尺寸最小的4A开关调 节器,有效简化设计、提高系统可靠性  
Maxim最新推出的高效、3.3V、同  
步整DC-DC调 节器在2mm x 2mm封装中集成了MOSFET,可有效节省空  
、降低BOM成本、EMI。  
SUNNYVALECA2011112日。Maxim Integrated Products (NASDAQMXIM)推出采用2mm x 2mm晶  
片级封装(WLP)的低压(2.4V3.6V)步整开关调 节器MAX15040。该款微型 降压调 节器内MOSFET,可  
有效简化设计、EMI、提高系统可靠性、节省电路板空MAX15040工作在1MHz定开关频率,允许使用  
全陶瓷电容设计,进一步小了整体方案尺寸。该款负载点应用调 节器在满载电输出(4A)条件下的效率高  
94%,可大大降低电、网络和服务器设备等应用中的功耗。  
器件的其它特性包  
括:用于电排序的使能输入和电就绪指示输出、实现受控启动的可调 节软启动、以及能够安  
全启动至预偏输出。  
MAX15040在整个温内具有±1%的输出电压精,器件工作在-40°C+85°C扩展级温。芯片起  
尺寸最小的4A开关调 节器,有效简化设计、  
$2.17 (1000片起,美国离岸价)。  
提高系统可靠性  
[高分辨率图片]  
Maxim Integrated Products是  
一家设计、生产、销售高性能半导  
体产品  
的上市公司。公司在超过25年的发展进程  
总数超  
6400种,广泛应用于工业、通信  
中不断创新,始终致力于为客户提供具有高产品  
加值的拟和混合号设计方案。迄今为止,公司的产品  
、消费类电子以及计算处理等领域。  
Maxim2010财政年度  
收入约为20亿美元。作为财富杂志1000强公司,Maxim位于Nasdaq 100Russell 1000MSCI USA指数的公司列表中。欲获取更多信  
息,请访问china.maxim-ic.com。  
联系编辑: PR-China@maxim-ic.com  
客户服务: 86 10 62115199  
加说  
高分辨率图片: - 下载RGB文件 (TIF.ZIP) (JPG)  
- 下载CMYK文件 (TIF.ZIP) (JPG.ZIP) (PDF)  
明: MAX15040  
联络我们:信  
息反馈、提出问题  
对该网页的评价  
发送本网页  
隐私权政策  
法律声明  
© 2011 Maxim Integrated Products版权所有  
http://china.maxim-ic.com/view_press_release.cfm/release_id/1796[2011-1-14 6:35:16]  
 
19-4426; Rev 2; 7/10  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
General Description  
Features  
The MAX15040 high-efficiency switching regulator  
delivers up to 4A load current at output voltages from  
o Internal 15mΩ R  
MOSFETs  
DS(ON)  
o Continuous 4A Output Current  
0.6V to (0.9 x V ). The device operates from 2.4V to  
IN  
o
1% Output-Voltage Accuracy Over Load, Line,  
3.6V, making it ideal for on-board point-of-load and  
postregulation applications. Total output-voltage accu-  
racy is within 1ꢀ over load, line, and temperature.  
and Temperature  
o Operates from 2.4V to 3.6V Supply  
The MAX15040 features 1MHz fixed-frequency PWM  
mode operation. The high operating frequency allows  
for small-size external components.  
o Adjustable Output from 0.6V to (0.9 x V )  
IN  
o Adjustable Soft-Start Reduces Inrush Supply  
Current  
The low-resistance on-chip nMOS switches ensure high  
efficiency at heavy loads while minimizing critical parasitic  
inductances, making the layout a much simpler task with  
respect to discrete solutions. Following a simple layout  
and footprint ensures first-pass success in new designs.  
o Factory-Trimmed 1MHz Switching Frequency  
o Compatible with Ceramic, Polymer, and  
Electrolytic Output Capacitors  
o Safe Startup into Prebias Output  
o Enable Input/Power-Good Output  
The MAX15040 incorporates a high-bandwidth  
(> 15MHz) voltage-error amplifier. The voltage-mode  
control architecture and the voltage-error amplifier per-  
mit a Type III compensation scheme to achieve maxi-  
mum loop bandwidth, up to 200kHz. High loop  
bandwidth provides fast transient response, resulting in  
less required output capacitance and allowing for all-  
ceramic capacitor designs.  
o Fully Protected Against Overcurrent and  
Overtemperature  
o Overload Hiccup Protection  
o Sink/Source Current in DDR Applications  
o 2mm x 2mm, 16-Bump (4 x 4 Array), 0.5mm Pitch  
WLP Package  
The MAX15040 features an output overload hiccup pro-  
tection and peak current limit on both high-side (sourc-  
ing current) and low-side (sinking and sourcing current)  
MOSFETs, for ultra-safe operations in case of high out-  
put prebias, short-circuit conditions, severe overloads,  
or in converters with bulk electrolytic capacitors.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX15040EWE+  
-40°C to +85°C  
16 WLP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
The MAX15040 features an adjustable output voltage.  
The output voltage is adjustable by using two external  
resistors at the feedback or by applying an external ref-  
erence voltage to the REFIN/SS input. The MAX15040  
offers programmable soft-start time using one capacitor  
to reduce input inrush current. A built-in thermal shut-  
down protection assures safe operation under all condi-  
tions. The MAX15040 is available in a 2mm x 2mm,  
16-bump (4 x 4 array), 0.5mm pitch WLP package.  
Typical Operating Circuit  
INPUT  
2.4V TO 3.6V  
IN  
BST  
LX  
MAX15040  
EN  
OUTPUT  
V
DD  
Applications  
GND  
FB  
Server Power Supplies  
Point-of-Load  
ASIC/CPU/DSP Core and I/O Voltages  
DDR Power Supplies  
REFIN/SS  
V
DD  
COMP  
Base-Station Power Supplies  
Telecom and Networking Power Supplies  
RAID Control Power Supplies  
PWRGD  
GND  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
ABSOLUTE MAXIMUM RATINGS  
IN, V , PWRGD to GND ......................................-0.3V to +4.5V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
LX to GND....................-0.3V to the lower of 4.5V or (V + 0.3V)  
16-Bump (4 x 4 Array), 0.5mm Pitch WLP  
IN  
LX Transient..............(V  
COMP, FB, REFIN/SS,  
- 1.5V, <50ns), (V + 1.5V, <50ns)  
(derated 12.5mW/°C above +70°C)...........................1000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Continuous Operating Temperature at  
Full Load Current (Note 2) ...........................................+105°C  
Storage Temperature Range.............................-65°C to +150°C  
Soldering Temperature (reflow) .......................................+260°C  
GND  
IN  
EN to GND..............-0.3V to the lower of 4.5V or (V + 0.3V)  
DD  
LX RMS Current (Note 1) .........................................................5A  
BST to LX..................................................................-0.3V to +4V  
BST to GND..............................................................-0.3V to +8V  
Note 1: LX has internal clamp diodes to GND and IN. Applications that forward bias these diodes should take care not to exceed  
MAX1540  
the package power dissipation limit of the device.  
Note 2: Continuous operation at full current beyond +105°C may degrade product life.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V = 3.3V, T = -40°C to +85°C. Typical values are at T = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3)  
A
IN  
DD  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN/V  
DD  
IN and V Voltage Range  
DD  
2.40  
3.60  
1
V
V
V
V
V
V
V
= 2.5V  
= 3.3V  
= 2.5V  
= 3.3V  
0.52  
0.8  
3.7  
4
IN  
IN  
IN  
IN  
IN  
IN  
IN Supply Current  
No load, no switching  
No load, no switching  
No load  
mA  
1.5  
5.5  
6
V
Supply Current  
mA  
mA  
µA  
DD  
= V  
= V  
= 2.5V  
= 3.3V  
12  
DD  
DD  
Total Supply Current (IN + V  
)
DD  
23  
Total Shutdown Current from IN  
and V  
V
= V  
= V  
- V = 3.6V, V = 0V  
0.1  
2
IN  
DD  
BST  
LX  
EN  
DD  
V
V
rising  
falling  
2
1.9  
2
2.2  
DD  
DD  
V
Undervoltage Lockout  
DD  
LX starts/stops switching  
V
Threshold  
1.75  
V
UVLO Deglitching  
µs  
DD  
BST  
T
T
= +25°C  
= +85°C  
2
A
V
V
= V = V = 3.6V,  
DD IN  
BST  
BST Leakage Current  
µA  
ns  
= 3.6V or 0V, V = 0V  
LX  
EN  
0.025  
10  
A
PWM COMPARATOR  
PWM Comparator Propagation  
Delay  
10mV overdrive  
COMP  
COMP Clamp Voltage High  
COMP Clamp Voltage Low  
COMP Slew Rate  
V
V
= 2.4V to 3.6V  
= 2.4V to 3.6V  
2.03  
0.73  
1.6  
830  
1
V
V
DD  
DD  
V/µs  
mV  
V
PWM Ramp Valley  
V
= 2.4V to 3.6V  
DD  
PWM Ramp Amplitude  
COMP Shutdown Resistance  
From COMP to GND, V = 0V  
8
EN  
2
_______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V = 3.3V, T = -40°C to +85°C. Typical values are at T = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3)  
A
IN  
DD  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ERROR AMPLIFIER  
FB Regulation Accuracy  
Open-Loop Voltage Gain  
Using internal reference  
0.594  
0.600  
115  
0.606  
V
1kfrom COMP to GND (Note 4)  
dB  
Error-Amplifier Unity-Gain  
Bandwidth  
Series 5k, 100nF from COMP to GND (Note 4)  
26  
MHz  
V
V
V
V
V
V
= 2.4V to 2.6V  
= 2.6V to 3.6V  
0
V
V
- 1.80  
- 1.85  
DD  
DD  
DD  
Error-Amplifier Common-Mode  
Input Range  
0
DD  
= 1.2V, sinking  
500  
1000  
-200  
COMP  
COMP  
Error-Amplifier Minimum Output  
Current  
µA  
nA  
= 1.0V, sourcing  
FB Input Bias Current  
REFIN/SS  
= 0.7V, using internal reference, T = +25°C  
-100  
FB  
A
REFIN/SS Charging Current  
REFIN/SS Discharge Resistance  
V
= 0.45V  
7
8
9
µA  
REFIN/SS  
520  
V
V
= 2.4V to 2.6V  
= 2.6V to 3.6V  
0
0
V
- 1.80  
- 1.85  
DD  
DD  
DD  
REFIN/SS Common-Mode Range  
V
V
DD  
T
A
= +25°C  
30  
µV  
REFIN/SS Offset Voltage  
Error amplifier offset  
-4.5  
+4.5  
mV  
LX (ALL BUMPS COMBINED)  
LX On-Resistance, High Side  
V
V
V
V
= V  
= V  
- V = 2.5V  
21  
19  
16  
15  
7
IN  
IN  
IN  
IN  
BST  
BST  
LX  
I
I
= -0.4A  
= 0.4A  
= 2.5V  
mΩ  
mΩ  
A
LX  
LX  
- V = 3.3V  
LX  
= 2.5V  
= 3.3V  
LX On-Resistance, Low Side  
High-side sourcing  
Low-side sinking  
5.5  
5.5  
-2  
LX Peak Current-Limit Threshold  
V
V
IN  
IN  
7
V
V
= 0V  
LX  
LX  
T
= +25°C  
= +85°C  
A
A
LX Leakage Current  
= 3.6V, V = 0V  
= 3.6V  
+2  
µA  
EN  
T
0.2  
1
LX Switching Frequency  
LX Maximum Duty Cycle  
LX Minimum On-Time  
RMS LX Output Current  
ENABLE  
V
V
= 2.5V to 3.3V, T = +25°C  
0.92  
92  
1.03  
MHz  
%
IN  
IN  
A
= 2.5V to 3.3V, T = +25°C  
A
96  
80  
ns  
4
A
EN Input Logic-Low Threshold  
EN Input Logic-High Threshold  
0.7  
1
V
V
1.7  
T
T
= +25°C  
= +85°C  
A
V
V
= 0 or 3.6V,  
EN  
IN  
EN Input Current  
µA  
= V  
= 3.6V  
DD  
0.3  
A
_______________________________________________________________________________________  
3
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V = 3.3V, T = -40°C to +85°C. Typical values are at T = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3)  
A
IN  
DD  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
POWER-GOOD (PWRGD)  
Rising  
+165  
20  
°C  
°C  
V
V
falling, V  
= 0.6V  
= 0.6V  
87  
90  
93  
FB  
FB  
REFIN/SS  
% of  
Power-Good Threshold Voltage  
Power-Good Edge Deglitch  
MAX1540  
V
rising, V  
92.5  
REFIN/SS  
REFIN/SS  
Clock  
cycles  
V
falling or rising  
48  
FB  
PWRGD Output-Voltage Low  
I
= 4mA (sinking)  
0.03  
0.01  
0.15  
V
PWRGD  
PWRGD Leakage Current  
V
= V  
= 3.6V, V = 0.9V  
µA  
DD  
PWRGD  
FB  
OVERCURRENT LIMIT (HICCUP MODE)  
Clock  
cycles  
Current-Limit Startup Blanking  
Restart Time  
112  
896  
Clock  
cycles  
% of  
REFIN/SS  
FB Hiccup Threshold  
V
V
falling  
falling  
70  
36  
FB  
FB  
V
Hiccup Threshold Blanking Time  
µs  
Note 3: Specifications are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by  
A
design and characterization.  
Note 4: Guaranteed by design.  
Typical Operating Characteristics  
(V = V  
IN  
= 3.3V, output voltage = 1.8V, I = 4A, and T = +25°C, circuit of Figure 1, unless otherwise noted.)  
LOAD  
A
DD  
EFFICIENCY  
vs. OUTPUT CURRENT  
EFFICIENCY  
vs. OUTPUT CURRENT  
100  
100  
90  
80  
70  
60  
50  
40  
90  
V
= 1.8V  
OUT  
80  
70  
60  
50  
40  
V
= 1.8V  
OUT  
V
= 1.5V  
OUT  
V
= 1.5V  
V
= 1.2V  
OUT  
OUT  
V
= 1.2V  
OUT  
V
= 2.5V  
OUT  
V
= V = 3.3V  
IN  
V = V = 2.5V  
IN DD  
DD  
0.1  
1
OUTPUT CURRENT (A)  
10  
0.1  
1
OUTPUT CURRENT (A)  
10  
4
_______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
Typical Operating Characteristics (continued)  
(V = V  
IN  
= 3.3V, output voltage = 1.8V, I  
= 4A, and T = +25°C, circuit of Figure 1, unless otherwise noted.)  
A
DD  
LOAD  
EFFICIENCY  
vs. OUTPUT CURRENT  
FREQUENCY  
vs. INPUT VOLTAGE  
LINE REGULATION  
0.5  
0.4  
100  
90  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.3  
V
= 1.2V  
OUT  
0.2  
80  
V
= 1.8V  
OUT  
0.1  
0
70  
V
= 1.5V  
OUT  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
V
= 1.2V  
OUT  
60  
50  
40  
V
= 1.8V  
OUT  
3.0  
T
= +85°C  
A
T
= +25°C  
A
T
= -40°C  
A
V
V
= 3.3V  
DD  
= 2.5V  
IN  
2.4  
2.6  
2.8  
3.2  
3.4  
3.6  
0.1  
1
10  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
SWITCHING WAVEFORMS  
LOAD-TRANSIENT RESPONSE  
LOAD REGULATION  
MAX15040 toc08  
MAX15040 toc07  
0.10  
0
AC-COUPLED  
50mV/div  
V
OUT  
AC-COUPLED  
V
100mV/div  
OUT  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
I
LX  
2A/div  
V
= 2.5V  
OUT  
V
= 1.8V  
OUT  
0
I
1A/div  
0
OUT  
V
= 1.5V  
OUT  
2V/div  
0
V
LX  
V
= 1.2V  
OUT  
3
INTERNAL REFERENCE  
1
0
2
4
400ns/div  
40µs/div  
LOAD CURRENT (A)  
SHUTDOWN WAVEFORM  
SOFT-START WAVEFORM  
MAX15040 toc09  
MAX15040 toc10  
2V/div  
0
V
EN  
V
2V/div  
0
EN  
1V/div  
0
V
1V/div  
0
OUT  
V
OUT  
I
= 1.8A  
OUT  
10µs/div  
400µs/div  
_______________________________________________________________________________________  
5
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
Typical Operating Characteristics (continued)  
(V = V  
IN  
= 3.3V, output voltage = 1.8V, I  
= 4A, and T = +25°C, circuit of Figure 1, unless otherwise noted.)  
LOAD  
A
DD  
INPUT SHUTDOWN CURRENT  
vs. INPUT VOLTAGE  
RMS INPUT CURRENT DURING  
SHORT CIRCUIT vs. INPUT VOLTAGE  
HICCUP CURRENT LIMIT  
MAX15040 toc12  
20  
16  
12  
8
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
OUT  
1V/div  
0
MAX1540  
10A/div  
0
I
OUT  
5A/div  
0
4
I
IN  
V
= 0  
EN  
V
= 0  
OUT  
3.4  
0
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2.4  
2.6  
2.8  
3.0  
3.2  
3.6  
1ms/div  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
SOFT-START WITH REFIN/SS  
MAX15040 toc15  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
NO LOAD  
2A/div  
I
IN  
0
500mV/div  
0
V
REFIN/SS  
1V/div  
V
OUT  
0
2V/div  
0
V
PWRGD  
-40  
-15  
10  
35  
60  
85  
200µs/div  
TEMPERATURE (°C)  
STARTING INTO PREBIAS OUTPUT  
WITH NO LOAD  
STARTING INTO PREBIAS OUTPUT  
WITH 2A LOAD  
MAX15040 toc17  
MAX15040 toc16  
V
EN  
2V/div  
0
2V/div  
0
V
EN  
V
OUT  
OUT  
1V/div  
0
1V/div  
0
V
OUT  
2A/div  
0
I
V
PWRGD  
2V/div  
0
V
PWRGD  
2V/div  
0
400µs/div  
400µs/div  
6
_______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
Typical Operating Characteristics (continued)  
(V = V  
IN  
= 3.3V, output voltage = 1.8V, I = 4A, and T = +25°C, circuit of Figure 1, unless otherwise noted.)  
LOAD  
A
DD  
CASE TEMPERATURE  
vs. AMBIENT TEMPERATURE  
STARTING INTO PREBIAS OUTPUT ABOVE  
NOMINAL SETPOINT WITH NO LOAD  
MAX15040 toc18  
120  
CASE = TOP SIDE OF DEVICE  
MEASURED ON A MAX15040EVKIT  
100  
80  
60  
40  
20  
0
2V/div  
1V/div  
V
EN  
V
OUT  
0
2V/div  
0
-20  
-40  
V
PWRGD  
I
= 4A  
OUT  
60  
-40  
-15  
10  
35  
85  
1ms/div  
AMBIENT TEMPERATURE (°C)  
Pin Description  
BUMP  
NAME  
FUNCTION  
Analog/Power Ground. Connect GND to the PCB ground plane at one point near the input bypass  
capacitor return terminal as close as possible to the device.  
A1, A2  
GND  
IN  
Power-Supply Input. Input supply range is from 2.4V to 3.6V. Bypass IN to GND with a 22µF ceramic  
capacitor in parallel to a 0.1µ F ceramic capacitor as close as possible to the device.  
A3, A4  
B1, B2,  
B3  
Inductor Connection. All LX bumps are internally connected together. Connect all LX bumps to the  
switched side of the inductor. LX is high impedance when the device is in shutdown mode.  
LX  
Supply Input. V  
ceramic capacitor from V  
powers the internal analog core. Connect V  
to IN with a 10resistor. Connect a 1µF  
DD  
DD  
B4  
V
DD  
to GND.  
DD  
High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1µF capacitor.  
Internally Connected. Leave unconnected or connect to ground.  
C1  
C2, C3  
C4  
BST  
I.C.  
EN  
Enable Input. Connect EN to GND to disable the device. Connect EN to V  
to enable the device.  
DD  
Power-Good Output. PWRGD is an open-drain output that goes high impedance when V exceeds 92.5%  
FB  
of V  
and V  
is above 0.54V. PWRGD is internally pulled low when V falls below 90% of  
REFIN/SS FB  
REFIN/SS  
D1  
PWRGD  
V
or V  
is below 0.54V. PWRGD is internally pulled low when the device is in shutdown  
REFIN/SS  
REFIN/SS  
mode, V  
is below the internal UVLO threshold, or the device is in thermal shutdown.  
DD  
Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to GND to set  
the output voltage from 0.6V to 90% of V  
D2  
D3  
FB  
.
IN  
Voltage-Error Amplifier Output. Connect the necessary compensation network from COMP to FB and the  
converter output (see the Compensation Design section). COMP is internally pulled to GND when the  
device is in shutdown mode.  
COMP  
External Reference Input/Soft-Start Timing Capacitor Connection. Connect REFIN/SS to a system voltage to  
force FB to regulate to REFIN/SS voltage. REFIN/SS is internally pulled to GND when the device is in  
D4  
REFIN/SS shutdown and thermal shutdown mode. If no external reference is applied, the internal 0.6V reference is  
automatically selected. REFIN/SS is also used to perform soft-start. Connect a minimum of 1nF capacitor  
from REFIN/SS to GND to set the startup time (see the Soft-Start and Reference Input (REFIN/SS) section).  
_______________________________________________________________________________________  
7
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
Block Diagram  
V
DD  
MAX15040  
UVLO  
CIRCUITRY  
SHUTDOWN  
CONTROL  
EN  
5
CURRENT-LIMIT  
COMPARATOR  
BIAS  
GENERATOR  
LX  
ILIM THRESHOLD  
BST  
IN  
VOLTAGE  
REFERENCE  
BST SWITCH  
SHDN  
SOFT-START  
CONTROL  
LOGIC  
LX  
IN  
THERMAL  
SHUTDOWN  
REFIN/SS  
GND  
CURRENT-LIMIT  
COMPARATOR  
ERROR  
AMPLIFIER  
PWM  
COMPARATOR  
ILIM  
THRESHOLD  
FB  
1V  
P-P  
OSCILLATOR  
COMP  
PWRGD  
GND  
SHDN  
FB  
COMP CLAMPS  
0.9 x V  
REFIN/SS  
8
_______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
Typical Application Circuit  
INPUT  
2.4V TO 3.6V  
IN  
IN  
BST  
OPTIONAL  
C9  
R10  
C1  
C3  
0.1µF  
0.1µF  
2.2Ω  
U1  
22µF  
R1  
C15  
10Ω  
1000pF  
LX  
LX  
LX  
MAX15040  
L1  
0.47µH  
OUTPUT  
1.8V/4A  
V
DD  
C5  
1µF  
R6  
430Ω  
ON  
C4  
0.01µF  
C2  
22µF  
R3  
EN  
8.06kΩ  
OFF  
C10  
1%  
470pF  
GND  
FB  
R4  
5.1kΩ  
C11  
820pF  
R7  
REFIN/SS  
4.02kΩ  
C8  
0.033µF  
COMP  
1%  
V
DD  
C12  
33pF  
PWRGD  
R5  
20kΩ  
GND  
Figure 1. All-Ceramic Capacitor Design with V  
= 1.8V  
OUT  
Adjustable soft-start time provides flexibilities to mini-  
mize input startup inrush current. An open-drain,  
power-good (PWRGD) output goes high impedance  
Detailed Description  
The MAX15040 high-efficiency, voltage-mode switching  
regulator is capable of delivering up to 4A of output  
current. The MAX15040 provides output voltages from  
when V exceeds 92.5% of V  
and V  
FB  
REFIN/SS  
REFIN/SS  
is above 0.54V. PWRGD goes low when V falls below  
FB  
0.6V to (0.9 x V ) from 2.4V to 3.6V input supplies,  
IN  
90% of V  
or V  
is below 0.54V.  
REFIN/SS  
REFIN/SS  
making it ideal for on-board point-of-load applications.  
The output-voltage accuracy is better than 1% over  
load, line, and temperature.  
Controller Function  
The controller logic block is the central processor that  
determines the duty cycle of the high-side MOSFET  
under different line, load, and temperature conditions.  
Under normal operation, where the current-limit and tem-  
perature protection are not triggered, the controller logic  
block takes the output from the PWM comparator and  
generates the driver signals for both high-side and low-  
side MOSFETs. The control logic block controls the  
break-before-make logic and the timing for charging the  
bootstrap capacitors. The error signal from the voltage-  
error amplifier is compared with the ramp signal generat-  
ed by the oscillator at the PWM comparator to produce  
the required PWM signal. The high-side switch turns on  
at the beginning of the oscillator cycle and turns off when  
The MAX15040 features a 1MHz fixed switching frequen-  
cy, allowing the user to achieve all-ceramic capacitor  
designs and fast transient responses. The high operating  
frequency minimizes the size of external components.  
The MAX15040 is available in a 2mm x 2mm, 16-bump  
(4 x 4 array), 0.5mm pitch WLP package. The REFIN/SS  
function makes the MAX15040 an ideal solution for DDR  
and tracking power supplies. Using internal low-R  
DSON  
(15m) n-channel MOSFETs for both high- and low-side  
switches maintains high efficiency at both heavy-load  
and high-switching frequencies.  
The MAX15040 employs voltage-mode control architec-  
ture with a high-bandwidth (> 15MHz) error amplifier.  
The op-amp voltage-error amplifier works with Type III  
compensation to fully utilize the bandwidth of the high-  
frequency switching to obtain fast transient response.  
the ramp voltage exceeds the V  
signal or the cur-  
COMP  
rent-limit threshold is exceeded. The low-side switch  
then turns on for the remainder of the oscillator cycle.  
_______________________________________________________________________________________  
9
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
Current Limit  
The internal, high-side MOSFET has a typical 7A peak cur-  
rent-limit threshold. When current flowing out of LX  
exceeds this limit, the high-side MOSFET turns off and the  
low-side MOSFET turns on. The low-side MOSFET  
remains on until the inductor current falls below the low-  
side current limit. This lowers the duty cycle and causes  
the output voltage to droop until the current limit is no  
longer exceeded. The MAX15040 uses a hiccup mode to  
prevent overheating during short-circuit output conditions.  
Undervoltage Lockout (UVLO)  
The UVLO circuitry inhibits switching when V is  
DD  
below 1.9V (typ). Once V  
rises above 2V (typ), UVLO  
DD  
clears and the soft-start function activates. A 100mV  
hysteresis is built in for glitch immunity.  
BST  
The gate-drive voltage for the high-side, n-channel  
switch is generated by a flying-capacitor boost circuit.  
The capacitor between BST and LX is charged from the  
V supply while the low-side MOSFET is on. When the  
IN  
5
During current limit, if V  
REFIN/SS  
drops below 70% of  
FB  
low-side MOSFET is switched off, the voltage of the  
capacitor is stacked above LX to provide the necessary  
turn-on voltage for the high-side internal MOSFET.  
V
and stays below this level for typically 36µs  
(12µs min) or more, the device enters hiccup mode.  
The high-side MOSFET and the low-side MOSFET turn  
off and both COMP and REFIN/SS are internally pulled  
low. The device remains in this state for 896 clock  
cycles and then attempts to restart for 112 clock  
cycles. If the fault-causing current limit has cleared, the  
device resumes normal operation. Otherwise, the  
device reenters hiccup mode.  
Power-Good Output (PWRGD)  
PWRGD is an open-drain output that goes high  
impedance when V is above 92.5% x V  
and  
REFIN/SS  
FB  
V
is above 0.54V. PWRGD pulls low when V  
REFIN/SS  
is below 90% of V  
FB  
for at least 48 clock cycles  
REFIN/SS  
or V  
is below 0.54V. PWRGD is low during  
REFIN/SS  
shutdown.  
Soft-Start and Reference Input (REFIN/SS)  
The MAX15040 utilizes an adjustable soft-start function  
to limit inrush current during startup. An 8µA (typ) cur-  
rent source charges an external capacitor connected to  
REFIN/SS. The soft-start time is adjusted by the value of  
the external capacitor from REFIN/SS to GND. The  
required capacitance value is determined as:  
Setting the Output Voltage  
The MAX15040 output voltage is adjustable from 0.6V  
to 90% of V by connecting FB to the center tap of a  
IN  
resistor-divider between the output and GND (Figure  
3). To determine the values of the resistor-divider, first  
select the value of R3 between 2kand 10k. Then  
use the following equation to calculate R4:  
8µA × t  
SS  
R4 = (V x R3)/(V  
- V  
)
FB  
C =  
FB  
OUT  
0.6V  
where V  
is equal to the reference voltage at  
FB  
REFIN/SS and V  
is the output voltage. For V  
=
OUT  
OUT  
where t  
is the required soft-start time in seconds.  
SS  
0.6V, remove R4. If no external reference is applied at  
Connect a minimum 1nF capacitor between REFIN/SS  
and GND. REFIN/SS is also an external reference input  
(REFIN/SS). The device regulates FB to the voltage  
applied to REFIN/SS. The internal soft-start is not avail-  
able when using an external reference. Figure 2 shows  
a method of soft-start when using an external refer-  
ence. If an external reference is not applied, the device  
uses the internal 0.6V reference.  
REFIN/SS, the internal reference is automatically select-  
ed and V becomes 0.6V.  
FB  
LX  
R3  
R4  
MAX15040  
R1  
FB  
REFIN/SS  
R2  
C
MAX15040  
Figure 2. Typical Soft-Start Implementation with External  
Reference  
Figure 3. Setting the Output Voltage with a Resistor Voltage-  
Divider  
10 ______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
capacitor’s ESL. Estimate the output voltage ripple due  
to the output capacitance, ESR, and ESL as follows:  
Shutdown Mode  
Drive EN to GND to shut down the device and reduce  
quiescent current to less than 0.1µA. During shutdown,  
LX is high impedance. Drive EN high to enable the  
MAX15040.  
V
= V  
+
RIPPLE  
RIPPLE(C)  
V
+ V  
RIPPLE(ESL)  
RIPPLE(ESR)  
Thermal Protection  
where the output ripple due to output capacitance,  
ESR, and ESL is:  
Thermal-overload protection limits total power dissipation  
in the device. When the junction temperature exceeds T  
J
I
PP  
= +165°C, a thermal sensor forces the device into shut-  
down, allowing the die to cool. The thermal sensor turns  
the device on again after the junction temperature cools  
by 20°C, causing a pulsed output during continuous  
overload conditions. The soft-start sequence begins after  
recovery from a thermal-shutdown condition.  
V
=
RIPPLE(C)  
8 x C  
x f  
S
OUT  
V
= I  
x ESR  
x ESL or  
x ESL  
RIPPLE(ESR)  
PP  
I
t
PP  
V
=
RIPPLE(ESL)  
Applications Information  
ON  
I
t
IN and V  
Decoupling  
DD  
PP  
V
=
RIPPLE(ESL)  
To decrease the noise effects due to the high switching  
frequency and maximize the output accuracy of  
OFF  
or whichever is higher.  
the MAX15040, decouple V with a 22µF capacitor in  
IN  
parallel with a 0.1µF capacitor from V to GND. Also  
IN  
The peak-to-peak inductor current (I ) is:  
P-P  
decouple V  
with a 1µF capacitor from V  
to GND.  
DD  
DD  
Place these capacitors as close as possible to the device.  
V
V  
V
OUT  
IN  
OUT  
I
=
x
PP  
f × L  
V
IN  
Inductor Selection  
Choose an inductor with the following equation:  
S
Use these equations for initial output capacitor selec-  
tion. Determine final values by testing a prototype or an  
evaluation circuit. A smaller ripple current results in less  
output voltage ripple. Since the inductor ripple current  
is a factor of the inductor value, the output voltage rip-  
ple decreases with larger inductance. Use ceramic  
capacitors for low ESR and low ESL at the switching  
frequency of the converter. The ripple voltage due to  
ESL is negligible when using ceramic capacitors.  
V
× (V V  
OUT  
)
OUT  
IN  
L =  
f × V × LIR ×I  
S
IN  
OUT(MAX)  
where LIR is the ratio of the inductor ripple current to full  
load current at the minimum duty cycle and f is the  
S
switching frequency (1MHz). Choose LIR between 20%  
to 40% for best performance and stability.  
Use an inductor with the lowest possible DC resistance  
that fits in the allotted dimensions. Powdered iron or ferrite  
core types are often the best choice for performance.  
With any core material, the core must be large enough  
not to saturate at the current limit of the MAX15040.  
Load-transient response depends on the selected out-  
put capacitance. During a load transient, the output  
instantly changes by ESR x I  
. Before the con-  
LOAD  
troller can respond, the output deviates further,  
depending on the inductor and output capacitor val-  
ues. After a short time, the controller responds by regu-  
lating the output voltage back to its predetermined  
value. The controller response time depends on the  
closed-loop bandwidth. A higher bandwidth yields a  
faster response time, preventing the output from deviat-  
ing further from its regulating value. See the Compen-  
sation Design section for more details.  
Output-Capacitor Selection  
The key selection parameters for the output capacitor are  
capacitance, ESR, ESL, and voltage-rating requirements.  
These affect the overall stability, output ripple voltage,  
and transient response of the DC-DC converter. The out-  
put ripple occurs due to variations in the charge stored  
in the output capacitor, the voltage drop due to the  
capacitor’s ESR, and the voltage drop due to the  
______________________________________________________________________________________ 11  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
total equivalent series resistance of the output capacitor.  
If there is more than one output capacitor of the same  
type in parallel, the value of the ESR in the above equa-  
tion is equal to that of the ESR of a single output capaci-  
tor divided by the total number of output capacitors.  
Input-Capacitor Selection  
The input capacitor reduces the current peaks drawn  
from the input power supply and reduces switching  
noise in the device. The total input capacitance must  
be equal to or greater than the value given by the fol-  
lowing equation to keep the input ripple voltage within  
the specification and minimize the high-frequency rip-  
ple current being fed back to the input source:  
The MAX15040 high switching frequency allows the use  
of ceramic output capacitors. Since the ESR of ceramic  
capacitors is typically very low, the frequency of the  
associated transfer function zero is higher than the unity-  
D x T x I  
S
OUT  
gain crossover frequency, f , and the zero cannot be  
C
C
=
IN_MIN  
MAX1540  
V
used to compensate for the double pole created by the  
output inductor and capacitor. The double pole produces  
a gain drop of 40dB/decade and a phase shift of 180°.  
The compensation network must compensate for this  
gain drop and phase shift to achieve a stable high-band-  
width closed-loop system. Therefore, use type III com-  
pensation as shown in Figure 4 and Figure 5. Type III  
compensation possesses three poles and two zeros with  
INRIPPLE  
where V  
is the maximum allowed input ripple  
IN-RIPPLE  
voltage across the input capacitors and is recommend-  
ed to be less than 2% of the minimum input voltage, D  
is the duty cycle (V  
/V ), and T is the switching  
OUT IN S  
period (1/f ) = 1µs.  
S
The impedance of the input capacitor at the switching  
frequency should be less than that of the input source so  
high-frequency switching currents do not pass through  
the input source, but are instead shunted through the  
input capacitor. The input capacitor must meet the ripple  
current requirement imposed by the switching currents.  
The RMS input ripple current is given by:  
the first pole, f  
, located at zero frequency (DC).  
P1_EA  
Locations of other poles and zeros of the type III compen-  
sation are given by:  
1
f
=
Z1_EA  
2π x R1 x C1  
1
f
=
Z2 _EA  
V
× (V V  
)
OUT  
IN  
OUT  
2π x R3 x C3  
I
= I  
×
RIPPLE  
LOAD  
V
IN  
1
f
=
=
where I  
is the input RMS ripple current.  
P3 _EA  
RIPPLE  
2π x R1 x C2  
Compensation Design  
1
The power transfer function consists of one double pole  
and one zero. The double pole is introduced by the  
f
P2 _EA  
2π x R2 x C3  
inductor, L, and the output capacitor, C . The ESR of the  
O
The above equations are based on the assumptions that  
C1 >> C2, and R3 >> R2, which are true in most appli-  
cations. Placements of these poles and zeros are deter-  
mined by the frequencies of the double pole and ESR  
zero of the power transfer function. It is also a function  
of the desired closed-loop bandwidth. The following  
section outlines the step-by-step design procedure to  
calculate the required compensation components for  
the MAX15040.  
output capacitor determines the zero. The double pole  
and zero frequencies are given as follows:  
1
f
= f  
=
P1_LC P2_LC  
R +ESR⎞  
O
2π x L x C  
x
O
+R  
L
R
O
1
f
=
Z_ESR  
The output voltage is determined by:  
2π x ESR x C  
O
where R is equal to the sum of the output inductor’s DC  
L
0.6×R3  
R4 =  
resistance (DCR) and the internal switch resistance,  
V
OUT  
0.6  
(
)
R
. A typical value for R  
output load resistance, which is equal to the rated output  
voltage divided by the rated output current. ESR is the  
is 15m. R is the  
DSON  
DSON O  
For V  
= 0.6V, R4 is not needed.  
OUT  
12 ______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
COMPENSATION  
TRANSFER  
FUNCTION  
L
OPEN-LOOP  
GAIN  
V
OUT  
LX  
THIRD  
POLE  
C
OUT  
R2  
C3  
DOUBLE POLE  
MAX15040  
R3  
R4  
GAIN (dB)  
FB  
SECOND  
POLE  
POWER-STAGE  
C1  
R1  
C2  
TRANSFER  
FUNCTION  
COMP  
FIRST AND SECOND ZEROS  
FREQUENCY (Hz)  
Figure 4. Type III Compensation Network  
Figure 5. Type III Compensation Illustration  
The zero-cross frequency of the closed-loop, f , should  
C
The above equations provide accurate compensation  
when the zero-cross frequency is significantly higher than  
the double-pole frequency. When the zero-cross frequen-  
cy is near the double-pole frequency, the actual zero-  
cross frequency is higher than the calculated frequency.  
In this case, lowering the value of R1 reduces the zero-  
cross frequency. Also, set the third pole of the type III  
compensation close to the switching frequency (1MHz) if  
the zero-cross frequency is above 200kHz to boost the  
phase margin. The recommended range for R3 is 2kto  
10k. Note that the loop compensation remains  
unchanged if only R4’s resistance is altered to set differ-  
ent outputs.  
be between 10% and 20% of the switching frequency,  
f
(1MHz). A higher zero-cross frequency results in  
S
faster transient response. Once f is chosen, C1 is cal-  
C
culated from the following equation:  
V
IN  
2.5  
V
PP  
C1 =  
R
L
2 x π x R3 x (1+  
) × f  
C
R
O
where V  
= 1V  
(typ).  
P-P  
P-P  
Due to the underdamped nature of the output LC dou-  
ble pole, set the two zero frequencies of the type III  
compensation less than the LC double-pole frequency  
to provide adequate phase boost. Set the two zero fre-  
quencies to 80% of the LC double-pole frequency.  
Hence:  
Soft-Starting into a Prebiased Output  
The MAX15040 soft-starts into a prebiased output without  
discharging the output capacitor. In safe prebiased start-  
up, both low-side and high-side switches remain off to  
avoid discharging the prebiased output. PWM operation  
starts when the voltage on REFIN/SS crosses the voltage  
on FB. The PWM activity starts with the low-side switch  
turning on first to build the bootstrap capacitor charge.  
Power-good (PWRGD) asserts 48 clock cycles after FB  
crosses 92.5% of the final regulation set point. After 4096  
clock cycles, the device switches from prebiased safe  
startup mode to forced PWM mode.  
L x C x (R + ESR)  
1
O
O
R1 =  
C3 =  
x
0.8 x C1  
R + R  
L O  
L x C x (R + ESR)  
1
O
O
x
0.8 x R3  
R + R  
L O  
Setting the second compensation pole, f  
Z_ESR  
, at  
P2_EA  
The MAX15040 is capable of starting into a prebias volt-  
age higher than the nominal set point without abruptly dis-  
charging the output. This is achieved by using the sink  
current control of the low-side MOSFET, which has four  
internally set sinking current-limit thresholds. An internal  
4-bit DAC steps through these thresholds, starting from  
the lowest current limit to the highest, in 128 clock cycles  
on every power-up.  
f
yields:  
C
x ESR  
O
R2 =  
C
3
Set the third compensation pole at 1/2 of the switching  
frequency (500kHz) to gain phase margin. Calculate  
C2 as follows:  
1
C2 =  
π x R1 x f  
S
______________________________________________________________________________________ 13  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
PCB Layout Considerations and  
Pin Configuration  
Thermal Performance  
Careful PCB layout is critical to achieve clean and stable  
(BUMPS ON BOTTOM)  
operation. It is highly recommended to duplicate the  
MAX15040 evaluation kit layout for optimum performance.  
If deviation is necessary, follow these guidelines for good  
PCB layout:  
TOP VIEW  
1) Connect input and output capacitors to the power  
ground plane; connect all other capacitors to the sig-  
nal ground plane.  
GND  
A1  
GND  
IN  
IN  
A2  
A3  
A4  
MAX1540  
LX  
B1  
LX  
B2  
LX  
B3  
V
DD  
2) Place capacitors on V , IN, and REFIN/SS as close  
DD  
as possible to the device and the corresponding  
bump using direct traces. Keep power ground plane  
and signal ground plane separate.  
B4  
BST  
C1  
I.C.  
C2  
I.C.  
C3  
EN  
C4  
3) Keep the high-current paths as short and wide as  
possible. Keep the path of switching current short  
and minimize the loop area formed by LX, the out-  
put capacitors, and the input capacitors.  
PWRGD  
D1  
FB  
D2  
COMP REFIN/SS  
D3  
D4  
4) Connect IN, LX, and GND separately to a large  
copper area to help cool the device to further  
improve efficiency and long-term reliability.  
WLP  
5) Ensure all feedback connections are short. Place  
the feedback resistors and compensation compo-  
nents as close to the device as possible.  
6) Route high-speed switching nodes, such as LX and  
BST, away from sensitive analog areas (FB, COMP).  
Chip Information  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
16 WLP  
PACKAGE  
CODE  
W162B2+1  
OUTLINE  
NO.  
21-0200  
LAND  
PATTERN NO.  
14 ______________________________________________________________________________________  
High-Efficiency, 4A, Step-Down Regulator with  
Integrated Switches in 2mm x 2mm Package  
MAX1540  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
1/09  
5/10  
7/10  
Initial release  
1–4  
2
Revised the Absolute Maximum Ratings and Electrical Characteristics.  
Revised the Absolute Maximum Ratings.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX15041

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal
MAXIM

MAX15041ETE

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal
MAXIM

MAX15041ETE+

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal Switches
MAXIM

MAX15041ETE+T

Switching Regulator, Current-mode, 8A, 385kHz Switching Freq-Max, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TQFN-16
MAXIM

MAX15041ETE+TC90

LOW-COST, 3A, 4.5V TO 28V INPUT, 350KHZ, PWM STEP-DOWN DC-DC
MAXIM

MAX15041_10

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal Switches
MAXIM

MAX15041_11

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal
MAXIM

MAX15046

40V, High-Performance, Synchronous Buck Controller
MAXIM

MAX15046AAEE+

40V, High-Performance, Synchronous Buck Controller
MAXIM

MAX15046B

350kHz Switching Frequency
MAXIM

MAX15046BAEE+

40V, High-Performance, Synchronous Buck Controller
MAXIM

MAX15046BEVKIT

350kHz Switching Frequency
MAXIM