MAX8662-MAX8663电源管理IC [ETC]

; - 12号的铝制车身绘( RAL 7032 )
MAX8662-MAX8663电源管理IC
型号: MAX8662-MAX8663电源管理IC
厂家: ETC    ETC
描述:


- 12号的铝制车身绘( RAL 7032 )

文件: 总74页 (文件大小:3034K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0732; Rev 1; 12/08  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
```````````````````````````````````` গၤ  
```````````````````````````````````` ᄂቶ  
ೝവ቉ൈ঱
:6&
2NI{ଢ଼ኹ
ஂ໭  
NBY97730NBY9774
Ꮞ਌ಯJD )QNJD*ဵጙ౒঱቉Ăஜ
 
ቯ໭ୈLjး፿᎖ᒝถक़ᆷ
જĂQEBĂઑೊᆀ൥࿸۸ጲૺ  
໚჈
ܣ
ቑါ࿸۸ăকᇹ೰໭ୈૹ
߅
ೝവᄴ
ݛ
ଢ଼ኹ
ஂ໭Ă  
ጙവభད
3.8ৈ
ڹ
਒MFE
ဍኹ
ஂ໭Ă႐വ
ތ
ሣ  
ቶᆮኹ໭)MEP*ጲૺ
ஂᶲಭᔇ)Mj,*
ߔ࢟
ሣቶ
࢟ߠ
໭ă  
Nbyjn
Tnbsu Qpxfs TfmfdupsUN )TQT*
വభဣሚᅪ
࢟ݝ
Ꮞ  
)ୣഗး๼໭Ă໱
ޱ
း๼໭૞VTC
Ꮞ*Ă
ߔ࢟
ጲૺᇹᄻঌ  
Ᏺᒄମ
ڔࡼ
ཝॊ๼ă
ᇹᄻख़ᒋঌᏲ঱᎖ᅪ
࢟ݝ
ၒ  
߲ถೆဟLj୓ᎅ
ߠݗߔ࢟
Ⴥኊ
࢟ࡼ
ഗă
ঌᏲჅኊ
ഗ  
୷ቃဟLjᏴ൸ᔗᇹᄻ৙
ࡼ࢟
༄ᄋሆᆐ
࢟ߠߔ࢟
ăེۣઐ  
വሢᒜ
࢟ߠߔ࢟
Ⴅൈਜ਼ᅪ
࢟ݝ
ഗLj
ܜ
඾ਭེăQNJD  
భဧᇹᄻ৔ᔫᏴᇄ
ߔ࢟
ೌ୻૞ጯह
ࡼߔ࢟࢟
ᄟୈሆă  
ஂ໭ǖ߲
ኹ1/:9WᒗWJOLjᄋ৙2311nB
ഗ  
ดਖ਼
ஂ໭ǖ߲
ኹ1/:9WᒗWJOLjᄋ৙:11nB
ഗ  
2NI{ဍኹXMFEད
໭  
Ᏼ41nB!)
ᒋ*ሆLjభད
ࡉࣶࣅ
8ৈ
ڹ
਒MFE  
QXNਜ਼ෝผ
਒఼ᒜ  
5വ
ތ
ሣቶᆮኹ໭  
2/8Wᒗ6/6W
ၒྜྷपᆍ  
26μB
ஸზ
ഗ  
 
ஂMj,
࢟ߠߔ࢟
໭  
း๼໭૞VTCၒྜྷ  
ེਭᏲۣઐ  
ᒝถ
Ꮞኡᐋ໭)TQT*  
ୣഗး๼໭0VTC૞
ߔ࢟
 
ߠ
࢟࢟
ഗਜ਼ᇹᄻঌᏲॊ๼  
NBY9773
ݧ
፿7nn y 7nnĂ59፛୭ۡቯRGOॖᓤLjऎ  
NBY9774
ࡒݙ
MFEད
໭Lj
ݧ
፿6nn y 6nnĂ51፛୭ۡ  
ቯRGOॖᓤă  
```````````````````````````````````` ።፿  
ᒝถ
જਜ਼QEB  
``````````````````````````````` 
৪ቧᇦ  
PART  
TEMP RANGE  
PIN-PACKAGE  
48 Thin QFN-EP*  
6mm x 6mm x 0.8mm  
NQ4ਜ਼
ܣ
ቑါ඙ᄏ݃ह໭  
MAX8662ETM+  
-40°C to +85°C  
ᐾ࿟
ฎਜ਼ᇄሣ၄
ߒ
ᓤᒙ  
40 Thin QFN-EP*  
5mm x 5mm x 0.8mm  
MAX8663ETL+  
-40°C to +85°C  
+
ܭ
ာᇄ໺)Qc*0९੝SpIT
ܪ
ॖᓤă  
*FQ!>!੆๤ă  
``````````````````````````````` ፛୭๼ᒙ  
``````````````````````````` 
ቯ৔ᔫ
വ  
TOP VIEW  
DC/USB  
INPUT  
TO SYSTEM  
POWER  
DC  
SYS  
BAT  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
Li+  
BATTERY  
FB1  
EN6  
EN7  
LX3  
24  
23  
22  
PWR OK  
37  
38  
39  
POK  
CHG  
CHARGE  
STATUS  
PWM  
EN5  
MAX8662  
OUT1  
0.98V TO V / 1.2A  
IN  
MAX8663 LX1  
CHARGE  
ENABLE  
21 EN4  
20 OUT5  
19 IN45  
PG3 40  
CEN  
EN1  
EN2  
OUT2  
0.98V TO V / 0.9A  
IN  
LX2  
LX3  
OUT6 41  
TO SYS  
IN67  
42  
43  
MAX8662  
18  
OUT4  
OUT7  
OUT3  
30mA  
WLED  
EN3  
EN4  
EN5  
17 GND  
16 REF  
VL 44  
(MAX8662 ONLY)  
CS  
SL1 45  
CT  
14 ISET  
13  
SL2  
PSET  
POK  
15  
46  
47  
48  
EN6  
EN7  
SL1  
500mA  
150mA  
300mA  
150mA  
OUT4  
OUT5  
OUT6  
OUT7  
THM  
OUT4–OUT7  
VOLTAGE  
2
3
4
5
6
7
8
9
10  
1
11  
12  
SELECT  
SL2  
THIN QFN  
(6mm x 6mm)  
፛୭๼ᒙ)ኚ*Ᏼၫ௣ᓾ೯
ᔢઁ৊߲ă  
Tnbsu!Qpxfs!TfmfdupsဵNbyjn!Joufhsbufe!Qspevdut-!Jod/
ܪ
ă  
________________________________________________________________ Maxim Integrated Products  
1
۾
ᆪဵNbyjnᑵါ፞ᆪᓾ೯
ፉᆪLjNbyjn
࣪ݙ
डፉᒦ
ތࡼ
ፊ૞ᎅࠥ
ޘ
ࡇࡼ
ᇙঌᐊă༿ᓖፀፉᆪᒦభถ
Ᏼᆪᔊᔝᒅ૞  
डፉ
ᇙLjྙኊཀྵཱྀྀੜ
ᓰཀྵቶLj༿
ݬ
ఠ Nbyjnᄋ৙
፞ᆪ
ۈ
ᓾ೯ă  
Ⴣན඾ॅዹອਜ਼ᔢቤ
ࡼۈ
ၫ௣ᓾ೯Lj༿षᆰNbyjn
ᓍ጑ǖxxx/nbyjn.jd/dpn/doă  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
ABSOLUTE MAXIMUM RATINGS  
LX3 to GND ............................................................-0.3V to +33V  
DC_ to GND..............................................................-0.3V to +9V  
BAT_, CEN, CHG, EN_, PEN_, POK, PV_, PWM,  
SYS1 + SYS2 Continuous Current (2 pins) ..............................3A  
LX_ Continuous Current........................................................1.5A  
Continuous Power Dissipation (T = +70°C)  
A
40-Pin 5mm x 5mm Thin QFN  
(derate 35.7mW/°C above +70°C)  
(multilayer board).......................................................2857mW  
48-Pin 6mm x 6mm Thin QFN  
CT, ISET, PSET, THM to GND .....................-0.3V to (V + 0.3V)  
(derate 37mW/°C above +70°C) (multilayer board)...2963mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature Range............................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
VL  
OUT4, OUT5 to GND................................-0.3V to (V  
OUT6, OUT7 to GND................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
IN45  
IN67  
PG_ to GND...........................................................-0.3V to +0.3V  
BAT1 + BAT2 Continuous Current...........................................3A  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
30NBY974  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068μF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
INPUT LIMITER  
DC Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
(Note 2)  
4.1  
3.9  
6.6  
8.0  
4.1  
7.2  
V
V
V
DC  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
V
V
V
rising, 500mV hysteresis  
rising, 100mV hysteresis  
4.0  
6.9  
1.5  
0.9  
DC_L  
DC_H  
DC  
DC  
V
I
I
= I  
= I  
= 0mA, V  
= 0V  
= 5V  
SYS  
SYS  
BAT  
BAT  
CEN  
CEN  
DC Supply Current  
mA  
μA  
Ω
= 0mA, V  
V
= 5V, V  
= 5V, V  
= V  
= 0V (USB  
PEN2  
DC  
CEN  
PEN1  
DC Shutdown Current  
110  
0.1  
50  
180  
0.2  
85  
suspend mode)  
DC-to-SYS Dropout  
On-Resistance  
R
V
= 5V, I = 400mA, V  
= 5V  
CEN  
DC_SYS  
DC  
SYS  
DC-to-BAT Dropout  
Threshold  
When V  
regulation and charging stops, V  
SYS DC  
falling, 150mV hysteresis  
V
20  
mV  
DR_DC_BAT  
VL Voltage  
V
I
= 0 to 10mA  
3.1  
5.2  
3.3  
5.3  
3.5  
5.4  
V
V
VL  
VL  
SYS Regulation Voltage  
V
V
= 5.8V, I  
= 1mA, V  
= 5V  
SYS_REG  
DC  
SYS  
CEN  
V
R
= 5V, V  
= 5V,  
= 5V,  
= 5V,  
= 5V  
PEN1  
PEN2  
1800  
900  
450  
450  
2000  
1000  
500  
475  
90  
2200  
1100  
550  
1.5kΩ  
PSET =  
V
R
= 5V, V  
= 3kΩ  
PEN1  
PEN2  
PEN2  
PEN2  
PSET  
V
R
= 5V, V  
= 6kΩ  
PEN1  
DC Input Current Limit  
I
V
= 5V, V  
= 4.0V  
SYS  
mA  
DC_LIM  
DC  
PSET  
V
= 0V, V  
PEN1  
500  
(500mA USB mode)  
V
= V = 0V  
PEN1  
PEN2  
80  
100  
6.0  
(100mA USB mode)  
PSET Resistance Range  
R
Guaranteed by SYS current limit  
Current-limit ramp time  
1.5  
kΩ  
PSET  
Input Limiter Soft-Start Time  
T
1.5  
ms  
SS_DC_SYS  
2
_______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger) (continued)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068μF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
MAX UNITS  
BATTERY CHARGER  
BAT-to-SYS On-Resistance  
R
V
= 0V, V  
= 4.2V, I = 1A  
SYS  
80  
mΩ  
BAT_REG  
BAT_REG  
DC  
BAT  
V
I
= 5V, V  
= V  
= 0V (USB 100mA mode),  
PEN2  
DC  
PEN1  
BAT-to-SYS Reverse  
Regulation Voltage  
= 200mA (BAT to SYS voltage drop during SYS  
50  
100  
150  
mV  
SYS  
overload)  
T
T
= +25°C  
4.179 4.200 4.221  
4.158 4.200 4.242  
A
A
BAT Regulation Voltage  
BAT Recharge Threshold  
V
I
= 0mA  
V
BAT  
= -40°C to +85°C  
BAT voltage drop to restart charging  
-140  
-100  
1250  
750  
-60  
mV  
R
R
R
= 1.89kΩ  
= 3.15kΩ  
= 7.87kΩ  
ISET  
ISET  
ISET  
I
= 0mA,  
SYS  
BAT Fast-Charge Current  
R
V
= 1.5kΩ,  
675  
825  
mA  
PSET  
= V  
= 5V  
PEN1  
PEN2  
300  
V
= 2.5V, R  
= 3.15kΩ (prequalification  
ISET  
BAT  
BAT Prequalification Current  
ISET Resistance Range  
75  
mA  
current is 10% of fast-charge current)  
Guaranteed by BAT charging current  
(1.5A to 300mA)  
R
1.57  
2.9  
7.87  
kΩ  
ISET  
R
= 3.15kΩ (ISET output voltage to actual  
ISET  
V
-to-I  
Ratio  
2
V/A  
ms  
V
ISET  
BAT  
charge-current ratio)  
Charger Soft-Start Time  
t
Charge-current ramp time  
1.5  
3.0  
SS_CHG  
BAT Prequalification  
Threshold  
V
rising, 180mV hysteresis  
3.1  
BAT  
V
V
= 0V  
0.01  
0.01  
5
5
DC  
DC  
V
= 4.2V,  
BAT  
BAT Leakage Current  
μA  
outputs disabled  
= V  
= 5V  
CEN  
I
where CHG goes  
BAT  
high, and top-off timer;  
falling (7.5% of  
fast-charge current)  
CHG and Top-Off Threshold  
R
ISET  
= 3.15kΩ  
56.25  
300  
mA  
I
BAT  
Timer-Suspend Threshold  
Timer Accuracy  
I
falling (Note 3)  
= 0.068μF  
250  
-20  
350  
+20  
mV  
%
BAT  
C
CT  
From CEN high to end of prequalification charge,  
= 2.5V, C = 0.068μF  
Prequalification Time  
Charge Time  
t
30  
300  
30  
Min  
Min  
Min  
PREQUAL  
V
BAT  
CT  
From CEN high to end of fast charge,  
= 0.068μF  
t
FST-CHG  
C
CT  
From CHG high to end of fast charge,  
= 0.068μF  
Top-Off Time  
t
TOP-OFF  
C
CT  
Charger Thermal-Limit  
Temperature  
(Note 4)  
= 3kΩ  
100  
50  
°C  
Charger Thermal-Limit Gain  
R
mA/°C  
PSET  
_______________________________________________________________________________________  
3
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger) (continued)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068μF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
THERMISTOR INPUT (THM)  
THM Internal Pullup  
Resistance  
10  
kΩ  
THM Resistance Threshold,  
Hot  
Resistance falling (1% hysteresis)  
Resistance rising (1% hysteresis)  
Resistance falling  
3.73  
26.98  
270  
3.97  
28.7  
300  
4.21  
30.42  
330  
kΩ  
kΩ  
Ω
THM Resistance Threshold,  
Cold  
THM Resistance Threshold,  
Disabled  
30NBY974  
LOGIC I/O (POK, CHG, PEN_, EN_, PWM, CEN)  
Input Logic-High Level  
1.3  
-1  
V
V
Input Logic-Low Level  
0.4  
+1  
V
V
= 0V to 5.5V, T = +25°C  
+0.001  
0.01  
10  
LOGIC  
LOGIC  
A
Logic Input-Leakage Current  
μA  
mV  
μA  
= 5.5V, T = +85°C  
A
Logic Output-Voltage Low  
I
= 1mA  
100  
1
SINK  
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Logic Output-High Leakage  
Current  
V
= 5.5V  
T
LOGIC  
A
ELECTRICAL CHARACTERISTICS (Output Regulator)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYSTEM  
SYS Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
2.6  
2.4  
5.5  
2.6  
70  
35  
35  
2
V
V
SYS  
SYS Undervoltage Threshold  
V
V
rising, 100mV hysteresis  
2.5  
35  
16  
16  
1
UVLO_SYS  
SYS  
Extra supply current when at least one output is on  
OUT1 on, V  
OUT2 on, V  
OUT3 on  
= 0V  
= 0V  
μA  
PWM  
PWM  
mA  
SYS Bias Current Additional  
Regulator Supply Current  
Not including  
SYS bias current  
OUT4 on (current into IN45)  
OUT5 on (current into IN45)  
OUT6 on (current into IN67)  
OUT7 on (current in IN67)  
20  
16  
17  
16  
1.0  
30  
25  
27  
25  
1.1  
μA  
Internal Oscillator Frequency  
PWM frequency of OUT1, OUT2, and OUT3  
0.9  
MHz  
BUCK REGULATOR 1  
I
+ I  
, no load,  
SYS  
PV1  
V
V
= 0V  
= 5V  
16  
35  
μA  
PWM  
PWM  
Supply Current  
not including SYS  
bias current  
2.9  
mA  
Output Voltage Range  
V
Guaranteed by FB accuracy  
0.98  
3.30  
V
OUT1  
Maximum Output Current  
I
1200  
mA  
OUT1  
4
_______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
ELECTRICAL CHARACTERISTICS (Output Regulator) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
FB Regulation Accuracy  
SYMBOL  
CONDITIONS  
= 0.98V, I = 0 to 1200mA,  
= 0.98V to 3.3V  
MIN  
TYP  
MAX UNITS  
From V  
FB1  
OUT1  
-3  
+3  
%
μA  
Ω
V
OUT1  
FB1 Input Leakage Current  
pMOS On-Resistance  
0.01  
0.12  
0.15  
0.2  
0.10  
0.24  
V
V
V
V
= 3.3V  
= 2.6V  
= 3.3V  
= 2.6V  
PV1  
PV1  
PV1  
PV1  
I
I
= 100mA  
LX1  
0.4  
2.2  
nMOS On-Resistance  
= 100mA  
Ω
LX1  
0.3  
pMOS Current Limit  
1.4  
1.8  
A
Skip Mode Transition Current  
nMOS Zero-Cross Current  
90  
mA  
mA  
25  
V
= V  
= 5.5V  
PV1  
0.01  
1.00  
LX1  
LX1  
V
= 0V, V  
= +25°C  
= 5.5V,  
SYS  
EN1  
LX Leakage  
μA  
T
A
V
= 0V, V  
= 5.5V  
-5.00 -0.01  
PV1  
BUCK REGULATOR 2  
Supply Current  
V
V
= 0V  
= 5V  
16  
2.1  
35  
μA  
mA  
V
PWM  
PWM  
I
+ I  
, no load, not  
SYS  
PV2  
including SYS bias current  
Output Voltage Range  
Guaranteed by FB accuracy  
0.98  
3.30  
Maximum Output Current  
900  
mA  
From V  
= 0.98V, I  
= 0 to 600mA,  
OUT2  
FB2  
FB Regulation Accuracy  
FB2 Input Leakage Current  
pMOS On-Resistance  
-3  
+3  
%
μA  
Ω
V
= 0.98V to 3.3V  
OUT2  
0.01  
0.2  
0.3  
0.2  
0.3  
0.10  
0.4  
V
V
V
V
= 3.3V  
= 2.6V  
= 3.3V  
= 2.6V  
PV2  
PV2  
PV2  
PV2  
I
I
= 100mA  
LX2  
0.4  
nMOS On- Resistance  
= 100mA  
Ω
LX2  
pMOS Current Limit  
1.07  
1.30  
90  
1.55  
A
Skip Mode Transition Current  
nMOS Zero-Cross Current  
mA  
mA  
25  
V
V
= V  
= 5.5V  
0.01  
1.00  
LX2  
LX2  
PV2  
V
= 0V, V  
= +25°C  
= 5.5V,  
SYS  
EN2  
LX Leakage  
μA  
T
A
= 0V, V  
= 5.5V  
-5.00 -0.01  
PV2  
BOOST REGULATOR FOR LED DRIVER  
At SYS, no load, not  
including SYS bias current  
Supply Current  
Switching  
1
mA  
Output Range  
V
V
30  
V
%
%
V
OUT3  
SYS  
Minimum Duty Cycle  
Maximum Duty Cycle  
CS Regulation Voltage  
OVP Regulation Voltage  
OVP Sink Current  
D
10  
92  
MIN  
D
90  
MAX  
V
0.29  
0.32  
0.35  
CS  
Duty = 90%, I  
= 0mA  
1.225 1.250 1.275  
V
LX3  
19.2  
20.0  
1.25  
20.8  
μA  
ms  
OVP Soft-Start Period  
Time for I  
to ramp from 0 to 20μA  
OVP  
_______________________________________________________________________________________  
5
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
ELECTRICAL CHARACTERISTICS (Output Regulator) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.01  
0.1  
MAX UNITS  
T
A
T
A
= +25°C  
= +85°C  
1
V
V
= 0V,  
EN3  
OVP  
OVP Leakage Current  
nMOS On-Resistance  
μA  
= V  
= 5.5V  
SYS  
I
= 100mA  
0.6  
1.2  
Ω
LX3  
T
T
= +25°C  
= +85°C  
0.01  
0.1  
5.00  
A
nMOS Off-Leakage Current  
V
= 30V  
μA  
mA  
LX3  
A
nMOS Current Limit  
LED DRIVER  
500  
620  
900  
BRT Input Range  
REF Voltage  
V
V
I
I
= 0 to 30mA  
0
1.45  
-1  
1.5  
1.55  
+1  
V
V
BRT  
CS  
= 0mA  
1.50  
-0.01  
0.1  
REF  
REF  
T
T
= +25°C  
= +85°C  
A
A
30NBY974  
BRT Input Current  
CS Sink Current  
V
V
V
= 0 to 1.5V  
μA  
mA  
%/V  
BRT  
V
V
= 1.5V  
28  
30  
32  
BRT  
BRT  
= 0.2V  
CS  
= 50mV  
0.4  
0.8  
1.2  
CS Current-Source  
Line Regulation  
= 2.7V to 5.5V  
0.1  
SYS  
PWM DIMMING  
EN3 DC Turn-On Delay  
EN3 Shutdown Delay  
From V  
From V  
= high to LED on  
= low to LED off  
1.5  
1.5  
2.0  
2.0  
2.5  
2.5  
ms  
ms  
EN3  
EN3  
Time between rising edges  
on EN3 for PWM dimming to  
become active  
Maximum  
Minimum  
1.5  
2.0  
8
ms  
μs  
PWM Dimming Capture  
Period  
10  
PWM Dimming Pulse-Width  
Resolution  
Resolution of high or low-pulse width on EN3 for  
dimming change  
0.5  
μs  
LINEAR REGULATORS  
IN45, IN67 Operating Range  
V
1.7  
1.5  
5.5  
1.7  
V
V
IN45  
IN45, IN67 Undervoltage  
Threshold  
V
V
rising, 100mV hysteresis  
IN45  
1.6  
UVLO-IN45  
Output Noise  
f = 100Hz to 100kHz  
f = 100kHz  
200  
30  
μV  
RMS  
PSRR  
dB  
μA  
Shutdown Supply Current  
Soft-Start Ramp Time  
V
V
= V  
= 0V, T = +25°C  
0.001  
10  
1
EN4  
EN5  
A
to 90% of final value  
V/ms  
OUT4  
Output Discharge  
Resistance in Shutdown  
V
= 0V  
0.5  
1.0  
2.0  
kΩ  
EN4  
LINEAR REGULATOR 4 (LDO4)  
Supply Current  
At IN45, V  
= 0V  
I
= 0A  
OUT4  
20  
30  
μA  
%
EN5  
I
= 0 to 500mA,  
OUT4  
Voltage Accuracy  
-1.5  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT4  
IN45  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
3.76  
μF  
Ω
OUT4  
IN45 to OUT4  
0.2  
0.4  
V
= 0V  
500  
700  
mA  
OUT4  
6
_______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
ELECTRICAL CHARACTERISTICS (OUTPUT REGULATOR) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LINEAR REGULATOR 5 (LDO5)  
Supply Current  
At IN45, V  
= 0V  
I
= 0A  
OUT5  
16  
25  
μA  
%
EN4  
I
= 0 to 150mA,  
OUT5  
Voltage Accuracy  
-1.5  
0.8  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT5  
IN45  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
μF  
Ω
OUT5  
IN45 to OUT5  
0.6  
1.2  
V
= 0V  
150  
210  
mA  
OUT5  
LINEAR REGULATOR 6 (LDO6)  
Supply Current  
At IN67, V  
= V  
, V  
= 0V  
I = 0A  
OUT6  
17  
27  
μA  
%
EN6  
SYS EN7  
Voltage Accuracy  
I
= 0 to 300mA, V  
= V + 0.3V to 5.5V  
OUT6  
-1.5  
+1.5  
OUT6  
IN67  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
1.76  
μF  
Ω
OUT6  
IN67 to OUT6  
0.35  
420  
0.60  
V
= 0V  
300  
mA  
OUT6  
LINEAR REGULATOR 7 (LDO7)  
Supply Current  
At IN67, V  
= 0V, V  
= V  
I = 0A  
OUT7  
16  
25  
μA  
%
EN6  
EN7  
SYS  
I
= 0 to 150mA,  
OUT7  
Voltage Accuracy  
-1.5  
0.8  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT7  
IN67  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
μF  
Ω
OUT7  
IN67 to OUT6  
0.6  
1.2  
V
= 0V  
150  
210  
mA  
OUT7  
THERMAL SHUTDOWN  
Thermal-Shutdown  
Temperature  
T rising  
J
165  
15  
°C  
°C  
Thermal-Shutdown  
Hysteresis  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control (SQC) methods.  
Note 2: Input withstand voltage. Not designed to operate above V  
= 6.5V due to thermal-dissipation issues.  
DC  
Note 3: ISET voltage when CT timer stops. Occurs only when in constant-current mode. Translates to 20% of fast-charge current.  
Note 4: Temperature at which the input current limit begins to reduce.  
_______________________________________________________________________________________  
7
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
``````````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (CHARGER ENABLED)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (CHARGER DISABLED)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (SUSPEND)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 4.2V  
= 0  
V
= 4.2V  
= 0mA  
V
BAT  
= 3.6V  
BAT  
BAT  
I
I
SYS  
SYS  
V
V
RISING  
FALLING  
BAT  
BAT  
CHARGER IN  
DONE MODE  
PEN1 = PEN2 = 0  
CEN = 1  
V
V
RISING  
FALLING  
BAT  
BAT  
30NBY974  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BATTERY-LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
BATTERY-LEAKAGE CURRENT  
vs. TEMPERATURE (INPUT DISCONNECTED)  
BATTERY-REGULATION VOLTAGE  
vs. TEMPERATURE  
4.200  
0.5  
0.8  
V
= 4.0V  
EN_ = 0  
BAT  
EN_ = 0, CEN = 1  
EN_ = 0  
V
V
OPEN  
= 5V  
DC  
DC  
4.195  
4.190  
0.7  
0.6  
0.5  
0.4  
0.4  
0.3  
0.2  
0.1  
0
4.185  
4.180  
4.175  
4.170  
0.3  
0.2  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
BATTERY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (100mA USB)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (500mA USB)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (AC ADAPTER)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
550  
500  
450  
400  
350  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
R
= 5V  
V
R
= 5V  
DC  
DC  
= 3kΩ  
= 3kΩ  
ISET  
ISET  
PEN1 = 0  
PEN2 = 1  
PEN1 = PEN2 = 1  
V
V
RISING  
BAT  
BAT  
V
V
RISING  
BAT  
BAT  
FALLING  
FALLING  
300  
250  
200  
150  
100  
50  
V
V
RISING  
BAT  
FALLING  
BAT  
V
R
= 5V  
= 3kΩ  
PEN1 = PEN2 = 0  
DC  
ISET  
0
0
1
2
3
4
5
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
0
1
2
3
4
5
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
8
_______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
``````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
CHARGE CURRENT vs. AMBIENT TEMPERATURE  
CHARGE CURRENT vs. AMBIENT TEMPERATURE  
(HIGH IC POWER DISSIPATION)  
SYS OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
(LOW IC POWER DISSIPATION)  
900  
900  
5.6  
PEN1 = PEN2 = 1  
800  
V
= 4.0V  
= 0mA  
BAT  
PEN1 = PEN2 = 1  
5.4  
5.2  
5.0  
4.8  
800  
I
SYS  
PEN1 = 0  
PEN2 = 1  
700  
600  
700  
600  
CHARGER  
DISABLED  
PEN1 = 0, PEN2 = 1  
500  
PEN1 = 0, PEN2 = 1  
500  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
400  
400  
CHARGER  
ENABLED  
V
R
= 5.0V, V = 4.0V  
V
R
= 6.5V, V = 3.1V  
DC BAT  
DC  
BAT  
300  
200  
100  
0
300  
200  
100  
0
= 3kΩ, CEN = 0, EN_ = 0  
= 3kΩ, CEN = 0, EN_ = 0  
ISET  
ISET  
PEN1 = PEN2 = 0  
PEN1 = PEN2 = 0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
6
7
8
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (DC DISCONNECTED)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (500mA USB)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (AC ADAPTER)  
5.6  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
THE SLOPE OF THIS LINE SHOWS THAT THE  
BAT-TO-SYS RESISTANCE IS 49mΩ.  
V
V
= 5.0V  
= 4.0V  
V
V
= 5.0V  
= 4.0V  
DC  
BAT  
DC  
BAT  
5.4  
PEN1 = 0, PEN2 = 1  
CEN = 1  
PEN1 = PEN2 = 1  
CEN = 1  
5.2  
V
V
= 0V  
DC  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
= 4.0V  
BAT  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
I
I
I
SYS  
SYS  
SYS  
USB CONNECT (I  
= 0mA)  
USB CONNECT (I  
= 50mA)  
MAX8662/63 toc17  
SYS  
SYS  
MAX8662/63 toc16  
5V/div  
5V/div  
5V  
5V  
0V  
V
DC  
0V  
V
DC  
+95mA  
4.4V  
+95mA  
4.4V  
200mA/div  
2V/div  
200mA/div  
2V/div  
I
I
IN  
IN  
5V  
0mA  
0mA  
4.0V  
4.0V  
V
SYS  
V
5V  
SYS  
V
V
POK  
5V/div  
5V/div  
V
V
POK  
0V  
0V  
5V/div  
5V/div  
0V  
CHG  
CHG  
0mA  
+95mA  
I
50mA  
BAT  
200mA/div  
I
NEGATIVE BATTERY  
CURRENT FLOWS INTO  
THE BATTERY  
BAT  
200mA/div  
NEGATIVE BATTERY  
CURRENT FLOWS  
-45mA  
(CHARGING).  
INTO THE BATTERY (CHARGING).  
200μs/div  
PEN1 = PEN2 = 0, CEN = 0,  
= 4.0V, I = 0mA, EN_ = 1  
200μs/div  
PEN1 = PEN2 = 0, CEN = 0,  
V = 4.0V, I = 50mA, EN_ = 1  
BAT  
V
BAT  
SYS  
SYS  
_______________________________________________________________________________________  
9
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
``````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
REF  
VL  
THM  
A
otherwise noted.)  
AC ADAPTER CONNECT (I  
= 500mA)  
USB DISCONNECTED (500mA USB)  
MAX8662/63 toc19  
SYS  
MAX8662/63 toc18  
5V/div  
V
DC  
5V/div  
5V  
5V  
0V  
V
DC  
475mA  
+1280mA  
4.4V  
I
IN  
1A/div  
2V/div  
5V/div  
5V/div  
0mA  
I
IN  
500mA/div  
1V/div  
V
SYS  
POK  
5V  
4.4V  
V
V
SYS  
4.0V  
V
CHG  
5V/div  
V
CHG  
0V  
0V  
0mA  
500mA  
1A/div  
30NBY974  
-780mA  
I
500mA/div  
BAT  
-475mA  
I
BAT  
NEGATIVE BATTERY CURRENT FLOWS  
INTO THE BATTERY (CHARGING).  
400μs/div  
200μs/div  
PEN1 = 0, PEN2 = 1, CEN = 0,  
= 4.0V, I = 0mA  
PEN1 = PEN2 = 1, CEN = 0,  
V
= 4.0V, I = 500mA, EN_ = 1  
V
BAT  
BAT  
SYS  
SYS  
OUT1 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
CHARGER ENABLE (I  
= 0mA)  
SYS  
MAX8662/63 toc20  
100  
V
V
CEN  
0V  
5V/div  
1A/div  
2.8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
475mA  
4.4V  
I
IN  
0mA  
V
= 3.6V  
BAT  
V
= 3.6V  
= 4.2V  
BAT  
5V  
SYS  
2V/div  
5V/div  
V
BAT  
V
= 4.2V  
BAT  
V
CHG  
0V  
0mA  
I
BAT  
PWM = 0  
PWM = 1  
= 3.3V  
-475mA  
500mA/div  
V
OUT1  
0.1  
1
10  
100  
1000 10,000  
200μs/div  
LOAD CURRENT (mA)  
PEN1 = 0, PEN2 = 1, V = 4.0V, I = 0mA, EN_ = 1  
BAT  
SYS  
OUT1 REGULATOR LOAD REGULATION  
OUT1 REGULATOR LINE REGULATION  
OUT1 VOLTAGE vs. TEMPERATURE  
3.40  
3.36  
3.32  
3.28  
3.24  
3.20  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
3.310  
3.306  
3.302  
3.298  
3.294  
3.290  
V
R
= 4.0V  
BAT  
= 330Ω  
LOAD  
V
= 4.2V  
BAT  
V
= 3.6V  
BAT  
R
= 330Ω  
LOAD  
0.1  
1
10  
100  
1000 10,000  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
SYS  
AMBIENT TEMPERATURE (°C)  
10 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
``````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
OUT1 REGULATOR LIGHT-LOAD  
SWITCHING WAVEFORMS  
OUT1 REGULATOR HEAVY-LOAD  
SWITCHING WAVEFORMS  
MAX8662/63 toc25  
MAX8662/63 toc26  
V
= 4.0V  
= 10mA  
BAT  
OUT1  
I
V
10mV/div  
2V/div  
OUT1  
V
OUT1  
AC-COUPLED  
50mV/div  
2V/div  
AC-COUPLED  
V
LX  
V
LX  
I
L
200mA/div  
I
L
500mA/div  
V
= 4.2V  
= 1200mA  
BAT  
OUT1  
PWM = 0  
I
20μs/div  
1μs/div  
OUT1 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT1 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc27  
MAX8662/63 toc28  
5V  
V
LX  
5V/div  
1V/div  
V
SYS  
I
= 10mA  
OUT1  
4V  
PWM = 0  
V
OUT1  
I
OUT1  
1A/div  
1A/div  
50mV/div  
5V/div  
I
L
V
LX  
I
V
= 4.0V  
BAT  
OUT1  
I
= 10mA TO 1200mA TO 10mA  
PWM = 0  
V
OUT1  
100mV/div  
L
200mA/div  
40μs/div  
100μs/div  
OUT2 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
OUT2 REGULATOR LOAD REGULATION  
OUT1 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc29  
1.32  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.2V  
BAT  
1.31  
V
EN1  
2V/div  
2V/div  
1.30  
1.29  
1.28  
1.27  
1.26  
V
= 4.2V  
BAT  
V
= 4.2V  
= 3.6V  
BAT  
V
BAT  
= 3.6V  
V
BAT  
V
BAT  
= 3.6V  
V
OUT1  
PWM = 0  
PWM = 1  
I
= 10mA  
OUT1  
V
= 3.3V  
OUT1  
0.1  
1
10  
100  
1000 10,000  
0.1  
1
10  
100  
1000  
1ms/div  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
______________________________________________________________________________________ 11  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
``````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
OUT2 REGULATOR LINE REGULATION  
OUT2 VOLTAGE vs. TEMPERATURE  
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.3050  
1.3045  
1.3040  
1.3035  
1.3030  
R
LOAD  
= 130Ω  
V
= 4.0V  
BAT  
R
LOAD  
= 130Ω  
30NBY974  
2.7 3.1 3.5  
3.9 4.3  
(V)  
4.7  
5.1 5.5  
-40  
-15  
10  
35  
60  
85  
V
AMBIENT TEMPERATURE (°C)  
SYS  
OUT2 REGULATOR HEAVY-LOAD  
SWITCHING WAVEFORMS  
OUT2 REGULATOR LIGHT-LOAD  
SWITCHING WAVEFORMS  
MAX8662/63 toc35  
MAX8662/63 toc34  
PWM = 0  
V
= 4.0V  
= 10mA  
BAT  
V
OUT2  
10mV/div  
2V/div  
I
OUT2  
V
OUT2  
20mV/div  
2V/div  
AC-COUPLED  
AC-COUPLED  
V
L
V
LX  
I
L
500mA/div  
I
L
100mA/div  
V
= 4.0V  
BAT  
I
= 900mA  
OUT2  
1μs/div  
10μs/div  
OUT2 REGULATOR LINE-  
TRANSIENT RESPONSE  
OUT2 REGULATOR LOAD-  
TRANSIENT RESPONSE  
MAX8662/63 toc37  
MAX8662/63 toc36  
5V  
V
LX  
5V/div  
1A/div  
V
1V/div  
SYS  
I
= 10mA  
PWM = 0  
4V  
OUT1  
I
OUT2  
V
OUT1  
20mV/div  
I
L
V
5V/div  
500mA/div  
50mV/div  
LX  
200mA/div  
V
OUT2  
AC-COUPLED  
I
L
V
= 4.0V  
BAT  
I
= 10mA TO 900mA TO 10mA PWM = 0  
OUT2  
100μs/div  
40μs/div  
12 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
`````````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
REF  
VL  
THM  
A
otherwise noted.)  
LED CURRENT  
vs. PWM DIMMING DUTY CYCLE  
OUT2 ENABLE AND DISABLE RESPONSE  
LED CURRENT vs. BRT VOLTAGE  
MAX8662/63 toc38  
30  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.6V  
V
= 3.6V  
BAT  
= 0.25V  
BAT  
V
BRT  
25  
20  
15  
10  
5
f = 1kHz  
V
EN2  
2V/div  
1V/div  
0V  
0V  
V
OUT2  
I
= 10mA  
OUT2  
0
1μs/div  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
BRT VOLTAGE (V)  
OUT3 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
OUT3 ENABLE AND DISABLE RESPONSE  
OUT3 SWITCHING WAVEFORMS  
MAX8662/63 toc42  
MAX8662/63 toc41  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5.5V  
SYS  
I
V
SYS  
= 4.2V  
L
100mA/div  
V
EN3  
2V/div  
0V  
0V  
V
= 3.6V  
SYS  
V
LX  
10V/div  
10V/div  
V
OUT3  
V
OUT3  
AC-COUPLED  
200mV/div  
I
= 1mA  
OUT3  
40ms/div  
0.1  
1
10  
100  
1μs/div  
LOAD CURRENT (mA)  
OUT4 VOLTAGE vs. TEMPERATURE  
OUT4 REGULATOR LOAD REGULATION  
OUT4 REGULATOR LINE REGULATION  
3.315  
3.313  
3.315  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
V
R
= 4.0V  
BAT  
R
LOAD  
= 330Ω  
= 330Ω  
LOAD  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
V
= 3.6V  
IN  
3.311  
3.309  
3.307  
3.305  
V
= 5.5V  
IN  
-40  
-15  
10  
35  
60  
85  
0
100  
200  
300  
400  
500  
1
2
3
4
5
6
AMBIENT TEMPERATURE (°C)  
LOAD CURRENT (mA)  
V
(V)  
IN_OUT4  
______________________________________________________________________________________ 13  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
`````````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
OUT4 REGULATOR LINE-  
TRANSIENT RESPONSE  
OUT4 REGULATOR LOAD-  
TRANSIENT RESPONSE  
MAX8662/63 toc48  
MAX8662/63 toc47  
5V  
3.6V  
V
IN45  
2V/div  
I
500mA/div  
50mV/div  
OUT4  
20mV/div  
V
OUT4  
V
OUT4  
AC-COUPLED  
AC-COUPLED  
30NBY974  
V
BAT  
= 4.0V  
I
= 10mA TO 500mA TO 10mA  
OUT4  
I
= 10mA  
OUT4  
100μs/div  
40μs/div  
OUT4 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT5 REGULATOR LOAD REGULATION  
OUT4 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc49  
3.310  
3.308  
3.306  
3.304  
3.302  
3.300  
100  
90  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
80  
70  
60  
COMBINATION IS 181mΩ.  
V
2V/div  
2V/div  
EN4  
0V  
V
= 3.6V  
IN  
50  
40  
30  
20  
V
V
= 5.5V  
OUT4  
IN  
0V  
10  
0
0
30  
60  
90  
120  
150  
200μs/div  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUT5 REGULATOR LINE REGULATION  
OUT5 VOLTAGE vs. TEMPERATURE  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
3.310  
R
= 330Ω  
V
= 4.0V  
BAT  
LOAD  
R
LOAD  
= 330Ω  
3.309  
3.308  
3.307  
3.306  
3.305  
3.304  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT5  
14 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
`````````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
OUT5 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT5 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc55  
MAX8662/63 toc54  
5V  
V
IN45  
3.6V  
2V/div  
I
OUT5  
OUT5  
100mA/div  
50mV/div  
V
OUT5  
20mV/div  
AC-COUPLED  
V
AC-COUPLED  
I
= 10mA  
OUT5  
V
BAT  
= 4.0V  
I
= 10mA TO 150mA TO 10mA  
OUT5  
100μs/div  
40μs/div  
OUT5 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT5 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc56  
70  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
60  
50  
40  
30  
20  
10  
COMBINATION IS 384mΩ.  
V
EN5  
2V/div  
2V/div  
0V  
V
OUT5  
0V  
0
0
30  
60  
90  
(mA)  
120  
150  
200μs/div  
I
OUT  
OUT6 REGULATOR LOAD REGULATION  
OUT6 REGULATOR LINE REGULATION  
OUT6 VOLTAGE vs. TEMPERATURE  
3.310  
3.306  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.309  
R
LOAD  
= 330Ω  
V
R
= 4.0V  
BAT  
= 330Ω  
LOAD  
3.307  
3.305  
3.303  
3.301  
3.302  
3.298  
3.294  
3.290  
V
IN  
= 5.5V  
V
= 3.6V  
150  
IN  
2.0  
1.8  
1.6  
1.4  
0
50  
100  
200  
250  
300  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT6  
______________________________________________________________________________________ 15  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
`````````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
OUT6 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT6 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc61  
MAX8662/63 toc62  
5V  
3.6V  
V
2V/div  
IN67  
I
OUT6  
OUT6  
200mA/div  
50mV/div  
20mV/div  
V
V
OUT6  
AC-COUPLED  
AC-COUPLED  
30NBY974  
I
= 10mA  
OUT6  
V
BAT  
= 4.0V  
I
= 10mA TO 300mA TO 10mA  
OUT6  
40μs/div  
100μs/div  
OUT6 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT6 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc63  
80  
70  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
COMBINATION IS 238mΩ.  
60  
50  
40  
V
EN6  
2V/div  
2V/div  
0V  
30  
20  
V
0V  
OUT6  
10  
0
200μs/div  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
OUT  
OUT7 REGULATOR LOAD REGULATION  
OUT7 REGULATOR LINE REGULATION  
OUT7 VOLTAGE vs. TEMPERATURE  
3.304  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.303  
3.302  
3.301  
3.300  
3.299  
3.298  
R
LOAD  
= 330Ω  
V
R
= 4.0V  
BAT  
= 330Ω  
LOAD  
3.302  
3.300  
3.298  
3.296  
V
IN  
= 5.5V  
V
IN  
= 3.6V  
2.0  
1.8  
1.6  
1.4  
3.294  
0
30  
60  
90  
120  
150  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT7  
16 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
`````````````````````````````````````````````````````````````````````` 
ቯ৔ᔫᄂቶ)ኚ*  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
otherwise noted.)  
OUT7 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT7 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc68  
MAX8662/63 toc69  
5V  
3.6V  
V
IN67  
2V/div  
I
OUT7  
OUT7  
100mA/div  
50mV/div  
20mV/div  
V
V
OUT7  
AC-COUPLED  
AC-COUPLED  
I
= 10mA  
OUT7  
V
BAT  
= 4.0V  
I
= 10mA TO 150mA TO 10mA  
OUT7  
40μs/div  
100μs/div  
OUT7 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
VL REGULATOR LOAD REGULATION  
OUT7 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc70  
70  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
60  
50  
40  
30  
20  
10  
COMBINATION IS 391mΩ.  
V
EN7  
2V/div  
2V/div  
0V  
V
= 5.5V  
IN  
V
0V  
OUT7  
V
= 4.35V  
IN  
0
0
25  
50  
75  
(mA)  
100  
125  
150  
0
1
2
3
4
5
6
7
8
9
10  
200μs/div  
I
LOAD CURRENT (mA)  
OUT  
OPEN-DRAIN OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
VL REGULATOR LINE REGULATION  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
LOAD  
= 3.3kΩ  
THE SLOPE OF THIS LINE SHOWS THAT  
THE PULLDOWN RESISTANCE IS 11Ω.  
V
V
= 5.0V  
IN  
= 4.0V  
BAT  
PULLDOWN DEVICE HAS A  
20mA STEADY-STATE RATING  
3
4
5
6
7
8
0
5
10 15 20 25 30 35 40  
(mA)  
V
(V)  
I
IN  
SINK  
______________________________________________________________________________________ 17  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
``````````````````````````````````````````````````````````````````````````````` ፛୭ႁී  
፛୭  
߂
 
PEN1  
PEN2  
৖ถ  
MAX8662  
MAX8663  
ၒྜྷሢഗ఼ᒜ2ăᎧCENਜ਼QFO3๼੝Lj࿸ᒙEDၒྜྷሢഗᆐ:6nBĂ586nBĂ
ᔜభ
߈ܠ
ᒗ  
1
1
ᔢ঱3B૞ਈ
ܕ
ၒྜྷሢᒜ৖ถ)
ݬ
ܭ
2*ă  
ၒྜྷሢഗ఼ᒜ3ăᎧCENਜ਼QFO2๼੝Lj࿸ᒙEDၒྜྷሢഗᆐ:6nBĂ586nBĂ
ᔜభ
߈ܠ
ᒗ  
2
3
2
ᔢ঱3B૞ਈ
ܕ
ၒྜྷሢᒜ৖ถ)
ݬ
ܭ
2*ă  
ڹ
਒MFEဍኹ
ஂ໭4
ဧถၒྜྷਜ਼QXN
਒ၒྜྷăད
ᒗ঱
ຳဟLj
ஂ໭ဧถăད
ᒗ  
ຳ༦
ߒ
ኚဟମ
᎖3ntဟLj
ஂ໭ਈ
ăQXN఼ᒜ
਒ဟLj
ݧ
፿ຫൈᆐ2lI{ᒗ211lI{
 
QXNఎਈၒྜྷቧ੓ད
FO4ă  
EN3  
DC1,  
DC2  
4, 5  
3, 4  
EDၒྜྷ
Ꮞă୻ୣഗး๼໭૞VTC
ᏎăED2ਜ਼ED3ด
ݝ
ሤೌă  
30NBY974  
ᇹᄻ
ኹăTZTၒ߲ᆐჅᎌ
ஂ໭৙
ăᇄᅪ
࢟ݝ
ᏎဟLjTZT2ਜ਼TZT3ᄰਭด
ݝ
51nΩ  
ఎਈᎧCBUሤೌă
ED`
࢟࣡
ኹᎌ቉ဟLjTZT`ᎧED`ሤೌLj
ۻࡣ
ሢᒜᏴ6/4WăTZT2ਜ਼TZT3  
ݝ
ሤೌă  
SYS1,  
SYS2  
6, 7  
5, 6  
BAT1,  
BAT2  
ߔ
ೌ୻
ăೌ୻ᒗ
ஂMj,
ߔ࢟
ă
ED
࢟࣡
Ꮞᎌ቉ဟLjTZT`ᆐ
࢟ߠߔ࢟
ă
ED
࢟࣡
Ꮞᇄ  
቉ဟLjCBU`ད
TZT`ăCBU2ᎧCBU3ด
ݝ
ሤೌă  
8, 9  
10  
7, 8  
MFEෝผೡ
఼ᒜၒྜྷăCSUೌ୻61nWᒗ2/6W
ྀፀ
ኹLjభ୓J ࿸ᒙ
2nBᒗ41nBă  
DT  
BRT  
ᇄኊෝผೡ
ࢯࣞ
ஂဟLj୻CSUᒗSFGਜ਼HOEᒄମ
ᔜॊኹ໭
Lj
࿸ᒙᆐৼ
ᒋă  
ߠ
໭ᓨზၒ߲ăCHGᆐധ૵ఎവoNPTLj
࢟ߠ
᎖౐
ߠ
૞Ꮎ
ߠ
ෝါဟLjCHG
࢟ࢅ
ຳă  
࢟ߠ
᎖ॳ
ߠ
ෝါ૞ணᒏဟLjCHG
ܤ
ᆐ঱ᔜఝă  
11  
12  
13  
14  
9
CHG  
CEN  
THM  
ISET  
ߠ
໭ဧถၒྜྷă
ED
Ꮞᎌ቉ဟLjད
CEN
࢟ࢅ
ຳLj
࢟ߠ
໭ဧถăCENᆐ঱
ຳဟLj  
ணᒏ
࢟ߠ
ăCENᆐ঱
ຳ༦QFO3ᆐ
࢟ࢅ
ຳဟLj஠ྜྷVTCਂ໦ෝါă  
10  
11  
12  
ེැ
ᔜၒྜྷăUINਜ਼HOEᒄମೌ୻ጙᒑ21lΩ
ঌᆨ
ᇹၫ)OUD*ེැ
ᔜă
ި߲  
঱ᆨඡሢ૞
ᆨඡሢဟLj᏷ᄫ
࢟ߠ
ăUIN୻HOEဟLjணᒏེැ
ᔜଶ
ހ
৖ถă  
ߠ
Ⴅൈ࿸ᒙၒྜྷăJTFUਜ਼HOEᒄମ୻ጙᒑ
ᔜLjభ୓౐
࢟ߠ
ഗ࿸ᒙᆐ411nBᒗ2/36Bă  
࢟ߠ
ഗਜ਼ॳ
ߠ
ඡሢॊܰ࿸ᒙᆐ౐
࢟ߠ
21&ਜ਼8/6&ă  
ߠ
ࢾ࢟
ဟ໭
߈ܠ
࿸ᒙ፛୭ăDUਜ਼HOEᒄମೌ୻ጙᒑ
ྏLj࿸ᒙᏴ౐
ߠ
૞Ꮎ
ߠ
ෝါሆ
߿
ख৺  
ᑇᓨზჅኊ
ဟମLj݀ཀྵ
࢟ߠࢾ
᎖ॳ
ߠ
ෝါሆ
ဟମăDU୻HOEဟLjணᒏ
ဟ໭ă  
15  
13  
CT  
૥ᓰ
ኹăFO4ᆐ঱
ຳဟLjభᄋ৙2/6W
ၒ߲
ኹăFO4ᆐ
࢟ࢅ
ຳဟLjด
ݝ
࢟࢟
ᔜ୓  
SFG
ኹሆ౯ᒗ1Wă  
16  
17  
REF  
14  
GND  
Lj
ᐅ୻
࣡࢐
ă  
ሣቶᆮኹ໭5ၒ߲ă߲
ኹᒋན௼᎖TM2ਜ਼TM3፛୭ᓨზLjᄋ৙঱
611nB
࢟ࡼ
ăPVU5  
18  
15  
OUT4  
ਜ਼HOEᒄମೌ୻ጙᒑ5/8μG
ჿࠣ
ྏăྙਫW  
=!2/6WLjক
ྏᒋ።ᐐଝᆐ21μGă  
PVU5  
18 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
```````````````````````````````````````````````````````````````````````` ፛୭ႁී)ኚ*  
፛୭  
߂
 
৖ถ  
MAX8662  
MAX8663  
ሣቶᆮኹ໭5ਜ਼6
ၒྜྷ
ăJO56ೌ୻
2/8WᒗW 
࢟ࡼ
ăJO56ਜ਼HOEᒄମೌ୻ጙᒑ  
ᒗ࿩ᆐ2μG
ჿࠣ
ྏă  
TZT  
19  
16  
IN45  
ሣቶᆮኹ໭6ၒ߲ăၒ߲
ኹᒋན௼᎖TM2ਜ਼TM3፛୭ᓨზLjభᄋ৙঱
261nB
࢟ࡼ
ഗăPVU6  
20  
17  
OUT5  
ਜ਼HOEᒄମೌ୻ጙᒑ2μG
ჿࠣ
ྏăྙਫW  
=!2/6WLjক
ྏᒋ።ᐐଝᆐ3/3μGă  
PVU6  
21  
22  
18  
19  
EN4  
EN5  
ሣቶᆮኹ໭5ဧถၒྜྷLj঱
ຳဧถă  
ሣቶᆮኹ໭6ဧถၒྜྷLj঱
ຳဧถă  
QXN0ᄢຫෝါኡᐋ໭Ljད
QXNᆐ঱
ຳဟLj༓ᒜଢ଼ኹ
ஂ໭2ਜ਼3৔ᔫᏴ2NI{!QXN  
ෝါሆăQXNᆐ
࢟ࢅ
ຳ૞୻HOEဟLj
ஂ໭2ਜ਼3Ᏼ༵Ᏺᓨზሆ஠ྜྷᄢຫෝါă  
23  
20  
PWM  
ଢ଼ኹ
ஂ໭2
नౣၒྜྷLjೌ୻GC2ᒗPVU2ਜ਼HOEᒄମ
ᔜॊኹ໭
Lj୓ၒ߲
ኹ࿸ᒙ  
ᆐ1/:9Wᒗ4/4Wă  
24  
25  
26  
21  
22  
23  
FB1  
EN1  
PG1  
ଢ଼ኹ
ஂ໭2
ဧถၒྜྷLj঱
ຳဧถă  
ଢ଼ኹ
ஂ໭2
৖ൈ
ăHOEĂQH2ĂQH3ਜ਼QH4
ܘ
ኍᅪ
ݝ
ೌ୻Ᏼጙ໦ă  
27  
28  
24  
25  
LX1  
PV1  
ଢ଼ኹ
ஂ໭2
ঢೌ୻
ăMY2ਜ਼
ஂ໭2
ၒ߲ᒄମ୻ጙৈ
ঢă  
ଢ଼ኹ
ஂ໭2
࢟ࡼ
ᏎၒྜྷăQW2ೌ୻ᒗTZTLj݀ᄰਭጙᒑ21μG૞ྏᒋৎ
ࢅࡼࡍ
FTS
ྏ୻HOE  
ጲဣሚབྷẮăQW2ĂQW3ਜ਼TZT
ܘ
ኍᅪ
ݝ
ೌ୻Ᏼጙ໦ă  
MFEဍኹᓞધ໭ਭኹၒྜྷ
ăPWQਜ਼ဍኹᓞધ໭ၒ߲ᒄମ୻ጙᒑ
Lj౶࿸ᒙᔢ
ၒ߲
ኹLj  
FO4ᆐ঱
ຳဟLj
ྟ໪
৖ถăPWQਜ਼HOEᒄମ
ݝ
31μBሆ౯
ഗ௼
೫ဍኹᓞધ  
໭ၒ߲
ᒋă
FO4ᆐ
࢟ࢅ
ຳဟLjด
࢟ݝ
ఎăPWQᄰਭऔ૵਌ὥᆡᒗTZT`ă  
29  
30  
OVP  
CS  
MFE
ഗᏎă௣CSU
ኹਜ਼FO4
ࡼ࣡
QXNቧ੓Lj
ᇢྜྷ
ഗᆐ2nBᒗ41nBăFO4ᆐ
࢟ࢅ
 
ຳۣ݀
ߒ
3ntጲ࿟ဟLjਈ
࢟ࣥ
ഗᏎăW ᆮ
Ᏼ1/43Wă  
DT  
31  
32  
CC3  
FB2  
MFEဍኹ
ஂ໭4
ޡݗࡼ
ၒྜྷă
ݬ
ڹࡒ
਒MFEད
ဍኹᓞધ໭)PVU4LjNBY9773*
ݝ
ॊă  
ଢ଼ኹ
ஂ໭3
नౣၒྜྷLjೌ୻GC3ᒗPVU3ਜ਼HOEᒄମ
ᔜॊኹ໭
Lj୓ၒ߲
ኹ࿸ᒙ  
ᆐ1/:9Wᒗ4/4Wă  
26  
ଢ଼ኹ
ஂ໭3
࢟ࡼ
ᏎၒྜྷăQW3ೌ୻ᒗTZTLjਭጙᒑ21μG૞ྏᒋৎ
ࢅࡼࡍ
FTS
ྏ୻HOEጲ  
ဣሚབྷẮăQW2ĂQW3ਜ਼TZT
ܘ
ኍᅪ
ݝ
ೌ୻Ᏼጙ໦ă  
33  
27  
PV2  
34  
35  
28  
29  
LX2  
ଢ଼ኹ
ஂ໭3
ঢೌ୻
LjMY3ਜ਼
ஂ໭3ၒ߲ᒄମೌ୻ጙᒑ
ঢă  
ଢ଼ኹ
ஂ໭3
৖ൈ
ăHOEĂQH2ĂQH3ਜ਼QH4
ܘ
ኍᅪ
ݝ
ೌ୻Ᏼጙ໦ă  
PG2  
36  
37  
38  
39  
30  
31  
32  
EN2  
EN6  
EN7  
LX3  
ଢ଼ኹ
ஂ໭3
ဧถၒྜྷLj঱
ຳဧถă  
ሣቶᆮኹ໭7
ဧถၒྜྷLj঱
ຳဧถă  
ሣቶᆮኹ໭8
ဧถၒྜྷLj঱
ຳဧถă  
ဍኹ
ஂ໭4
ঢೌ୻
LjMY4ਜ਼TZT`ᒄମೌ୻ጙᒑ
ঢă  
______________________________________________________________________________________ 19  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
```````````````````````````````````````````````````````````````````````` ፛୭ႁී)ኚ*  
፛୭  
߂
 
৖ถ  
MAX8662  
MAX8663  
40  
PG3  
ဍኹ
ஂ໭4
৖ൈ
ăHOEĂQH2ĂQH3ਜ਼QH4
ܘ
ኍᅪ
ݝ
ೌ୻Ᏼጙ໦ă  
ሣቶᆮኹ໭7ၒ߲
ă߲
ኹᎅTM2ਜ਼TM3፛୭ᓨზ௼
Ljᄋ৙঱
411nB
࢟ࡼ
ăPVU7  
41  
42  
43  
33  
34  
35  
OUT6  
IN67  
ਜ਼HOEᒄମೌ୻ጙᒑ3/3μG
ჿࠣ
ྏăྙਫW  
=!2/6WLjক
ྏᒋ።ᐐଝᆐ5/8μGă  
PVU7  
ሣቶᆮኹ໭7ਜ਼8
ၒྜྷ
ă୻JO78ᒗ2/8Wਜ਼W 
࢟ࡼ
ăJO78ਜ਼HOEᒄମೌ୻ጙᒑ  
TZT  
ᒗ࿩ᆐ2μG
ჿࠣ
ྏă  
ሣቶᆮኹ໭8ၒ߲ă߲
ኹᎅTM2ਜ਼TM3፛୭ᓨზ௼
Ljᄋ৙঱
261nB
࢟ࡼ
ăPVU8ਜ਼  
OUT7  
HOEᒄମೌ୻ጙᒑ2μG
ჿࠣ
ྏăྙਫW  
=!2/6WLjক
ྏᒋ።ᐐଝᆐ3/3μGă  
PVU8  
30NBY974  
ၒྜྷሢᒜ໭ਜ਼
࢟ߠ
໭൝૷
Ꮞă
ED
ၒྜྷ
ኹᎌ቉ဟLjభᄋ৙4/4W
ኹăWMਜ਼HOEᒄମ  
ೌ୻ጙᒑ1/2μG
࢟ࡼ
ྏă
ED
ኹᎌ቉ဟLjWMถ৫ሶᅪ
ݝ
ঌᏲᄋ৙঱
21nB
࢟ࡼ
ഗă  
44  
36  
VL  
ሣቶᆮኹ໭
ၒ߲
ኹኡᐋၒྜྷ2ਜ਼3ă፛୭భጲኞహLjభᎧHOE૞TZTሤೌLj୓ၒ߲  
࿸ᒙᏴྯᒬᓨზᒄጙăTM2ਜ਼TM3
ݙࡼ
ᄴᓨზᔝ੝భ୓PVU5ĂPVU6ĂPVU7ਜ਼PVU8
ၒ߲  
ኹ࿸ᒙᆐ:ᒬၫᒋᒦ
ጙᒬLj
ݬ
ܭ
4ă  
45  
46  
37  
38  
SL1  
SL2  
47  
48  
39  
40  
PSET  
ၒྜྷሢഗ࿸ᒙăQTFUਜ਼
ᒄମ୻ጙᒑ
ᔜ)S  
*Lj୓EDၒྜྷሢഗ࿸ᒙᆐ611nBᒗ3Bă  
QTFU  
Ꮞ௓ኙၒ߲ăPOKဵധ૵ఎവoNPTၒ߲Lj
EDၒྜྷ
ኹᎌ቉ဟLjPOK
ăকၒ߲
ݙ
၊  
QFO2ĂQFO3૞CENᓨზ
፬ሰă  
POK  
ൡ੆๤ăকൡ੆๤Ꭷ
ೌ୻ăൡ੆๤୻
݀
ݙ
ถན
ࡼޟ
HOEĂQH2ĂQH3ਜ਼QH4୻
ă  
ൡ੆๤ᄰਭણድછᇕএᓹᏴ
࢏߀
LjጲۣᑺJDᎌ೜ੑ
ྲེᄰ
ă  
EP  
20 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
INPUT FROM AC  
ADAPTER/USB  
4.1V TO 8V  
SYS1  
DC1  
DC2  
SYS  
C10  
SYS2  
C1  
VLOGIC  
+
-
INPUT-  
VOLTAGE  
MONITOR  
R1  
POK  
GND  
+
-
INPUT-TO-SYS  
CURRENT-  
LIMITING  
100mV  
BAT1  
SWITCH  
MAIN  
BATTERY  
C11  
BAT2  
THM  
BATTERY-TO-SYS  
SWITCH (ALLOWS  
BAT AND DC TO SUPPLY  
CURRENT TO SYS)  
VL  
3.3V  
C2  
R6  
BATTERY  
INPUT LIMITER  
AND  
CHARGER  
BATTERY THERMISTOR  
VLOGIC  
OK  
R7  
THERMAL  
PROTECTION  
PV1  
LX1  
TIMEOUT  
CHARGING  
SYS  
CHG  
PEN2  
PEN1  
CEN  
DONE  
500mA  
ADAPTER  
OFF  
C4  
R2  
OUT1  
L1  
100mA  
USB  
0.98V TO 3.3V AT 1.2A  
MAIN  
STEP-DOWN  
REGULATOR  
C5  
ON  
MAIN  
C12  
CT  
PG1  
FB1  
R8  
R9  
PSET  
ISET  
R3  
MAX8662  
MAX8663  
ON  
EN1  
OFF  
LX3  
PG3  
PWM  
PWM  
PV2  
SYS  
L3  
D1  
SKIP  
C13  
OUT3 AT 30mA  
D2  
SYS  
C6  
R4  
C14  
OUT2  
D3  
D4  
D5  
D6  
D7  
D8  
L2  
0.98V TO 3.3V AT 0.9A  
LX2  
STEP-UP  
LED  
DRIVER  
R10  
CORE  
STEP-DOWN  
REGULATOR  
ONLY AVAILABLE  
FOR THE MAX8662  
OVP  
CC3  
C7  
1kΩ  
CORE  
PG2  
FB2  
C15  
0.22μF  
R5  
CS  
D9 TO SYS*  
ANALOG DIMMING  
(0 TO 1.5V)  
PWM BRIGHTNESS  
CONTROL AND ENABLE  
BRT  
EN3  
ON  
EN2  
OFF  
REF  
1.5V  
C3, 0.1μF  
OUT4  
EN4  
OUT4  
500mA  
C16  
C17  
ON  
ON  
IN45  
OFF  
OFF  
SYS  
C8  
OUT5  
EN5  
OUT5  
150mA  
SL1  
SL2  
LDO OUTPUT-  
VOLTAGE  
SETTING  
TRI-STATE MODE  
INPUTS; SEE TABLE 2  
{
OUT6  
EN6  
OUT6  
300mA  
C18  
C19  
ON  
ON  
IN67  
OFF  
OFF  
SYS  
C9  
OUT7  
EN7  
OUT7  
150mA  
E P  
*OPTIONAL.  
ᅄ2/!ౖᅄਜ਼።፿
വ  
______________________________________________________________________________________ 21  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
``````````````````````````````` ሮᇼႁී  
AC ADAPTER  
OR  
USB INPUT  
NBY97730NBY9774ဵጙ౒঱
ࡼ߅
QNJDLjᓜᆐᒝถक़  
જĂQEBĂઑೊᆀ࿸۸ਜ਼໚჈
ܣ
ቑ࿸۸ऎ࿸ଐăকᇹ  
೰໭ୈૹ
߅
೫ೝവᄴ
ݛ
ଢ଼ኹ
ஂ໭Ăവభད
3ᒗ8ৈ
ڹ
 
਒MFE
ဍኹቯ
ஂ໭)NBY9773*Ă႐വ
ތ
)MEP*ሣ  
ቶᆮኹ໭ጲૺ
ஂMj,
ߔ࢟
ሣቶ
࢟ߠ
໭ăᅄ2ᆐऱౖᅄਜ਼  
።፿
വă  
Q1 INPUT-TO-SYS  
SWITCH  
SYS  
DC  
SYSTEM  
LOAD  
Q3  
(CHARGE  
PATH)  
Q2  
TQT
വభဣሚୣഗး๼໭૞VTC
ᏎĂ
ߔ࢟
ጲૺᇹᄻঌ  
Ᏺᒄମഉ૚
࢟ࡼ
Ꮞॊ๼Lj
ߠ
ॊಽ፿ୣഗး๼໭0VTC
Ꮞă  
భጲဧ፿ᇹᄻঌᏲ৙
ࡼ࢟
ထ᎜৖ൈᆐ
࢟ߠߔ࢟
ăྙਫᇹ  
ᄻঌᏲख़ᒋ঱᎖ሢഗLjᐌᎅ
ߠݗߔ࢟
Ⴥኊ
ഗăེ
ஂ  
വିቃ࠭
Ꮞᇢྜྷ
࢟ࡼ
ഗLj࠭ऎ
ܜ
඾߲ሚਭེă  
BATTERY-TO-SYS  
SWITCH  
(DISCHARGE PATH)  
BAT  
BATTERY  
GND  
ೝവଢ଼ኹቯED.EDᓞધ໭௥ᎌ߲ྻ
༵Ᏺ቉ൈጲૺຢ࿟  
ྟ໪
࢟ࣅ
വLj2NI{
ఎਈຫൈᏤ኏
ݧ
፿ቃ
ࡁߛ
ݝ
Ꮔୈă  
႐വMEPሣቶᆮኹ໭௥ᎌ
ஸზ
ഗLj݀భᏴ
ᒗ2/8W  
ၒྜྷ
ኹሆ৔ᔫLjᏤ኏MEP৔ᔫᏴ
ތ
ᄟୈሆLjᄋ  
঱೫቉ൈă
ڹ
਒MFEད
໭௥ᎌ଼ጵ
MFEೡ
ࢯࣞ
ஂਜ਼  
MFEఎവਭኹۣઐ৖ถă
ஂMj,
࢟ߠ
໭௥ᎌభ
ߠࡼ߈ܠ
 
ഗ)঱
2/36B*ਜ਼
ࢾ࢟ߠ
ဟ໭ă  
30NBY974  
MAX8662  
MAX8663  
R
THM  
THM  
ᅄ3/!
Ꮞኡᐋ໭ऱౖᅄ  
ၒྜྷሢᒜ໭  
ᒝถ
Ꮞኡᐋ໭)TQT*  
Ⴥᎌᆮኹၒ߲)PVU2PVU8*
ᎅTZTၒ߲৙
ăED
୻  
ୣഗး๼໭૞VTC
ᏎဟLjၒྜྷሢᒜ໭భᏴᅪ
࢟ݝ
ᏎĂᇹ  
ᄻঌᏲጲૺ
࢟ߠߔ࢟
໭ᒄମ஠ቲ৖ൈॊ๼ăྜྷሢᒜ໭߹  
೫ถ৫୓ED
Ꮞೌ୻ᒗTZT
Ljᆐᇹᄻਜ਼
࢟ߠ
໭ঌᏲ৙  
ᅪLjથ௥ᎌ໚჈এଝ৖ถLj஠ጙ
ݛ
ᎁછ
Ꮞဧ፿ǖ  
TQTభဣሚᅪ
ݝ
ၒྜྷ
ᏎĂ
ߔ࢟
ጲૺᇹᄻঌᏲᒄମ
ᇄॠ  
ॊ๼)ྙᅄ3Ⴥာ*ăTQT
۾
৖ถྙሆǖ  
Ᏼᄴဟ୻ᎌᅪ
࢟ݝ
Ꮞਜ਼
ࡼߔ࢟
༽ౚሆǖ  
b* 
ᇹᄻঌᏲިਭᅪ
࢟ݝ
ၒ߲ถೆဟLjᎅ
ߔ࢟
ᆐ  
ঌᏲ৙
Lj
ߠݗ
࢟ݝ
Ꮞ৙
ݙ࢟
࢟ࡼ
ഗă  
ၒྜྷ
ኹሢᒜǖྙਫED
࢟࣡
ኹ࿟ဍLjTZT
ኹሢᒜᏴ  
6/4WLjऴᒏᇹᄻঌᏲਭኹăྦED
᎖7/:WLjᐌཱྀ  
ᆐၒྜྷᇄ቉Ljၒྜྷሢᒜ໭୓EDၒྜྷᅲཝ
ఎăED
Ⴥ  
ߌ
࢟ࡼ
ኹᒗ࿩ᆐ:WăྙਫEDၒྜྷቃ᎖CBU
ኹ૞  
᎖4/6W
ED་ኹඡሢ)ሆଢ଼*LjᐌEDၒྜྷጐ
ۻ
ཱྀᆐဵ  
ᇄ቉
ăEDၒྜྷ
ኹᇄ቉ဟLjTZTᄰਭጙৈ51nΩఎਈ  
ᎧCBUሤೌă  
c* 
ᇹᄻঌᏲ
᎖ᅪ
࢟ݝ
ၒ߲ถೆဟLjభ፿ᇹᄻ  
ࡼ࢟
ထ᎜৖ൈ৊
࢟ߠߔ࢟
ă  
 
ೌ୻
ߔ࢟
Lj༦ᇄᅪ
ݝ
ၒྜྷ
ᏎဟLjᇹᄻᎅ
ߔ࢟
ă  
 
ೌ୻ᅪ
ݝ
ၒྜྷ
ᏎLj༦ᇄ
ߔ࢟
ೌ୻ဟLjᇹᄻᎅᅪ
ݝ
 
Ꮞ৙
ă  
വభଢ଼
࢟ߠߔ࢟ࢅ
ൈਜ਼ᅪ
࢟ݝ
ഗLj
ܜ
඾ᐆ  
߅
ਭེă  
ၒྜྷਭഗۣઐǖሢᒜED
࢟࣡
ഗLjభጲऴᒏၒྜྷਭᏲă  
ሢഗᒋభো௣
ၒ߲ถೆᔈ
ࢯࣅ
ஂLjᇄ൙ဵ
ݧ
፿  
211nB૞611nB VTC
ᏎLjથဵୣഗး๼໭ă
ঌᏲ  
᎖ၒྜྷሢഗဟLjTZT
ൢᒗ
᎖CBU
ኹ211nWLj  
ߠݗߔ࢟
ݙ࢟
ঌᏲ
ഗă  
22 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
ǖၒྜྷሢᒜ໭
ᎌེ
Lj
JDஉᆨ঱᎖  
,211°DဟLjభጲିቃ࠭ED
ᇢྜྷ
࢟ࡼ
ഗLj࠭ऎି࿩ख  
ེăஉᆨ঱᎖,211°DဟLjሢഗᒋ୓ጲ6&0°D
Ⴅൈሆଢ଼Lj  
உᆨᆐ,231°DဟLjሢഗଢ଼ᆐ1nBăᎅ᎖
࢟࢟ߠ
ᔈ  
း።ቶLjᏴེ
വ፬ሰ
ᇹᄻঌᏲᒄ༄Lj
࢟࢟ߠ
 
ഗጯଢ଼ᆐ1nBă  
ᅄ4ჅာᆐTZT
ኹᎧEDĂCBU
ኹᒄମ
ਈᇹLjৢॊᆐ  
ጲሆ4ᒬ༽ౚǖ  
b* 
࢟ߠ
໭LjᎅEDད
TZTă  
c* 
࢟ߠ
໭Ljᎅᔈး።
࢟ߠ
໭఼ᒜ৖ถሢᒜ
࢟࢟ߠ
ഗă  
d* TZT
ঌᏲჅኊ
ഗި߲ၒྜྷ
ၒ߲ถೆă  
TZT
ൢᒗ
᎖ED
ኹ661nWဟLjᔈး።
ߠߔ࢟
 
໭ଢ଼
࢟࢟ߠࢅ
ഗăಿྙLjྙਫEDᆐ6WLj
࢟࢟ߠ
ഗିቃLj  
ጲऴᒏTZT
ൢᒗ5/56Wጲሆă
ED঱᎖6/66WဟLjᔈး  
࢟࢟ߠ
വ્ᏴTZT
ൢᒗ
᎖6/4W
TZTᆮኹ
411nW  
)૾TZT
ኹᆐ6/1W*ဟିቃ
࢟࢟ߠ
ăᒫᄰਭିቃ
ഗLj  
ܜ
඾TZT
᎖CBU
࢟ࡼ
ኹިਭ211nWă  
ᔈး።
࢟ߠߔ࢟
ǖ
ᇹᄻᎅED৙
ဟLj
࢟ߠ
໭ጐభጲ  
ᆐTZT৙
Lj݀
࢟ߠߔ࢟
ăྙਫ
࢟ߠ
໭ঌᏲᎧᇹᄻঌ  
Ᏺኊገ
ഗި߲೫ၒྜྷ
ၒ߲ถೆLjᔈး።  
ߠ
໭఼ᒜણവభିቃ
࢟࢟ߠ
ഗLj
ܜ
඾TZT
ൢă  
ۣ
ߒ
୷঱
TZT
ኹభᄋ঱቉ൈLj݀భဧఎਈᆮኹ໭  
Ᏼ୷
࢟ࡼࢅ
ഗሆ৔ᔫLj࠭ऎଢ଼
ၒྜྷሢᒜ໭
৖੒ă  
INPUT: 500mA USB  
CHARGER: RISET = 4Ω (750mA)  
DC  
5.3V  
5.0V  
SYS  
(CHARGER OFF)  
SYS  
ISYS x 150mΩ  
(CHARGER ON)  
550mV  
I
SYS x 30mΩ  
4.0V  
3.9V  
100mV  
BAT  
100mV  
SYS  
(SYS OVERLOAD)  
475mA  
BAT CHARGE  
CURRENT  
(CHARGE ON)  
0mA  
ᅄ4/!TZT
ኹĂ
࢟࢟ߠ
ഗᎧEDĂCBU
ኹᒄମ
ਈᇹ  
______________________________________________________________________________________ 23  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
EDၒྜྷሢഗኡᐋ)QFO20QFO3*  
Ꮞ௓ኙၒ߲)QPL*  
ၒྜྷሢഗభো௣
ܭ
2Ⴥ೰ၫᒋ஠ቲ࿸ᒙă
QFO2ၒྜྷᆐ
 
ຳဟLjED
።ೌ୻VTC
ᏎLjᎅQFO3୓ሢഗ࿸ᒙᆐ  
:6nB૞586nBă  
POK
࢟ࢅ
ຳᎌ቉ധ૵ఎവၒ߲Lj᎖ᒎာEDᓨზă
ED  
ኹ஑᎖་ኹਜ਼ਭኹඡሢᒄମLj݀༦঱᎖CBU
ኹဟLj  
POK
Lj
ܭ
ීၒྜྷ
Ꮞ௓ኙăनᒄᐌPOKᆐ঱ᔜఝă  
POKᎧQFO2ĂQFO3૞CENᓨზᇄਈăེਭᏲဟLjPOK྆  
ۣ
ߒ
ᎌ቉ă  
QFO2ᆐ঱
ຳဟLjED
።ೌ୻ୣഗး๼໭Lj݀ো௣QTFU  
࢟߈ܠࡼ
ᔜ࿸ᒙሢഗᒋăEDၒྜྷሢഗଐႯ৛ါྙሆǖ  
I
= 2000 x (1.5 / R  
)
DC_LIM  
PSET  
࢟ߠߔ
໭  
ጲ࿟৛ါጐᎌಿᅪ༽ౚLjྦQFO3ᆐ
࢟ࢅ
ຳဟLj
࢟ߠߔ࢟
 
໭ணᒏ)CENᆐ঱
ຳ*LjNBY97730NBY9774஠ྜྷVTCਂ໦  
ෝါă  
࢟ߠߔ
ᓨზᅄྙᅄ5Ⴥာă  
ୣഗး๼໭0VTC
ኹᎌ቉ဟLj
࢟ߠ
໭ဧถLjᐌ
࢟ߠߔ࢟
 
໭໪
࢟ߠࣅ
߈
ă
࢟ߠ
໭၅ሌଶ
࢟ߔ࢟ހ
ኹăྙਫ
ߔ࢟
 
ܭ
2/!EDၒྜྷ
ഗਜ਼
࢟ߠ
ሢഗኡᐋ  
30NBY974  
CEN  
PEN1  
PEN2  
DC INPUT CURRENT LIMIT  
95mA  
EXPECTED INPUT TYPE  
100mA USB  
CHARGER CURRENT LIMIT**  
0
0
0
1
1
1
0
0
0
1
1556(1.5V / R  
1556(1.5V / R  
1556(1.5V / R  
Off  
)
ISET  
475mA  
500mA USB  
)
ISET  
1
X*  
0
2000(1.5V / R  
Off  
)
AC adapter  
)
ISET  
PSET  
PSET  
X*  
0
USB suspend  
500mA USB  
1
475mA  
Off  
1
1
2000(1.5V / R  
)
AC adapter  
Off  
*Y!>!ፀᒋă  
**
࢟࢟ߠࡍ
ݙ
᎖EDၒྜྷ
ഗă  
CEN = 1 OR REMOVE AND  
RECONNECT AC  
CHARGER OFF  
CHG = HIGH-Z  
ADAPTER/USB  
ANY STATE  
I
= 0mA  
BAT  
TOGGLE CEN OR  
REMOVE AND  
RECONNECT AC  
ADAPTER/USB  
CEN = 0  
SET TIMER = 0  
PREQUALIFICATION  
CHG = 0V  
TIMER > t  
PREQUAL  
I
= I  
/ 10  
BAT CHG-MAX  
TIMER > t  
FST-CHG  
(TIMER SUSPENDED IF I < I  
x
V
< 2.88V  
V
< 3V  
BAT CHG-MAX  
BAT  
BAT  
20% WHILE V < 4.2V)  
SET TIMER = 0  
FAST CHARGE  
CHG = 0V  
SET TIMER = 0  
BAT  
FAULT  
POK = 0V  
CHG = BLINK AT 1Hz  
= 0mA  
I
= I  
BAT CHG-MAX  
I
BAT  
I
> I  
x 12%  
SET TIMER = 0  
BAT CHG-MAX  
ANY CHARGING STATE  
THERMISTOR  
TOO HOT OR TOO COLD  
TIMER = RESUMED  
THERMISTOR  
TEMPERATURE OK  
TIMER = RESUMED  
TOP - OFF  
CHG = HIGH - Z  
V
= < 4.1V  
BAT  
SET TIMER = 0  
I
< I  
BAT  
x 7.5%  
TEMPERATURE  
SUSPEND  
= 0mA  
BAT CHG-MAX  
AND V = 4.2V  
TIMER = t  
TOP-OFF  
I
BAT  
CHG = PREVIOUS STATE  
DONE  
CHG = HIGH-Z  
= 0mA  
I
BAT  
ᅄ5/!
ߠ
ᓨზᅄ  
24 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
᎖CBUᎾ
ߠ
ඡሢ)4/1W*Ljᐌ஠ྜྷᎾ
ߠ
ෝါLjকෝါ  
࢟࢟ߠߔ࢟
ഗᆐ౐
࢟ߠ
21&ă
Ⴅൈ
࢟ߠ
ෝါཀྵۣ  
ۻݙߔ࢟ࡼ࢟
࢟ߠ
ഗႼડăጙ
࢟ߔ࢟ࡡ
ኹ࿟ဍ  
4/1WLj
࢟ߠ
໭஠ྜྷ౐
ߠ
ෝါLjࠥဟ
࢟࢟ߠ
ഗᔢ
ăႲᓹ  
ߠ
ߒ࢟
ኚ஠ቲLj
࢟ߔ࢟
ኹ࿟ဍᒇᒗ
ࡵࡉ
࢟ࢾ
ኹ)5/3W*Lj  
Ⴒઁ
࢟࢟ߠ
ഗఎဪᓆ୍ିቃă
࢟࢟ߠࡩ
ഗሆଢ଼ᒗ౐
࢟ߠ
 
8/6&ဟLj
࢟ߠ
໭஠ྜྷॳ
ߠ
ෝါăॳ
ߒߠ
ኚ41ॊᒩઁLj  
ᑳৈ
࢟ߠ
߈
உၦăྙਫ
࢟ߔ࢟
ኹႲઁ
ൢᒗ5/2W
ᒮቤ  
ߠ
ඡሢጲሆLjᐌᒮቤ໪
࢟ߠࣅ
߈
Lj݀༦আᆡ
ဟ໭ă  
MONITORING THE BATTERY CHARGE CURRENT WITH V  
ISET  
R
ISET  
V
ISET  
=
x I  
BAT  
1556  
1.5  
ߠ
࢟࢟
ഗ  
JTFU፛୭భো௣
ߔ࢟
ྏ೟
ஂNBY97730NBY9774
࢟࢟ߠ
 
ഗăJTFUਜ਼
ᒄମ
࢟ࡼ
ᔜభ࿸ᒙᔢ
࢟ߠ
ഗĂᎾ
࢟ߠ
 
ഗጲૺ
ߔ࢟
ߠ
࢟࢟ߠࡼ
ഗඡሢă࿟ၤඡሢᒋ
ଐ  
Ⴏ৛ါྙሆǖ  
0
DISCHARGING  
BATTERY-CHARGING CURRENT (A)  
0
1556 x (1.5V/R  
)
ISET  
I
= 1556 x 1.5V / R  
CHG-MAX  
ISET  
CHG-MAX  
CHG-MAX  
I
= 10% x I  
PRE-QUAL  
ᅄ6/!ਭJTFUၒ߲
ኹପ
࢟࢟ߠߔ࢟ހ
ഗ  
I
= 7.5% x I  
TOP-OFF  
JDIH.NBYᒋན௼᎖
ߔ࢟
ᄂቶLjऎ
ݙ
ဵୣഗး๼໭0VTC
 
Ꮞၒ߲ถೆĂᄻঌᏲ૞QDC
ྲེถೆăNBY97730  
NBY9774భো௣ᑚቋፐႤᔈ
ࢯࣅ
࢟ߠ
Ⴏजă  
ߠ
ࢾ࢟
ဟ໭  
ྙᅄ4ჅာLjNBY97730NBY9774
ᎌ৺ᑇ
ဟ໭Ljభဣ  
ڔ
࢟ߠ
ăྙਫᎾ
ߠ
૞౐Ⴅ
࢟ߠ
ဟମިਭDU
ဟ໭
 
ྏ࿸ᒙ
ሢᒜဟମLj
࢟ߠ
໭୓ᄫᒏ
࢟ߠ
Lj݀ၒ߲ިဟ  
৺ᑇă
߿
CEN૞ᒮ໪EDၒྜྷ
ኹLjభጲᒮቤఎဪ
࢟ߠ
ă  
߹೫࿸ᒙ
࢟࢟ߠ
ഗᅪLjJTFUથ௥ᎌପ
࢟࢟ߠߔ࢟ހ
 
৖ถăJTFU፛୭
ၒ߲
ኹభৌᔍ
࢟࢟ߠࡼߔ࢟
ഗLjથ  
భ፿᎖ପ
࢟ߠࡼߔ࢟ހ
Ljྙᅄ6ჅာăJTFU
ኹᆐ  
2/6WဟLj
ܭ
ීᑵᏴ፿ᔢ
࢟ߠ
࢟ߠߔ࢟࣪
ǗJTFU
 
ኹᆐ1WဟLj
ܭ
ීሚᏴ
ݙ
࢟ߠ
ă
࢟ߠ
఼ᒜ
വಽ፿JTFU  
ኹ࿸ᒙ݀ପ
࢟ߔ࢟ހ
ഗă
ݙ
ገᏴJTFU፛୭࿟ᒇ୻ೌ୻  
᎖21qG
࢟ࡼ
ྏăྙਫገཇ
࢟࢟ߠ
ഗପ
ހ
ܘ
ኍ௥ᎌ൉  
݆৖ถLjభᏴJTFUਜ਼൉݆
ྏᒄମᐐଝጙᒑ211lΩ૞ᔜᒋ  
࢟ࡼࡍ
ᔜLjጲۣᑺ
࢟ߠ
ቶă  
NBY97730NBY9774ᑽ
ࡼߒ
DDU
ྏᒋᆐ1/12μGᒗ2μGǖ  
C
CT  
t
= 30min×  
PREQUAL  
0.068μF  
C
CT  
t
= 300min×  
FSTCHG  
0.068μF  
࢟ߠ
໭ᅓ߲౐
ߠ
ෝါဟLjCHG
ܤ
ᆐ঱ᔜఝ݀஠ྜྷॳ
ߠ
ෝ  
ါăॳ
ߠ
ဟମጐན௼᎖DU
࢟࣡
ྏǖ  
C
CT  
t
= 300min×  
TOPOFF  
0.068μF  
Ᏼ౐
ߠ
ෝါሆLj
࢟࢟ߠ
ഗ၊ၒྜྷሢഗ૞ེ
ሢ  
ᒜဧ
࢟࢟ߠ
ഗቃ᎖JDIH.NBY
31&ဟLj৺ᑇ
ဟ໭᏷ᄫă  
______________________________________________________________________________________ 25  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
DUೌ୻ᒗHOEဟLjభணᒏᎾ
ߠ
ਜ਼౐
ࢾߠ
ဟ໭Lj࠭ऎᏤ  
ߔ࢟
Ᏼॳ
ߠ
ෝါሆᇄሢ
࢟ߠ
Lj૞
ݧ
፿໚Ⴧᇹᄻ
ဟ໭  
఼ᒜ
࢟ߠ
ă  
ེැ
ᔜ)βᆐ4611*ဟLj࿟ၤᔜᒋ
पᆍᆐ1°Dᒗ  
,61°Dăེැ
ᔜᔜᒋᎧᆨ
ࡼࣞ
ਈᇹᎅጲሆ৛ါཀྵ
ǖ  
ߠ
ဧถၒྜྷ)DFO*  
CENᆐ঱
ຳဟLjணᒏ
࢟ߠߔ࢟
໭ă
ED
ೌ୻ᎌ቉
 
ᏎဟLj
CEN
࢟ࢅ
ຳጲဧถ
࢟ߠ
ăCENᎧၒྜྷሢഗ  
ᇄਈLj߹ऻCENᆐ঱
ຳ༦PEN2
࢟ࢅ
ຳဟLj୓ဧVTC  
஠ྜྷਂ໦ෝါă  
໚ᒦǖ  
SU >!
U )°D*ဟLjེැ
ᔜᒋLj
ᆡᆐΩă  
S36!>!,36°DဟLjེැ
ᔜᒋLj
ᆡᆐΩă  
β >!
ݢࡼ
ޟ
ၫLj໚
ቯपᆍᆐ4111Lᒗ6111Lă  
U!>!
Lj
ᆡᆐ°Dă  
Ᏼ኏
ᇹᄻดLjፐᆐTQT
വถ
ೂ਌ಯ
࢟ߠ
໭ਜ਼း๼໭0  
࢟ߔ
ॊ๼Ljፐࠥᇄኊ
ݧ
፿ᇹᄻ఼ᒜ໭)ᄰ
ޟ
ᆐᆈ
 
ಯ໭*౶ணᒏ
࢟ߠ
໭ăᑚᒬ༽ౚሆLjభጲ୓CEN
ă  
ܭ
3Ⴥာᆐ
ݙ
ᄴེැ
ݢ
ޟ
ሢᒜă  
ߠ
ᓨზၒ߲)DIH*  
ဣଔ࿸ଐᒦLjᆁᆁኊገኡᐋ໚჈
߿
खඡሢᆨ
ă
ޟ
భጲ  
ᄰਭ৊ེැ
ೊਜ਼0૞݀ೊጙᒑ
ᔜLj݀༦0૞ᑗኡᐋ  
ݙ
β
ེැ
ᔜ౶ဣሚăಿྙLj
ݧ
βᆐ5361
ེැ  
ᔜLj݀৊໚݀ೊጙᒑ231lΩ
ᔜLjభဣሚ,56°D
঱ᆨ  
ඡሢਜ਼1°D
ࢅࡼ
ᆨඡሢăᎅ᎖ᆨ
ࠀࣞ
᎖1°DᔧᎎဟLjེැ
 
ᔜᒋገ
܈
Ᏼ,61°D࿟ሆဟ঱
ࣶࡻ
Ljፐࠥ݀ೊጙᒑ
࢟ࡍ
 
ᔜభଢ଼
ࢅࢅ
ᆨඡሢLj୓ဧ঱ᆨඡሢ൒ᆈଢ଼
ăLj
 
ೊቃᔜᒋ
ᔜభᄋ঱
ᆨඡሢLjऎဧ঱ᆨඡሢ൒ᆈဍ঱ă  
30NBY974  
CHGဵധ૵ఎവၒ߲Lj፿᎖ᒎာ
࢟ߠ
໭ᓨზă
ߠߔ࢟ࡩ
 
᎖Ꮎ
ߠ
૞౐
ߠ
ෝါဟLjCHG
࢟ࢅ
ຳă
࢟ߠࡩ
໭  
࢟ߠ߅
Ă
᎖ॳ
ߠ
ෝါ૞ணᒏဟLjCHGᆐ঱ᔜఝă  
ྙਫᏴᎾ
ߠ
૞౐
ߠ
߈
ࢾ࢟ߠ
ဟ໭ިဟLj
࢟ߠ
໭୓ۨ  
স৺ᑇᓨზăᏴᑚᒬᓨზሆLjCHG୓ၒ߲2I{൴
ߡ
ܭ
ී  
߲ሚ৺ᑇă  
࢟ߠߔ
໭ེැ
ᔜၒྜྷ)UIN*  
ེැ
ᔜᔜᒋި߲໚पᆍဟLj
ࢾ࢟ߠ
ဟ໭ᒫᒏǖᄫᒏ  
ߠ
Lj
ဟ໭ଐၫᒋۣ
ܤݙߒ
ă
पᆍጲ  
ดဟLjᒮቤఎဪ
࢟ߠ
Ljଐၫ໭ᎅᒦ
ᆡᒙఎဪଖኚଐၫă  
UIN୻HOEဟLjணᒏེැ
ᔜଶ
ހ
৖ถă  
ݧ
፿ঌᆨ
ᇹၫ)OUD*
ེැ
ᔜପ
ߔ࢟ހ
૞໚ᒲᆍણஹ  
ă
ེැ
ᔜᆨ
ࠀࣞ
᎖Ꮴ኏पᆍဟLj
࢟ߠޟ
ă  
ེැ
ᔜᔜఝ
᎖4/:8lΩ )ᆨ
ਭ঱*૞঱᎖39/8lΩ )ᆨ  
*ဟLj
࢟ߠ
໭஠ྜྷᆨ
ਂ໦ᓨზă
ݧ
፿21lΩ
OUD  
ܭ
3/!
ݙ
ᄴེැ
৺ᑇᆨ
 
THERMISTOR ß (K)  
Resistance at +25°C (kΩ)  
3000 (K)  
3250 (K)  
10  
3500 (K)  
10  
3750 (K)  
10  
4250 (K)  
10  
10  
4.59  
25.14  
55  
Resistance at +50°C (kΩ)  
4.30  
27.15  
53  
4.03  
29.32  
50  
3.78  
31.66  
49  
3316  
36.91  
46  
Resistance at 0°C (kΩ)  
Nominal Hot Trip Temperature (°C)  
Nominal Cold Trip Temperature (°C)  
-3  
-1  
0
2
4.5  
26 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
VL  
SWITCH OPEN  
WHEN CHARGER  
DISABLED  
MAX8662  
MAX8663  
55.71kΩ  
10kΩ  
V
= 2.4V RISING (TYP)  
THM_C  
-
COLD  
60mV HYST  
+
BAD TEMP  
97.71kΩ  
-
HOT  
60mV HYST  
V
= 0.9V FALLING (TYP)  
= 0.1V FALLING (TYP)  
THM  
THM_H  
+
DISABLE CHARGER  
54.43kΩ  
-
ENABLE THM  
60mV HYST  
ESD  
DIODE  
V
THM_D  
+
6.43kΩ  
GND  
GND  
ᅄ7/!
ᔜၒྜྷ  
ᅄ7ჅာᆐUINၒྜྷೌ୻
଼છ
വᅄă።ཀྵۣᅄ7ᒦེ  
ᇕಯ
ݙࡁߛ
્፛໦ᔈེ቉።ă  
ଢ଼ኹᓞધ໭৔ᔫෝါ  
PVU2ਜ਼PVU3ถ৔ᔫᏴᔈ
QXNෝါ)QXNᆐ
*૞༓ᒜ  
QXNෝါ)QXNᆐ঱*ăᏴᔈ
QXNෝါሆLj
ঌᏲ
ഗ  
ଢ଼ᒗᎾ࿸ᒋጲሆဟLjPVU2ਜ਼PVU3஠ྜྷᄢຫෝါăᏴᄢ  
ຫෝါሆLjᓞધ໭્ᄢਭጙቋ
ݙ
ኊገ
ఎਈᒲ໐Lj࠭ऎ  
ஸზ
ഗLjᄋ঱༵Ᏺ቉ൈăᏴ༓ᒜQXNෝါሆLj  
ᇄ൙ၒ߲ঌᏲᎌ
ࡍࣶ
Ljᓞધ໭௿৔ᔫᏴ2NI{
ຫൈă  
ᄰਭ
ஂఎਈቧ੓
ᐴహ
܈
ࡵࡉ
ၒ߲
ă  
ᎅ᎖ఎਈቕ݆ஞखညᏴৼ
ఎਈຫൈ
ᑳၫ۶Ljጵ᎖൉  
߹LjჅጲ༓ᒜQXNෝါऻ
ޟ
း੝
ᐅဉᇹᄻă཭ऎLjᑚ  
ᒬෝါሆᓞધ໭৔ᔫ
ഗ୷
Ljፐ༵ࠥᏲ቉ൈᎌჅଢ଼
ă  
ଢ଼ኹቯED.EDᓞધ໭)PVU2ਜ਼PVU3*  
PVU2ਜ਼PVU3ဵ঱቉Ă2NI{Ă
ഗෝါଢ଼ኹᓞધ໭Ljᎌ  
ࡼࢯ
ၒ߲
ăPVU2ᆮኹ໭ၒ߲ 
ኹᆐ1/:9WᒗWJO  
భᄋ৙঱
2311nB
ഗLjPVU3ᆮኹ໭ၒ߲
ኹᆐ1/:9W  
ᒗWJOLjభᄋ৙঱
:11nB
ഗă  
Lj
PVU2ਜ਼PVU3௥ᎌ
ဧถၒྜྷăถဟLjPVU2ਜ਼PVU3  
Ᏼ2/7nt
ྟ໪
ဟମดદൻᐐ
ၒ߲
ኹăྟ໪
ሿ߹  
೫ၒྜྷ಍፻
ବख़ă  
PVU2ਜ਼PVU3భ৔ᔫᏴ211&ᐴహ
܈
Lj
ᆮኹ໭Ᏼ
࢟ߔ࢟
 
ኹᔢ
ဟ྆ถᑵ
ޟ
৔ᔫăঌᏲᆐ711nBဟLjPVU2
ތ
 
ᆐ83nWǗঌᏲ)
ݙ
۞౪
ঢᔜఝ*ᆐ561nBဟLjPVU3
ኹ  
ތ
ᆐ:1nWă211&ᐴహ
܈
৔ᔫဟLj঱
ܟ
q৥
NPTGFUೌ  
ᄰLjၒྜྷᎧၒ߲ᄰਭ
ঢሤೌă  
ݛ
ᑳഗ  
ݝ
o৥
ݛ
ᑳഗ໭ဏབྷ೫ᅪ
ݝ
ቆᄂ૥औ૵਌Ljᄋ঱೫  
ᓞધ቉ൈăᄴ
ݛ
ᑳഗ໭୓Ᏼඛৈఎਈᒲ໐
ۍ
ᒲ໐ఎ  
໪ăᏴࠥ໐ମLj
ঢೝ
࢟ࡼ࣡
ኹडᓞLj
ഗሣቶሆ  
______________________________________________________________________________________ 27  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
ଢ଼ăQXNෝါሆLjᄴ
ݛ
ᑳഗ໭Ᏼᓞધᒲ໐୓ገஉၦဟਈ  
ăᄢຫෝါሆLjᄴ
ݛ
ᑳഗ໭୓Ᏼ
᎖o৥
ਭ  
ഃඡሢLj૞ᓞધᒲ໐உၦဟਈ
)ན௼᎖ሌखည
ူୈ*ă  
ಿྙLjSPWQ > 2/3NΩဟLjPVU4ᔢ
࢟ࡍ
ኹ࿸ᒙᆐ36/36Wă  
PWQ
വથ௥ᎌྟ໪
৖ถLjဧด
ݝ
ሆ౯
ഗᏴ2/36ntด  
࠭1દൻ࿟ဍᒗ31μBLj࠭ऎଢ଼
಍፻
ഗă
 
FO4ᆐ
࢟ࢅ
ຳဟLj31μBด
࢟ݝ
ఎă  
࿸ᒙPVU2ਜ਼PVU3ၒ߲
ኹ  
ᄰਭ࿸ᒙSPWQLjభ୓PVU4ဍኹၒ߲࿸ᒙ
Ⴥ໐ᆃ
࢟ࡼ
ኹă  
ࠥဟLjၒ߲൉݆
ܘ
ኍᒗ࿩ᆐ2μGLj።ᏴDD4ਜ਼
ᒄମ  
ೊጙᒑ1/12μG
ྏਜ਼ጙᒑ21lΩ
ᔜLj৩
ޡݗ߅
ᆀ൥ă  
୓GC2ೌ୻ᒗPVU2ਜ਼HOEᒄମ
ᔜॊኹ໭
Ljభ୓  
PVU2ၒ߲
ኹ࿸ᒙ
1/:9WᒗWJOăখ
ܤ
S4 )ᅄ2*
ᔜᒋLj  
భጲ࿸ᒙ੝ಯ
࢟ࡼ
ᔜॊኹ໭ມᒙ
ഗǗS4Ᏼ211lΩᒗ  
311lΩᒄମኡནăፐࠥLjS3 )ᅄ2*భᎅሆါ৊߲ǖ  
఼ᒜ)
ኹ૞QXN఼ᒜ*  
R2 = R3 ((V  
/V ) - 1)  
OUT1 FB  
MFE
ഗᎅCSU
࢟࣡
ኹ࿸ᒙăWCSU஑᎖61nWᒗ2/6WဟLj  
భ୓ၒ߲
2nBᒗ41nBăCSU୻2/6W૥ᓰ
ኹ  
)ྙSFG*Ljభ୓MFE
ഗ࿸ᒙᆐ41nBă  
໚ᒦLjWGC > 1/:9Wă
᎖PVU3Lj
ݧ
፿ሆါଐႯS5ਜ਼S6ǖ  
R4 = R5 ((V /V ) - 1)  
OUT2 FB  
FO4ၒྜྷጐభ၊఼᎖൝૷
QXNೡ
఼ᒜቧ੓)ಿྙ  
ᎅᆈ఼ᒜ໭ᄋ৙*ă
QXNຫൈपᆍᆐ2lI{ᒗ211lI{ă  
211&
ᐴహ
࣪܈
። CSU ፛୭Ⴥ࿸ᒙ
൸೟
࢟߈
ഗă  
NBY9773
QXNೡ
ቧ੓஠ቲၫᔊஊ൩Ljሿ߹೫QXN  
఼ᒜᒦ
ޟ
QXNᆬ݆ăፐࠥLjᇄኊᅪ
ݝ
൉݆૾భ  
ሿ߹QXNຫൈሆ
݆
ă  
PVU2ਜ਼PVU3
ঢ  
30NBY974  
ᅎୀPVU2ਜ਼PVU3ଢ଼ኹᓞધ໭ኡ፿4/4μIਜ਼5/8μI
࢟ࡼ
ঢă  
።ཀྵۣ
ۥ
ഗऄ
ഗख़ᒋLj
࢟ࢾ
ঢ  
ᒇഗ
ഗᔢ
᎖ၒ߲
ഗख़ᒋă
ഗ୷
Lj
 
ഗऄ
ᒋ୓્ଢ଼
ă
ၫ።፿ᒦLj
ݧ
࢟ࡼ
ঢऄ
 
ഗᆐჅኊၒ߲
ഗᔢ
2/36۶ăገ૝
ᔢ঱቉ൈLj  
ᒇഗᔜఝ።஧భถቃă໭ୈኡቯဣಿ
ݬ
ܭ
5ă  
ᆐ೫ᑵཀྵཌॊᒇഗ૞QXN఼ᒜቧ੓LjNBY9773ᏴFO4࿟ဍ  
౶ઁዓ
ߕ
3nt
ݣ
ఎ໪LjᏴFO4ሆଢ଼ዘઁዓ
ߕ
3nt
ݣ
ਈ  
ăྙਫ3ntઁFO4ቧ੓
ݙ
Ᏻᄢ
ܤ
LjᐌFO4ཱྀᆐ఼ᒜቧ੓  
ᆐᒇഗLj݀ো௣ᒇഗ
ຳ࿸ᒙMFEೡ
ăྙਫᏴ3ntด߲  
ሚೝৈ࿟ဍዘLjᐌ
വཱྀᆐဵQXN఼ᒜቧ੓Lj݀ো௣ᐴ  
܈
࿸ᒙೡ
ă  
ڹ
਒MFEད
ဍኹᓞધ໭  
)PVU4-!NBY9773*  
NBY9773௥ᎌጙവဍኹᓞધ໭PVU4Ljభད
8ᒑ
 
ڹ
਒MFELjᄋ৙঱
41nB
ഗăဍኹᓞધ໭భ
ஂ໚ၒ  
߲
ኹLjۣᑺᔢ෣
ࡼ࣡
MFEጐ௥ᎌ431nW
ኹă2NI{ఎ  
ਈႥൈᏤ኏ဧ፿ቃ
࢟ࡁߛ
ঢጲૺቃ
ࡁߛ
ၒྜྷ0ၒ߲
ྏLj  
ᄴဟጐ
ࡍࡍ
ၒྜྷਜ਼ၒ߲ᆬ݆ă  
PVU4
ঢ  
ၫ።፿ᒦLj
ڹ
਒MFEད
໭PVU4ᅎୀኡ፿33μI
ঢă  
ᆐ೫૝
ᔢଛ቉ൈLj
ᒇഗᔜఝጐ።஧భถ
ăୈ  
ኡቯဣಿ
ݬ
ܭ
5ă  
૥ᓰ
ኹ  
PVU4
࢟ޡݗ
ྏ  
SFGᆐ2/6Wᆮኹၒ߲Lj
ဍኹᓞધ໭ဧถဟLjభ፿᎖ད
 
CSUၒྜྷăᄰਭ
ᔜॊኹ໭
ஂCSU
࢟࣡
ኹLjဣሚ
MFE  
ࡼࣞ
఼ᒜă  
DD4ਜ਼HOEᒄମ
࢟ޡݗࡼ
ྏཀྵۣ೫ဍኹᓞધ໭఼ᒜણവ  
ቶăᑣ
ڹ࣪
਒MFE።፿Lj
PVU4
୻ጙᒑ1/2μG  
ྏဟLjDD4ਜ਼
ᒄମ።ೌ୻ጙᒑ1/33μG
ჿࠣ
ྏă  
PMFEဟLjᏴDD4ਜ਼
ᒄମ።
ೊ1/12μG
࢟ࡼ
ྏਜ਼  
21lΩ
࢟ࡼ
ᔜăPVU4
ࡼ࣡
2μG
ྏభখ࿖ဍኹၒ߲
ঌᏲ  
ၾზሰ።ă  
ဍኹᓞધ໭
ਭኹۣઐ)PWQ*  
PWQሢᒜဍኹᓞધ໭
ၒ߲
ኹLjऴᒏMFEఎവ૞
 
ఎ፛໦ਭኹ৺ᑇăPVU4ਜ਼PWQᒄମ୻ᎌᅪ
࢟ݝ
ᔜLj๼੝  
PWQਜ਼HOEᒄମ
ݝ
31μBሆ౯
ഗLjభ୓ဍኹᓞધ໭  
ၒ߲
ኹ࿸ᒙᆐǖ  
PVU4औ૵਌ኡᐋ  
NBY9773ဍኹᓞધ໭
঱ఎਈຫൈገཇ
ݧ
፿঱Ⴅᑳഗऔ  
૵਌)E2*Ljጲ૝
ᔢ঱቉ൈăᅎୀ
ݧ
፿ቆᄂ૥औ૵਌Ljፐ  
ᆐ໚௥ᎌ౐Ⴅૂআဟମਜ਼୷
ࡼࢅ
ᑵሶኹଢ଼ă።ཀྵۣऔ૵  
V
= (R  
x 20μA) + 1.25V  
OVP  
BOOST_MAX  
28 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
ख़ᒋ
ख़ᒋ
ഗăࠥᅪLjऔ૵਌
 
नሶૣ
࢟ࠃ
ܘ
᎖WPVU4ăᏄୈኡቯဣಿ
ݬ
ܭ
5ă  
ྟ໪
0಍፻
ഗ  
NBY97730NBY9774௥ᎌ
ᒬྟ໪
Lj፿᎖఼ᒜ಍፻
ഗLj  
ܜ
ൢăၒྜྷሢኹ໭ਜ਼
࢟ߠߔ࢟
໭௥ᎌ2/6nt  
ྟ໪
ဟମăჅᎌᆮኹ໭௿
ᎌྟ໪
ă
ڹ
਒MFEད
 
໭Ᏼ2/36ntดဧPWQ
ഗ࠭1દൻ࿟ဍᒗ31μBLj࠭ऎဣሚ  
ྟ໪
ăᏴྟ໪
໐ମLjQXN఼ᒜ໭༓ᒜఎਈᐴహ
܈
ᆐ  
1&Ljऴᒏ
ᄰဟ
ၒྜྷ಍፻
ഗă  
ሣቶᆮኹ໭)PVU5ĂPVU6ĂPVU7ਜ਼PVU8*  
NBY97730NBY9774
ᎌ႐വ
ތ
Ă
ஸზ
ഗĂ
৔  
ሣቶᆮኹ໭ăPVU5ĂPVU6ĂPVU7ਜ਼PVU8
 
ၒ߲
ഗॊܰᆐ611nBĂ261nBĂ411nBਜ਼261nBăඛৈ  
ᆮኹ໭
ᎌ৉ᔈ
ဧถၒྜྷăဧถဟLjၒ߲
ኹጲ21W0nt  
Ⴅൈદൻ࿟ဍLj࠭ऎဣሚሣቶᆮኹ໭
ྟ໪
ă
ᆮ  
ኹ໭໪
ဟLjᑚጙ৖ถᄴዹጐሢᒜ೫಍፻
ഗă  
་ኹਜ਼ਭኹჄ
 
ED!VWMP  
MEPၒ߲
ኹPVU5ĂPVU6ĂPVU7ਜ਼PVU8ᄰਭTM2ਜ਼  
TM3፛୭࿸ᒙ)
ݬ
ܭ
4*ăTM2ਜ਼TM3
፛୭࿸ᒙ
ݧ
፿፮ୈ  
ೌሣLj
ݙ
ݧ
፿ᎌᏎ൝૷ད
ă࿟
ᒄઁLjTM2ਜ਼TM3ᓨ  
ܤࡼ
છ௿ᇄ቉ă  
ED
᎖ED་ኹඡሢ)WVWMP`ED
ቯᒋᆐ4/6WLjଢ଼*  
ဟLjNBY97730NBY9774஠ྜྷED་ኹ
ܕ
Ⴤ)ED VWMP*ᓨზă  
ED VWMPဧ
Ꮞ਌ಯ
വ஠ྜྷጯᒀቿරᓨზLjᒇ
ED
 
ኹဍ঱
ᔗጲဧ໭ୈᑵ
ޟ
৔ᔫᆐᒏăᏴED VWMPᓨზሆLj  
R2
ఎ)
ݬ
୅ᅄ3*Lj
࢟ߠ
ݙ
৔ᔫLjPOKCHG௿ᆐ঱ᔜ  
ზăᏴED VWMPᓨზሆLjᇹᄻঌᏲఎਈR3
ܕ
੝)
ݬ
୅ᅄ3*Lj  
Ꮴ኏
ߔ࢟
ሶTZTஂ
ăᏴED VWMPᓨზሆLjჅᎌᆮ  
ኹ໭௿ᎅ
ߔ࢟
ă  
WMሣቶᆮኹ໭  
WMဵ4/4Wሣቶᆮኹ໭
ၒ߲Ljభᆐຢ࿟ၒྜྷሢᒜ໭ਜ਼
ߠ
 
఼ᒜ
വ৙
ă
ࡀࡩ
ᏴED
ᏎဟLjWMᎅED৙
Ljᄋ  
৙঱
21nB
࢟ࡼ
ഗăWMᄰਭጙᒑ1/2μG
ྏ๬വᒗHOEă  
ED!PWMP  
ED
ኹ঱᎖EDਭኹඡሢ)WPWMP`ED
ቯᒋ7/:W*ဟLj  
NBY97730NBY9774஠ྜྷEDਭኹჄ
)ED PWMP*ᓨზă
 
ED
ኹဍ঱ᒗ୻த:WဟLjED PWMPෝါభۣઐNBY97730  
NBY9774ૺሆᎊ
വăᏴED PWMPෝါሆLjWM
ᄰLjR2  
ఎ)
ݬ
୅ᅄ3*Lj
࢟ߠ
໭ணᒏLjPOKCHG௿ᆐ঱ᔜზă  
ᏴED PWMPෝါሆLjᇹᄻঌᏲఎਈR3
ܕ
੝)
ݬ
୅ᅄ3*Lj
 
ߔ
ሶTZT৙
ăᏴED PWMPෝါሆLjჅᎌᆮኹ໭ᎅ
ߔ࢟
 
ă  
ᆮኹ໭ဧถၒྜྷ)FO`*  
PVU2PVU8ᆮኹ໭
௥ᎌ
ဧถၒྜྷăFO`ᆐ঱
 
ຳဟLj
ྟ໪
LjPVU`ဧถăFO`ᆐ
࢟ࢅ
ຳဟLjᒏ  
PVU`ăPVU`ணᒏဟLjඛৈᆮኹ໭)PVU2PVU8*્༤ધ
 
ᎌᏎሆ౯
ᔜLjဧၒ߲ह
ă  
ܭ
4/!TM2ਜ਼TM3Ljၒ߲
ኹኡᐋ  
CONNECT SL_ TO:  
LINEAR REGULATOR OUTPUT VOLTAGES  
SL1  
Open circuit  
Ground  
SYS  
SL2  
Open circuit  
Open circuit  
Open circuit  
Ground  
Ground  
Ground  
SYS  
OUT4 (V)  
3.3  
OUT5 (V)  
3.3  
OUT6 (V)  
3.3  
OUT7 (V)  
3.3  
3.3  
2.85  
2.85  
2.85  
3.3  
1.85  
1.85  
2.85  
1.5  
1.85  
1.85  
1.85  
1.5  
2.85  
3.3  
Open circuit  
Ground  
SYS  
2.5  
2.5  
3.3  
1.5  
1.3  
Open circuit  
Ground  
SYS  
1.2  
1.8  
1.1  
1.3  
SYS  
3.3  
2.85  
2.5  
1.5  
1.5  
SYS  
1.8  
3.3  
2.85  
______________________________________________________________________________________ 29  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
TZT!VWMP  
ဵǖຢ࿟ེۣઐ
ೂ৔ᔫLjᎧེැ
ᔜၒྜྷᇄ  
ਈăથኊᓖፀ
ဵǖེਭᏲਈ
ဵጙᒬပ቉ۣઐ૦ᒜă  
੝ಯ
ྲེ࿸ଐ።ཀྵۣNBY97730NBY9774உᆨ
ݙ
્ިਭ  
,261°D
ᒋă  
TZT
ൢᒗTZT་ኹඡሢ)WVWMP`TZT
ቯᒋᆐ3/5WLj  
ሆଢ଼*ጲሆဟLjNBY97730NBY9774஠ྜྷTZT་ኹჄ
 
)TZT VWMP*ᓨზăTZT VWMP༓ᒜჅᎌᆮኹ໭ਈ
ă
 
TZT
ኹ঱᎖WVWMP`TZTဟLj৉ᆮኹ໭ᓨზན௼᎖ሤ።
 
ဧถၒྜྷ)FO`*ă  
``````````````````````````````````` ።፿ቧᇦ  
ଢ଼ኹᓞધ໭)PVU2ਜ਼PVU3*  
ྏኡᐋ  
ၒྜྷሢᒜ໭ེ
വ  
਌በᆨ
঱᎖,211°DဟLjNBY97730NBY9774ጲ6&0°D  
ၒྜྷሢᒜ໭
ഗăᇹᄻঌᏲ)TZT*৙
ࡼ࢟
ᎁሌ  
ཚ঱᎖
࢟ߠߔ࢟
LjፐࠥLjሌᄰਭଢ଼
࢟࢟ߠࢅ
ഗ౶ିቃၒ  
ഗăଢ଼
࢟࢟ߠࢅ
ഗጲઁLjਫஉᆨ྆ᆐ,231°DLjᐌ
ݙ
 
ݧ
፿ED৙
Ljऎဵᎅ
ߔ࢟
ሶᑳৈᇹᄻঌᏲ৙
Lj݀༦  
TZT
ኹᆮ
᎖CBU
ኹ211nW
࢟ࡼ
ኹ࿟ăኊገᓖፀ  
ဵǖຢ࿟ེ
ೂ৔ᔫLjᎧེැ
ᔜၒྜྷᇄਈă  
ED.EDᓞધ໭
ၒྜྷ
ྏభጲଢ଼
ߔ࢟
૞໚Ⴧ
Ꮞᇢ  
࢟ࡼ
ഗख़ᒋLj݀ଢ଼
఼ᒜ໭
ఎਈᐅဉăᏴఎਈຫൈ  
ሆLjၒྜྷ
ᔜఝ።কቃ᎖
ၒ߲ᔜఝLjᑚዹ঱  
ຫఎਈ
ഗ௓
ݙ
્ᄰਭ
ᏎăED.EDᓞધ໭
ၒ߲
ྏ  
భିቃၒ߲ᆬ݆Ljཀྵ఼ۣᒜણവ
ቶăᏴఎਈຫൈ  
ሆLjၒ߲
ྏ።௥ᎌ୷
ࡼࢅ
ᔜఝăᎅ᎖ჿࠣ
ྏ௥ᎌቃ  
ߛ
Lj
FTSጲૺ
ᇹၫᄂቶLjፐࠥY6S૞Y8S
஑  
ᒠჿࠣ
߅
ᆐၒྜྷ
ྏਜ਼ၒ߲
၅ኡă  
30NBY974  
ᆮኹ໭ਭེਈ
 
ྙਫஉᆨިਭ,276°DLjNBY97730NBY9774ணᒏჅᎌ
࢟ߠ
 
໭ĂTZTਜ਼ᆮኹ໭ၒ߲)߹೫WM*Ljဧ໭ୈದསă
உᆨሆ  
Ꮦ26°DဟLjᒮቤૂআ
ེਭᏲᒄ༄
ᓨზăኊገᓖ  
ܭ
5৊߲೫PVU20PVU3ၒྜྷ0ၒ߲
ኡቯ௟ಿਜ਼ሤ።
 
ᒜᐆ࿜ă  
ܭ
5/!
ݝ
Ꮔୈ༹
)
ݬ
୅ᅄ2*  
COMPONENT  
FUNCTION  
PART  
4.7μF 10%, 16V X5R ceramic capacitor  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107 BJ105KA  
C1  
Input filter capacitor  
0.1μF 10%, 10V X5R ceramic capacitor (0402)  
Murata GRM 155R61A104KA01 or TDK C1005X5R1A104K  
C2, C3  
C4, C6  
C5, C7  
C8, C9  
VL filter capacitor  
4.7μF 10%, 6.3V X5R ceramic capacitors (0603)  
Mutara GRM188R60J475KE  
Buck input bypass capacitors  
Step-down output filter  
capacitors  
2 x 10μF 10%, 6.3V X5R ceramic capacitors (0805)  
Murata GRM219R60J106KE19  
Linear regulator input filter  
capacitors  
1.0μF 10%, 16V X5R ceramic capacitors (0603)  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107 BJ105KA  
C10  
C11  
SYS output bypass capacitor  
Battery bypass capacitor  
10μF 10%, 6.3V X5R ceramic capacitor  
4.7μF 10%, 6.3V X5R ceramic capacitor  
0.068μF 10%, 10V X5R ceramic capacitor (0402)  
TDK C1005X5R1A683K  
C12  
C13  
C14  
C15  
Charger timing capacitor  
1.0μF 10%, 16V X5R ceramic capacitor (0603)  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107BJ105KA  
Boost input bypass capacitor  
Step-up output filter capacitor  
0.1μF 10%, 50V X7R ceramic capacitor (0603)  
Murata GRM188R71H104KA93 or Taiyo Yuden UMK107BJ104KA  
Step-up compensation  
capacitor  
0.22μF 10%, 10V X5R ceramic capacitor (0402)  
Murata GRM155R61A224KE19  
30 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
ܭ
5/!
ݝ
Ꮔୈ༹
)
ݬ
୅ᅄ2*!)ኚ*  
COMPONENT  
FUNCTION  
PART  
4.7μF 10%, 6.3V X5R ceramic capacitor (0603)  
Murata GRM188R60J475KE19  
Linear regulator output filter  
capacitor  
C16  
Linear regulator output filter  
capacitors  
1.0μF 10%, 6.3V X5R ceramic capacitors (0603)  
Murata GRM188R60J105KA01  
C17, C19  
C18  
D1  
2.2μF 10%, 6.3V X5R ceramic capacitor (0603)  
Murata GRM185R60J225KE26  
Linear regulator output filter  
capacitor  
200mA, 30V Schottky diode (SOD-323)  
Central CMDSH2-3  
Boost rectifier  
30mA surface-mount white LEDs  
Nichia NSCW215T  
D2–D8  
D9  
Display backlighting  
CS clamp  
100mA silicon signal diode  
Central CMOD4448  
3.3μH inductor  
TOKO DE2818C 1072AS-3R3M, 1.6A, 50mΩ  
L1  
OUT1 step-down inductor  
OUT2 step-down inductor  
4.7μH inductor  
TOKO DE2818C 1072AS-4R7M, 1.3A, 70mΩ  
L2  
22μH inductor  
L3  
OUT3 step-up inductor  
Murata LQH32CN220K53, 250mA, 0.71Ω DCR (3.2mm x 2.5mm x 1.55mm)  
or TDK VLF3012AT-220MR33, 330mA, 0.76Ω DCR (2.8mm x 2.6mm x 1.2mm)  
R1, R7  
R2–R5  
Logic output pullup resistors  
Step-down feedback resistors  
100kΩ  
R3 and R5 are 200kΩ 0.1%; R2 and R4 depend on output voltage ( 0.1%)  
Phillips NTC thermistor  
P/N 2322-640-63103  
10kΩ 5% at +25°C  
R6  
Negative TC thermistor  
Input current-limit  
programming resistor  
R8  
R9  
1.5kΩ 1%, for 2A limit  
Fast charge-current  
programming resistor  
3kΩ 1%, for 777mA charging  
1.2MΩ 1%, for 25V max output  
Step-up overvoltage feedback  
resistor  
R10  
______________________________________________________________________________________ 31  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
ܭ
6/!NBY97730NBY9774ॖᓤེᄂቶ  
48-PIN THIN QFN (6mm x 6mm)  
40-PIN THIN QFN (5mm x 5mm)  
SINGLE-LAYER PCB MULTILAYER PCB  
SINGLE-LAYER PCB  
2105.3mW  
MULTILAYER PCB  
2963.0mW  
1777.8mW  
2857.1mW  
CONTINUOUS  
POWER  
DISSIPATION  
Derate 26.3mW/°C above  
+70°C  
Derate 37.0mW/°C above  
+70°C  
Derate 22.2mW/°C above  
+70°C  
Derate 35.7mW/°C above  
+70°C  
θ
θ
38°C/W  
1.4°C/W  
27°C/W  
1.4°C/W  
45°C/W  
1.7°C/W  
28°C/W  
1.7°C/W  
JA  
JC  
EDĂTZTĂCBUĂQW2ጲૺQW3ਜ਼৖ൈ
ށ࢐
ᒄମ
ၒྜྷ
 
ྏ።஧భถణதJDहᒙă୓ሣቶᆮኹ໭
ၒྜྷ0ၒ߲
ྏ  
ೌ୻ᒗ
ᐅဉෝผ
Lj݀஧భถణதJDहᒙă
ঢĂၒ  
߲
ྏጲૺनౣ
ᔜ።஧భถణதJDहᒙLj݀༦።
ݧ
፿  
Ăᒇ༦౑
ݚࡼ
ሣă  
৖੒  
NBY97730NBY9774௥ᎌེ
വጲૺਈ
ᄂቶLjభጲ  
ܜ
඾JDᎅ᎖በຢᆨ
ਭ঱ऎखညႼડăᆐۣᑺඛৈᆮኹ  
໭ถ৫ၒ߲ᔢ
࢟࢟ߠࡍ
ഗਜ਼ঌᏲ
ഗLjᄴဟऴᒏበຢਭ  
ེLj
ܘ
ኍཀྵۣNBY97730NBY9774
ޘ
ེ೟ถ৫ኸႥ
 
੒ྲᏴQDC࿟ăॖᓤ
ࡼݝ࢏
ൡ੆๤
ܘ
ኍ੆୻ᏴQDC࿟Lj݀  
༦ᄰਭൡ੆๤ሆऱ
ࣶࡼ
ৈਭ఻ཀྵۣᎧ
ށ࢐
ᒄମ
ᔢଛ
 
ེᄰ
ă  
30NBY974  
ᎌਈQDC
ݚ
௜ဣಿ༿
ݬ
ఠNBY97730NBY9774ຶৰ
ۇ
ၫ௣  
ᓾ೯ă  
```````````````````````````````` ፛୭๼ᒙ)ኚ*  
ܭ
6৊߲೫NBY97730NBY9774ॖᓤ
ེᄂቶăಿྙLj  
NBY9774உ
ࡵ࢛
ᅪఫ
ེᔜ)θKD*ᆐ3/8°D0XLjᏴ
ށࣶ
QDC  
࿟੝ಯ
ڔ
ᓤઁLjஉ
ࡵ࢛
ણஹ
࢜ࡼ
ቯེᔜ)θKB*ᆐ39°D0Xă  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
QDC
ݚ
௜Ꭷ
ݚ
ሣ  
20  
31  
32  
33  
PWM  
EN6  
EN7  
19 EN5  
18 EN4  
᎖࿸ଐऎዔLj঱ఎਈຫൈጲૺሤ።
ࡍࡼ
ख़ᒋ
ഗဧ
 
QDC
ݚ
௜ऻ
ޟ
ᒮገă೜ੑ
ݚࡼ
௜࿸ଐభ
ࡍࡍ
࢟࢐ࢅ
ᆡ݆  
Ăनౣᄰവ
FNJጲૺ
࢟ࡼށ࢐
ኹᄇ
Ljᑚጙᇹ೰ፐႤ  
ᎌభถ
ݙ
૞ᆮኹᇙ
ތ
ă  
OUT6  
17  
16  
OUT5  
IN45  
IN67 34  
35  
36  
37  
38  
39  
40  
OUT7  
VL  
MAX8663  
15 OUT4  
14  
ࢅࡼ
ᐅဉෝผ
ށ࢐
۞౪૥ᓰĂሣቶᆮኹ໭Ăቧ੓
 
ጲૺHOELj჈Ꭷ৖ൈ
ܘ࢐
ኍᄰਭ
࢛࡝
ೌ୻Ljጲ୓৖ൈ
 
፬ሰଢ଼ᒗᔢ
ăQH`ĂED
Ꮞਜ਼
ܘ࢐ߔ࢟
ኍᒇ୻  
ೌ୻ᒗ৖ൈ
ށ࢐
ăHOEᒇ୻ೌ୻ᒗJDሆऱ
ൡ੆๤ăൡ  
੆๤ሆऱ
ࣶࡼ
ৈஜමਭ఻୻
Ljᎌᓐ᎖JDེ೟ኸႥሿྲă  
GND  
13 CT  
12  
SL1  
SL2  
ISET  
11 THM  
PSET  
POK  
1
2
3
4
5
6
7
8
9
10  
THIN QFN  
(5mm x 5mm)  
32 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
````````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ  
ྙኊᔢத
ॖᓤᅪተቧᇦਜ਼੆๤
ݚ
௜Lj༿
އ
www.maxim-ic.com.cn/packagesă  
ॖᓤಢቯ  
ॖᓤ
ܠ
൩  
T4866-1  
T4055-1  
ܠ࡭
੓  
21-0140  
21-0141  
48 TQFN-EP  
40 TQFN-EP  
______________________________________________________________________________________ 33  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
````````````````````````````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ)ኚ*  
ྙኊᔢத
ॖᓤᅪተቧᇦਜ਼੆๤
ݚ
௜Lj༿
އ
www.maxim-ic.com.cn/packagesă  
30NBY974  
34 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
````````````````````````````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ)ኚ*  
ྙኊᔢத
ॖᓤᅪተቧᇦਜ਼੆๤
ݚ
௜Lj༿
އ
www.maxim-ic.com.cn/packagesă  
______________________________________________________________________________________ 35  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
````````````````````````````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ)ኚ*  
ྙኊᔢத
ॖᓤᅪተቧᇦਜ਼੆๤
ݚ
௜Lj༿
އ
www.maxim-ic.com.cn/packagesă  
30NBY974  
36 ______________________________________________________________________________________  
፿᎖
ஂMj,
ߔ࢟
࿸۸
 
Ꮞ਌ಯJD  
30NBY974  
```````````````````````````````````````````````````````````````````````````` ኀ
಼ဥ  
ኀখ጑  
ࠨࢿ
ၫ  
྇໐  
ႁී  
0
1
2/07  
ᔢ߱
۾ۈ
ă  
12/08  
21  
ৎቤ೫ᅄ2ă  
Nbyjn۱ய
ێ
 
۱ய 9439ቧረ ᎆᑶ
ܠ
൩ 211194  
඾ॅ
જǖ911!921!1421  
જǖ121.7322 62::  
ᑞǖ121.7322 63::  
Nbyjn
࣪ݙ
Nbyjn
ޘ
ອጲᅪ
ྀੜ
വဧ፿ঌᐊLjጐ
ݙ
ᄋ৙໚ᓜಽ኏భăNbyjnۣഔᏴྀੜဟମĂ඗ᎌྀੜᄰۨ
༄ᄋሆኀখ
ޘ
ອᓾ೯ਜ਼ਖৃ
ཚಽă  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________ 37  
© 2008 Maxim Integrated Products  
ݿ
ܪ
ă  
Nbyjn Nbyjn!Joufhsbufe!Qspevdut-!Jod/  
MAX8662, MAX8663 用于单节Li+电池供电设备的电源  
管理IC - 概述  
ENGLISH 简体中文 日本語 한국어 РУССКИЙ  
Login | Register  
最新内容  
产品  
方案  
设计  
应用  
技术支持  
销售联络  
公司简介  
我的Maxim  
Maxim > 产品 > 和电池管理 > MAX8662, MAX8663  
MAX8662, MAX8663  
用于单节Li+电池供电设备的电源  
7路输出集成PMIC括充电器,具有智能管理控,允许系统工作在电池供电或无电池供电条件下  
定购信 相关产品 用户(0) 所有内容  
管理IC  
概述  
技术文档  
状况  
:生产中。  
概述  
数据资料  
管理IC (PMIC)是  
MAX8662/MAX8663电源  
他便携式设备。器件集成了2路同  
压器(LDO)和一个用于单节电锂 离子(Li+)电池的线性充电器。  
高效、紧凑的器件,适用于智能移动电话、PDA、因特网应用以及其  
完整的数据资料  
buck稳压器、一路可驱动27个白光LEDboost稳压器、4路低压差线性稳  
提供更新的英文版数据资料  
下载  
英文  
Rev. 2 (PDF, 1.5MB)  
MaximSmart Power Selector™ (SPS)可在外部供电电(AC适配器、自动适配器或USB电源  
)、电池和系统负  
载之安全的分配能量。当系统负载值超过外部电供给能力时,由电池提供额外的电。当系统负载需求减  
小时,外部电多余的能量可为电池充电。过热限电路限电池充电速 和外部电止过  
热。PMIC还允许系统在无电池或电池无电的情 下工作。  
下载  
中文  
Rev. 1 (PDF, 1.3MB)  
MAX8662提供6mm x 6mm48引脚薄型 QFN封装,MAX8663LED驱动,提供5mm x 5mm40引脚薄  
QFN封装。  
现备有评估板:MAX8662EVKIT MAX8663EVKIT  
关键特性  
应用/使用  
3G智能蜂窝电话  
其它手持设备  
PDA、便携式媒体播放器(PMP)  
295%效率的1MHz buck稳压器  
主稳压器:0.98VV 1200mA电流  
能力  
IN  
内核稳压器:0.98VV 900mA能力  
IN  
便携式GPS导  
航设备(PND)  
1MHz boost WLED驱动器  
可提供30mA (最大)驱动多达7个白光LED  
PWM拟亮控制  
四路低压差线性稳压器  
1.7V5.5V输入范  
15µA静态电流  
单节锂 电池充电器  
适配器或USB输入  
热过载保护  
智能电源  
AC适配器/USB或电池电源  
充电电与系统负载电分配  
选择器(SPS)  
Key Specifications: Battery Chargers  
Protected Charging  
Smallest  
Available  
Pckg.  
Max.  
V
V
I
Price  
IN  
IN  
CHG  
Part  
Cell  
Lithium Ion  
Cells  
Charge Rate  
Set by  
Charge  
Termination  
Charge  
Regulation Kit  
EV Oper. Temp.  
(V)  
(V)  
(A)  
Package/Pins  
2
Number Chemistry  
(°C)  
(mm )  
See  
Notes  
max  
max  
max w/pins  
$4.25  
@1k  
MAX8662  
TQFN/48  
TQFN/40  
37.2  
26  
Min. Charge  
Current  
Timer  
Li-Ion  
Li-Polymer  
1
9
7
Resistor  
1.25  
Linear  
Yes -40 to +85  
$3.95  
@1k  
MAX8663  
所有Battery Chargers (69)  
Pricing Notes:  
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may  
differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized  
distributor.  
Key Specifications: Multifunction PMICs  
Smallest  
Available  
Pckg.  
Max. Max.  
I I  
OUT OUT Oper.  
(A) (A)  
V
V
V V  
OUT OUT  
IN  
IN  
Price  
DC-  
DC/Power  
Features  
Battery  
Charger  
Features  
(V) (V) (V)  
(V)  
Part  
Primary Monitor/Control  
LCD/LED/Flash/CCD  
Features  
Interface  
Type  
Freq. Package/Pins  
(kHz)  
2
Number Topology  
Features  
(mm )  
http://china.maxim-ic.com/datasheet/index.mvp/id/5229[2011-1-4 6:19:37]  
 
MAX8662, MAX8663 用于单节Li+电池供电设备的电源  
管理IC - 概述  
max  
w/pins Notes  
See  
min max min max  
Battery  
Charger  
Charge  
Timer  
Input  
Current  
Limit  
$4.25  
37.2  
MAX8662  
MAX8663  
White LED  
-
TQFN/48  
@1k  
Current  
Limit  
Fixed  
Freq./PWM  
Internal  
Pwr. FETs  
Soft Start  
Sync.  
Low Batt./POK  
Output  
Shutdown  
Step-  
Down  
Smart  
Pwr.  
GPIO 2.6  
8
1
1.2 1.2 1000  
$3.95  
-
3.3  
TQFN/40  
26  
Selector  
Thermal  
Die  
Regulation  
Thermistor  
Input  
@1k  
Rectifier  
USB Input  
所有Multifunction PMICs (89)  
Pricing Notes:  
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may  
differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized  
distributor.  
Key Specifications: White LED Drivers  
I
V
V
I
CC  
LED  
IN  
IN  
LEDs  
Price  
V
P
OUT  
(W)  
Oper. Freq.  
(kHz)  
CURR_SENSE  
(mV)  
(mA) (V) (V) (mA)  
Part Number  
MAX8662  
Topology  
Config. Dimming Control  
Package/Pins  
max num. of  
max min max max  
See Notes  
Analog  
Inductor Based  
7
Series  
PWM  
320  
840  
30 2.6 5.5  
2
1000  
TQFN/48  
$4.25 @1k  
所有White LED Drivers (49)  
Pricing Notes:  
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may  
differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized  
distributor.  
图表  
典型 工作电路  
更多信  
发布 [ 2007-03-21 ]  
没有找到你需要的产品  
吗?  
应用工程师帮助选型 ,下个工作日回复  
参数搜索  
应用帮助  
概述  
技术文档  
数据资料  
应用笔记  
评估板  
设计指南  
可靠性报告  
定购相关产品  
概述  
价格与供货  
样品  
在线订购 评估板  
封装信 类似型 号器件  
无铅信 配合该器件使用的产品  
类似功能器件  
关键特性  
应用/使用  
关键指标  
图表  
类似应用器件  
注释、注解  
软件/型  
http://china.maxim-ic.com/datasheet/index.mvp/id/5229[2011-1-4 6:19:37]  
MAX8662, MAX8663 用于单节Li+电池供电设备的电源  
管理IC - 概述  
参考文献: 19-0732 Rev. 2; 2011-01-03  
本页最后一次更新: 2011-01-03  
联络我们:信  
息反馈、提出问题  
对该网页的评价  
发送本网页  
隐私权政策  
法律声明  
© 2010 Maxim Integrated Products版权所有  
http://china.maxim-ic.com/datasheet/index.mvp/id/5229[2011-1-4 6:19:37]  
19-0732; Rev 2; 12/10  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
General Description  
Features  
The MAX8662/MAX8663 power-management ICs  
(PMICs) are efficient, compact devices suitable for  
smart cellular phones, PDAs, Internet appliances, and  
other portable devices. They integrate two synchronous  
buck regulators, a boost regulator driving two to seven  
white LEDs, four low-dropout linear regulators (LDOs),  
and a linear charger for a single-cell Li-ion (Li+) battery.  
Two 95%-Efficient 1MHz Buck Regulators  
o
o
o
o
o
Main Regulator: 0.98V to V at 1200mA  
IN  
Core Regulator: 0.98V to V at 900mA  
IN  
1MHz Boost WLED Driver  
Drives Up to 7 White LEDs at 30mA (max)  
PWM and Analog Dimming Control  
Four Low-Dropout Linear Regulators  
1.7V to 5.5V Input Range  
Maxim’s Smart Power Selector™ (SPS) safely distrib-  
utes power between an external power source (AC  
adapter, auto adapter, or USB source), battery, and the  
system load. When system load peaks exceed the  
external source capability, the battery supplies supple-  
mental current. When system load requirements are  
small, residual power from the external power source  
charges the battery. A thermal-limiting circuit limits bat-  
tery-charge rate and external power-source current to  
prevent overheating. The PMIC also allows the system  
to operate with no battery or a discharged battery.  
15µA Quiescent Current  
Single-Cell Li+ Charger  
Adapter or USB Input  
Thermal-Overload Protection  
Smart Power Selector (SPS)  
AC Adapter/USB or Battery Source  
Charger-Current and System-Load Sharing  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
The MAX8662 is available in a 6mm x 6mm, 48-pin TQFN  
package, while the MAX8663, without the LED driver, is  
available in a 5mm x 5mm, 40-pin TQFN package.  
48 TQFN-EP*  
6mm x 6mm x 0.8mm  
MAX8662ETM+  
MAX8663ETL+  
-40°C to +85°C  
40 TQFN-EP*  
5mm x 5mm x 0.8mm  
-40°C to +85°C  
Applications  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Smart Phones and PDAs  
MP3 and Portable Media Players  
Palmtop and Wireless Handhelds  
Pin Configurations  
Typical Operating Circuit  
TOP VIEW  
DC/USB  
INPUT  
TO SYSTEM  
POWER  
DC  
SYS  
BAT  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
Li+  
BATTERY  
PWR OK  
POK  
CHG  
FB1  
EN6  
EN7  
LX3  
24  
23  
22  
37  
38  
39  
CHARGE  
STATUS  
MAX8662  
PWM  
EN5  
OUT1  
0.98V TO V / 1.2A  
IN  
MAX8663 LX1  
CHARGE  
ENABLE  
CEN  
EN1  
EN2  
OUT2  
0.98V TO V / 0.9A  
IN  
21 EN4  
20 OUT5  
19 IN45  
PG3 40  
LX2  
LX3  
OUT6 41  
TO SYS  
IN67  
42  
43  
MAX8662  
OUT3  
30mA  
WLED  
18  
OUT4  
OUT7  
EN3  
EN4  
EN5  
(MAX8662 ONLY)  
CS  
17 GND  
16 REF  
VL 44  
SL1 45  
CT  
14 ISET  
13  
SL2  
PSET  
POK  
15  
46  
47  
48  
EN6  
EN7  
SL1  
EP  
500mA  
150mA  
300mA  
150mA  
OUT4  
OUT5  
OUT6  
OUT7  
THM  
OUT4–OUT7  
VOLTAGE  
2
3
4
5
6
7
8
9
10  
1
11  
12  
SELECT  
SL2  
TQFN  
(6mm x 6mm)  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
ABSOLUTE MAXIMUM RATINGS  
LX3 to GND ............................................................-0.3V to +33V  
DC_ to GND..............................................................-0.3V to +9V  
BAT_, CEN, CHG, EN_, PEN_, POK, PV_, PWM,  
LX_ Continuous Current........................................................1.5A  
Continuous Power Dissipation (T = +70°C)  
A
40-Pin 5mm x 5mm TQFN  
SYS_, LX1, CS, LX2 to GND.................................-0.3V to +6V  
VL to GND ................................................................-0.3V to +4V  
BRT, CC3, FB_, IN45, IN67, OVP, REF,  
(derate 35.7mW/°C above +70°C)  
(multilayer board).......................................................2857mW  
48-Pin 6mm x 6mm TQFN  
(derate 37mW/°C above +70°C) (multilayer board)...2963mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature Range............................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
SL_ to GND ...........................................-0.3V to (V  
+ 0.3V)  
YS  
S
CT, ISET, PSET, THM to GND .....................-0.3V to (V + 0.3V)  
VL  
IN45  
IN67  
OUT4, OUT5 to GND................................-0.3V to (V  
OUT6, OUT7 to GND................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
PG_ to GND...........................................................-0.3V to +0.3V  
BAT1 + BAT2 Continuous Current...........................................3A  
SYS1 + SYS2 Continuous Current (2 pins) ..............................3A  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068μF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
2/MAX863  
noted.) (Note 1)  
PARAMETER  
INPUT LIMITER  
DC Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
(Note 2)  
4.1  
3.9  
6.6  
8.0  
4.1  
7.2  
V
V
V
DC  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
V
V
V
rising, 500mV hysteresis  
rising, 100mV hysteresis  
4.0  
6.9  
1.5  
0.9  
DC_L  
DC_H  
DC  
DC  
V
I
= I  
= 0mA, V  
= 0V  
= 5V  
SYS  
SYS  
BAT  
BAT  
CEN  
CEN  
DC Supply Current  
mA  
μA  
Ω
I
= I  
= 0mA, V  
V
= 5V, V  
= 5V, V  
= V  
= 0V (USB  
PEN2  
DC  
CEN  
PEN1  
DC Shutdown Current  
110  
0.1  
50  
180  
0.2  
85  
suspend mode)  
DC-to-SYS Dropout  
On-Resistance  
R
V
= 5V, I = 400mA, V  
= 5V  
CEN  
DC_SYS  
DC  
SYS  
DC-to-BAT Dropout  
Threshold  
When V  
regulation and charging stops, V  
SYS DC  
falling, 150mV hysteresis  
V
20  
mV  
DR_DC_BAT  
VL Voltage  
V
I
= 0 to 10mA  
3.1  
5.2  
3.3  
5.3  
3.5  
5.4  
V
V
VL  
VL  
SYS Regulation Voltage  
V
V
= 5.8V, I  
= 1mA, V  
= 5V  
SYS_REG  
DC  
SYS  
CEN  
V
R
= 5V, V  
= 5V,  
= 5V,  
= 5V,  
= 5V  
PEN1  
PEN2  
1800  
900  
450  
450  
2000  
1000  
500  
475  
90  
2200  
1100  
550  
1.5kΩ  
PSET =  
V
R
= 5V, V  
= 3kΩ  
PEN1  
PEN2  
PEN2  
PEN2  
PSET  
V
R
= 5V, V  
= 6kΩ  
PEN1  
DC Input Current Limit  
I
V
= 5V, V  
= 4.0V  
SYS  
mA  
DC_LIM  
DC  
PSET  
V
= 0V, V  
PEN1  
500  
(500mA USB mode)  
V
= V = 0V  
PEN1  
PEN2  
80  
100  
6.0  
(100mA USB mode)  
PSET Resistance Range  
R
Guaranteed by SYS current limit  
Current-limit ramp time  
1.5  
kΩ  
PSET  
Input Limiter Soft-Start Time  
T
1.5  
ms  
SS_DC_SYS  
2
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger) (continued)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068μF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
MAX UNITS  
BATTERY CHARGER  
BAT-to-SYS On-Resistance  
R
V
= 0V, V  
= 4.2V, I = 1A  
SYS  
80  
mΩ  
BAT_REG  
BAT_REG  
DC  
BAT  
V
I
= 5V, V  
= V  
= 0V (USB 100mA mode),  
PEN2  
DC  
PEN1  
BAT-to-SYS Reverse  
Regulation Voltage  
= 200mA (BAT to SYS voltage drop during SYS  
50  
100  
150  
mV  
SYS  
overload)  
T
T
= +25°C  
4.179 4.200 4.221  
4.158 4.200 4.242  
A
BAT Regulation Voltage  
BAT Recharge Threshold  
V
I
= 0mA  
V
BAT  
= -40°C to +85°C  
A
BAT voltage drop to restart charging  
-140  
-100  
1250  
750  
-60  
mV  
R
ISET  
R
ISET  
R
ISET  
= 1.89kΩ  
= 3.15kΩ  
= 7.87kΩ  
I
= 0mA,  
SYS  
BAT Fast-Charge Current  
R
V
= 1.5kΩ,  
675  
825  
mA  
PSET  
= V  
= 5V  
PEN1  
PEN2  
300  
V
= 2.5V, R  
= 3.15kΩ (prequalification  
BAT  
ISET  
BAT Prequalification Current  
ISET Resistance Range  
75  
mA  
current is 10% of fast-charge current)  
Guaranteed by BAT charging current  
(1.5A to 300mA)  
R
1.57  
2.9  
7.87  
kΩ  
ISET  
R
= 3.15kΩ (ISET output voltage to actual  
ISET  
V
-to-I  
Ratio  
2
V/A  
ms  
V
ISET  
BAT  
charge-current ratio)  
Charger Soft-Start Time  
t
Charge-current ramp time  
1.5  
3.0  
SS_CHG  
BAT Prequalification  
Threshold  
V
rising, 180mV hysteresis  
3.1  
BAT  
V
V
= 0V  
0.01  
0.01  
5
5
DC  
DC  
V
= 4.2V,  
BAT  
BAT Leakage Current  
μA  
outputs disabled  
= V  
= 5V  
CEN  
I
where CHG goes  
BAT  
high, and top-off timer;  
falling (7.5% of  
fast-charge current)  
CHG and Top-Off Threshold  
R
ISET  
= 3.15kΩ  
56.25  
300  
mA  
I
BAT  
Timer-Suspend Threshold  
Timer Accuracy  
I
falling (Note 3)  
= 0.068μF  
250  
-20  
350  
+20  
mV  
%
BAT  
C
CT  
From CEN high to end of prequalification charge,  
= 2.5V, C = 0.068μF  
Prequalification Time  
Charge Time  
t
30  
300  
30  
Min  
Min  
Min  
PREQUAL  
V
BAT  
CT  
From CEN high to end of fast charge,  
= 0.068μF  
t
FST-CHG  
C
CT  
From CHG high to end of fast charge,  
= 0.068μF  
Top-Off Time  
t
TOP-OFF  
C
CT  
Charger Thermal-Limit  
Temperature  
(Note 4)  
= 3kΩ  
100  
50  
°C  
Charger Thermal-Limit Gain  
R
mA/°C  
PSET  
_______________________________________________________________________________________  
3
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger) (continued)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068μF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
THERMISTOR INPUT (THM)  
THM Internal Pullup  
Resistance  
10  
kΩ  
THM Resistance Threshold,  
Hot  
Resistance falling (1% hysteresis)  
Resistance rising (1% hysteresis)  
Resistance falling  
3.73  
26.98  
270  
3.97  
28.7  
300  
4.21  
30.42  
330  
kΩ  
kΩ  
Ω
THM Resistance Threshold,  
Cold  
THM Resistance Threshold,  
Disabled  
LOGIC I/O (POK, CHG, PEN_, EN_, PWM, CEN)  
Input Logic-High Level  
1.3  
-1  
V
V
2/MAX863  
Input Logic-Low Level  
0.4  
+1  
V
V
= 0V to 5.5V, T = +25°C  
+0.001  
0.01  
10  
LOGIC  
LOGIC  
A
Logic Input-Leakage Current  
Logic Output-Voltage Low  
μA  
mV  
μA  
= 5.5V, T = +85°C  
A
I
= 1mA  
100  
1
SINK  
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Logic Output-High Leakage  
Current  
V
= 5.5V  
T
LOGIC  
A
ELECTRICAL CHARACTERISTICS (Output Regulator)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYSTEM  
SYS Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
2.6  
2.4  
5.5  
2.6  
70  
35  
35  
2
V
V
SYS  
SYS Undervoltage Threshold  
V
V
rising, 100mV hysteresis  
2.5  
35  
16  
16  
1
UVLO_SYS  
SYS  
Extra supply current when at least one output is on  
OUT1 on, V  
OUT2 on, V  
OUT3 on  
= 0V  
= 0V  
μA  
PWM  
PWM  
mA  
SYS Bias Current Additional  
Regulator Supply Current  
Not including  
SYS bias current  
OUT4 on (current into IN45)  
OUT5 on (current into IN45)  
OUT6 on (current into IN67)  
OUT7 on (current in IN67)  
20  
16  
17  
16  
1.0  
30  
25  
27  
25  
1.1  
μA  
Internal Oscillator Frequency  
PWM frequency of OUT1, OUT2, and OUT3  
0.9  
MHz  
BUCK REGULATOR 1  
I
+ I  
, no load,  
SYS  
PV1  
V
V
= 0V  
= 5V  
16  
35  
μA  
PWM  
PWM  
Supply Current  
not including SYS  
bias current  
2.9  
mA  
Output Voltage Range  
V
Guaranteed by FB accuracy  
0.98  
3.30  
V
OUT1  
Maximum Output Current  
I
1200  
mA  
OUT1  
4
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
ELECTRICAL CHARACTERISTICS (Output Regulator) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
FB Regulation Accuracy  
SYMBOL  
CONDITIONS  
= 0.98V, I = 0 to 1200mA,  
= 0.98V to 3.3V  
MIN  
TYP  
MAX UNITS  
From V  
FB1  
OUT1  
-3  
+3  
%
µA  
V
OUT1  
FB1 Input Leakage Current  
pMOS On-Resistance  
0.01  
0.12  
0.15  
0.2  
0.10  
0.24  
V
V
V
V
= 3.3V  
= 2.6V  
= 3.3V  
= 2.6V  
PV1  
PV1  
PV1  
PV1  
I
I
= 100mA  
LX1  
LX1  
0.4  
2.2  
nMOS On-Resistance  
= 100mA  
0.3  
pMOS Current Limit  
1.4  
1.8  
A
Skip Mode Transition Current  
nMOS Zero-Cross Current  
90  
mA  
mA  
25  
V
= V  
= 5.5V  
PV1  
0.01  
1.00  
LX1  
LX1  
V
= 0V, V  
= +25°C  
= 5.5V,  
SYS  
EN1  
LX Leakage  
µA  
µs  
T
A
V
= 0V, V  
= 5.5V  
-5.00 -0.01  
400  
PV1  
Soft-Start Time  
BUCK REGULATOR 2  
V
V
= 0V  
= 5V  
16  
2.1  
35  
µA  
mA  
V
PWM  
PWM  
I
+ I  
, no load, not  
SYS  
PV2  
Supply Current  
including SYS bias current  
Output Voltage Range  
Guaranteed by FB accuracy  
0.98  
3.30  
Maximum Output Current  
900  
mA  
From V  
= 0.98V, I  
= 0 to 600mA,  
FB2  
OUT2  
FB Regulation Accuracy  
FB2 Input Leakage Current  
pMOS On-Resistance  
-3  
+3  
%
µA  
V
= 0.98V to 3.3V  
OUT2  
0.01  
0.2  
0.3  
0.2  
0.3  
0.10  
0.4  
V
V
V
V
= 3.3V  
= 2.6V  
= 3.3V  
= 2.6V  
PV2  
PV2  
PV2  
PV2  
I
I
= 100mA  
LX2  
0.4  
nMOS On- Resistance  
= 100mA  
LX2  
pMOS Current Limit  
1.07  
1.30  
90  
1.55  
A
Skip Mode Transition Current  
nMOS Zero-Cross Current  
mA  
mA  
25  
V
V
= V  
= 5.5V  
0.01  
1.00  
LX2  
LX2  
PV2  
V
= 0V, V  
= +25°C  
= 5.5V,  
SYS  
EN2  
LX Leakage  
µA  
µs  
T
A
= 0V, V  
= 5.5V  
-5.00 -0.01  
400  
PV2  
Soft-Start Time  
BOOST REGULATOR FOR LED DRIVER  
At SYS, no load, not  
including SYS bias current  
Supply Current  
Switching  
1
mA  
Output Range  
V
V
30  
V
%
%
V
OUT3  
SYS  
Minimum Duty Cycle  
Maximum Duty Cycle  
CS Regulation Voltage  
OVP Regulation Voltage  
OVP Sink Current  
D
10  
92  
MIN  
D
90  
MAX  
V
0.29  
0.32  
0.35  
CS  
Duty = 90%, I  
= 0mA  
1.225 1.250 1.275  
V
LX3  
19.2  
20.0  
1.25  
20.8  
µA  
ms  
OVP Soft-Start Period  
Time for I  
to ramp from 0 to 20µA (Note 5)  
OVP  
_______________________________________________________________________________________  
5
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
ELECTRICAL CHARACTERISTICS (Output Regulator) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.01  
0.1  
MAX UNITS  
T
A
T
A
= +25°C  
= +85°C  
1
V
V
= 0V,  
EN3  
OVP  
OVP Leakage Current  
nMOS On-Resistance  
μA  
= V  
= 5.5V  
SYS  
I
= 100mA  
0.6  
1.2  
Ω
LX3  
T
T
= +25°C  
= +85°C  
0.01  
0.1  
5.00  
A
nMOS Off-Leakage Current  
V
= 30V  
μA  
mA  
LX3  
A
nMOS Current Limit  
LED DRIVER  
500  
620  
900  
BRT Input Range  
REF Voltage  
V
V
I
I
= 0 to 30mA  
0
1.45  
-1  
1.5  
1.55  
+1  
V
V
BRT  
CS  
= 0mA  
1.50  
-0.01  
0.1  
REF  
REF  
T
T
= +25°C  
= +85°C  
A
BRT Input Current  
CS Sink Current  
V
V
V
= 0 to 1.5V  
μA  
mA  
%/V  
BRT  
A
V
V
= 1.5V  
28  
30  
32  
BRT  
BRT  
= 0.2V  
8
CS  
= 50mV  
0.4  
0.8  
1.2  
CS Current-Source  
Line Regulation  
= 2.7V to 5.5V  
0.1  
SYS  
PWM DIMMING  
EN3 DC Turn-On Delay  
EN3 Shutdown Delay  
From V  
From V  
= high to LED on  
= low to LED off  
1.5  
1.5  
2.0  
2.0  
2.5  
2.5  
ms  
ms  
EN3  
EN3  
Time between rising edges  
on EN3 for PWM dimming to  
become active  
Maximum  
Minimum  
1.5  
2.0  
8
ms  
μs  
PWM Dimming Capture  
Period  
10  
PWM Dimming Pulse-Width  
Resolution  
Resolution of high or low-pulse width on EN3 for  
dimming change  
0.5  
μs  
LINEAR REGULATORS  
IN45, IN67 Operating Range  
V
1.7  
1.5  
5.5  
1.7  
V
V
IN45  
IN45, IN67 Undervoltage  
Threshold  
V
V
rising, 100mV hysteresis  
IN45  
1.6  
UVLO-IN45  
Output Noise  
f = 100Hz to 100kHz  
f = 100kHz  
200  
30  
μV  
RMS  
PSRR  
dB  
μA  
Shutdown Supply Current  
Soft-Start Ramp Time  
V
V
= V  
= 0V, T = +25°C  
0.001  
34  
1
EN4  
EN5  
A
to 90% of final value  
V/ms  
OUT4  
Output Discharge  
Resistance in Shutdown  
V
= 0V  
0.5  
1.0  
2.0  
kΩ  
EN4  
LINEAR REGULATOR 4 (LDO4)  
Supply Current  
At IN45, V  
= 0V  
I
= 0A  
OUT4  
20  
30  
μA  
%
EN5  
I
= 0 to 500mA,  
OUT4  
Voltage Accuracy  
-1.5  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT4  
IN45  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
3.76  
μF  
Ω
OUT4  
IN45 to OUT4  
0.2  
0.4  
V
= 0V  
500  
700  
mA  
OUT4  
6
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
ELECTRICAL CHARACTERISTICS (OUTPUT REGULATOR) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LINEAR REGULATOR 5 (LDO5)  
Supply Current  
At IN45, V  
= 0V  
I
= 0A  
OUT5  
16  
25  
μA  
%
EN4  
I
= 0 to 150mA,  
OUT5  
Voltage Accuracy  
-1.5  
0.8  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT5  
IN45  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
μF  
Ω
OUT5  
IN45 to OUT5  
0.6  
1.2  
V
= 0V  
150  
210  
mA  
OUT5  
LINEAR REGULATOR 6 (LDO6)  
Supply Current  
At IN67, V  
= V  
, V  
= 0V  
I = 0A  
OUT6  
17  
27  
μA  
%
EN6  
SYS EN7  
Voltage Accuracy  
I
= 0 to 300mA, V  
= V + 0.3V to 5.5V  
OUT6  
-1.5  
+1.5  
OUT6  
IN67  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
1.76  
μF  
Ω
OUT6  
IN67 to OUT6  
0.35  
420  
0.60  
V
= 0V  
300  
mA  
OUT6  
LINEAR REGULATOR 7 (LDO7)  
Supply Current  
At IN67, V  
= 0V, V  
= V  
I = 0A  
OUT7  
16  
25  
μA  
%
EN6  
EN7  
SYS  
I
= 0 to 150mA,  
OUT7  
Voltage Accuracy  
-1.5  
0.8  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT7  
IN67  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
μF  
Ω
OUT7  
IN67 to OUT6  
0.6  
1.2  
V
= 0V  
150  
210  
mA  
OUT7  
THERMAL SHUTDOWN  
Thermal-Shutdown  
Temperature  
T rising  
J
165  
15  
°C  
°C  
Thermal-Shutdown  
Hysteresis  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control (SQC) methods.  
Note 2: Input withstand voltage. Not designed to operate above V  
= 6.5V due to thermal-dissipation issues.  
DC  
Note 3: ISET voltage when CT timer stops. Occurs only when in constant-current mode. Translates to 20% of fast-charge current.  
Note 4: Temperature at which the input current limit begins to reduce.  
Note 5: The WLED driver’s sink current ramp time is a function of the external compensation at CC3. With a compensation of 1kΩ in  
series with 0.22μF and a target sink current of 30mA, the WLED boost’s output voltage ramps up in 1.25ms, but the WLED  
sink current of 30mA settles in 12ms. See the OUT3 Enable and Disable Response graph in the Typical Operating  
Characteristics section for more information.  
_______________________________________________________________________________________  
7
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V  
= 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (CHARGER ENABLED)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (CHARGER DISABLED)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (SUSPEND)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.20  
V
= 4.2V  
= 0  
V
= 4.2V  
BAT  
= 0mA  
V
= 3.6V  
BAT  
BAT  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
I
I
SYS  
SYS  
V
V
RISING  
FALLING  
BAT  
BAT  
CHARGER IN  
DONE MODE  
PEN1 = PEN2 = 0  
CEN = 1  
V
V
RISING  
FALLING  
BAT  
BAT  
2/MAX863  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BATTERY-LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
BATTERY-LEAKAGE CURRENT  
vs. TEMPERATURE (INPUT DISCONNECTED)  
BATTERY-REGULATION VOLTAGE  
vs. TEMPERATURE  
4.200  
0.5  
0.8  
V
= 4.0V  
EN_ = 0  
BAT  
EN_ = 0, CEN = 1  
EN_ = 0  
V
V
OPEN  
= 5V  
DC  
DC  
4.195  
4.190  
0.7  
0.6  
0.5  
0.4  
0.4  
0.3  
0.2  
0.1  
0
4.185  
4.180  
4.175  
4.170  
0.3  
0.2  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
BATTERY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (100mA USB)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (500mA USB)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (AC ADAPTER)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
550  
500  
450  
400  
350  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
R
= 5V  
V
R
= 5V  
DC  
DC  
= 3kΩ  
= 3kΩ  
ISET  
ISET  
PEN1 = 0  
PEN2 = 1  
PEN1 = PEN2 = 1  
V
V
RISING  
BAT  
BAT  
V
V
RISING  
BAT  
BAT  
FALLING  
FALLING  
300  
250  
200  
150  
100  
50  
V
V
RISING  
BAT  
BAT  
FALLING  
V
R
= 5V  
= 3kΩ  
PEN1 = PEN2 = 0  
DC  
ISET  
0
0
1
2
3
4
5
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
0
1
2
3
4
5
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
8
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V  
= 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
CHARGE CURRENT vs. AMBIENT TEMPERATURE  
CHARGE CURRENT vs. AMBIENT TEMPERATURE  
(HIGH IC POWER DISSIPATION)  
SYS OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
(LOW IC POWER DISSIPATION)  
900  
900  
5.6  
PEN1 = PEN2 = 1  
800  
V
= 4.0V  
= 0mA  
BAT  
PEN1 = PEN2 = 1  
5.4  
5.2  
5.0  
4.8  
800  
I
SYS  
PEN1 = 0  
PEN2 = 1  
700  
600  
700  
600  
CHARGER  
DISABLED  
PEN1 = 0, PEN2 = 1  
500  
PEN1 = 0, PEN2 = 1  
500  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
400  
400  
CHARGER  
ENABLED  
V
R
= 5.0V, V = 4.0V  
V
R
= 6.5V, V = 3.1V  
DC BAT  
DC  
BAT  
300  
200  
100  
0
300  
200  
100  
0
= 3kΩ, CEN = 0, EN_ = 0  
= 3kΩ, CEN = 0, EN_ = 0  
ISET  
ISET  
PEN1 = PEN2 = 0  
PEN1 = PEN2 = 0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
6
7
8
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (DC DISCONNECTED)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (500mA USB)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (AC ADAPTER)  
5.6  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
5.6  
THE SLOPE OF THIS LINE SHOWS THAT THE  
BAT-TO-SYS RESISTANCE IS 49mΩ.  
V
V
= 5.0V  
= 4.0V  
V
V
= 5.0V  
= 4.0V  
DC  
BAT  
DC  
BAT  
5.4  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
PEN1 = 0, PEN2 = 1  
CEN = 1  
PEN1 = PEN2 = 1  
CEN = 1  
5.2  
V
V
= 0V  
DC  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
= 4.0V  
BAT  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
I
I
I
SYS  
SYS  
SYS  
USB CONNECT (I  
= 0mA)  
USB CONNECT (I  
= 50mA)  
MAX8662/63 toc17  
SYS  
SYS  
MAX8662/63 toc16  
5V/div  
5V/div  
5V  
5V  
0V  
V
0V  
V
DC  
DC  
+95mA  
4.4V  
+95mA  
4.4V  
200mA/div  
2V/div  
200mA/div  
2V/div  
I
I
IN  
IN  
5V  
0mA  
0mA  
4.0V  
4.0V  
V
SYS  
V
5V  
SYS  
V
V
POK  
5V/div  
5V/div  
V
V
POK  
0V  
0V  
5V/div  
5V/div  
0V  
CHG  
CHG  
0mA  
+95mA  
I
50mA  
BAT  
200mA/div  
I
NEGATIVE BATTERY  
CURRENT FLOWS INTO  
THE BATTERY  
BAT  
200mA/div  
NEGATIVE BATTERY  
CURRENT FLOWS  
-45mA  
(CHARGING).  
INTO THE BATTERY (CHARGING).  
200μs/div  
PEN1 = PEN2 = 0, CEN = 0,  
= 4.0V, I = 0mA, EN_ = 1  
200μs/div  
PEN1 = PEN2 = 0, CEN = 0,  
V = 4.0V, I = 50mA, EN_ = 1  
BAT  
V
BAT  
SYS  
SYS  
_______________________________________________________________________________________  
9
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R = 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V = 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
AC ADAPTER CONNECT (I  
= 500mA)  
USB DISCONNECTED (500mA USB)  
SYS  
MAX8662/63 toc18  
MAX8662/63 toc19  
5V/div  
V
DC  
5V/div  
5V  
5V  
0V  
V
DC  
475mA  
+1280mA  
4.4V  
I
IN  
1A/div  
2V/div  
5V/div  
5V/div  
0mA  
I
IN  
500mA/div  
1V/div  
V
SYS  
POK  
5V  
4.4V  
V
V
SYS  
4.0V  
V
CHG  
5V/div  
V
0V  
CHG  
0V  
0mA  
500mA  
1A/div  
-780mA  
I
500mA/div  
BAT  
-475mA  
I
BAT  
NEGATIVE BATTERY CURRENT FLOWS  
INTO THE BATTERY (CHARGING).  
2/MAX863  
400μs/div  
200μs/div  
PEN1 = 0, PEN2 = 1, CEN = 0,  
= 4.0V, I = 0mA  
PEN1 = PEN2 = 1, CEN = 0,  
V
= 4.0V, I = 500mA, EN_ = 1  
V
BAT  
BAT  
SYS  
SYS  
OUT1 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
CHARGER ENABLE (I  
= 0mA)  
SYS  
MAX8662/63 toc20  
100  
V
V
CEN  
0V  
5V/div  
1A/div  
2.8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
475mA  
4.4V  
I
IN  
0mA  
V
= 3.6V  
BAT  
V
= 3.6V  
= 4.2V  
BAT  
5V  
SYS  
2V/div  
5V/div  
V
BAT  
V
= 4.2V  
BAT  
V
CHG  
0V  
0mA  
I
BAT  
PWM = 0  
PWM = 1  
= 3.3V  
-475mA  
500mA/div  
V
OUT1  
0.1  
1
10  
100  
1000 10,000  
200μs/div  
LOAD CURRENT (mA)  
PEN1 = 0, PEN2 = 1, V = 4.0V, I = 0mA, EN_ = 1  
BAT  
SYS  
OUT1 REGULATOR LOAD REGULATION  
OUT1 REGULATOR LINE REGULATION  
OUT1 VOLTAGE vs. TEMPERATURE  
3.40  
3.36  
3.32  
3.28  
3.24  
3.20  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
3.310  
3.306  
3.302  
3.298  
3.294  
3.290  
V
R
= 4.0V  
BAT  
= 330Ω  
LOAD  
V
= 4.2V  
BAT  
V
= 3.6V  
BAT  
R
= 330Ω  
LOAD  
0.1  
1
10  
100  
1000 10,000  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
AMBIENT TEMPERATURE (°C)  
SYS  
10 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V  
= 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
OUT1 REGULATOR LIGHT-LOAD  
SWITCHING WAVEFORMS  
OUT1 REGULATOR HEAVY-LOAD  
SWITCHING WAVEFORMS  
MAX8662/63 toc25  
MAX8662/63 toc26  
V
= 4.0V  
= 10mA  
BAT  
OUT1  
I
V
10mV/div  
OUT1  
V
OUT1  
AC-COUPLED  
50mV/div  
2V/div  
AC-COUPLED  
V
LX  
2V/div  
V
LX  
I
L
200mA/div  
I
L
500mA/div  
V
= 4.2V  
= 1200mA  
BAT  
OUT1  
PWM = 0  
I
20μs/div  
1μs/div  
OUT1 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT1 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc27  
MAX8662/63 toc28  
5V  
V
LX  
5V/div  
1V/div  
V
SYS  
I
= 10mA  
OUT1  
4V  
PWM = 0  
V
OUT1  
I
OUT1  
1A/div  
1A/div  
50mV/div  
5V/div  
I
L
V
LX  
I
V
= 4.0V  
BAT  
OUT1  
I
= 10mA TO 1200mA TO 10mA  
PWM = 0  
V
OUT1  
100mV/div  
L
200mA/div  
40μs/div  
100μs/div  
OUT2 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
OUT2 REGULATOR LOAD REGULATION  
OUT1 ENABLE AND DISABLE RESPONSE  
MAX8662 toc29  
1.32  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.2V  
BAT  
V
= V  
L
CEN  
1.31  
R
= 33I  
OUT1  
1.30  
1.29  
1.28  
1.27  
1.26  
V
= 4.2V  
BAT  
V
2V/div  
OUT1  
V
= 4.2V  
= 3.6V  
BAT  
V
= 3.6V  
BAT  
V
BAT  
I
V
= 3.6V  
BAT  
DC  
200mA/div  
V
EN1  
PWM = 0  
PWM = 1  
2V/div  
V
= 3.3V  
OUT1  
0.1  
1
10  
100  
1000 10,000  
0.1  
1
10  
100  
1000  
400µs/div  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
______________________________________________________________________________________ 11  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V = 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
OUT2 REGULATOR LINE REGULATION  
OUT2 VOLTAGE vs. TEMPERATURE  
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.3050  
1.3045  
1.3040  
1.3035  
1.3030  
R
= 130Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 130Ω  
LOAD  
2/MAX863  
2.7 3.1 3.5  
3.9 4.3  
(V)  
4.7  
5.1 5.5  
-40  
-15  
10  
35  
60  
85  
V
AMBIENT TEMPERATURE (°C)  
SYS  
OUT2 REGULATOR HEAVY-LOAD  
SWITCHING WAVEFORMS  
OUT2 REGULATOR LIGHT-LOAD  
SWITCHING WAVEFORMS  
MAX8662/63 toc35  
MAX8662/63 toc34  
PWM = 0  
V
= 4.0V  
= 10mA  
BAT  
V
OUT2  
10mV/div  
2V/div  
I
OUT2  
V
OUT2  
20mV/div  
2V/div  
AC-COUPLED  
AC-COUPLED  
V
L
V
LX  
I
L
500mA/div  
I
L
100mA/div  
V
= 4.0V  
BAT  
I
= 900mA  
OUT2  
1μs/div  
10μs/div  
OUT2 REGULATOR LINE-  
TRANSIENT RESPONSE  
OUT2 REGULATOR LOAD-  
TRANSIENT RESPONSE  
MAX8662/63 toc37  
MAX8662/63 toc36  
5V  
V
LX  
5V/div  
1A/div  
V
1V/div  
SYS  
I
= 10mA  
PWM = 0  
4V  
OUT1  
I
OUT2  
V
OUT1  
20mV/div  
I
L
V
5V/div  
500mA/div  
50mV/div  
LX  
200mA/div  
V
OUT2  
AC-COUPLED  
I
L
V
= 4.0V  
BAT  
I
= 10mA TO 900mA TO 10mA PWM = 0  
OUT2  
100μs/div  
40μs/div  
12 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V  
= 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
LED CURRENT  
vs. PWM DIMMING DUTY CYCLE  
5.0  
LED CURRENT vs. BRT VOLTAGE  
OUT2 ENABLE AND DISABLE RESPONSE  
MAX8662 toc38  
30  
V
= 3.6V  
BAT  
V
V
= 3.6V  
BAT  
V
= V  
L
CEN  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 0.25V  
f = 1kHz  
BRT  
R
= 33I  
25  
20  
15  
10  
5
OUT2  
V
OUT2  
1V/div  
I
DC  
200mA/div  
2V/div  
V
EN2  
0
0
0.3  
0.6  
0.9  
1.2  
1.5  
400µs/div  
0
10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
BRT VOLTAGE (V)  
OUT3 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
OUT3 ENABLE AND DISABLE RESPONSE  
OUT3 SWITCHING WAVEFORMS  
MAX8662/63 toc41  
MAX8662 toc42  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5.5V  
SYS  
V
= V  
L
CEN  
I
V
= 4.2V  
L
SYS  
100mA/div  
OUT3 LOAD = 7 WLEDs  
I
= 30mA  
= 4.0V  
4.0V  
LED  
V
COMPENSATION  
AT CC3 = 1kI  
IN SERIES WITH 0.22µF  
BAT  
V
= 3.6V  
SYS  
10V/div  
V
OUT3  
V
LX  
10V/div  
I
200mA/div  
2V/div  
DC  
V
OUT3  
AC-COUPLED  
V
200mV/div  
EN3  
I
= 1mA  
OUT3  
1μs/div  
0.1  
1
10  
100  
4ms/div  
LOAD CURRENT (mA)  
OUT4 REGULATOR LOAD REGULATION  
OUT4 REGULATOR LINE REGULATION  
OUT4 VOLTAGE vs. TEMPERATURE  
3.315  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
3.315  
3.313  
R
= 330Ω  
V
R
= 4.0V  
LOAD  
BAT  
= 330Ω  
LOAD  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
V
= 3.6V  
IN  
3.311  
3.309  
3.307  
3.305  
V
= 5.5V  
IN  
0
100  
200  
300  
400  
500  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT4  
_____________________________________________________________________________________ 13  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R = 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V = 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
OUT4 REGULATOR LINE-  
TRANSIENT RESPONSE  
OUT4 REGULATOR LOAD-  
TRANSIENT RESPONSE  
MAX8662/63 toc48  
MAX8662/63 toc47  
5V  
3.6V  
V
IN45  
2V/div  
I
500mA/div  
50mV/div  
OUT4  
20mV/div  
V
OUT4  
V
OUT4  
AC-COUPLED  
AC-COUPLED  
V
= 4.0V  
BAT  
I
= 10mA TO 500mA TO 10mA  
OUT4  
I
= 10mA  
OUT4  
2/MAX863  
100μs/div  
40μs/div  
OUT4 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT5 REGULATOR LOAD REGULATION  
OUT4 ENABLE AND DISABLE RESPONSE  
MAX8662 toc49  
3.310  
3.308  
3.306  
3.304  
3.302  
3.300  
100  
90  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
V
R
= V  
L
CEN  
= 33I  
OUT4  
80  
70  
60  
COMBINATION IS 181mΩ.  
2V/div  
V
= 3.6V  
IN  
V
OUT4  
50  
40  
30  
20  
I
DC  
200mA/div  
2V/div  
V
= 5.5V  
IN  
V
EN4  
10  
0
0
30  
60  
90  
120  
150  
0
100  
200  
300  
400  
500  
400µs/div  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUT5 REGULATOR LINE REGULATION  
OUT5 VOLTAGE vs. TEMPERATURE  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
3.310  
3.309  
3.308  
3.307  
3.306  
3.305  
3.304  
R
= 330Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 330Ω  
LOAD  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT5  
14 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R = 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V = 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
OUT5 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT5 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc55  
MAX8662/63 toc54  
5V  
V
IN45  
3.6V  
2V/div  
I
OUT5  
OUT5  
100mA/div  
50mV/div  
V
OUT5  
20mV/div  
AC-COUPLED  
V
AC-COUPLED  
I
= 10mA  
OUT5  
V
= 4.0V  
BAT  
I
= 10mA TO 150mA TO 10mA  
OUT5  
100μs/div  
40μs/div  
OUT5 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT5 ENABLE AND DISABLE RESPONSE  
MAX8662 toc56  
70  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
V
CEN  
= V  
L
R
= 33I  
OUT5  
60  
50  
40  
30  
20  
10  
COMBINATION IS 384mΩ.  
2V/div  
V
OUT5  
I
200mA/div  
2V/div  
DC  
V
EN5  
0
0
30  
60  
90  
(mA)  
120  
150  
400µs/div  
I
OUT  
OUT6 REGULATOR LOAD REGULATION  
OUT6 REGULATOR LINE REGULATION  
OUT6 VOLTAGE vs. TEMPERATURE  
3.310  
3.306  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.309  
R
= 330Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 330Ω  
LOAD  
3.307  
3.305  
3.303  
3.301  
3.302  
3.298  
3.294  
3.290  
V
= 5.5V  
IN  
V
= 3.6V  
150  
IN  
2.0  
1.8  
1.6  
1.4  
0
50  
100  
200  
250  
300  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT6  
______________________________________________________________________________________ 15  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V  
= 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
OUT6 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT6 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc61  
MAX8662/63 toc62  
5V  
3.6V  
V
2V/div  
IN67  
I
OUT6  
OUT6  
200mA/div  
50mV/div  
20mV/div  
V
V
OUT6  
AC-COUPLED  
AC-COUPLED  
I
= 10mA  
OUT6  
V
= 4.0V  
BAT  
I
= 10mA TO 300mA TO 10mA  
OUT6  
2/MAX863  
40μs/div  
100μs/div  
OUT6 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT6 ENABLE AND DISABLE RESPONSE  
MAX8662 toc63  
80  
70  
V
= V  
L
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
CEN  
R
= 33I  
OUT6  
COMBINATION IS 238mΩ.  
2V/div  
60  
50  
40  
V
OUT6  
I
200mA/div  
2V/div  
DC  
30  
20  
V
EN6  
10  
0
400µs/div  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
OUT  
OUT7 REGULATOR LOAD REGULATION  
OUT7 REGULATOR LINE REGULATION  
OUT7 VOLTAGE vs. TEMPERATURE  
3.304  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.303  
3.302  
3.301  
3.300  
3.299  
3.298  
R
= 330Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 330Ω  
LOAD  
3.302  
3.300  
3.298  
3.296  
V
= 5.5V  
IN  
V
= 3.6V  
2.0  
1.8  
IN  
1.6  
1.4  
3.294  
0
30  
60  
90  
120  
150  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT7  
16 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10μF, C  
= 2 x 10μF, C  
= 0.1μF, C  
= 4.7μF, C  
= 1μF, C  
= 2.2μF, C  
= 1μF, CT =  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068μF, C  
= C = 0.1μF, R  
= 10kΩ, L1 = 3.3μH, L2 = 4.7μH, L3 = 22μH, V  
= V  
= V  
= V  
= 0V, T = +25°C,  
PG3  
A
GND  
PG1  
PG2  
REF  
VL  
THM  
unless otherwise noted.)  
OUT7 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT7 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc68  
MAX8662/63 toc69  
5V  
3.6V  
V
2V/div  
IN67  
I
OUT7  
OUT7  
100mA/div  
50mV/div  
20mV/div  
V
V
OUT7  
AC-COUPLED  
AC-COUPLED  
I
= 10mA  
OUT7  
V
= 4.0V  
BAT  
I
= 10mA TO 150mA TO 10mA  
OUT7  
40μs/div  
100μs/div  
OUT7 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
VL REGULATOR LOAD REGULATION  
OUT7 ENABLE AND DISABLE RESPONSE  
MAX8662 toc70  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
70  
V
= V  
L
CEN  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
R
= 33I  
OUT7  
60  
50  
40  
30  
20  
10  
COMBINATION IS 391mΩ.  
2V/div  
V
OUT7  
V
= 5.5V  
IN  
I
200mA/div  
2V/div  
DC  
V
= 4.35V  
IN  
V
EN7  
0
0
1
2
3
4
5
6
7
8
9
10  
400µs/div  
0
25  
50  
75  
(mA)  
100  
125  
150  
LOAD CURRENT (mA)  
I
OUT  
OPEN-DRAIN OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
VL REGULATOR LINE REGULATION  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
= 3.3kΩ  
THE SLOPE OF THIS LINE SHOWS THAT  
THE PULLDOWN RESISTANCE IS 11Ω.  
LOAD  
V
V
= 5.0V  
IN  
= 4.0V  
BAT  
3.10  
3.05  
3.00  
PULLDOWN DEVICE HAS A  
20mA STEADY-STATE RATING  
3
4
5
6
7
8
0
5
10 15 20 25 30 35 40  
(mA)  
V
(V)  
I
IN  
SINK  
______________________________________________________________________________________ 17  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX8662  
MAX8663  
Input Limiter-Control Input 1. Used with CE N and PEN2 to set the DC current limit to 95mA,  
475mA, a resistor programmable level up to 2A, or to turn off the input limiter (see Table 1).  
1
1
PEN1  
Input Limiter-Control Input 2. Used with CE N and PEN1 to set the DC current limit to 95mA,  
475mA, a resistor programmable level up to 2A, or to turn off the input limiter (see Table 1).  
2
3
2
PEN2  
EN3  
Enable Input and PWM Dimming Input for Regulator 3 White LED Boost. Drive high to  
enable. Drive low for more than 2ms to turn off. For PWM-controlled dimming, drive EN3  
with a PWM switching input with a frequency of 1kHz to 100kHz.  
DC1,  
DC2  
DC Input Source. Connect to an AC adapter or USB source. DC1 and DC2 are internally  
connected.  
4, 5  
3, 4  
System Supply Voltage. The SYS output supplies power to all regulators. With no external  
power, SYS1 and SYS2 connect to BAT through an internal 40mΩ switch. When a valid  
voltage is present at DC_, SYS_ connects to DC_ but is limited to 5.3V. SYS1 and SYS2 are  
internally connected.  
SYS1,  
SYS2  
6, 7  
5, 6  
2/MAX863  
Battery Connections. Connect to a single-cell Li+ battery. The battery is charged from SYS_  
when a valid source is present at DC. BAT_ drives SYS_ when DC is not valid. BAT1 and  
BAT2 are internally connected.  
BAT1,  
BAT2  
8, 9  
10  
7, 8  
LED Analog Brightness Control Input. Connect BRT to a voltage from 50mV to 1.5V to set  
I
from 1mA to 30mA. Connect BRT to the center of a resistor-divider connected between  
BRT  
CS  
REF and GND to set a fixed brightness when analog dimming is not required.  
Charger Status Output. CHG is an open-drain nMOS that pulls low when the charger is in  
fast charge or prequalification modes. CHG goes high impedance when the charger is in  
top-off mode or disabled.  
11  
12  
13  
14  
9
CHG  
CEN  
THM  
ISET  
Charger Enable Input. Drive CEN low to enable the charger when a valid source is  
connected at DC. Drive CEN high to disable charging. Drive CEN high and PEN2 low to  
enter USB suspend mode.  
10  
11  
12  
Thermistor Input. Connect a 10kΩ negative temperature coefficient (NTC) thermistor from  
THM to GND. Charging is suspended when the temperature is beyond the hot or cold  
limits. Connect THM to GND to disable the thermistor functionality.  
Charge Rate-Set Input. Connect a resistor from ISET to GND to set the fast-charge current  
from 300mA to 1.25A. The prequalification charge current and top-off threshold are set to  
10% and 7.5% of fast-charge current, respectively.  
Charge Timer-Programming Pin. Connect a capacitor from CT to GND to set the length of  
time required to trigger a fault condition in fast-charge or prequalification mode and to  
determine the time the charger remains in top-off mode. Connect CT to GND to disable  
timers.  
15  
13  
CT  
Reference Voltage. Provides 1.5V output when EN3 is high. An internal discharge  
resistance pulls REF to 0V when EN3 is low.  
16  
17  
REF  
14  
GND  
Ground. Low-noise ground connection.  
Linear Regulator 4 Output. Delivers up to 500mA at an output voltage determined by SL1  
and SL2. Connect a 4.7μF ceramic capacitor from OUT4 to GND. Increase the value to  
18  
15  
OUT4  
10μF if V  
< 1.5V.  
OUT4  
18 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX8662  
MAX8663  
Input Supply for Linear Regulators 4 and 5. Connect IN45 to a supply voltage between 1.7V  
19  
16  
IN45  
and V  
. Connect at least a 1μF ceramic capacitor from IN45 to GND.  
SYS  
Linear Regulator 5 Output. Delivers up to 150mA at an output voltage determined by SL1  
and SL2. Connect a 1μF ceramic capacitor from OUT5 to GND. Increase the value to 2.2μF  
20  
17  
OUT5  
if V  
< 1.5V.  
OUT5  
21  
22  
18  
19  
EN4  
EN5  
Enable Input for Linear Regulator 4. Drive high to enable.  
Enable Input for Linear Regulator 5. Drive high to enable.  
PWM/Skip-Mode Selector. Drive PWM high to force step-down regulators 1 and 2 to  
operate in 1MHz forced-PWM mode. Drive PWM low, or connect to GND to allow regulators  
1 and 2 to enter skip mode at light loads.  
23  
20  
PWM  
Feedback Input for Buck Regulator 1. Connect FB1 to the center of a resistor-divider  
connected between OUT1 and GND to set the output voltage between 0.98V and 3.3V.  
24  
25  
26  
21  
22  
23  
FB1  
EN1  
PG1  
Enable Input for Buck Regulator 1. Drive high to enable.  
Power Ground for Buck Regulator 1. GND, PG1, PG2, and PG3 must be connected  
together externally.  
Buck Regulator 1 Inductor Connection Node. Connect an inductor from LX1 to the output of  
regulator 1.  
27  
28  
24  
25  
LX1  
PV1  
Power Input for Buck Regulator 1. Connect PV1 to SYS and decouple with a 10μF or greater low-  
ESR capacitor to GND. PV1, PV2, and SYS must be connected together externally.  
LED Boost Overvoltage Input. Connect a resistor from OVP to the boost output to set the  
maximum output voltage and to initiate soft-start when EN3 goes high. An internal 20μA  
pulldown current from OVP to GND determines the maximum boost voltage. The internal  
current is disconnected when EN3 is low. OVP is diode clamped to SYS_.  
29  
30  
OVP  
CS  
LED Current Source. Sinks from 1mA to 30mA depending on the voltage at BRT and the  
PWM signal at EN3. Driving EN3 low for more than 2ms turns off the current source. V is  
CS  
regulated to 0.32V.  
Compensation Input for LED Boost Regulator 3. See the Boost Converter with White LED Driver  
(OUT3, MAX8662 Only) section.  
31  
32  
CC3  
FB2  
Feedback Input for Buck Regulator 2. Connect FB2 to the center of a resistor-divider  
connected between OUT2 and GND to set the output voltage between 0.98V and 3.3V.  
26  
Power Input for Buck Regulator 2. Connect PV2 to SYS and decouple with a 10μF or  
greater low-ESR capacitor to GND. PV1, PV2, and SYS must be connected together  
externally.  
33  
27  
PV2  
Buck Regulator 2 Inductor Connection Node. Connect an inductor from LX2 to the output of  
regulator 2.  
34  
35  
28  
29  
LX2  
Power Ground for Buck Regulator 2. GND, PG1, PG2, and PG3 must be connected together  
externally.  
PG2  
36  
37  
38  
39  
30  
31  
32  
EN2  
EN6  
EN7  
LX3  
Enable Input for Buck Regulator 2. Drive high to enable.  
Enable Input for Linear Regulator 6. Drive high to enable.  
Enable Input for Linear Regulator 7. Drive high to enable.  
Boost Regulator 3 Inductor Connection Node. Connect an inductor from LX3 to SYS_.  
______________________________________________________________________________________ 19  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX8662  
MAX8663  
Power Ground for Boost Regulator 3. GND, PG1, PG2, and PG3 must be connected  
together externally.  
40  
PG3  
Linear Regulator 6 Output. Delivers up to 300mA at an output voltage determined by SL1  
and SL2. Connect a 2.2μF ceramic capacitor from OUT6 to GND. Increase the value to  
41  
42  
43  
33  
34  
35  
OUT6  
IN67  
4.7μF if V  
< 1.5V.  
OUT6  
Input Supply for Linear Regulators 6 and 7. Connect IN67 to a supply voltage of 1.7V to  
. Connect at least a 1μF ceramic capacitor from IN67 to GND.  
V
SYS  
Linear Regulator 7 Output. Delivers up to 150mA at an output voltage determined by SL1  
and SL2. Connect a 1μF ceramic capacitor from OUT7 to GND. Increase the value to 2.2μF  
OUT7  
if V  
< 1.5V.  
OUT7  
Input Limiter and Charger Logic Supply. Provides 3.3V when a valid input voltage is  
present at DC. Connect a 0.1μF capacitor from VL to GND. VL is capable of providing up to  
10mA to an external load when DC is valid.  
44  
36  
VL  
2/MAX863  
Output-Voltage Select Inputs 1 and 2 for Linear Regulators. Leave disconnected, or  
connect to GND or SYS to set to one of three states. SL1 and SL2 set the output voltage of  
OUT4, OUT5, OUT6, and OUT7 to one of nine combinations. See Table 3.  
45  
46  
37  
38  
SL1  
SL2  
Input Current-Limit Set Input. Connect a resistor (R  
the DC input current limit from 500mA to 2A.  
) from PSET to ground to program  
PSET  
47  
48  
39  
40  
PSET  
Power-Ok Output. POK is an open-drain nMOS output that pulls low when a valid input is  
detected at DC. This output is not affected by the states of PEN1, PEN2, or CEN.  
POK  
Exposed Paddle. Connect the exposed paddle to ground. Connecting the exposed paddle  
to ground does not remove the requirement for proper ground connections to GND, PG1,  
PG2, and PG3. The exposed paddle is attached with epoxy to the substrate of the die,  
making it an excellent path to remove heat from the IC.  
EP  
20 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
INPUT FROM AC  
ADAPTER/USB  
4.1V TO 8V  
SYS1  
SYS2  
DC1  
DC2  
SYS  
C10  
C1  
VLOGIC  
+
-
INPUT-  
VOLTAGE  
MONITOR  
R1  
POK  
GND  
+
-
INPUT-TO-SYS  
CURRENT-  
LIMITING  
100mV  
BAT1  
SWITCH  
MAIN  
BATTERY  
C11  
BAT2  
THM  
BATTERY-TO-SYS  
SWITCH (ALLOWS  
BAT AND DC TO SUPPLY  
CURRENT TO SYS)  
VL  
3.3V  
C2  
R6  
BATTERY  
INPUT LIMITER  
AND  
CHARGER  
BATTERY THERMISTOR  
VLOGIC  
OK  
R7  
THERMAL  
PROTECTION  
PV1  
LX1  
TIMEOUT  
CHARGING  
SYS  
CHG  
PEN2  
PEN1  
CEN  
DONE  
500mA  
ADAPTER  
OFF  
C4  
R2  
OUT1  
L1  
100mA  
USB  
0.98V TO 3.3V AT 1.2A  
MAIN  
STEP-DOWN  
REGULATOR  
C5  
ON  
MAIN  
C12  
CT  
PG1  
FB1  
R8  
R9  
PSET  
ISET  
R3  
MAX8662  
MAX8663  
ON  
EN1  
OFF  
LX3  
PG3  
PWM  
PWM  
PV2  
SYS  
L3  
D1  
SKIP  
C13  
OUT3 AT 30mA  
D2  
SYS  
C6  
R4  
C14  
OUT2  
D3  
D4  
D5  
D6  
D7  
D8  
L2  
0.98V TO 3.3V AT 0.9A  
LX2  
STEP-UP  
LED  
DRIVER  
R10  
CORE  
STEP-DOWN  
REGULATOR  
ONLY AVAILABLE  
FOR THE MAX8662  
OVP  
CC3  
C7  
1kΩ  
CORE  
PG2  
FB2  
C15  
0.22μF  
R5  
CS  
D9 TO SYS*  
ANALOG DIMMING  
(0 TO 1.5V)  
PWM BRIGHTNESS  
CONTROL AND ENABLE  
BRT  
EN3  
ON  
EN2  
OFF  
REF  
1.5V  
C3, 0.1μF  
OUT4  
EN4  
OUT4  
500mA  
C16  
C17  
ON  
ON  
IN45  
OFF  
OFF  
SYS  
C8  
OUT5  
EN5  
OUT5  
150mA  
SL1  
SL2  
LDO OUTPUT-  
VOLTAGE  
SETTING  
TRI-STATE MODE  
INPUTS; SEE TABLE 2  
{
OUT6  
EN6  
OUT6  
300mA  
C18  
C19  
ON  
ON  
IN67  
OFF  
OFF  
SYS  
C9  
OUT7  
EN7  
OUT7  
150mA  
E P  
*OPTIONAL.  
Figure 1. Block Diagram and Application Circuit  
______________________________________________________________________________________ 21  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Detailed Description  
The MAX8662/MAX8663 highly integrated PMICs are  
AC ADAPTER  
OR  
Q1 INPUT-TO-SYS  
SWITCH  
designed for use in smart cellular phones, PDAs,  
Internet appliances, and other portable devices. They  
integrate two synchronous buck regulators, a boost  
regulator driving two to seven white LEDs (MAX8662  
only), four low dropout (LDO) linear regulators, and a  
linear charger for a single-cell Li+ battery. Figure 1 is  
the block diagram and application circuit.  
USB INPUT  
SYS  
DC  
SYSTEM  
LOAD  
Q3  
Q2  
(CHARGE  
PATH)  
BATTERY-TO-SYS  
SWITCH  
(DISCHARGE PATH)  
SPS circuitry offers flexible power distribution between  
an AC adapter or USB source, battery, and system  
load, and makes the best use of available power from  
the AC adapter/USB input. The battery is charged with  
any available power not used by the system load. If a  
system load peak exceeds the current limit, supple-  
mental current is taken from the battery. Thermal limit-  
ing prevents overheating by reducing power drawn  
from the input source.  
BAT  
BATTERY  
GND  
MAX8662  
MAX8663  
2/MAX863  
Two step-down DC-DC converters achieve excellent  
light-load efficiency and have on-chip soft-start circuit-  
ry; 1MHz switching frequency allows for small external  
components. Four LDO linear regulators feature low  
quiescent current and operate from inputs as low as  
1.7V. This allows the LDOs to operate from the step-  
down output voltage to improve efficiency. The white  
LED driver features easy adjustment of LED brightness  
and open-LED overvoltage protection. A 1-cell Li+  
charger has programmable charge current up to 1.25A  
and a charge timer.  
R
THM  
THM  
Figure 2. Smart Power Selector Block Diagram  
Input Limiter  
All regulated outputs (OUT1–OUT7) derive their power  
from the SYS output. With an AC adapter or USB source  
connected at DC, the input limiter distributes power  
from the external power source to the system load and  
battery charger. In addition to the input limiter’s primary  
function of passing the DC power source to the system  
and charger loads at SYS, it performs several additional  
functions to optimize use of available power:  
Smart Power Selector (SPS)  
SPS seamlessly distributes power between the external  
input, the battery, and the system load (Figure 2). The  
basic functions of SPS are:  
Input Voltage Limiting: If the voltage at DC rises,  
SYS limits to 5.3V, preventing an overvoltage of the  
system load. A DC voltage greater than 6.9V is con-  
sidered invalid and the input limiter disconnects the  
DC input entirely. The withstand voltage at DC is  
guaranteed to be at least 9V. A DC input is also  
invalid if it is less than BAT, or less than the DC  
undervoltage threshold of 3.5V (falling). With an  
invalid DC input voltage, SYS connects to BAT  
through a 40mΩ switch.  
With both the external power supply and battery  
connected:  
a) When the system load requirements exceed the  
capacity of the external power input, the battery  
supplies supplemental current to the load.  
b) When the system load requirements are less than  
the capacity of the external power input, the bat-  
tery is charged with residual power from the input.  
Input Overcurrent Protection: The current at DC is  
limited to prevent input overload. This current limit  
is automatically adjusted to match the capabilities  
of source, whether it is a 100mA or 500mA USB  
source, or an AC adapter. When the load exceeds  
the input current limit, SYS drops to 100mV below  
BAT and supplemental load current is provided by  
the battery.  
When the battery is connected and there is no  
external power input, the system is powered from  
the battery.  
When an external power input is connected and  
there is no battery, the system is powered from the  
external power input.  
A thermal-limiting circuit reduces battery-charge rate and  
external power-source current to prevent overheating.  
22 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Thermal Limiting: The input limiter includes a ther-  
mal-limiting circuit that reduces the current drawn  
from DC when the IC junction temperature increases  
beyond +100°C in an attempt to prevent further  
heating. The current limit is be reduced by 5%/°C for  
temperatures above +100°C, dropping to 0mA at  
+120°C. Due to the adaptive nature of the charging  
circuitry, the charger current reduces to 0mA before  
the system load is affected by thermal limiting.  
Figure 3 shows the SYS voltage and its relationship to  
DC and BAT under three conditions:  
a) Charger is off and SYS is driven from DC.  
b) Charger is on and adaptive charger control is limiting  
charge current.  
c) The load at SYS is greater than the available input current.  
The adaptive battery-charger circuit reduces charging  
current when the SYS voltage drops 550mV below DC.  
For example, if DC is at 5V, the charge current reduces  
to prevent SYS from dropping below 4.45V. When DC is  
greater than 5.55V, the adaptive charging circuitry  
reduces charging current when SYS drops 300mV  
below the 5.3V SYS regulation point (5.0V). Finally, the  
circuit prevents itself from pulling SYS down to within  
100mV of BAT.  
Adaptive Battery Charging: While the system is  
powered from DC, the charger can also draw  
power from SYS to charge the battery. If the charg-  
er load plus system load exceeds the current capa-  
bility of the input source, an adaptive charger  
control loop reduces charge current to prevent the  
SYS voltage from collapsing. Maintaining a higher  
SYS voltage improves efficiency and reduces  
power dissipation in the input limiter by running the  
switching regulators at lower current.  
INPUT: 500mA USB  
DC  
CHARGER: R  
= 3.112kΩ (750mA)  
ISET  
5.3V  
5.0V  
SYS  
(CHARGER OFF)  
SYS  
I
x 150mΩ  
SYS  
(CHARGER ON)  
550mV  
I
x 30mΩ  
SYS  
4.0V  
3.9V  
100mV  
BAT  
100mV  
SYS  
(SYS OVERLOAD)  
475mA  
BAT CHARGE  
CURRENT  
(CHARGE ON)  
0mA  
Figure 3. SYS Voltage and Charge Current vs. DC and BAT Voltage  
______________________________________________________________________________________ 23  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
DC Input Current-Limit Selection  
(PEN1/PEN2)  
The input current limit can be set to a variety of values  
as shown in Table 1. When the PEN1 input is low, a  
USB source is expected at DC and the current limit is  
set to either 95mA or 475mA by PEN2.  
Power-OK Output (POK)  
POK is an active-low open-drain output indicating DC  
status. When the voltage at DC is between the under-  
voltage and the overvoltage thresholds, and is greater  
than the BAT voltage, POK pulls low to indicate that  
input power is OK. Otherwise, POK is high impedance.  
POK is not affected by the states of PEN1, PEN2, or  
CEN. POK remains active in thermal overload.  
When PEN1 is high, an AC adapter is expected at DC  
and the current limit is set based on a programming resis-  
tor at PSET. The DC input current limit is calculated from:  
Battery Charger  
The battery charger state diagram is illustrated in  
Figure 4.  
I
= 2000 x (1.5 / R  
)
DC_LIM  
PSET  
An exception is when the battery charger is disabled  
(CEN high) with PEN2 low, where the MAX8662/  
MAX8663 enter USB suspend mode.  
With a valid AC adapter/USB voltage present, the bat-  
tery charger initiates a charge cycle when the charger  
Table 1. DC Input Current and Charger Current-Limit Select  
CEN  
PEN1  
PEN2  
DC INPUT CURRENT LIMIT  
95mA  
475mA  
EXPECTED INPUT TYPE  
CHARGER CURRENT LIMIT**  
0
0
0
1
1
1
0
0
0
1
100mA USB  
500mA USB  
AC adapter  
USB suspend  
500mA USB  
AC adapter  
1556(1.5V / R  
1556(1.5V / R  
1556(1.5V / R  
Off  
)
ISET  
2/MAX863  
)
ISET  
1
X*  
0
1
2000(1.5V / R  
Off  
475mA  
)
)
ISET  
PSET  
PSET  
X*  
0
Off  
1
1
2000(1.5V / R  
)
Off  
*X = Don’t care.  
**The maximum charge will not exceed the DC Input current.  
CEN = 1 OR REMOVE AND  
RECONNECT AC  
CHARGER OFF  
CHG = HIGH-Z  
= 0mA  
ADAPTER/USB  
ANY STATE  
I
BAT  
TOGGLE CEN OR  
REMOVE AND  
RECONNECT AC  
ADAPTER/USB  
CEN = 0  
SET TIMER = 0  
PREQUALIFICATION  
CHG = 0V  
TIMER > t  
PREQUAL  
I
= I  
/ 10  
BAT CHG-MAX  
V
> 3V  
V
< 2.82V  
BAT  
BAT  
TIMER > t  
(TIMER SUSPENDED IF I < I  
SET TIMER = 0  
SET TIMER = 0  
FST-CHG  
BAT CHG-MAX  
x
FAULT  
FAST CHARGE  
CHG = 0V  
= I  
20% WHILE V < 4.2V)  
BAT  
POK = 0V  
CHG = BLINK AT 1Hz  
= 0mA  
I
BAT CHG-MAX  
I
BAT  
I
< I  
x 7.5%  
BAT  
SET TIMER = 0  
BAT CHG-MAX  
I
> I  
x 12%  
BAT CHG-MAX  
ANY CHARGING STATE  
AND V = 4.2V  
SET TIMER = 0  
THERMISTOR  
TEMPERATURE OK  
TIMER = RESUMED  
THERMISTOR  
TOO HOT OR TOO COLD  
TIMER = SUSPENDED  
TOP - OFF  
CHG = HIGH - Z  
V
= < 4.1V  
BAT  
SET TIMER = 0  
TEMPERATURE  
SUSPEND  
= 0mA  
TIMER > t  
TOP-OFF  
I
BAT  
CHG = PREVIOUS STATE  
DONE  
CHG = HIGH-Z  
I
= 0mA  
BAT  
Figure 4. Charger State Diagram  
24 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
is enabled. It first detects the battery voltage. If the bat-  
MONITORING THE BATTERY CHARGE CURRENT WITH V  
ISET  
tery voltage is less than the BAT prequalification thresh-  
old (3.0V), the charger enters prequalification mode in  
which the battery charges at 10% of the maximum fast-  
charge current. This slow charge ensures that the bat-  
tery is not damaged by fast-charge current while  
deeply discharged. Once the battery voltage rises to  
3.0V, the charger transitions to fast-charge mode and  
applies the maximum charge current. As charging con-  
tinues, the battery voltage rises until it reaches the bat-  
tery regulation voltage (4.2V) where charge current  
starts tapering down. When charge current decreases  
to 7.5% of fast-charge current, the charger enters top-  
off mode. Top-off charging continues for 30min, then all  
charging stops. If the battery voltage subsequently  
drops below the 4.1V recharge threshold, charging  
restarts and the timers reset.  
R
ISET  
V
=
x I  
BAT  
ISET  
1556  
1.5  
0
DISCHARGING  
BATTERY-CHARGING CURRENT (A)  
0
1556 x (1.5V/R  
)
ISET  
Charge Current  
ISET adjusts the MAX8662/MAX8663 charging current  
to match the capacity of the battery. A resistor from  
ISET to ground sets the maximum fast-charge current,  
the charge current in prequal, and the charge-current  
threshold below which the battery is considered com-  
pletely charged. Calculate these thresholds as follows:  
Figure 5. Monitoring the Battery Charge Current with ISET  
Output Voltage  
Charge Timer  
As shown in Figure 3, the MAX8662/MAX8663 feature a  
fault timer for safe charging. If prequalification charging  
or fast charging does not complete within the time limits,  
which are programmed by the timer capacitor at CT, the  
charger stops charging and issues a timeout fault.  
Charging can be resumed by either toggling CEN or  
cycling the DC input voltage.  
I
= 1556 x 1.5V / R  
CHG-MAX  
ISET  
CHG-MAX  
CHG-MAX  
I
= 10% x I  
PRE-QUAL  
I
= 7.5% x I  
TOP-OFF  
Determine the I  
value by considering the char-  
CHG-MAX  
acteristics of the battery, and not the capabilities of the  
expected AC adapter/USB charging input, the system  
load, or thermal limitations of the PCB. The MAX8662/  
MAX8663 automatically adjust the charging algorithm  
to accommodate these factors.  
The MAX8662/MAX8663 support values of C  
0.01μF to 1μF:  
from  
CT  
C
CT  
t
= 30min×  
PREQUAL  
0.068μF  
In addition to setting the charge current, ISET also pro-  
vides a means to monitor battery-charge current. The  
output voltage of the ISET pin tracks the charge current  
delivered to the battery, and can be used to monitor the  
charge rate, as shown in Figure 5. A 1.5V output indi-  
cates the battery is being charged at the maximum set  
fast-charge current; 0V indicates no charging. This volt-  
age is also used by the charger control circuitry to set  
and monitor the battery current. Avoid adding more  
than 10pF capacitance directly to the ISET pin. If filter-  
ing of the charge-current monitor is necessary, add a  
resistor of 100kΩ or more between ISET and the filter  
capacitor to preserve charger stability.  
C
CT  
0.068μF  
t
= 300min×  
FSTCHG  
When the charger exits fast-charge mode, CHG goes  
high impedance and top-off mode is entered. Top-off  
time is also determined by the capacitance at CT:  
C
CT  
t
= 300min×  
TOPOFF  
0.068μF  
In fast-charge mode, the fault timer is suspended when  
the charge current is limited, by input or thermal limit-  
ing, to less than 20% of I  
CHG-MAX.  
______________________________________________________________________________________ 25  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Connect CT to GND to disable the prequalification and  
fast-charge timers, allowing the battery to charge indef-  
initely in top-off mode, or if other system timers are to  
be used to control charging.  
a beta of 3500. The relation of thermistor resistance to  
temperature is defined by the following equation:  
1
1
⎞ ⎪  
⎪ ⎛  
β
T+273 298  
R
= R25 × e  
T
Charge-Enable Input (CEN)  
Driving CEN high disables the battery charger. Driving  
CEN low enables the charger when a valid source is  
connected at DC. CEN does not affect the input limit  
current, except that driving CEN high and PEN2 low  
activates USB suspend mode.  
where:  
The resistance in ohms of the thermistor at tem-  
R
T =  
perature T in Celsius  
R25 The resistance in ohms of the thermistor at +25°C  
=
ß = The material constant of the thermistor, which typi-  
cally ranges from 3000K to 5000K  
In many systems, there is no need for the system con-  
troller (typically a microprocessor) to disable the charg-  
er because the SPS circuitry independently manages  
charging and adapter/battery power hand-off. In these  
situations, CEN can be connected to ground.  
T = The temperature of the thermistor in °C  
Table 2 shows temperature limits for different thermistor  
material constants.  
Some designs may prefer other trip temperatures. This  
can usually be accommodated by connecting a resistor  
in series and/or in parallel with the thermistor and/or  
using a thermistor with different ß. For example, a  
+45°C hot threshold and 0°C cold threshold can be  
realized by using a thermistor with a ß of 4250 and con-  
necting 120kΩ in parallel. Since the thermistor resis-  
tance near 0°C is much higher than it is near +50°C, a  
large parallel resistance lowers the cold threshold,  
while only slightly lowering the hot threshold.  
Conversely, a small series resistance raises the cold  
threshold, while only slightly raising the hot threshold.  
Charge Status Output (CHG)  
CHG is an open-drain output that indicates charger sta-  
tus. CHG is low when the battery charger is in prequali-  
fication or fast-charge mode. It is high impedance  
when the charger is done, in top-off, or disabled.  
2/MAX863  
The charger faults if the charging timer expires in pre-  
qualification or fast charge. In this state, CHG pulses at  
1Hz to indicate that a fault occurred.  
Battery Charger Thermistor Input (THM)  
Battery or ambient temperature can be monitored with  
a negative temperature coefficient (NTC) thermistor.  
Charging is allowed when the thermistor temperature is  
within the allowable range.  
The charger timer pauses when the thermistor resis-  
tance goes out of range: charging stops and the timer  
counters hold their state. When the temperature comes  
back into range, charging resumes and the counters  
continue from where they left off. Connecting THM to  
GND disables the thermistor function.  
The charger enters a temperature suspend state when  
the thermistor resistance falls below 3.97kΩ (too hot) or  
rises above 28.7kΩ (too cold). This corresponds to a 0  
to +50°C range when using a 10kΩ NTC thermistor with  
Table 2. Fault Temperatures for Different Thermistors  
THERMISTOR ß (K)  
Resistance at +25°C (kΩ)  
3000 (K)  
10  
3250 (K)  
10  
3500 (K)  
10  
3750 (K)  
10  
4250 (K)  
10  
Resistance at +50°C (kΩ)  
4.59  
25.14  
55  
4.30  
27.15  
53  
4.03  
29.32  
50  
3.78  
31.66  
49  
3316  
36.91  
46  
Resistance at 0°C (kΩ)  
Nominal Hot Trip Temperature (°C)  
Nominal Cold Trip Temperature (°C)  
-3  
-1  
0
2
4.5  
26 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
VL  
SWITCH OPEN  
WHEN CHARGER  
DISABLED  
MAX8662  
MAX8663  
55.71kΩ  
10kΩ  
V
= 2.4V RISING (TYP)  
THM_C  
-
COLD  
60mV HYST  
+
BAD TEMP  
97.71kΩ  
-
HOT  
60mV HYST  
V
= 0.9V FALLING (TYP)  
= 0.1V FALLING (TYP)  
THM  
THM_H  
+
DISABLE CHARGER  
54.43kΩ  
+
-
ENABLE THM  
60mV HYST  
ESD  
DIODE  
V
THM_D  
6.43kΩ  
GND  
GND  
Figure 6. Thermistor Input  
Figure 6 shows a simplified version of the THM input.  
Ensure that the physical size of the thermistor is such  
that the circuit of Figure 6 does not cause self-heating.  
Step-Down Converter Operating Modes  
OUT1 and OUT2 can operate in either auto-PWM mode  
(PWM low) or forced-PWM mode (PWM high). In auto-  
PWM mode, OUT1 and OUT2 enter skip mode when  
the load current drops below a predetermined level. In  
skip mode, the regulator skips cycles when they are not  
needed, which greatly decreases quiescent current  
and improves efficiency at light loads. In forced-PWM  
mode, the converters operate with a constant 1MHz  
switching frequency regardless of output load. Output  
voltage is regulated by modulating the switching duty  
cycle. Forced-PWM mode is preferred for low-noise  
systems, where switching harmonics can occur only at  
multiples of the constant-switching frequency and are  
easily filtered; however, regulator operating current is  
greater and light-load efficiency is reduced.  
Step-Down DC-DC Converters  
(OUT1 and OUT2)  
OUT1 and OUT2 are high-efficiency, 1MHz, current-mode  
step-down converters with adjustable output voltage.  
The OUT1 regulator outputs 0.98V to V at up to 1200mA  
IN  
while OUT2 outputs 0.98V to V at up to 900mA.  
IN  
OUT1 and OUT2 have individual enable inputs. When  
enabled, the OUT1 and OUT2 gradually ramp the out-  
put voltage over a 400μs soft-start time. This soft-start  
eliminates input inrush current spikes.  
OUT1 and OUT2 can operate at a 100% duty cycle,  
which allows the regulators to maintain regulation at the  
lowest possible battery voltage. The OUT1 dropout volt-  
age is 72mV with a 600mA load and the OUT2 dropout  
voltage is 90mV with a 450mA load (does not include  
inductor resistance). During 100% duty-cycle operation,  
the high-side p-channel MOSFET turns on continuously,  
connecting the input to the output through the inductor.  
Synchronous Rectification  
Internal n-channel synchronous rectifiers eliminate the  
need for external Schottky diodes and improve efficiency.  
The synchronous rectifier turns on during the second  
half of each switching cycle. During this time, the volt-  
age across the inductor is reversed, and the inductor  
current ramps down. In PWM mode, the synchronous  
rectifier turns off at the end of the switching cycle. In  
______________________________________________________________________________________ 27  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
skip mode, the synchronous rectifier turns off when the  
inductor current falls below the n-channel zero-crossing  
threshold or at the end of the switching cycle, whichev-  
er occurs first.  
For example, with R  
= 1.2MΩ, the OUT3 maximum  
OVP  
voltage is set at 25.25V. The OVP circuit also provides  
soft-start to reduce inrush current by ramping the inter-  
nal pulldown current from 0 to 20μA over 1.25ms at  
startup. The 20μA internal current is disconnected  
when EN3 goes low.  
Setting OUT1 and OUT2 Output Voltage  
Select an output voltage for OUT1 between 0.98V and  
OUT3 can also be used as a voltage-output boost by  
V
IN  
by connecting FB1 to the center of a resistive volt-  
setting R  
for the desired output voltage. When doing  
OVP  
age-divider between OUT1 and GND. Choose R3  
(Figure 1) for a reasonable bias current in the resistive  
divider; choose R3 to be between 100kΩ and 200kΩ.  
Then, R2 (Figure 1) is given by:  
this, the output filter capacitor must be at least 1μF, and  
the compensation network should be a 0.01μF capaci-  
tor in series with a 10kΩ resistor from CC3 to ground.  
R2 = R3 ((V  
/V ) - 1)  
Brightness Control (Voltage or PWM)  
OUT1 FB  
LED current is set by the voltage at BRT. The V  
BRT  
where V = 0.98V. For OUT2, R4 and R5 are calculat-  
FB  
range for adjusting output current from 1mA to 30mA is  
50mV to 1.5V. Connecting BRT to a 1.5V reference volt-  
age (such as REF) sets LED current to 30mA.  
ed using:  
R4 = R5 ((V  
/V ) - 1)  
OUT2 FB  
The EN3 input can also be driven by a logic-level PWM  
brightness control signal, such as that supplied by a  
microcontroller. The allowed PWM frequency range is  
from 1kHz to 100kHz. A 100% duty cycle corresponds  
to full current set by the BRT pin. The MAX8662 digitally  
decodes the PWM brightness signal and eliminates  
PWM ripple found in more common PWM brightness  
controls. As a result, no external filtering is needed to  
prevent intensity ripple at the PWM rate.  
OUT1 and OUT2 Inductors  
2/MAX863  
3.3μH and 4.7μH inductors are recommended for the  
OUT1 and OUT2 step-down converters. Ensure that the  
inductor saturation current rating exceeds the peak  
inductor current, and the rated maximum DC inductor  
current exceeds the maximum output current. For lower  
load currents, the inductor current rating may be  
reduced. For most applications, use an inductor with a  
current rating 1.25 times the maximum required output  
current. For maximum efficiency, the inductor’s DC  
resistance should be as low as possible. See Table 4  
for component examples.  
In order to properly distinguish between a DC or PWM  
control signal, the MAX8662 delays turn-on from the ris-  
ing edge of EN3, and turn-off from the falling edge of  
EN3, by 2ms. If there are no more transitions in the EN3  
signal after 2ms, EN3 assumes the control signal is DC  
and sets LED brightness based on the DC level. If two ris-  
ing edges occur within 2ms, the circuit assumes the con-  
trol is PWM and sets brightness based on the duty cycle.  
Boost Converter with White LED Driver  
(OUT3, MAX8662 Only)  
The MAX8662 contains a boost converter, OUT3, which  
drives up to seven white LEDs in series at up to 30mA.  
The boost converter regulates its output voltage to  
maintain the bottom of the LED stack at 320mV. A 1MHz  
switching rate allows for a small inductor and small  
input and output capacitors, while also minimizing input  
and output ripple.  
OUT3 Inductor  
For the white LED driver, OUT3, a 22μH inductor is rec-  
ommended for most applications. For best efficiency,  
the inductor’s DC resistance should also be as low as  
possible. See Table 4 for component examples.  
Reference Voltage  
REF is a 1.5V regulated output that is available to drive  
the BRT input when the boost converter is enabled.  
This voltage can be used to control LED brightness by  
driving BRT through a resistor-divider.  
OUT3 Compensation  
An RC compensation network from CC3 to GND and an  
output capacitor (C14 of Figure 1) ensure boost con-  
verter stability. For WLED applications, connect a  
0.22μF ceramic capacitor in series with a 1kΩ resistor  
from CC3 to GND and use a 0.1μF output capacitor.  
For fixed output voltage applications such as OLED,  
connect a 0.01μF ceramic capacitor in series with a  
10kΩ resistor from CC3 to GND and use a 1μF capaci-  
tor. These components for fixed output voltage applica-  
tions improve the load transient performance of the  
boost converter. The trade-off for this improved load  
Boost Overvoltage Protection (OVP)  
OVP limits the maximum voltage of the boost output for  
protection against overvoltage due to open or discon-  
nected LEDs. An external resistor between OUT3 and  
OVP, with an internal 20μA pulldown current from OVP  
to GND, sets the maximum boost output to:  
V
= (R  
x 20μA) + 1.25V  
OVP  
BOOST_MAX  
28 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
transient performance is the larger (1µF) high-voltage  
VL Linear Regulator  
VL is the output of a 3.3V linear regulator that powers  
the on-chip input limiter and charger control circuitry.  
VL is powered from DC and can provide up to 10mA  
when a DC source is present. Bypass VL to GND with a  
0.1µF capacitor.  
(30V) output capacitor.  
The RC compensation network from CC3 to GND  
affects the WLED driver’s sink current ramp time. As  
shown in the OUT3 Enable and Disable Response  
graph in the Typical Operating Characteristics section,  
the OUT3 voltage ramps up in 1.25ms, but the WLED  
sink current of 30mA settles in 12ms. This 12ms is  
associated with the compensation of 1kin series with  
0.22µF. Smaller RC time constants reduce the WLED  
sink current ramp time.  
Regulator Enable Inputs (EN_)  
The OUT1–OUT7 regulators have individual enable  
inputs. Drive EN_ high to initiate soft-start and enable  
OUT_. Drive EN_ low to disable OUT_. When disabled,  
each regulator (OUT1–OUT7) switches in an active  
pulldown resistor to discharge the output.  
OUT3 Diode Selection  
The MAX8662 boost converter’s high-switching fre-  
quency demands a high-speed rectification diode (D1)  
for optimum efficiency. A Schottky diode is recom-  
mended due to its fast recovery time and low forward-  
voltage drop. Ensure the diode’s peak current rating  
exceeds the peak inductor current. In addition, the  
diode’s reverse breakdown voltage must exceed  
Soft-Start/Inrush Current  
The MAX8662/MAX8663 implement soft-start on many  
levels to control inrush current and avoid collapsing  
source supply voltages. The input-voltage limit and bat-  
tery charger have a 1.5ms soft-start time. All regulators  
also implement soft-start. White LED driver soft-start is  
accomplished by ramping the OVP current from 0 to  
20µA in 1.25ms. During soft-start, the PWM controller  
forces 0% switching duty cycle to avoid an input cur-  
rent surge at turn-on.  
V
OUT3  
. See Table 4 for component examples.  
Linear Regulators  
(OUT4, OUT5, OUT6, and OUT7)  
The MAX8662/MAX8663 contain four low-dropout, low-  
quiescent current, low-operating voltage linear regula-  
tors. The maximum output currents for OUT4, OUT5,  
OUT6, and OUT7 are 500mA, 150mA, 300mA, and  
150mA, respectively. Each regulator has its own enable  
input. When enabled, a linear regulator soft-starts by  
ramping the outputs at 34V/ms. This limits inrush cur-  
rent when the regulators are enabled.  
Undervoltage and Overvoltage Lockout  
DC UVLO  
When the DC voltage is below the DC undervoltage  
threshold (V  
, typically 3.5V falling), the  
UVLO_DC  
MAX8662/MAX8663 enter DC undervoltage lockout (DC  
UVLO). DC UVLO forces the power management cir-  
cuits to a known dormant state until the DC voltage is  
high enough to allow the device to make accurate deci-  
sions. In DC UVLO, Q1 is open (Figure 2), the charger is  
disabled, POK is high-Z, and CHG is high-Z. The sys-  
tem load switch, Q2 (Figure 2) is closed in DC UVLO,  
allowing the battery to power the SYS node. All regula-  
tors are allowed to operate from the battery in DC UVLO.  
The LDO output voltages, OUT4, OUT5, OUT6, and  
OUT7 are pin programmable by SL1 and SL2 (Table 3).  
SL1 and SL2 are intended to be hardwired and cannot  
be driven by active logic. Changes to SL1 and SL2  
after power-up are ignored.  
Table 3. SL1 and SL2, Output Voltage Selection  
CONNECT SL_ TO:  
SL1  
LINEAR REGULATOR OUTPUT VOLTAGES  
SL2  
Open circuit  
Open circuit  
Open circuit  
Ground  
Ground  
Ground  
SYS  
OUT4 (V)  
3.3  
OUT5 (V)  
3.3  
OUT6 (V)  
3.3  
OUT7 (V)  
3.3  
Open circuit  
Ground  
SYS  
3.3  
2.85  
2.85  
2.85  
3.3  
1.85  
1.85  
2.85  
1.5  
1.85  
1.85  
1.85  
1.5  
2.85  
3.3  
Open circuit  
Ground  
SYS  
2.5  
2.5  
3.3  
1.5  
1.3  
Open circuit  
Ground  
SYS  
1.2  
1.8  
1.1  
1.3  
SYS  
3.3  
2.85  
2.5  
1.5  
1.5  
SYS  
1.8  
3.3  
2.85  
______________________________________________________________________________________ 29  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
DC OVLO  
Regulator Thermal-Overload Shutdown  
When the DC voltage is above the DC overvoltage  
The MAX8662/MAX8663 disable all charger, SYS, and  
regulator outputs (except VL) if the junction tempera-  
ture rises above +165°C, allowing the device to cool.  
When the junction temperature cools by approximately  
15°C, resume the state they held prior to thermal over-  
load. Note that this on-chip thermal-protection circuitry  
is not related to, and operates independently from, the  
thermistor input. Also note that thermal-overload shut-  
down is a fail-safe mechanism. Proper thermal design  
should ensure that the junction temperature of the  
MAX8662/MAX8663 never exceeds the absolute maxi-  
mum rating of +150°C.  
threshold (V  
, typically 6.9V), the MAX8662/  
OVLO_DC  
MAX8663 enter DC overvoltage lockout (DC OVLO).  
DC OVLO mode protects the MAX8662/MAX8663 and  
downstream circuitry from high-voltage stress up to 9V.  
In DC OVLO, VL is on, Q1 (Figure 2) is open, the charg-  
er is disabled, POK is high-Z, and CHG is high-Z. The  
system load switch Q2 (Figure 2) is closed in DC  
OVLO, allowing the battery to power SYS. All regulators  
are allowed to operate from the battery in DC OVLO.  
SYS UVLO  
When the SYS voltage falls below the SYS undervoltage  
Applications Information  
Step-Down Converters (OUT1 and OUT2)  
threshold (V  
, typically 2.4V falling), the  
UVLO_SYS  
MAX8662/MAX8663 enter SYS undervoltage lockout  
(SYS UVLO). SYS UVLO forces all regulators off. All  
regulators assume the states determined by the corre-  
sponding enable input (EN_) when the SYS voltage  
Capacitor Selection  
The input capacitor in a DC-DC converter reduces cur-  
rent peaks drawn from the battery or other input power  
source and reduces switching noise in the controller.  
The impedance of the input capacitor at the switching  
frequency should be less than the input source’s output  
impedance so that high-frequency switching currents  
do not pass through the input source. The DC-DC con-  
verter output capacitor keeps output ripple small and  
ensures control-loop stability. The output capacitor must  
also have low impedance at the switching frequency.  
Ceramic capacitors with X5R or X7R dielectrics are  
highly recommended for both input and output capaci-  
tors due to their small size, low ESR, and small tempera-  
ture coefficients.  
2/MAX863  
rises above V  
.
UVLO_SYS  
Input-Limiter Thermal Limiting  
The MAX8662/MAX8663 reduce input-limiter current by  
5%/°C when its die temperature exceeds +100°C. The  
system load (SYS) has priority over charger current, so  
input current is first reduced by lowering charge cur-  
rent. If the junction temperature still reaches +120°C in  
spite of charge-current reduction, no current is drawn  
from DC, the battery supplies the entire system load,  
and SYS is regulated at 100mV below BAT. Note that  
this on-chip thermal-limiting circuitry is not related to,  
and operates independently from, the thermistor input.  
See Table 4 for example OUT1/OUT2 input and output  
capacitors and manufacturers.  
Table 4. External Components List (See Figure 1)  
COMPONENT  
FUNCTION  
PART  
4.7μF 10%, 16V X5R ceramic capacitor  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107 BJ105KA  
C1  
Input filter capacitor  
0.1μF 10%, 10V X5R ceramic capacitor (0402)  
Murata GRM 155R61A104KA01 or TDK C1005X5R1A104K  
C2, C3  
C4, C6  
C5, C7  
C8, C9  
VL filter capacitor  
4.7μF 10%, 6.3V X5R ceramic capacitors (0603)  
Mutara GRM188R60J475KE  
Buck input bypass capacitors  
Step-down output filter  
capacitors  
2 x 10μF 10%, 6.3V X5R ceramic capacitors (0805)  
Murata GRM219R60J106KE19  
Linear regulator input filter  
capacitors  
1.0μF 10%, 16V X5R ceramic capacitors (0603)  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107 BJ105KA  
C10  
C11  
SYS output bypass capacitor  
Battery bypass capacitor  
10μF 10%, 6.3V X5R ceramic capacitor  
4.7μF 10%, 6.3V X5R ceramic capacitor  
0.068μF 10%, 10V X5R ceramic capacitor (0402)  
TDK C1005X5R1A683K  
C12  
Charger timing capacitor  
30 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Table 4. External Components List (See Figure 1) (continued)  
COMPONENT  
FUNCTION  
PART  
1.0μF 10%, 16V X5R ceramic capacitor (0603)  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107BJ105KA  
C13  
Boost input bypass capacitor  
0.1μF 10%, 50V X7R ceramic capacitor (0603)  
Murata GRM188R71H104KA93 or Taiyo Yuden UMK107BJ104KA  
C14  
C15  
Step-up output filter capacitor  
Step-up compensation  
capacitor  
0.22μF 10%, 10V X5R ceramic capacitor (0402)  
Murata GRM155R61A224KE19  
4.7μF 10%, 6.3V X5R ceramic capacitor (0603)  
Murata GRM188R60J475KE19  
Linear regulator output filter  
capacitor  
C16  
Linear regulator output filter  
capacitors  
1.0μF 10%, 6.3V X5R ceramic capacitors (0603)  
Murata GRM188R60J105KA01  
C17, C19  
C18  
2.2μF 10%, 6.3V X5R ceramic capacitor (0603)  
Murata GRM185R60J225KE26  
Linear regulator output filter  
capacitor  
200mA, 30V Schottky diode (SOD-323)  
Central CMDSH2-3  
D1  
Boost rectifier  
30mA surface-mount white LEDs  
Nichia NSCW215T  
D2–D8  
D9  
Display backlighting  
CS clamp  
100mA silicon signal diode  
Central CMOD4448  
3.3μH inductor  
TOKO DE2818C 1072AS-3R3M, 1.6A, 50mΩ  
L1  
OUT1 step-down inductor  
OUT2 step-down inductor  
4.7μH inductor  
TOKO DE2818C 1072AS-4R7M, 1.3A, 70mΩ  
L2  
22μH inductor  
L3  
OUT3 step-up inductor  
Murata LQH32CN220K53, 250mA, 0.71Ω DCR (3.2mm x 2.5mm x 1.55mm)  
or TDK VLF3012AT-220MR33, 330mA, 0.76Ω DCR (2.8mm x 2.6mm x 1.2mm)  
R1, R7  
R2–R5  
Logic output pullup resistors  
Step-down feedback resistors  
100kΩ  
R3 and R5 are 200kΩ 0.1%; R2 and R4 depend on output voltage ( 0.1%)  
Phillips NTC thermistor  
P/N 2322-640-63103  
10kΩ 5% at +25°C  
R6  
Negative TC thermistor  
Input current-limit  
programming resistor  
R8  
R9  
1.5kΩ 1%, for 2A limit  
Fast charge-current  
programming resistor  
3kΩ 1%, for 777mA charging  
1.2MΩ 1%, for 25V max output  
Step-up overvoltage feedback  
resistor  
R10  
______________________________________________________________________________________ 31  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
in the ground plane, which can result in instability or  
Power Dissipation  
The MAX8662/MAX8663 have a thermal-limiting circuitry,  
as well as a shutdown feature to protect the IC from dam-  
age when the die temperature rises. To allow the maxi-  
mum charging current and load current on each  
regulator, and to prevent thermal overload, it is important  
to ensure that the heat generated by the  
MAX8662/MAX8663 is dissipated into the PCB. The pack-  
age’s exposed paddle must be soldered to the PCB, with  
multiple vias tightly packed under the exposed paddle to  
ensure optimum thermal contact to the ground plane.  
regulation errors.  
A separate low-noise analog ground plane containing  
the reference, linear regulator, signal ground, and GND  
must connect to the power-ground plane at only one  
point to minimize the effects of power-ground currents.  
PG_, DC power, and battery grounds must connect  
directly to the power-ground plane. Connect GND to  
the exposed paddle directly under the IC. Use multiple  
tightly spaced vias to the ground plane under the  
exposed paddle to help cool the IC.  
Table 5 shows the thermal characteristics of the  
MAX8662/MAX8663 packages. For example, the junc-  
Position input capacitors from DC, SYS, BAT, PV1, and  
PV2 to the power-ground plane as close as possible to  
the IC. Connect input capacitors and output capacitors  
from inputs of linear regulators to low-noise analog  
ground as close as possible to the IC. Connect the  
inductors, output capacitors, and feedback resistors as  
close to the IC as possible and keep the traces short,  
direct, and wide.  
tion-to-case thermal resistance (θ ) of the MAX8663 is  
JC  
1.7°C/W. When properly mounted on a multilayer PCB,  
the junction-to-ambient thermal resistance (θ ) is typi-  
JA  
cally 28°C/W.  
PCB Layout and Routing  
High switching frequencies and relatively large peak  
currents make the PCB layout a very important aspect of  
design. Good design minimizes ground bounce, exces-  
sive EMI on the feedback paths, and voltage gradients  
2/MAX863  
Refer to the MAX8662/MAX8663 evaluation kit for a  
suitable PCB layout example.  
Table 5. MAX8662/MAX8663 Package Thermal Characteristics  
48-PIN THIN QFN (6mm x 6mm)  
40-PIN THIN QFN (5mm x 5mm)  
SINGLE-LAYER PCB MULTILAYER PCB  
1777.8mW 2857.1mW  
SINGLE-LAYER PCB MULTILAYER PCB  
2105.3mW  
2963.0mW  
CONTINUOUS  
POWER  
DISSIPATION  
Derate 26.3mW/°C above  
+70°C  
Derate 37.0mW/°C above  
+70°C  
Derate 22.2mW/°C above  
+70°C  
Derate 35.7mW/°C above  
+70°C  
θ
θ
38°C/W  
1.4°C/W  
27°C/W  
1.4°C/W  
45°C/W  
1.7°C/W  
28°C/W  
1.7°C/W  
JA  
JC  
32 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Pin Configurations (continued)  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
20  
31  
32  
33  
PWM  
EN6  
EN7  
LAND  
PATTERN NO.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
19 EN5  
18 EN4  
OUTLINE NO.  
OUT6  
90-0016  
90-0057  
48 TQFN-EP  
40 TQFN-EP  
T4866-1  
T4055-1  
21-0140  
21-0141  
17  
16  
OUT5  
IN45  
IN67 34  
35  
36  
37  
38  
39  
40  
OUT7  
VL  
MAX8663  
15 OUT4  
14  
GND  
13 CT  
12  
SL1  
SL2  
ISET  
11 THM  
PSET  
POK  
1
2
3
4
5
6
7
8
9
10  
TQFN  
(5mm x 5mm)  
______________________________________________________________________________________ 33  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2/07  
Initial release  
12/08  
Updated Figure 1  
21  
5, 6, 7, 11,  
13–17, 23, 24,  
25, 27, 28, 29  
Updated Electrical Characteristics table, TOCs 29, 38, 42, 49, 56, 63, and 70,  
Figures 3, 4, 5, and 6, OUT3 Compensation section  
2
12/10  
2/MAX863  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
34 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY