MB89630R [ETC]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89630R
型号: MB89630R
厂家: ETC    ETC
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总59页 (文件大小:814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12531-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89630R Series  
MB89635R/T635R/636R/637R/T637R  
MB89P637/W637/PV630  
OUTLINE  
The MB89630R series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit, single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as  
dual-clock control system, five operating speed control stages, a UART, timers, a PWM timer, a serial interface,  
an A/D converter, an external interrupt, and a watch prescaler.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• High-speed operating capability at low voltage  
• Minimum execution time: 0.4 µs@3.5 V, 0.8 µs@2.7 V  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• Five types of timers  
8-bit PWM timer: 2 channels (Also usable as a reload timer)  
8-bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc.)  
16-bit timer/counter  
21-bit timebase timer  
• UART  
CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits)  
• Serial interface  
Switchable transfer direction to allows communication with various equipment.  
• 10-bit A/D converter  
Start by an external input capable  
(Continued)  
MB89630R Series  
(Continued)  
• External interrupt: 4 channels  
Four channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Low-power consumption modes  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
Subclock mode  
Watch mode  
• Bus interface function  
With hold and ready function  
PACKAGE  
64-pin Plastic SH-DIP  
64-pin Plastic QFP  
64-pin Plastic QFP  
(DIP-64P-M01)  
(FPT-64P-M06)  
(FPT-64P-M09)  
64-pin Ceramic SH-DIP  
64-pin Ceramic MQFP  
64-pin Ceramic MDIP  
(DIP-64C-A06)  
(MQP-64C-P01)  
(MDP-64C-P02)  
2
MB89630R Series  
PRODUCT LINEUP  
Part number  
MB89635R MB89636R MB89637R MB89T635R MB89T637R MB89P637 MB89W637 MB89PV630  
Item  
Classification  
Piggyback/  
evaluation  
EPROM product (for  
product evaluation  
and  
One-time  
PROM  
product  
Mass-produced products  
(mask ROM products)  
External ROM  
products  
development)  
16 K × 8 bits 24 K × 8 bits 32 K × 8 bits  
ROM size  
32 K × 8 bits  
(Internal PROM, to be 32 K × 8 bits  
(internal  
(internal  
(internal  
mask ROM) mask ROM) mask ROM)  
Fixed to external ROM programmed with  
general-purpose  
(external  
ROM)  
EPROM programmer)  
RAM size  
512 × 8 bits 768 × 8 bits 1024 × 8 bits 512 × 8bits  
1024 × 8 bits  
1 K × 8 bits  
CPU functions  
The number of instructionns:  
Instruction bit length:  
Instruction length:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
0.4 to 6.4 µs/10 MHz, 61 µs@32.768 kHz  
3.6 to 57.6 µs/10 MHz, 562.5 µs@32.768 kHz  
Ports  
Input ports:  
5 (All also serve as peripherals.)  
8 (All also serve as peripherals.)  
4 (All also serve as peripherals.)  
8 (All also serve as bus control.)  
28 (27 ports also serve as bus pins and peripherals.)  
53  
Output ports (N-ch open-drain):  
I/O ports (N-ch open-drain):  
Output ports (CMOS):  
I/O ports (CMOS):  
Total:  
Clock timer  
21 bits × 1 (in main clock)/15 bits × 1 (at 32.768 kHz)  
8-bit PWM  
timer  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs to 3.3 ms) × 2  
channels  
7/8-bit resolution PWM operation (conversion cycle: 51.2 µs to 839 ms) × 2 channels  
8-bit pulse  
width count  
timer  
8-bit timer operation (overflow output capable, operating clock cycle: 0.4 to 12.8 µs)  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 to 12.8 µs)  
8-bit pulse width measurement operation (capable of continuous measurement, and  
measurement of “H” pulse width/ “L” pulse width/ from to /from to )  
16-bit timer/  
counter  
16-bit timer operation (operating clock cycle: 0.4 µs)  
16-bit event counter operation (rising edge/falling edge/both edge selectable)  
8-bit serial I/O  
8 bits  
LSB first/MSB first selectable  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
UART  
Capable of switching two I/O systems by software  
Transfer data length (6, 7, and 8 bits)  
Transfer rate (300 to 62500 bps. at 10 MHz osciliation)  
10-bit A/D  
converter  
10-bit resolution × 8 channels  
A/D conversion mode (conversion time: 13.2 µs)  
Sense mode (conversion time: 7.2 µs)  
Capable of continuous activation by an external activation or an internal timer  
(Continued)  
3
MB89630R Series  
(Continued)  
Part number  
MB89635R MB89636R MB89637R MB89T635R MB89T637R MB89P637 MB89W637 MB89PV630  
Item  
External  
interrupt input  
4 independent channels (edge selection, interrupt vector, source flag).  
Rising edge/falling edge selectable  
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)  
Standby mode  
Process  
Sleep mode, stop mode, watch mode, and subclock mode  
CMOS  
Operating  
voltage*  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C256A-20CZ  
MBM27C256A-20TV  
EPROM for use  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
In the case of the MB89PV630, the voltage varies with the restrictions of the EPROM for use.  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89636R  
MB89635R  
Package  
MB89637R  
MB89P637  
MB89W637  
MB89PV630  
MB89T635R  
MB89T637R  
DIP-64P-M01  
FPT-64P-M06  
FPT-64P-M09  
DIP-64C-A06  
MQP-64C-P01  
MDP-64C-P02  
×
×
×
×
×*  
×
×*  
×*  
×
×
×
×
×
×
×
×
×
×
×
: Available  
×: Not available  
* : To convert pin pitches, an adapter socket (manufacturer: Sun Hayato Co., Ltd.) is available.  
64SD-64QF2-8L: For conversion from (DIP-64P-M01, DIP-64C-A06, or MDP-64C-P02) to FPT-64P-M09  
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89630R Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
On the MB89P637/W637, the program area starts from address 8007H but on the MB89PV630 and MB89637R  
starts from 8000H.  
• On the MB89P637/W637, addresses 8000H to 8006H comprise the option setting area, option settings can be  
read by reading these addresses. On the MB89PV630/MB89637R, addresses 8000H to 8006H could also be  
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the  
MB89P637/W637.  
• The stack area, etc., is set at the upper limit of the RAM.  
• The external area is used.  
2. Current Consumption  
• In the case of the MB89PV630, add the current consumed by the EPROM which connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is  
the same. (For more information, see sections “Electrical Characteristics” and “Example Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-up resistor cannot be set for P50 to P53 on the MB89P637 and MB89W637.  
• Options are fixed on the MB89PV630, MB89T635R, and MB89T637R.  
4. Differences between the MB89630 and MB89630R Series  
• Memory access area  
There are no difference between the access area of MB89635/MB89635R, and that of MB89637/MB89637R.  
The access area of MB89636 is different from that of the MB89636R when using in external bus mode.  
Memory area  
Address  
MB89636  
MB89636R  
0000H to 007FH  
0080H to 037FH  
0380H to 047FH  
0480H to 7FFFH  
8000H to 9FFFH  
A000H to FFFFH  
I/O area  
I/O area  
RAM area  
RAM area  
Access prohibited  
External area  
External area  
ROM area  
Access prohibited  
ROM area  
5
MB89630R Series  
• Other specifications  
Both MB89630 series and MB89630R is the same.  
• Electrical specifications/electrical characteristics  
Electrical specifications of the MB89630R series are the same as that of the MB89630 series.  
Electrical characteristics of both the series are much the same.  
CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES  
• The MB89630R series is the reduction version of the MB89630 series.  
• The the MB89630 and MB89630R series consist of the following products:  
MB89630 series MB89635 MB89T635 MB89636 MB89637  
MB89T637  
MB89P637 MB89W637 MB89PV630  
MB89630R series MB89635R MB89T635R MB89636R MB89637R MB89T637R  
6
MB89630R Series  
PIN ASSIGNMENT  
(Top view)  
1
VCC  
P31/UO1  
P30/UCK1  
P43/PTO1  
P42/UI2  
P41/UO2  
P40/UCK2  
P53/PTO2  
P52  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
P32/UI1  
P33/SCK1  
P34/SO1  
P35/SI1  
P36/PWC  
P37/WTO  
VSS  
3
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
VCC  
A14  
A13  
A8  
VPP  
A12  
A7  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
4
5
6
A6  
7
A9  
A5  
8
A11  
A4  
9
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
P21/HAK  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
P27/ALE  
P51/BZ  
P50/ADST  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
AVCC  
A3  
OE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
A10  
A2  
A1  
CE  
O8  
O7  
O6  
O5  
O4  
A0  
O1  
O2  
O3  
VSS  
AVR  
AVSS  
Each pin inside  
the dashed line is  
for MB89PV630 only.  
P74/EC  
P73/INT3  
P72/INT2  
P71/INT1/X0A*  
P70/INT0/X1A*  
RST  
MOD0  
MOD1  
X0  
X1  
VSS  
(DIP-64P-M01)  
(DIP-64C-A06)  
(MDP-64C-P02)  
*: When the dual-clock system is selected.  
(Top view)  
P51/BZ  
P50/ADST  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
AVCC  
AVR  
AVSS  
P74/EC  
P73/INT3  
P72/INT2  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
9
10  
11  
12  
13  
14  
15  
16  
(FPT-64P-M09)  
*: When the dual-clock system is selected.  
7
MB89630R Series  
(Top view)  
P52  
P51/BZ  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P37/WTO  
VSS  
P50/ADST  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
AVCC  
AVR  
AVSS  
P74/EC  
P73/INT3  
P72/INT2  
P71/INT1/X0A*  
P70/INT0/X1A*  
P00/AD0  
P01/AD1  
P02/AD2  
P03/AD3  
P04/AD4  
P05/AD5  
P06/AD6  
P07/AD7  
P10/A08  
P11/A09  
P12/A10  
P13/A11  
P14/A12  
P15/A13  
P16/A14  
P17/A15  
P20/BUFC  
85  
86  
87  
88  
89  
90  
91  
92  
93  
77  
76  
75  
74  
73  
72  
71  
70  
69  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Each pin inside the dashed line  
is for MB89PV630 only.  
(FPT-64P-M06)  
(MQP-64C-P01)  
*: When the dual-clock system is selected.  
• Pin assignment on package top (MB89PV630 only)  
Pin no.  
65  
Pin name  
N.C.  
VPP  
Pin no.  
73  
Pin name  
A2  
Pin no.  
81  
Pin name  
N.C.  
O4  
Pin no.  
89  
Pin name  
OE  
66  
74  
A1  
82  
90  
N.C.  
A11  
A9  
67  
A12  
A7  
75  
A0  
83  
O5  
91  
68  
76  
N.C.  
O1  
84  
O6  
92  
69  
A6  
77  
85  
O7  
93  
A8  
70  
A5  
78  
O2  
86  
O8  
94  
A13  
A14  
VCC  
71  
A4  
79  
O3  
87  
CE  
95  
72  
A3  
80  
VSS  
88  
A10  
96  
N.C.: Internally connected. Do not use.  
8
MB89630R Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-DIP*1  
MDIP*2  
QFP1*4  
QFP2*3  
MQFP*5  
23  
30  
31  
28  
29  
27  
22  
23  
20  
21  
19  
X0  
X1  
A
D
C
Main clock crystal oscillator pins  
24  
21  
MOD0  
MOD1  
RST  
Operating mode selection pins  
Connect directly to VCC or VSS.  
22  
20  
Reset I/O pin  
This pin is an N-ch open-drain output type with a  
pull-up resistor, and a hysteresis input type.  
“L” is output from this pin by an internal reset  
source. The internal circuit is initialized by the  
input of “L”.  
56 to 49 48 to 41 49 to 42 P00/AD0 to  
P07/AD7  
F
General-purpose I/O ports  
When an external bus is used, these ports  
function as the multiplex pins of the lower address  
output and the data I/O.  
48 to 41 40 to 33 41 to 34 P10/A08 to  
P17/A157  
F
General-purpose I/O ports  
When an external bus is used, these ports  
function as an upper address output.  
40  
39  
38  
32  
31  
30  
33  
32  
31  
P20/BUFC  
P21/HAK  
P22/HRQ  
H
General-purpose output port  
When an external bus is used, this port can also  
be used as a buffer control output by setting the  
BCTR.  
H
F
General-purpose output port  
When an external bus is used, this port can also  
be used as a hold acknowledge by setting the  
BCTR.  
General-purpose output port  
When an external bus is used, this port can also  
be used as a hold request input by setting the  
BCTR.  
37  
36  
35  
34  
29  
28  
27  
26  
30  
29  
28  
27  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
F
H
H
H
General-purpose output port  
When an external bus is used, this port functions  
as a ready input.  
General-purpose output port  
When an external bus is used, this port functions  
as a clock output.  
General-purpose output port  
When an external bus is used, this port functions  
as a write signal output.  
General-purpose output port  
When an external bus is used, this port functions  
as a read signal output.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*2: MDP-64C-P02  
*4: FPT-64P-M06  
*5: MQP-M64C-P01  
*3: FPT-64P-M09  
9
MB89630R Series  
(Continued)  
Pin no.  
Circuit  
type  
SH-DIP*1  
MDIP*2  
QFP1*4  
MQFP*5  
Pin name  
P27/ALE  
Function  
QFP2*3  
33  
25  
26  
H
General-purpose output port  
When an external bus is used, this port functions  
as an address latch signal output.  
2
58  
59  
P30/UCK1  
G
General-purpose I/O port  
Also serves as the clock I/O 1 for the UART.  
This port is a hysteresis input type.  
1
57  
55  
58  
56  
P31/UO1  
P32/UI1  
F
General-purpose I/O port  
Also serves as the data output 1 for the UART.  
63  
G
General-purpose I/O port  
Also serves as the data input 1 for the UART.  
This port is a hysteresis input type.  
62  
54  
55  
P33/SCK1  
G
General-purpose I/O port  
Also serves as the data input for the 8-bit serial  
I/O.  
This port is a hysteresis input type.  
61  
60  
53  
52  
54  
53  
P34/SO1  
P35/SI1  
F
General-purpose I/O port  
Also serves as the data output for the 8-bit serial  
I/O.  
G
General-purpose I/O port  
Also serves as the data input for the 8-bit serial  
I/O.  
This port is a hysteresis input type.  
59  
51  
52  
P36/PWC  
G
General-purpose I/O port  
Also serves as the measured pulse input for the  
8-bit pulse width counter.  
This port is a hysteresis input type.  
58  
6
50  
62  
51  
63  
P37/WTO  
P40/UCK2  
F
General-purpose I/O port  
Also serves as the toggle output for the 8-bit pulse  
width counter.  
G
General-purpose I/O port  
Also serves as the clock I/O 2 for the UART.  
This port is a hysteresis input type.  
5
4
61  
60  
62  
61  
P41/UO2  
P42/UI2  
F
General-purpose I/O port  
Also serves as the data output 2 for the UART.  
G
General-purpose I/O port  
Also serves as the data input 2 for the UART.  
This port is a hysteresis input type.  
3
59  
2
60  
3
P43/PTO1  
P50/ADST  
F
K
General-purpose I/O port  
Also serves as the toggle output for the 8-bit PWM  
timer.  
10  
General-purpose I/O port  
Also serves as an A/D converter external  
activation.  
This port is a hysteresis input type.  
(Continued)  
*1: DIP-64P-M01, DIP-64C-A06  
*2: MDP-64C-P02  
*4: FPT-64P-M06  
*5: MQP-M64C-P01  
*3: FPT-64P-M09  
10  
MB89630R Series  
(Continued)  
Pin no.  
QFP2*3  
1
Circuit  
type  
Pin name  
P51/BZ  
Function  
SH-DIP*1  
MDIP*2  
QFP1*4  
MQFP*5  
9
2
J
General-purpose I/O port  
Also serves as a buzzer output.  
8
7
64  
63  
1
P52  
J
J
General-purpose I/O port  
64  
P53/PTO2  
General-purpose I/O port  
Also serves as the toggle output for the 8-bit PWM  
timer.  
11 to 18  
3 to 10  
4 to 11 P60/AN0 to  
P67/AN7  
I
N-ch open-drain output ports  
Also serve as an A/D converter analog input.  
26,  
25  
18,  
17  
19,  
18  
P70/INT0/X1A,  
P71/INT1/X0A  
B/E  
Input-only ports  
These ports are a hysteresis input type.  
Also serve as an external interrupt input (at single-  
clock operation).  
Subclock crystal oscillator pins (at dual-clock  
operation)  
24,  
23  
16,  
15  
17,  
16  
P72/INT2,  
P73/INT3  
E
E
Input-only ports  
Also serve as an external interrupt input.  
These ports are a hysteresis input type.  
22  
14  
15  
P74/EC  
General-purpose input port  
Also serves as the external clock input for the  
16-bit timer/counter.  
This port is a hysteresis input type.  
64  
32, 57  
19  
56  
24,49  
11  
57  
25, 50  
12  
VCC  
Power supply pin  
VSS  
Power supply (GND) pin  
AVCC  
AVR  
AVSS  
A/D converter power supply pin  
A/D converter reference voltage input pin  
20  
12  
13  
21  
13  
14  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: MDP-64C-P02  
*4: FPT-64P-M06  
*5: MQP-M64C-P01  
*3: FPT-64P-M09  
11  
MB89630R Series  
External EPROM pins (MB89PV630 only)  
Pin no.  
Pin name  
VPP  
I/O  
Function  
MDIP  
MQFP  
65  
66  
O
O
“H” level output pin  
Address output pins  
66  
67  
68  
69  
70  
71  
72  
73  
74  
67  
68  
69  
70  
71  
72  
73  
74  
75  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
75  
76  
77  
77  
78  
79  
O1  
O2  
O3  
I
Data input pins  
78  
80  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
79  
80  
81  
82  
83  
82  
83  
84  
85  
86  
O4  
O5  
O6  
O7  
O8  
84  
87  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
85  
86  
88  
89  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
87  
88  
89  
91  
92  
93  
A11  
A9  
A8  
O
Address output pins  
90  
91  
92  
94  
95  
96  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
65  
76  
81  
90  
N.C.  
Internally connected pins  
Be sure to leave them open.  
12  
MB89630R Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Crystal or ceramic oscillation type (main clock)  
X1  
X0  
External clock input selection versions of MB89PV630,  
MB89P637, MB89W637, MB89635R, MB89T635R,  
MB89636R, MB89637R, and MB89T637R  
At an oscillation feedback resistor of approximately  
1 M@5.0 V  
Standby control signal  
B
• Crystal or ceramic oscillation type (subclock)  
MB89PV630, MB89P637, MB89W637, MB89635R,  
MB89636R, and MB89637R with dual-clock system  
At an oscillation feedback resistor of approximately  
4.5 M@5.0 V  
X1A  
X0A  
Standby control signal  
C
• At an output pull-up resistor (P-ch) of approximately  
50 k@5.0 V  
• Hysteresis input  
R
P-ch  
N-ch  
D
E
• Hysteresis input  
R
• Pull-up resistor optional (except P70 and P71)  
F
• CMOS output  
• CMOS input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional (except P22 and P23)  
(Continued)  
13  
MB89630R Series  
(Continued)  
Type  
Circuit  
Remarks  
G
• CMOS output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
• CMOS output  
H
P-ch  
N-ch  
I
• Analog input  
• CMOS input  
N-ch  
Analog input  
J
R
P-ch  
N-ch  
• Pull-up resistor optional  
• Hysteresis input  
K
R
P-ch  
N-ch  
• Pull-up resistor optional  
14  
MB89630R Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 Hz to 60 Hz) and the  
transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power  
is switched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (option selection)  
and wake-up from stop mode.  
15  
MB89630R Series  
PROGRAMMING TO THE EPROM ON THE MB89P637  
The MB89P637 is an OTPROM version of the MB89630 series.  
1. Features  
• 32-Kbytes PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode is illustrated below.  
EPROM mode  
(Corresponding addresses  
on the EPROM programmer)  
Normal operating mode  
I/O  
0000H  
0080H  
0100H  
0200H  
Register  
RAM  
0480H  
8000H  
8007H  
External area  
0000H  
0007H  
Option setting area  
Option setting area  
Program area  
(EPROM)  
32 KB  
PROM  
32 KB  
FFFFH  
7FFFH  
3. Programming to the EPPROM  
In EPROM mode, the MB89P637 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer by using the dedicated socket adapter.  
However, the electronic signature mode cannot be used.  
When the operating ROM area for a single chip is 32 Kbytes (8007H to FFFFH) the EPROM can be programmed  
as follows:  
16  
MB89630R Series  
Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A-20CZ and MBM27C256A-20TV.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH. (Note that addresses 8000H to FFFFH  
in the operating mode assign to 0000H to 7FFFH in EPROM mode).  
(3) Load option data into addresses 0000H to 0006H of the EPROM programmer.  
(For information about each corresponding option, see “8. OTPROM Option Bit Map.”)  
(4) Program with the EPROM programmer.  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. Erasure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000 µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having wave-  
lengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
17  
MB89630R Series  
7. EPROM Programmer Socket Adapter  
Part No.  
Package  
MB89P637-SH  
SH-DIP-64  
MB89P637PF  
QFP-64  
Compatible socket adapter  
Sun Hayato Co., Ltd.  
ROM-64SD-28DP-8L  
ROM-64QF-28DP-8L  
Inquiry: Sun Hayato Co., Ltd.: TEL : (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
8. OTPROM Option Bit Map  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Single/dual-  
clock system  
1: Dual clock  
Oscillation stabilization (/FCH)  
11:218/FCH 01:217/FCH  
Reset pin Power-on  
output  
1: Yes  
0: No  
reset  
1: Yes  
0: No  
0000H  
Readable  
Readable  
Readable  
and writable and writable and writable 0: Single clock  
10:214/FCH 00:24/FCH  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0001H  
0002H  
0003H  
0004H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
P43  
P42  
P41  
P40  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
Readable  
and writable and writable and writable and writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
P74  
P73  
P72  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0005H  
0006H  
Readable  
Readable  
Readable  
Readable  
and writable and writable  
Readable  
and writable and writable and writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reserved bit  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
and writable and writable and writable and writable and writable and writable and writable and writable  
Note: Each bit is set to ‘1’ as the initialized value.  
18  
MB89630R Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20CZ, MBM27C256A-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part number  
LCC-32 (Rectangle)  
ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
3. Memory Space  
Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single chip  
Corresponding addresses on the EPROM programmer  
I/O  
0080H  
0480H  
RAM  
Not available  
Not available  
8000H  
8007H  
0000H  
Not available  
0007H  
PROM  
32 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
19  
MB89630R Series  
BLOCK DIAGRAM  
X0  
X1  
Main clock oscillator  
Subclock oscillator  
(32.768 kHz)  
X0A  
X1A  
21-bit timebase timer  
Clock controller  
CMOS I/O port  
8-bit PWC timer  
P37/WTO  
P36/PWC  
Reset circuit  
(Watchdog timer)  
RST  
P35/SI1  
P34/SO1  
P33/SCK1  
8-bit serial I/O  
Watch prescaler  
CMOS I/O port  
P32/UI1  
P31/UO1  
P00/AD0  
to P07/AD7  
8
8
P30/UCK1  
UART  
P40/UCK2  
P41/UO2  
P42/UI2  
P10/A08  
to P17/A15  
MOD0  
MOD1  
UART baud rate  
generator  
External bus  
interface  
P27/ALE  
P26/RD  
P25/WR  
CMOS I/O port  
P43/PTO1  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
N-ch open-drain I/O port  
CMOS output port  
P53/PTO2  
P52  
8-bit PWM timer  
Buzzer output  
P51/BZ  
RAM  
P50/ADST  
3
AVCC, AVSS,  
10-bit A/D converter  
AVR  
F2MC-8L  
CPU  
8
8
P60/AN0  
to P67/AN7  
N-ch open-drain output port  
Input port  
ROM  
P70/INT0  
P71/INT1  
P72/INT2  
P73/INT3  
4
External interrupt  
Other pins  
VCC × 2, VSS × 2  
16-bit timer/counter  
P74/EC  
20  
MB89630R Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89630R series offer 64 Kbytes of memory for storing all of I/O, data, and program  
areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area.  
The data area can be divided into register, stack, and direct areas according to the application. The program  
area is located at exactly the opposite end of I/O area, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89630R series is structured as illustrated below.  
• Memory space  
MB89637R  
MB89T637R  
MB89P637  
MB89W637  
MB89635R  
MB89T635R  
MB89PV630  
I/O  
MB89636R  
I/O  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
0100H  
0000H  
0080H  
I/O  
I/O  
RAM  
1024 KB  
RAM  
1 KB  
RAM  
512 B  
RAM  
768 B  
0100H  
0200H  
0100H  
0200H  
0100H  
0200H  
Register  
Register  
Register  
Register  
0200H  
0280H  
0380H  
0480H  
*3  
0480H  
8000H  
8007H  
0480H  
External area  
*2  
External area  
*2  
External area  
8000H  
8000H  
8007H  
External area  
*3  
A000H  
ROM*1  
32 KB  
External ROM  
32 KB  
C000H  
FFFFH  
ROM*1  
24 KB  
ROM*1  
16 KB  
FFFFH  
FFFFH  
FFFFH  
*1: The ROM area is an external area depending on the mode.  
The internal ROM cannot be used on the MB89T635R and MB89T637R.  
*2: Addresses 8000H to 8006H for the MB89P637 and MB89W637 comprise an option area, do not use  
this area for the MB89PV630 and MB89637R.  
*3: The access is forbidden in the external bus mode.  
21  
MB89630R Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating the instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A16-bit register which performs arithmetic operations with the accumulator  
Whentheinstructionisan8-bitdataprocessinginstruction, thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A16-bit register for index modification  
A16-bit pointer for indicating a memory address  
A16-bit register for indicating a stack area  
A16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, IL0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
• Structure of the program status register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, IL0  
N
V
C
RP  
CCR  
22  
MB89630R Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
• Rule for conversion of actual addresses of the general-purpose register area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared  
to ‘0’ at the reset.  
IL1, IL0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag: Set to ‘1’ if the MSB becomes to ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit  
is cleared to ‘0’.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow doesnot occur.  
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ‘0’  
otherwise.  
Set to the shift-out value in the case of a shift instruction.  
23  
MB89630R Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89653A (RAM 512 × 8 bits). The bank  
currently in use is indicated by the register bank pointer (RP).  
• Register bank configuraiton  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
24  
MB89630R Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
(R/W)  
(W)  
PDR1  
DDR1  
Port 1 data direction register  
Port 2 data register  
(R/W)  
(W)  
PDR2  
BCTR  
External bus pin control register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
SYCC  
STBC  
WDTE  
TBCR  
WPCR  
CHG3  
PDR3  
DDR3  
PDR4  
DDR4  
BUZR  
PDR5  
PDR6  
PDR7  
PCR1  
PCR2  
RLBR  
TMCR  
TCHR  
TCLR  
System clock control register  
System clock control register  
Watchdog timer control register  
Timebase timer control register  
Watch prescaler control register  
Port 3 switching register  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
(R/W)  
(W)  
Port 4 data direction register  
Buzzer register  
(R/W)  
(R/W)  
(R/W)  
(R)  
Port 5 data register  
Port 6 data register  
Port 7 data register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
PWC pulse width control register 1  
PWC pulse width control register 2  
PWC reload buffer register  
16-bit timer control register  
16-bit timer count register (H)  
16-bit timer count register (L)  
Vacancy  
(R/W)  
(R/W)  
SMR1  
SDR1  
Serial mode register  
Serial data register  
Vacancy  
Vacancy  
(Continued)  
25  
MB89630R Series  
(Continued)  
Address  
20H  
Read/write  
(R/W)  
Register name  
ADC1  
Register description  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register (H)  
A/D converter data register (L)  
External interrupt control register 1  
External interrupt control register 2  
21H  
(R/W)  
ADC2  
22H  
(R/W)  
ADDH  
23H  
(R/W)  
ADDL  
24H  
(R/W)  
EIC1  
25H  
(R/W)  
EIC2  
26H  
Vacancy  
Vacancy  
PWM timer control register 1  
27H  
28H  
(R/W)  
(R/W)  
(R/W)  
(W)  
CNTR1  
CNTR2  
CNTR3  
COMR1  
COMR2  
SMC  
29H  
PWM timer control register 2  
PWM timer control register 3  
PWM timer compare register 1  
PWM timer compare register 2  
UART serial mode control register  
UART serial rate control register  
UART serial status/data register  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
(W)  
(R/W)  
(R/W)  
(R/W)  
SRC  
SSD  
(R)  
(W)  
SIDR  
SODR  
UART serial input data control register  
UART serial output data control register  
30H  
31H to 7BH  
7CH  
Vacancy  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level settingregister 2  
Interrupt level setting register 3  
7DH  
7EH  
7FH  
Vacancy  
Note: Do not use vacancies.  
26  
MB89630R Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VSS + 7.0  
V
V
*
*
Power supply voltage  
AVCC  
AVR must not exceed  
“AVCC + 0.3 V”.  
A/D converter reference input voltage  
Input voltage  
AVR  
VSS – 0.3  
VSS + 7.0  
V
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VSS + 7.0  
VCC + 0.3  
VSS + 7.0  
20  
V
V
Except P50 to P53  
P50 to P53  
VI2  
VO  
VO2  
IOL  
V
Except P50 to P53  
P50 to P53  
Output voltage  
V
“L” level maximum output current  
“L” level average output current  
mA  
Average value (operating  
current × operating rate)  
IOLAV  
IOL  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
“L” level total maximum output current  
“L” level total average output current  
“H” level maximum output current  
“H” level average output current  
“H” level total maximum output current  
“H” level total average output current  
100  
40  
Average value (operating  
current × operating rate)  
IOLAV  
IOH  
–20  
–4  
Average value (operating  
current × operating rate)  
IOHAV  
IOH  
IOHAV  
–50  
–20  
Average value (operating  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
500  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set at the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
27  
MB89630R Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max  
Normal operation  
assurance range*  
MB89635R/637R  
2.2*  
6.0*  
V
VCC  
Normal operation  
assurance range*  
MB89PV630/P637/  
W637/T635R/T637R  
Power supply voltage  
2.7*  
1.5  
6.0*  
6.0  
V
V
Retains the RAM state in  
stop mode  
AVCC  
A/D converter reference input voltage  
Operating temperature  
AVR  
3.0  
AVCC  
+85  
V
TA  
–40  
°C  
* : These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1  
and “5. A/D Converter Electrical Characteristics.”  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
6
5
4
Analog accuracy assured in the  
AVCC = 3.5 V to 6.0 V range  
Operation assurance range  
3
2
1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz)  
4.0 2.0  
0.8  
0.4  
Minimum execution time (instruction cycle) (µs)  
Note: The shaded area is assured only for the MB89635R/636R/637R.  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
28  
MB89630R Series  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
29  
MB89630R Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17,  
P22, P23, P31, P34,  
P37, P41, P43,  
P51 to P53  
with pull-up  
resistor  
VIH1  
VIH2  
VIHS  
0.7 VCC  
VCC + 0.3  
V
V
V
P51 to P53  
Without pull-up  
resistor  
P51 to P53  
VSS + 6.0  
VCC + 0.3  
0.7 VCC  
0.8 VCC  
“H” level input  
voltage  
RST, MOD0, MOD1,  
P30, P32, P33, P35,  
P36, P40, P42,P50,  
P72 to P74  
P50 with  
pull-up resistor  
Without pull-up  
resistor  
P50, P70, P71  
0.8 VCC  
VSS + 6.0  
0.3 VCC  
V
V
VIHS2  
P00 to P07, P10 to P17,  
P22, P23, P31, P34,  
P37, P41, P43  
VSS 0.3  
VIL  
P30, P32, P33, P35,  
P36, P40, P42,  
P50 to P53,  
P70 to P74,  
RST,  
“L” level input  
voltage  
VSS 0.3  
VILS  
0.2 VCC  
VSS + 6.0  
V
V
MOD0, MOD1  
Open-drain  
output pin  
application  
voltage  
P50 to P53  
VSS 0.3  
VD  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P43  
“H” level output  
voltage  
VOH  
IOH = –2.0 mA  
IOL = 4.0 mA  
4.0  
V
V
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P43, P50 to P53,  
P60 to P67, RST  
“L” level output  
voltage  
VOL  
0.4  
P00 to P07, P10 to P17,  
P20 to P23, P30 to P37,  
P40 to P43, P50 to P53,  
P70 to P74,  
Input leakage  
current  
(Hi-z output  
leakage current)  
Without pull-up  
resistor  
ILI  
0.0 V < VI < VCC  
±5  
µA  
MOD0, MOD1  
(Continued)  
30  
MB89630R Series  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pull-up  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43,  
P50 to P53, P72 to P74  
With pull-up  
resistor  
RPULL  
VI = 0.0 V  
FCH = 10 MHz  
25  
50  
100  
kΩ  
resistance  
CC = 5.0 V  
ICC1  
V
12  
20  
mA  
*2  
tinst = 0.4 µs  
MB89635R/T635R/  
636R/637R/T637R/  
PV630  
FCH = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
1.0  
1.5  
3
2
2.5  
7
mA  
mA  
mA  
ICC2  
MB89P637/W637  
FCH = 10 MHz  
VCC = 5.0 V  
tinst*2 = 0.4 µs  
ICCS1  
FCH = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
ICCS2  
0.5  
1.5  
mA  
MB89635R/T635R/  
636R/637R/T637R/  
PV630  
FCL = 32.768 kHz,  
VCC = 3.0 V  
Subclock mode  
50  
100  
700  
µA  
µA  
ICCL  
Power supply  
current*1  
VCC  
MB89P637/W637  
500  
FCL = 32.768 kHz,  
VCC = 3.0 V  
Subclock sleep  
mode  
ICCLS  
25  
3
50  
µA  
FCL = 32.768 kHz,  
VCC = 3.0 V  
• Watch mode  
• Mainclock stop  
mode at dual-  
clock system  
ICCT  
15  
µA  
TA = +25°C  
• Subclock stop  
mode  
• Main clock stop  
mode at single-  
clock system  
ICCH  
1
µA  
(Continued)  
31  
MB89630R Series  
(Continued)  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
FCH = 10 MHz,  
when A/D  
conversion  
operates.  
IA  
6
mA  
Power supply  
current*1  
AVCC  
FCH = 10 MHz,  
TA = +25°C,  
when A/D  
IAH  
1
µA  
conversion in  
a stop.  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
f = 1 MHz  
10  
pF  
*1: The power supply current is measured at the external clock.  
In the case of the MB89PV630, the current consumed by the connected EPROM and ICE is not counted.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
4. AC Characteristics  
(1) Reset Timing  
(VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL  
ns  
tZLZH  
RST  
0.2 VCC  
0.2 VCC  
32  
MB89630R Series  
(2) Specification for Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
1
50  
ms  
ms  
Power-on reset function only  
Min. interval time for the next  
power-on reset  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
Ifpowersupplyvoltageneedstobevariedinthecourseofoperation, asmoothvoltageriseisrecommended.  
tOFF  
tR  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Clock cycle time  
Min.  
1
Max.  
10  
FCH  
X0, X1  
MHz  
kHz  
ns  
FCL  
X0A, X1A  
X0, X1  
32.768  
tHCYL  
tLCYL  
100  
1000  
X0A, X1A  
30.5  
µs  
PWH  
PWL  
X0  
20  
15.2  
10  
ns  
µs  
ns  
External clock  
External clock  
External clock  
Input clock pulse width  
PWLH  
PWLL  
X0A  
X0  
Input clock rising/falling tCR  
time  
tCF  
33  
MB89630R Series  
• Main clock timing condition  
tHCYL  
PWH  
PWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X 0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
• Main clock configurations  
When a crystal  
or  
ceramic reasonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
• Subclock timing condition  
tLCYL  
PWLH  
PWLL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
0.2 VCC  
• Subclock configurations  
When a crystal  
or  
ceramic reasonator is used  
When an external clock is used  
X0A  
X1A  
X0A  
X1A  
Open  
34  
MB89630R Series  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
(4/FCH) tinst = 0.4 µs, operating at  
FCH = 10 MHz  
4/FCH, 8/FCH, 16/FCH, 64/FCH  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 61.036 µs, operating at  
FCL = 32.768 kHz  
2/FCL  
µs  
Note: Operating at 10 MHz, the cycle varies with the set execution time.  
(5) Clock Output Timing  
(VCC = 5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
Symbol  
Condition  
Unit Remarks  
Parameter  
name  
Min.  
1/2 tinst*  
Max.  
Clock time  
CLK ↑ → CLK ↓  
tCYC  
CLK  
CLK  
µs  
µs  
tCHCL  
1/4 tinst* – 70 ns  
1/4 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
tCYC  
tCHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
35  
MB89630R Series  
(6) Bus Read Timing  
(VCC = 5.0 V±10%, 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit Remarks  
Parameter  
Min.  
1/4 tinst*– 64 ns  
1/2 tinst*– 20 ns  
1/2 tinst*  
Max.  
RD, A15 to A08,  
AD7 to AD0  
Valid address RD time tAVRL  
µs  
RD  
RD pulse width  
tRLRH  
tAVDV  
tRLDV  
tRHDX  
tRHLH  
µs  
Valid address data read  
AD7 to AD0,  
A15 to A08  
200  
120  
µs No wait  
µs No wait  
µs  
time  
RD, AD7 to AD0  
1/2 tinst*– 80 ns  
0
RD ↓ → data read time  
RD ↑ → data hold time  
RD ↑ → ALE time  
AD7 to AD0,  
RD  
RD, ALE  
1/4 tinst*– 40 ns  
1/4 tinst*– 40 ns  
1/4 tinst*– 40 ns  
0
µs  
µs  
µs  
ns  
µs  
RD ↑ → address loss time tRHAX  
RD, A15 to A08  
RD ↓ → CLK time  
CLK ↓ → RD time  
RD ↓ → BUFC time  
tRLCH  
tCLRH  
tRLBL  
RD, CLK  
RD, BUFC  
–5  
A15 to A08,  
AD7 to AD0,  
BUFC  
BUFC ↑ → valid address  
time  
tBHAV  
5
µs  
* : For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
0.8 V  
t
RHLH  
ALE  
0.8 V  
0.7 VCC  
0.3 VCC  
2.4 V  
0.7 VCC  
0.3 VCC  
2.4 V  
AD  
0.8 V  
0.8 V  
t
RHDX  
t
AVDV  
2.4V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
t
RLCH  
t
CLRH  
A
0.8V  
t
AVRL  
t
RHAX  
t
RLDV  
t
RLRH  
RD  
2.4 V  
0.8 V  
0.8 V  
t
RLBL  
t
BHAV  
2.4 V  
BUFC  
36  
MB89630R Series  
(7) Bus Write Timing  
Parameter  
(VCC = 5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name Condition  
Unit Remarks  
Min.  
Max.  
Valid address ALE time tAVLL  
1/4 tinst*1 – 64 ns*2  
µs  
AD7 to AD0,  
ALE  
A15 to A08  
ALE time address loss  
tLLAX  
5
ns  
time  
Valid address WR time tAVWL  
WR, ALE  
WR  
1/4 tinst*1 – 60 ns*2  
1/2 tinst*1 – 20 ns*2  
1/2 tinst*1 – 60 ns*2  
1/4 tinst*1 – 40 ns*2  
1/4 tinst*1 – 40 ns*2  
1/4 tinst*1 – 40 ns*2  
1/4 tinst*1 – 40 ns*2  
0
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
WR pulse width  
tWLWH  
tDVWH  
tWHAX  
tWHDX  
tWHLH  
tWLCH  
tCLWH  
tLHLL  
AD7 to AD0, WR  
Write data WR time  
WR ↑ → address loss time  
WR ↑ → data hold time  
WR ↑ → ALE time  
WR ↓ → CLK time  
CLK ↓ → WR time  
ALE pulse width  
WR, A15 to A08  
AD7 to AD0, WR  
WR, ALE  
WR, CLK  
ALE  
1/4 tinst*1 – 35 ns*2  
1/4 tinst*1 – 30 ns*2  
ALE ↓ → CLK time  
tLLCH  
ALE,CLK  
*1: For information on tinst, see “(4) Instruction Cycle.”  
*2: This characteristics are also applicable to the bus read timing.  
2.4 V  
CLK  
ALE  
AD  
A
0.8 V  
tLHLL  
tLLCH  
tWHLH  
2.4 V  
0.8 V  
0.8 V  
tAVLL  
tLLAX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
tDVWH  
tWHDX  
2.4 V  
tCLWH  
2.4 V  
0.8 V  
tWLCH  
0.8 V  
tWHAX  
tAVWL  
tWLWH  
WR  
2.4 V  
0.8V  
37  
MB89630R Series  
(8) Ready Input Timing  
(VCC = 5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit Remarks  
Parameter  
Min.  
60  
Max.  
RDY valid CLK time  
CLK ↑ → RDY loss time  
tYVCH  
tCHYX  
ns  
ns  
*
*
RDY, CLK  
0
* : This characteristics are also applicable to the read cycle.  
CLK  
2.4 V  
2.4 V  
ALE  
AD  
Address  
Data  
A
WR  
tYVCH tCHYX  
RDY  
tYVCH  
tCHYX  
Note: The bus cycle is also extended in the read cycle in the same manner.  
38  
MB89630R Series  
(9) Serial I/O Timing  
(VCC = 5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
SCK1, UCK1,  
UCK2  
Serial clock cycle time  
tSCYC  
2 tinst*  
µs  
SCK1 ↓ → SO1 time  
UCK1 ↓ → UO1 time  
UCK2 ↓ → UO2 time  
SCK1, SO1  
UCK1, UO1  
UCK2, UO2  
tSLOV  
–200  
200  
ns  
µs  
µs  
Internal  
shift clock  
mode  
Valid SI1 SCK1 ↑  
Valid UI1 UCK1 ↑  
Valid UI2 UCK2 ↑  
SI1, SCK1  
UI1, UCK1  
UI2, UCK2  
tIVSH  
1/2 tinst*  
1/2 tinst*  
SCK1 ↑ → valid SI1 hold time  
UCK1 ↑ → valid UI1 hold time tSHIX  
UCK2 ↑ → valid UI2 hold time  
SCK1, SI1  
UCK1, UI1  
UCK2, UI2  
SCK1, UCK1,  
UCK2  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
tSHSL  
tSLSH  
1 tinst*  
1 tinst*  
µs  
µs  
SCK1, UCK1,  
UCK2  
SCK1 ↓ → SO1 time  
UCK1 ↓ → UO1 time  
UCK2 ↓ → UO2 time  
SCK1, SO1  
UCK1, UO1  
UCK2, UO2  
tSLOV  
External  
shift clock  
mode  
0
200  
ns  
µs  
µs  
Valid SI1 SCK1 ↑  
Valid UI1 UCK1 ↑  
Valid UI2 UCK2 ↑  
SI1, SCK1  
UI1, UCK1  
UI2, UCK2  
tIVSH  
1/2 tinst*  
1/2 tinst*  
SCK1 ↓ → valid SI1 hold time  
UCK1 ↓ → valid UI1 hold time tSHIX  
UCK2 ↓ → valid UI2 hold time  
SCK1, SI1  
UCK1, UI1  
UCK2, UI2  
* : For information on tinst, see “(4) Instruction Cycle.”  
39  
MB89630R Series  
• Internal shift clock mode  
tSCYC  
SCK1  
UCK1  
UCK2  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO1  
UO1  
UO2  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SI1  
UI1  
UI  
• External shift clock mode  
tSHSL  
tSLSH  
0.8 VCC  
0.8 VCC  
SCK1  
UCK1  
UCK2  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO1  
UO1  
UO2  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
SI1  
UI1  
UI  
0.2 VCC  
40  
MB89630R Series  
(10) Peripheral Input Timing  
Parameter  
(VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tILIH1  
Pin name  
PWC, INT0 to INT3,EC  
ADST  
Unit  
Remarks  
Min.  
2 tinst*  
2 tinst*  
28 tinst*  
28 tinst*  
28 tinst*  
28 tinst*  
Max.  
Peripheral input “H” pulse width 1  
Peripheral input “L” pulse width 1  
Peripheral input “H” pulse width 2  
Peripheral input “L” pulse width 2  
Peripheral input “H” pulse width 3  
Peripheral input “L” pulse width 3  
µs  
µs  
tIHIL1  
tILIH2  
tIHIL2  
tILIH3  
tIHIL3  
µs A/D mode  
µs A/D mode  
µs Sense mode  
µs Sense mode  
ADST  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
PWC,  
EC,  
INT0 to INT3  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
tIHIL2  
tILIH2  
(tIHIL3)  
(tILIH3)  
ADST  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
41  
MB89630R Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = 3.5 V to 6.0 V, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Pin  
name  
Parameter  
Resolution  
Symbol  
Unit Remarks  
Min.  
Max.  
10  
bit  
Linearity error  
±2.0  
±1.5  
±3.0  
LSB  
LSB  
Differential linearity error  
Total error  
LSB  
At AVCC = VCC  
AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB  
Zero transition voltage  
VOT  
mV  
mV  
AN0 to  
AN7  
Full-scale transition  
voltage  
AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB  
VFST  
Interchannel disparity  
4
LSB  
At 10 MHz  
µs  
A/D mode conversion time  
13.2  
oscillation  
Analog port input current  
Analog input voltage  
Reference voltage  
IAIN  
10  
µA  
V
AN0 to  
AN7  
0.0  
0.0  
AVR  
AVCC  
V
Reference voltage  
supply current  
IR  
200  
µA AVR = 5.0 V  
42  
MB89630R Series  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter  
• Linearity error  
The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000 0001”) with  
the full-scale transition point (“11 1111 1110” “11 1111 1111”) from actual conversion characteristics  
• Differential linearity error  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values caused by the zero transition error, full-scale  
transition error, linearity error, quantization error, and noise  
Theoretical I/O characteristics  
Total error  
3FF  
3FE  
3FD  
3FF  
3FE  
3FD  
VFST  
Actual conversion  
value  
1.5 LSB  
{1 LSB × N + 0.5 LSB}  
004  
003  
002  
001  
004  
003  
002  
001  
VNT  
VOT  
Actual conversion  
value  
1 LSB  
Theoretical value  
0.5 LSB  
AVR  
AVR  
AVSS  
AVSS  
Analog input  
Analog input  
VFST – VOT  
VNT – {1 LSB × N + 0.5 LSB}  
Digital output N total error =  
1 LSB =  
(V)  
1022  
1 LSB  
(Continued)  
43  
MB89630R Series  
(Continued)  
Zero transition error  
Full-scale transition error  
004  
Theoretical value  
Actual conversion  
value  
3FF  
3FE  
3FD  
3FC  
Actual conversion  
value  
003  
002  
VFST  
(Actual  
measurement)  
Actual conversion  
value  
001  
Actual conversion value  
VOT (Actual measurement)  
Analog input  
AVR  
AVSS  
Analog input  
Differential linearity error  
Theoretical value  
Linearity error  
3FF  
3FE  
3FD  
Actual conversion  
N + 1  
value  
Actual conversion  
value  
{1 LSB × N + VOT}  
V(N + 1)T  
VFST  
(Actual  
N
V
NT  
measurement)  
004  
003  
002  
001  
N – 1  
N – 2  
VNT  
Actual conversion value  
Theoretical value  
Actual conversion value  
VOT (Actual measurement)  
AVR  
– 1  
AVSS  
AVR  
AVSS  
Analog input  
Analog input  
VNT – {1 LSB × N + VOT}  
V(N + 1)T – VNT  
Digital output N differential linearity error =  
Digital output N linearity error =  
1 LSB  
1 LSB  
44  
MB89630R Series  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The output impedance of the external circuit for the analog input must satisfy the followingconditions.  
If the output impedance of the external circuit is too high, an analog voltage sampling time might beinsufficient  
(sampling time = 6 µs at 10MHz oscillation.) Therefore, it is recommended to keep the output impedance of the  
external circuit below 10 k.  
Analog input circuit model  
Analog input  
C0  
Converter  
RON1  
RON2  
C1  
RON1: Approx. 1.5 kΩ  
RON2: Approx. 1.5 kΩ  
C0: Approx. 60 pF  
C1: Approx. 4 pF  
Note: The values mentioned here should be used as a guideline.  
• Error  
The smaller the | AVR–AVss |, the greater the error would become relatively.  
45  
MB89630R Series  
CHARACTERISTICS EXAMPLE  
(2) “H” Level Output Voltage  
(1) “L” Level Output Voltage  
VOL vs. IOL  
VCC - VOH vs. IOH  
VCC - VOH (V)  
1.0  
VOL (V)  
VCC = 3.0 V  
VCC = 4.0 V  
TA = +25°C  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
VCC = 3.0 V  
0.5  
0.4  
0.3  
0.2  
0.1  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
5.0  
TA = +25°C  
VIN vs. VCC  
VIN (V)  
4.5  
VIHS  
5.0  
4.0  
TA = +25°C  
4.5  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VILS  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
VCC (V)  
VIHS: Threshold as the input voltage in hysteresis  
characteristics is set to “H” level  
0
1
2
3
4
5
6
7
VCC (V)  
VILS: Threshold as the input voltage in hysteresis  
characteristics is set to “L” level  
46  
MB89630R Series  
(5) Power Supply Current (External Clock)  
ICC1 vs. VCC, ICC2 vs. VCC  
ICC (mA)  
16  
ICCS1 vs. VCC, ICCS2 vs. VCC  
ICCS (mA)  
5.0  
FCH = 10MHz  
TA = +25°C  
FCH = 10MHz  
14  
4.5  
4.0  
TA = +25°C  
12  
Divide by 4  
(ICC1)  
3.5  
3.0  
10  
8
Divide by 4  
(ICCS1)  
2.5  
2.0  
6
4
2
0
Divide by 8  
Divide by 8  
1.5  
1.0  
Divide by 16  
Divide by 64  
(ICCS2)  
Divide by 16  
0.5  
0
Divide by 64  
(ICC2)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
ICCL vs. VCC  
ICCLS vs. VCC  
ICCL (µA)  
ICCLS (µA)  
200  
50  
TA = +25°C  
TA = +25°C  
45  
40  
180  
160  
140  
120  
35  
30  
100  
80  
25  
20  
60  
40  
15  
10  
20  
0
5
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
(Continued)  
47  
MB89630R Series  
(Continued)  
I CCT vs. V CC  
I CCH vs. V CC  
I CCT (µA)  
I CCH (µA)  
20  
18  
16  
2.0  
TA = +25°C  
TA = +25°C  
1.8  
1.6  
14  
12  
1.4  
1.2  
10  
8
1.0  
0.8  
6
4
0.6  
0.4  
2
0
0.2  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
V CC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
V CC (V)  
(6) Pull-up Resistance  
R PULL vs. V CC  
R PULL (k)  
1000  
TA = +25°C  
100  
10  
1
2
3
4
5
6
V CC (V)  
48  
MB89630R Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
49  
MB89630R Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
50  
MB89630R Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
A
C
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
51  
MB89630R Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
52  
MB89630R Series  
INSTRUCTION MAP  
53  
MB89630R Series  
MASK OPTIONS  
MB89635R  
MB89636R  
MB89637R  
MB89PV630  
MB89T635R  
MB89T637R  
MB89P637  
MB89W637  
Part number  
No.  
Specifywhen  
ordering  
Set with EPROM  
programmer  
Specifying procedure  
Setting not possible  
masking  
Pull-up resistors  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43,  
P50 to P53, P72 to P74  
Selectable by  
pin  
Fixed to “without pull-up  
resistor”  
1
Can be set per pin*  
Setting possible  
Power-on reset selection  
2
3
With power-on reset  
Selectable  
Fixed to “with power-on reset”  
Without power-on reset  
Selection of the main clock  
oscillation stabilization time  
(at 10 MHz)  
Approx. 218/FCH (Approx. 26.2 ms)  
Approx. 217/FCH (Approx. 13.1 ms)  
Approx. 214/FCH (Approx. 1.6 ms)  
Approx. 24/FCH (Approx. 0 ms)  
FCH : Main clock frequency  
Fixed to 218/FCH  
(Approx. 26.2 ms)  
Selectable  
Setting possible  
Reset pin output  
Reset output provided  
No reset output  
4
5
Selectable  
Selectable  
Setting possible  
Setting possible  
Fixed to “with reset output”  
MB89PV630-101 Single-clock system  
MB89T635R-101 Single-clock system  
MB89T637R-101 Single-clock system  
Single/dual-clock system option  
Single clock  
Dual clock  
MB89PV630-102 Dual-clock systems  
MB89T635R-102 Dual-clock systems  
MB89T637R-102 Dual-clock systems  
* : Pull-up resistors cannot be set for P50 to P53.  
54  
MB89630R Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89635RP-SH  
MB89T635RP-SH  
MB89636RP-SH  
MB89637RP-SH  
MB89P637P-SH  
MB89T637RP-SH  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
MB89635RPF  
MB89T635RPF  
MB89636RPF  
MB89637RPF  
MB89P637PF  
MB89T637RPF  
64-pin Plastic QFP  
(FPT-64P-M06)  
MB89635RPFM  
MB89636RPFM  
MB89637RPFM  
MB89T635PFM  
64-pin Plastic QFP  
(FPT-64P-M09)  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
MB89W637C-SH  
MB89PV630CF  
MB89PV630C-SH  
64-pin Ceramic MQFP  
(MQP-64C-P01)  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
55  
MB89630R Series  
PACKAGE DIMENSIONS  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
58.00+00..5252  
2.283+..002028  
INDEX-1  
INDEX-2  
17.00±0.25  
(.669±.010)  
5.65(.222)MAX  
3.00(.118)MIN  
0.25±0.05  
(.010±.002)  
1.00+00.50  
.039+0.020  
0.45±0.10  
(.018±.004)  
0.51(.020)MIN  
19.05(.750)  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
55.118(2.170)REF  
C
1994 FUJITSU LIMITED D64001S-3C-4  
Dimensions in mm (inches)  
64-pin Plastic QFP  
(FPT-64P-M06)  
24.70±0.40(.972±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
51  
33  
52  
32  
14.00±0.20 18.70±0.40  
(.551±.008) (.736±.016)  
12.00(.472)  
REF  
16.30±0.40  
(.642±.016)  
INDEX  
64  
20  
"A"  
1
19  
LEAD No.  
0.15±0.05(.006±.002)  
Details of "B" part  
1.00(.0394)  
TYP  
0.40±0.10  
(.016±.004)  
M
0.20(.008)  
Details of "A" part  
0.25(.010)  
"B"  
0.30(.012)  
0.18(.007)MAX  
0.63(.025)MAX  
0.10(.004)  
18.00(.709)REF  
22.30±0.40(.878±.016)  
0
10°  
1.20±0.20  
(.047±.008)  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F64013S-3C-2  
56  
MB89630R Series  
64-pin Plastic QFP  
(FPT-64P-M09)  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
+0.20  
48  
33  
32  
1.50–0.10  
(Mounting height)  
.059+..000048  
49  
9.75  
(.384)  
REF  
13.00  
(.512)  
NOM  
1 PIN INDEX  
64  
17  
M
1
16  
Details of "A" part  
0.10±0.10  
LEAD No.  
"A"  
+0.05  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
0.127–0.02  
0.13(.005)  
+.002  
(STAND OFF)  
.005–.001  
(.004±.004)  
0.50±0.20  
(.020±.008)  
0.10(.004)  
0
10°  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED F64018S-1C-2  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
56.90±0.56  
(2.240±.022)  
8.89(.350) DIA  
TYP  
R1.27(.050)  
REF  
18.75±0.25  
(.738±.010)  
INDEX AREA  
1.27±0.25  
(.050±.010)  
5.84(.230)MAX  
0.25±0.05  
(.010±.004)  
3.40±0.36  
(.134±.014)  
1.778±0.180  
(.070±.007)  
0.90±0.10  
(.0355±.0040)  
0.46+00..0183  
.018+..000035  
19.05±0.25  
(.750±.010)  
0°~9°  
1.45(.057)  
MAX  
55.118(2.170)REF  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED D64006SC-1-2  
57  
MB89630R Series  
64-pin Ceramic MQFP  
(MQP-64C-P01)  
18.70(.736)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
12.00(.472)TYP  
INDEX AREA  
1.00±0.25  
(.039±.010)  
1.20+00..2400  
.047+..000186  
1.00±0.25  
(.039±.010)  
1.27±0.13  
(.050±.005)  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.00(.709)  
TYP  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
TYP  
24.70(.972)  
TYP  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.40±0.10  
(.016±.004)  
1.20+00..2400  
.047+..000186  
10.82(.426)  
MAX  
0.15±0.05  
(.006±.002)  
0.50(.020)TYP  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED M64004SC-1-3  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
0°~9°  
56.90±0.64  
(2.240±.025)  
15.24(.600)  
TYP  
18.75±0.30  
(.738±.012)  
19.05±0.30  
(.750±.012)  
INDEX AREA  
2.54±0.25  
(.100±.010)  
0.25±0.05  
(.010±.002)  
33.02(1.300)REF  
1.27±0.25  
(.050±.010)  
10.16(.400)MAX  
0.46+00..0183  
0.90±0.13  
(.035±.005)  
3.43±0.38  
(.135±.015)  
1.778±0.25  
(.070±.010)  
.018+..000035  
55.12(2.170)REF  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED M64002SC-1-4  
58  
MB89630R Series  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F9609  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89635

8-bit Proprietary Microcontroller
FUJITSU

MB89635P-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89635PF

8-bit Proprietary Microcontroller
FUJITSU

MB89635PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89635R

8-bit Proprietary Microcontroller
FUJITSU

MB89635RP-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89635RP-SH

Microcontroller, 8-Bit, MROM, F2MC-8L CPU, 10MHz, CMOS, PDIP64, 17 X 58 MM, 7.64 MM HEIGHT, 1.778 MM PITCH, PLASTIC, SHDIP-64
CYPRESS

MB89635RPF

8-bit Proprietary Microcontroller
FUJITSU

MB89635RPF

Microcontroller, 8-Bit, MROM, F2MC-8L CPU, 10MHz, CMOS, PQFP64, 14 X 20 MM, 3.35 MM HEIGHT, 1 MM PITCH, PLASTIC, QFP-64
CYPRESS

MB89635RPFM

8-bit Proprietary Microcontroller
FUJITSU

MB89635RPMC

暂无描述
FUJITSU

MB89636

8-bit Proprietary Microcontroller
FUJITSU