MVTX2601A [ETC]

Unmanaged 24 port 10/100Mb Ethernet switch ; 非网管型24端口10 / 100Mb的以太网交换机\n
MVTX2601A
型号: MVTX2601A
厂家: ETC    ETC
描述:

Unmanaged 24 port 10/100Mb Ethernet switch
非网管型24端口10 / 100Mb的以太网交换机\n

以太网 局域网(LAN)标准
文件: 总95页 (文件大小:1206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX2601AG  
Integrated 10/100 Mbps Ethernet  
Switch  
Data Sheet  
DS5774  
Issue 2  
October 2002  
Features  
Ιntegrated Single-Chip 10/100 Mbps Ethernet  
Ordering Information  
Switch  
24 10/100 Mbps Autosensing, Fast Ethernet  
Ports with RMII or Serial Interface (7WS). Each  
port can independently use one of the two  
interfaces  
MVTX2601AG  
553 Pin BGA  
-40°C to 85°C  
Serial interface  
Port Mirroring to a dedicated mirroring port or  
port 23 in unmanaged mode  
Supports one Frame Buffer Memory domain with  
SRAM at 100MHz  
Full set of LED signals provided by a serial  
Supports SRAM domain memory size 1MB or  
2MB  
interface  
2 port trunking groups with up to 4 10/100 ports  
per group  
Applies centralized shared memory architecture  
Up to 64K MAC addresses  
Built-In Self Test for internal and external SRAM  
Traffic Classification  
Maximum throughput is 2.4 Gbps non-blocking  
High performance packet forwarding (3.571M  
• 4 transmission priorities for Fast Ethernet ports with  
2 dropping levels  
packets per second) at full wire speed  
• Classification based on:  
Full Duplex Ethernet IEEE 802.3x Flow Control  
Backpressure flow control for Half Duplex ports  
-Port based priority  
-VLAN Priority field in VLAN tagged frame  
- DS/TOS field in IP packet  
Supports Ethernet multicasting and broadcasting  
and flooding control  
- UDP/TCP logical ports: 8 hard-wired and 8  
programmable ports, including one pro-  
grammable range  
Supports per-system option to enable flow  
control for best effort frames even on QoS-  
enabled ports  
• The precedence of the above classifications is  
programmable  
QoS Support  
Load sharing among trunked ports can be based  
on source MAC and/or destination MAC  
Frame Data Buffer A  
SRAM (1M / 2M)  
FDB Interface  
LED  
Search  
Engine  
MCT  
Link  
FCB  
Frame Engine  
24 x 10 / 100  
Management  
Module  
Parallel /  
Serial  
RMII  
Ports 0 - 23  
Figure 1 - MVTX2601AG System Block Diagram  
1
MVTX2601AG  
Data Sheet  
Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict  
priority, and WFQ service disciplines  
• Provides 2 levels of dropping precedence with WRED mechanism  
• User controls the WRED thresholds.  
• Buffer management: per class and per port buffer reservations  
• Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID.  
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports  
Built-in reset logic triggered by system malfunction  
I2C EEPROM for configuration  
Description  
The MVTX2601AG is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single  
chip provides 24 ports at 10/100 Mbps, and a CPU interface for managed and unmanaged switch applications.  
The chip supports up to 64K MAC addresses. The centralized shared memory architecture permits a very high  
performance packet forwarding rate at up to 3.571M packets per second at full wire speed. The chip is  
optimized to provide low-cost, high-performance workgroup switching.  
The Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate  
bandwidth of 6.4 Gbps to support full wire speed on all ports simultaneously.  
With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the  
MVTX2601AG provides powerful QoS functions for various multimedia and mission-critical applications. The  
chip provides 4 transmission priorities and 2 levels of dropping precedence. Each packet is assigned a  
transmission priority and dropping precedence based on the VLAN priority field in a VLAN tagged frame, or the  
DS/TOS field, or the UDP/TCP logical port fields in IP packets. The MVTX2601AG recognizes a total of 16  
UDP/TCP logical ports, 8 hard-wired and 8 programmable (including one programmable range).  
The MVTX2601AG supports 2 groups of port trunking/load sharing. Each 10/100 group can contain up to 4  
ports. Port trunking/load sharing can be used to group ports between interlinked switches to increase the  
effective network bandwidth.  
In half-duplex mode, all ports support backpressure flow control, to minimize the risk of losing data during long  
activity bursts. In full-duplex mode, IEEE 802.3x flow control is provided. The MVTX2601AG also supports a  
per-system option to enable flow control for best effort frames, even on QoS-enabled ports.  
The MVTX2601AG is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the  
outputs are capable of directly interfacing to LVTTL levels. The MVTX2601AG is packaged in a 553-pin Ball  
Grid Array package.  
2
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Table of Contents  
1.0 Block Functionality.......................................................................................................... 11  
1.1 Frame Data Buffer (FDB) Interfaces...........................................................................................................11  
1.2 10/100 MAC Module (RMAC).....................................................................................................................11  
1.3 Configuration Interface Module ..................................................................................................................11  
1.4 Frame Engine.............................................................................................................................................11  
1.5 Search Engine............................................................................................................................................11  
1.6 LED Interface..............................................................................................................................................11  
1.7 Internal Memory..........................................................................................................................................11  
2.0 System Configuration...................................................................................................... 11  
2.1 Configuration Mode ....................................................................................................................................11  
2.2 I2C Interface...............................................................................................................................................12  
2.2.1 Start Condition ....................................................................................................................................12  
2.2.2 Address............................................................................................................................................... 12  
2.2.3 Data Direction ..................................................................................................................................... 12  
2.2.4 Acknowledgment................................................................................................................................. 12  
2.2.5 Data..................................................................................................................................................... 12  
2.2.6 Stop Condition..................................................................................................................................... 12  
2.3 Synchronous Serial Interface .....................................................................................................................12  
2.3.1 Write Command .................................................................................................................................. 13  
2.3.2 Read Command .................................................................................................................................. 13  
3.0 MVTX2601AG Data Forwarding Protocol....................................................................... 13  
3.1 Unicast Data Frame Forwarding.................................................................................................................13  
3.2 Multicast Data Frame Forwarding ..............................................................................................................14  
4.0 Memory Interface.............................................................................................................. 15  
4.1 Overview.....................................................................................................................................................15  
4.2 Detailed Memory Information .....................................................................................................................15  
4.3 Memory Requirements ...............................................................................................................................15  
5.0 Search Engine .................................................................................................................. 16  
5.1 Search Engine Overview............................................................................................................................16  
5.2 Basic Flow ..................................................................................................................................................16  
5.3 Search, Learning and Aging.......................................................................................................................17  
5.3.1 MAC Search........................................................................................................................................ 17  
5.3.2 Learning .............................................................................................................................................. 17  
5.3.3 Aging................................................................................................................................................... 17  
5.4 Quality of Service .......................................................................................................................................17  
5.5 Priority Classification Rule..........................................................................................................................18  
5.6 Port Based VLAN .......................................................................................................................................18  
5.7 Memory Configurations ..............................................................................................................................19  
6.0 Frame Engine.................................................................................................................... 24  
6.1 Data Forwarding Summary.........................................................................................................................24  
6.2 Frame Engine Details.................................................................................................................................24  
6.2.1 FCB Manager...................................................................................................................................... 24  
6.2.2 Rx Interface......................................................................................................................................... 25  
6.2.3 RxDMA................................................................................................................................................ 25  
6.2.4 TxQ Manager ...................................................................................................................................... 25  
6.3 Port Control ................................................................................................................................................25  
6.4 TxDMA........................................................................................................................................................25  
7.0 Quality of Service and Flow Control............................................................................... 25  
7.1 Model..........................................................................................................................................................25  
7.2 Four QoS Configurations............................................................................................................................27  
Zarlink Semiconductor Inc.  
3
MVTX2601AG  
Data Sheet  
Table of Contents  
7.3 Delay Bound .............................................................................................................................................. 27  
7.4 Strict Priority and Best Effort...................................................................................................................... 28  
7.5 Weighted Fair Queuing.............................................................................................................................. 28  
7.6 WRED Drop Threshold Management Support........................................................................................... 28  
7.7 Buffer Management ................................................................................................................................... 29  
7.7.1 Dropping When Buffers Are Scarce ....................................................................................................30  
7.8 MVTX2601AG Flow Control Basics........................................................................................................... 30  
7.8.1 Unicast Flow Control ...........................................................................................................................31  
7.8.2 Multicast Flow Control .........................................................................................................................31  
7.9 Mapping to IETF Diffserv Classes ............................................................................................................. 31  
8.0 Port Trunking ....................................................................................................................32  
8.1 Features and Restrictions.......................................................................................................................... 32  
8.2 Unicast Packet Forwarding........................................................................................................................ 32  
8.3 Multicast Packet Forwarding...................................................................................................................... 32  
8.4 Trunking..................................................................................................................................................... 33  
9.0 Port Mirroring....................................................................................................................33  
9.1 Port Mirroring Features.............................................................................................................................. 33  
9.2 Setting Registers for Port Mirroring............................................................................................................ 33  
10.0 GPSI (7WS) Interface......................................................................................................34  
10.1 GPSI connection...................................................................................................................................... 34  
10.2 SCAN LINK and SCAN COL interface..................................................................................................... 35  
11.0 LED Interface...................................................................................................................35  
11.1 LED Interface Introduction ....................................................................................................................... 35  
11.2 Port Status............................................................................................................................................... 35  
11.3 LED Interface Timing Diagram................................................................................................................. 36  
12.0 Register Definition..........................................................................................................37  
12.1 MVTX2601AG Register Description ........................................................................................................ 37  
12.2 Group 0 Address MAC Ports Group ........................................................................................................ 42  
12.2.1 ECR1Pn: Port N Control Register .....................................................................................................42  
12.2.2 ECR2Pn: Port N Control Register .....................................................................................................43  
12.3 Group 1 Address VLAN Group ............................................................................................................... 44  
12.3.1 AVTCL – VLAN Type Code Register Low.........................................................................................44  
12.3.2 AVTCH – VLAN Type Code Register High........................................................................................44  
12.3.3 PVMAP00_0 – Port 00 Configuration Register 0...............................................................................44  
12.3.4 PVMAP00_1 – Port 00 Configuration Register 1...............................................................................44  
12.3.5 PVMAP00_2 – Port 00 Configuration Register 2...............................................................................44  
12.3.6 PVMAP00_3 – Port 00 Configuration Register 3...............................................................................45  
12.4 Port Configuration Register...................................................................................................................... 45  
12.4.1 PVMODE...........................................................................................................................................46  
12.5 Group 2 Address Port Trunking Group .................................................................................................... 46  
12.5.1 TRUNK0_MODE– Trunk group 0 mode............................................................................................46  
12.5.2 TRUNK1_MODE – Trunk group 1 mode...........................................................................................47  
12.5.3 TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number .......................................47  
12.5.4 TX_AGE – Tx Queue Aging timer .....................................................................................................47  
12.6 Group 4 Address Search Engine Group .................................................................................................. 47  
12.6.1 AGETIME_LOW – MAC address aging time Low .............................................................................47  
12.6.2 E_HIGH –MAC address aging time High ..........................................................................................48  
12.6.3 V_AGETIME – VLAN to Port aging time ...........................................................................................48  
12.6.4 SE_OPMODE – Search Engine Operation Mode .............................................................................48  
12.8 Group 5 Address Buffer Control/QOS Group........................................................................................... 49  
Zarlink Semiconductor Inc.  
4
Data Sheet  
MVTX2601AG  
Table of Contents  
12.8.1 FCBAT – FCB Aging Timer............................................................................................................... 49  
12.8.2 QOSC – QOS Control....................................................................................................................... 49  
12.8.3 FCR – Flooding Control Register...................................................................................................... 49  
12.8.4 AVPML – VLAN Priority Map ............................................................................................................50  
12.8.5 AVPMM – VLAN Priority Map ........................................................................................................... 50  
12.8.6 AVPMH – VLAN Priority Map............................................................................................................51  
12.8.7 TOSPML – TOS Priority Map............................................................................................................51  
12.8.8 TOSPMM – TOS Priority Map........................................................................................................... 51  
12.8.9 TOSPMH – TOS Priority Map ........................................................................................................... 52  
12.8.10 AVDM – VLAN Discard Map ........................................................................................................... 52  
12.8.11 TOSDML – TOS Discard Map......................................................................................................... 53  
12.8.12 BMRC - Broadcast/Multicast Rate Control...................................................................................... 53  
12.8.13 UCC – Unicast Congestion Control................................................................................................. 53  
12.8.14 MCC – Multicast Congestion Control .............................................................................................. 54  
12.8.15 PR100 – Port Reservation for 10/100 ports .................................................................................... 54  
12.8.16 SFCB – Share FCB Size................................................................................................................. 54  
12.8.17 C2RS – Class 2 Reserve Size ........................................................................................................ 55  
12.8.18 C3RS – Class 3 Reserve Size ........................................................................................................ 55  
12.8.19 C4RS – Class 4 Reserve Size ........................................................................................................ 55  
12.8.20 C5RS – Class 5 Reserve Size ........................................................................................................ 55  
12.8.21 C6RS – Class 6 Reserve Size ........................................................................................................ 55  
12.8.22 C7RS – Class 7 Reserve Size ........................................................................................................ 56  
12.8.23 Classes Byte Limit Set 0 ................................................................................................................. 56  
12.8.24 Classes Byte Limit Set 1 ................................................................................................................. 56  
12.8.25 Classes Byte Limit Set 2 ................................................................................................................. 56  
12.8.26 Classes Byte Limit Set 3 ................................................................................................................. 57  
12.8.27 Classes WFQ Credit Set 0 .............................................................................................................. 57  
12.8.28 Classes WFQ Credit Set 1 .............................................................................................................. 57  
12.8.29 Classes WFQ Credit Set 2 .............................................................................................................. 57  
12.8.30 Classes WFQ Credit Set 3 .............................................................................................................. 58  
12.8.31 RDRC0 – WRED Rate Control 0.....................................................................................................58  
12.8.32 RDRC1 – WRED Rate Control 1.....................................................................................................58  
12.8.33 User Defined Logical Ports and Well Known Ports ......................................................................... 59  
12.8.33.1 USER_PORT0_(0~7) – User Define Logical Port (0~7) .........................................................59  
12.8.33.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority..............................60  
12.8.33.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority..............................60  
12.8.33.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority..............................60  
12.8.33.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority..............................60  
12.8.33.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables..................................61  
12.8.33.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority .................61  
12.8.33.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority .................61  
12.8.33.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority .................61  
12.8.33.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority ...............62  
12.8.33.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables .................62  
12.8.33.12 RLOWL – User Define Range Low Bit 7:0 ............................................................................62  
12.8.33.13 RLOWH – User Define Range Low Bit 15:8..........................................................................62  
12.8.33.14 RHIGHL – User Define Range High Bit 7:0...........................................................................62  
12.8.33.15 RHIGHH – User Define Range High Bit 15:8........................................................................62  
12.8.33.16 RPRIORITY – User Define Range Priority............................................................................62  
12.9 Group 6 Address MISC Group ................................................................................................................63  
12.9.1 MII_OP0 – MII Register Option 0...................................................................................................... 63  
12.9.2 MII_OP1 – MII Register Option 1...................................................................................................... 63  
Zarlink Semiconductor Inc.  
5
MVTX2601AG  
Data Sheet  
Table of Contents  
12.9.3 FEN – Feature Register.....................................................................................................................64  
12.9.4 MIIC0 – MII Command Register 0.....................................................................................................64  
12.9.5 MIIC1 – MII Command Register 1.....................................................................................................64  
12.9.6 MIIC2 – MII Command Register 2.....................................................................................................64  
12.9.7 MIIC3 – MII Command Register 3.....................................................................................................65  
12.9.8 MIID0 – MII Data Register 0..............................................................................................................65  
12.9.9 MIID1 – MII Data Register 1..............................................................................................................65  
12.9.10 LED Mode – LED Control................................................................................................................65  
12.9.11 DEVICE Mode .................................................................................................................................66  
12.9.12 CHECKSUM - EEPROM Checksum ...............................................................................................66  
12.10 Group 7 Address Port Mirroring Group................................................................................................. 66  
12.10.1 MIRROR1_SRC – Port Mirror source port ......................................................................................66  
12.10.2 MIRROR1_DEST – Port Mirror destination.....................................................................................67  
12.10.3 MIRROR2_SRC – Port Mirror source port ......................................................................................67  
12.10.4 MIRROR2_DEST – Port Mirror destination.....................................................................................67  
12.11 Group F Address CPU Access Group ................................................................................................... 67  
12.11.1 GCR-Global Control Register..........................................................................................................67  
12.11.2 DCR-Device Status and Signature Register....................................................................................68  
12.11.3 DCR1-Chip status............................................................................................................................69  
12.11.4 DPST – Device Port Status Register...............................................................................................69  
12.11.5 DTST – Data read back register......................................................................................................70  
12.11.6 DA – DA Register ............................................................................................................................70  
13.0 BGA and Ball Signal Descriptions ................................................................................71  
13.1 BGA Views............................................................................................................................................... 71  
13.1.1 Encapsulated View ...........................................................................................................................71  
13.1.2 Power and Ground Distribution .........................................................................................................72  
13.2 Ball – Signal Descriptions ....................................................................................................................... 73  
13.2.1 Ball Signal Descriptions.....................................................................................................................73  
13.3 Ball – Signal Name .................................................................................................................................. 81  
13.4 AC/DC Timing ........................................................................................................................................ 87  
13.4.1 Absolute Maximum Ratings...............................................................................................................87  
13.4.2 DC Electrical Characteristics.............................................................................................................87  
13.4.3 Recommended Operation Conditions ...............................................................................................88  
13.5 Local Frame Buffer SBRAM Memory Interface........................................................................................ 89  
13.5.1 Local SBRAM Memory Interface: ......................................................................................................89  
13.6 AC Characteristics ................................................................................................................................... 90  
13.6.1 Reduced Media Independent Interface .............................................................................................90  
13.6.2 LED Interface.....................................................................................................................................91  
13.6.3 SCANLINK SCANCOL Output Delay Timing ...................................................................................91  
13.6.4 MDIO Input Setup and Hold Timing...................................................................................................92  
13.6.5 I2C Input Setup Timing .....................................................................................................................93  
13.6.6 Serial Interface Setup Timing ............................................................................................................94  
Zarlink Semiconductor Inc.  
6
Data Sheet  
MVTX2601AG  
List of Figures  
Figure 1 - MVTX2601AG System Block Diagram ....................................................................................................1  
Figure 2 - Data Transfer Format for I2C Interface ..................................................................................................12  
Figure 3 - MVTX2601AG SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) ...................................15  
Figure 4 - Memory Map ..........................................................................................................................................16  
Figure 5 - Priority Classification Rule .....................................................................................................................18  
Figure 6 - Memory Configuration for 2 Banks, 1 Layer, 2MB Total ........................................................................20  
Figure 7 - Memory Configuration for: 2 Banks, 2 Layers, 4MB Total .....................................................................21  
Figure 8 - Memory Configuration for 2 Banks, 1 Layer, 4MB .................................................................................22  
Figure 9 - Memory Configuration for: 2 Banks, 2 Layers 4MB total .......................................................................23  
Figure 10 - Memory Configuration for 2 Banks, 1 Layer, 4MB ...............................................................................24  
Figure 11 - Buffer Partition Scheme Used to Implement MVTX2601AG Buffer Management ...............................30  
Figure 12 - GPSI (7WS) mode connection diagram ...............................................................................................34  
Figure 13 - SCAN LINK and SCAN COLLISON status diagram ............................................................................35  
Figure 14 - Timing Diagram of LED Interface ........................................................................................................36  
Figure 15 - Local Memory Interface – Input setup and hold timing ........................................................................89  
Figure 16 - Local Memory Interface - Output valid delay timing .............................................................................89  
Figure 17 - AC Characteristics – Reduced media independent Interface ..............................................................90  
Figure 18 - AC Characteristics – Reduced Media Independent Interface ..............................................................90  
Figure 19 - AC Characteristics – LED Interface .....................................................................................................91  
Figure 20 - SCANLINK SCANCOL Output Delay Timing ......................................................................................91  
Figure 21 - SCANLINK, SCANCOL Setup Timing .................................................................................................91  
Figure 22 - MDIO Input Setup and Hold Timing .....................................................................................................92  
Figure 23 - MDIO Output Delay Timing .................................................................................................................92  
Figure 24 - I2C Input Setup Timing ........................................................................................................................93  
Figure 25 - I2C Output Delay Timing ......................................................................................................................93  
Figure 26 - Serial Interface Setup Timing ..............................................................................................................94  
Figure 27 - Serial Interface Output Delay Timing ...................................................................................................94  
Zarlink Semiconductor Inc.  
7
MVTX2601AG  
Data Sheet  
Zarlink Semiconductor Inc.  
8
Data Sheet  
MVTX2601AG  
List of Tables  
Table 1 - Memory Configuration .............................................................................................................................15  
Table 2 - PVMAP Register......................................................................................................................................19  
Table 3 - Supported Memory Configurations (SBRAM Mode)................................................................................19  
Table 4 - Options for Memory Configuration...........................................................................................................19  
Table 5 - Two Dimensional World Traffic................................................................................................................26  
Table 6 - Four QoS Configurations for a 10/100Mbps Port ....................................................................................27  
Table 7 - WRED Drop Thresholds ..........................................................................................................................28  
Table 8 - Mapping between MVTX2601AG and IETF Diffserv Classes for 10/100 Ports.......................................31  
Table 9 - MVTX2601AG Features Enabling IETF Diffserv Standards ....................................................................32  
Table 10 - AC Characteristics – Reduced Media Independent Interface................................................................90  
Table 10 - AC Characteristics – LED Interface .......................................................................................................91  
Table 10 - SCANLINK, SCANCOL Timing..............................................................................................................92  
Table 10 - MDIO Timing..........................................................................................................................................92  
Table 10 - I2C Timing .............................................................................................................................................93  
Table 10 - Serial Interface Timing...........................................................................................................................94  
Zarlink Semiconductor Inc.  
9
MVTX2601AG  
Data Sheet  
Zarlink Semiconductor Inc.  
10  
MVTX2601AG  
Data Sheet  
1.0  
1.1  
Block Functionality  
Frame Data Buffer (FDB) Interfaces  
The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a  
non-blocking switch, one memory domain with a 64 bit wide memory bus is required. At 100 MHz, the  
aggregate memory bandwidth is 6.4 Gbps, which is enough to support 24 10/100 Mbps.  
The Switching Database is also located in the external SBRAM; it is used for storing MAC addresses and their  
physical port number.  
1.2  
10/100 MAC Module (RMAC)  
The 10/100 Media Access Control module provides the necessary buffers and control interface between the  
Frame Engine (FE) and the external physical device (PHY). The MVTX2601AG has two interfaces, RMII or  
Serial (only for 10M). The 10/100 MAC of the MVTX2601AG device meets the IEEE 802.3 specification. It is  
able to operate in either Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it  
will automatically retransmit upon collision for up to 16 total transmissions. The PHY addresses for 24 10/100  
MAC are from 08h to 1Fh.  
1.3  
Configuration Interface Module  
The MVTX2601AG supports a serial and an I2C interface, which provides an easy way to configure the system.  
Once configured, the resulting configuration can be stored in an I2C EEPROM.  
1.4  
Frame Engine  
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame  
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, sent to the  
search engine, to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch  
response from the search engine, the frame engine performs transmission scheduling based on the frame’s  
priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent.  
1.5  
Search Engine  
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address  
(L2). It also performs MAC learning, priority assignment, and trunking functions.  
1.6  
The LED interface provides a serial interface for carrying 24 port status signals.  
1.7 Internal Memory  
Several internal tables are required and are described as follows:  
LED Interface  
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame  
stored in the FDB, e.g. frame size, read/write pointer, transmission priority, etc.  
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the  
external MAC Table. The external MAC table is located in the FDB Memory.  
Note: the external MAC table is located in the external SBRAM Memory.  
2.0  
2.1  
System Configuration  
Configuration Mode  
The MVTX2601AG can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or  
via a synchronous serial interface during operation.  
11  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
2
2.2  
I C Interface  
The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries  
the control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit  
serial and bidirectional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /  
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer.  
Figure 2 depicts the data transfer format.  
START  
SLAVE ADDRESS  
R/W  
ACK  
DATA 1 (8 bits)  
ACK  
DATA 2  
ACK  
DATA M  
ACK  
STOP  
Figure 2 - Data Transfer Format for I2C Interface  
2.2.1  
Start Condition  
Generated by the master (in our case, the MVTX2601AG). The bus is considered to be busy after the Start  
condition is generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition  
of the SDA line.  
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High  
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus  
is free, both lines are High.  
2.2.2  
Address  
The first byte after the Start condition determines which slave the master will select. The slave in our case is the  
EEPROM. The first seven bits of the first data byte make up the slave address.  
2.2.3  
Data Direction  
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master  
transmitter sets this bit to W; a master receiver sets this bit to R.  
2.2.4  
Acknowledgment  
Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the  
transmitter releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver  
must pull down the SDA line during the acknowledge pulse so that it remains stable Low during the High period  
of this clock pulse. An acknowledgment pulse follows every byte transfer.  
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts  
the transfer.  
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line  
to let the master generate the Stop condition.  
2.2.5  
Data  
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an  
acknowledge bit. Data is transferred MSB first.  
2.2.6  
Stop Condition  
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop  
condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.  
The I2C interface serves the function of configuring the MVTX2601AG at boot time. The master is the  
MVTX2601AG, and the slave is the EEPROM memory.  
2.3  
Synchronous Serial Interface  
The synchronous serial interface serves the function of configuring the MVTX2601AG not at boot time but via a  
PC. The PC serves as master and the MVTX2601AG serves as slave. The protocol for the synchronous serial  
12  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after  
each byte of data transferred.  
The unmanaged MVTX2601AG uses a synchronous serial interface to program the internal registers. To reduce  
the number of signals required, the register address, command and data are shifted in serially through the D0  
pin. STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path.  
Each command consists of four parts.  
START pulse  
Register Address  
Read or Write command  
Data to be written or read back  
Any command can be aborted in the middle by sending a ABORT pulse to the MVTX2601AG.  
A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when  
STROBE- fall.  
An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when  
STROBE- fall.  
2.3.1  
2.3.2  
Write Command  
STROBE-  
2 extra clock cycles after  
last transfer  
D0  
W
A0 A1 A2 ... A9 A10 A11  
D0 D1 D2 D3 D4 D5 D6 D7  
DATA  
COMMAND  
START  
ADDRESS  
Read Command  
STROBE-  
R
A10 A1
D0  
...  
A9  
A0 A1 A2  
A9 A10 A11  
START  
ADDRESS  
COMMAND  
D0
DATA  
D4  
D7  
D5 D6  
D7  
AUTOFD-  
D2 D3  
D0 D1 D2 D3 D4 D5 D6  
All registers in MVTX2601AG can be modified through this synchronous serial interface.  
3.0  
MVTX2601AG Data Forwarding Protocol  
3.1  
Unicast Data Frame Forwarding  
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager).  
An FCB handle will always be available, because of advance buffer reservations.  
The memory (SRAM) interface consists of a 64-bit bus connected to SRAM bank. The Receive DMA (RxDMA)  
is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8 bytes (or up  
to the end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB).  
13  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx  
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.  
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and  
destination MAC addresses of the frame. The search engine places a switch response in the switch response  
queue of the frame engine when done. Among other information, the search engine will have resolved the  
destination port of the frame and will have determined that the frame is unicast.  
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is  
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has  
to decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ  
occupancy at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the  
correct per-port-per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their  
associated frames’ FCB’s. There is one linked list for each transmission class for each port. There are 4  
transmission classes for each of the 24 10/ 100 ports  
The TxQ manager is responsible for scheduling transmission among the queues representing different classes  
for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO)  
for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses  
among the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor  
scheduling algorithm.  
The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the  
TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the  
EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer  
release requests.  
The frame is transmitted from the TxFIFO to the line.  
3.2  
Multicast Data Frame Forwarding  
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to  
drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the  
frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some  
subset of the multicast packet’s destinations. If so, then the frame is dropped at some destinations but not  
others, and the FCB is not released.  
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the  
multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast  
frames). There are 2 multicast queues for each of the 24 10/100 ports. The queue with higher priority has room  
for 32 entries and the queue with lower priority has room for 64 entries. There is one multicast queue for every  
two priority classes. For the 10/100 ports to map the 8 transmit priorities into 2 multicast queues, the 2 LSB are  
discarded.  
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one  
logical queue. The older head of line of the two queues is forwarded first.  
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to  
which the frame is destined.  
14  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
4.0  
4.1  
Memory Interface  
Overview  
The MVTX2601AG provides a 64-bit wide SRAM bank. Each DMA can read and write from the SRAM bank.  
The following figure provides an overview of the MVTX2601AG SRAM bank.  
SRAM  
TX DMA  
0-7  
TX DMA  
8-15  
TX DMA  
16-23  
RX DMA  
0-7  
RX DMA  
8-15  
RX DMA  
16-23  
Figure 3 - MVTX2601AG SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only)  
Detailed Memory Information  
4.2  
Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from  
memory.  
4.3  
Memory Requirements  
To support 64K MAC address, 2 MB memory is required. When VLAN support is enabled, 512 entries of the  
MAC address table are used for storing the VLAN ID at VLAN Index Mapping Table.  
Up to 1K Ethernet frame buffers are supported and they will use 1.5 MB of memory. Each frame uses 1536  
bytes. The maximum system memory requirement is 2 MB. If less memory is desired, the configuration can  
scale down.  
Memory Bank  
Frame Buffer  
Max MAC Address  
1M  
2M  
1K  
2K  
32K  
64K  
Table 1 - Memory Configuration  
15  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
1M Bank  
2M Bank  
0.75M  
1.5M  
0.25M  
0.5M  
Frame Data Buffer (FDR) Area  
MAC Address Control Table (MCT) Area  
Figure 4 - Memory Map  
5.0  
Search Engine  
5.1  
Search Engine Overview  
The MVTX2601AG search engine is optimized for high throughput searching, with enhanced features to  
support:  
Up to 64K MAC addresses  
2 groups of port trunking  
Traffic classification into 4 transmission priorities, and 2 drop precedence levels  
Flooding, Broadcast, Multicast Storm Control  
MAC address learning and aging  
Port based VLAN  
5.2  
Basic Flow  
Shortly after a frame enters the MVTX2601AG and is written to the Frame Data Buffer (FDB), the frame engine  
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64  
bytes of the frame, which contain all the necessary information for the search engine to perform its task. When  
the search engine is done, it writes to the Switch Response Queue, and the frame engine uses the information  
provided in that queue for scheduling and forwarding.  
In performing its task, the search engine extracts and compresses the useful information from the 64-byte  
switch request. Among the information extracted are the source and destination MAC addresses, the  
transmission and discard priorities, whether the frame is unicast or multicast. Requests are sent to the external  
SRAM to locate the associated entries in the external hash table.  
When all the information has been collected from external SRAM, the search engine has to compare the MAC  
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is  
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained  
internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC  
address unknown) or flooding (destination MAC address unknown).  
In addition, port based VLAN information is used to select the correct set of destination ports for the frame (for  
multicast), or to verify that the frame’s destination port is associated with the VLAN (for unicast).  
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port  
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of  
the source and destination MAC addresses.  
16  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
When all the information is compiled, the switch response is generated, as stated earlier. The search engine  
also interacts with the CPU with regard to learning and aging.  
5.3  
Search, Learning and Aging  
MAC Search  
5.3.1  
The search block performs source MAC address and destination MAC address searching. As we indicated  
earlier, if a match is not found, then the next entry in the linked list must be examined, and so on until a match is  
found or the end of the list is reached.  
The port based VLAN bitmap is used to determine whether the frame should be forwarded to the outgoing port.  
When the egress port is not included in the ingress port VLAN bitmap, the packet is discarded.  
The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port  
association timestamp, used for aging.  
5.3.2  
Learning  
The learning module learns new MAC addresses and performs port change operations on the MCT database.  
The goal of learning is to update this database as the networking environment changes over time. Learning and  
port change will be performed based on memory slot availability only.  
5.3.3  
Aging  
Aging time is controlled by register 400h and 401h.  
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we  
indicated earlier, the search module updates the source MAC address timestamps for each frame it processes.  
When an entry is ready to be aged, the entry is removed from the table.  
5.4  
Quality of Service  
Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic  
over various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency  
(required by some real-time and interactive traffic), and improved loss characteristics.  
Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate  
traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with  
minimum delay; however, there are no guarantees. In a congested network or when a low-performance  
switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data  
transmission.  
The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and  
multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have  
previously plagued such “best effort” networking systems. QoS provides Ethernet networks with the  
breakthrough technology to prioritize traffic and ensure that a certain transmission will have a guaranteed  
minimum amount of bandwidth.  
Extensive core QoS mechanisms are built into the MVTX2601AG architecture to ensure policy enforcement and  
buffering of the ingress port, as well as weighted fair-queue (WFQ) scheduling at the egress port.  
In the MVTX2601AG, QoS-based policies sort traffic into a small number of classes and mark the packets  
accordingly. The QoS identifier provides specific treatment to traffic in different classes, so that different quality  
of service is provided to each class. Frame and packet scheduling and discarding policies are determined by  
the class to which the frames and packets belong. For example, the overall service given to frames and packets  
in the premium class will be better than that given to the standard class; the premium class is expected to  
experience lower loss rate or delay.  
17  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
The MVTX2601AG supports the following QoS techniques:  
In a port-based setup, any station connected to the same physical port of the switch will have the same  
transmit priority  
In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be  
mapped to different queues in the switch to provide QoS.  
In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize  
throughput,” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that  
are suitably engineered to satisfy the service request.  
In a logical port-based set up, a logical port provides the application information of the packet. Certain  
applications are more sensitive to delays than others; using logical ports to classify packets can help speed  
up delay sensitive applications, such as VoIP.  
5.5  
Priority Classification Rule  
Figure 5 shows the MVTX2601AG priority classification rule.  
Use Logical Port  
Yes  
Use Default Port Settings  
Fix Port Priority ?  
No  
Yes  
TOS Precedence over LAN?  
(FCR Regiser, Bit 7)  
Use Default Port Settings  
No  
No  
No  
No  
IP Frame ?  
IP  
VLAN Tag ?  
Yes  
Yes  
Yes  
No  
Use TOS  
Yes  
Use VLAN Priority  
Use Logical Port  
Figure 5 - Priority Classification Rule  
5.6  
Port Based VLAN  
An administrator can use the PVMAP Registers to configure the MVTX2601AG for port-based VLAN. For  
example, ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the Engineering VLAN, and ports 7-9  
to the Administrative VLAN. The MVTX2601AG determines the VLAN membership of each packet by noting the  
port on which it arrives. From there, the MVTX2601AG determines which outgoing port(s) is/are eligible to  
transmit each packet, or whether the packet should be discarded.  
Destination Port Numbers Bit Map  
Port Registers  
23  
0
2
1
1
1
0
0
Register for Port #0  
PVMAP00_0[7:0] to PVMAP00_2[7:0]  
18  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Destination Port Numbers Bit Map  
Register for Port #1  
0
0
1
0
1
0
PVMAP01_0[7:0] to PVMAP01_2[7:0]  
Register for Port #2  
0
0
PVMAP02_0[7:0] to PVMAP02_2[7:0]  
Register for Port #23  
0
0
0
0
PVMAP23_0[7:0] to PVMAP23_2[7:0]  
Table 2 - PVMAP Register  
For example, in the above table, a "1" denotes that an outgoing port is eligible to receive a packet from an  
incoming port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port.  
In this example:  
Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2.  
Data packets received at port #1 are eligible to be sent to outgoing ports 0, and 2.  
Data packets received at port #2 are not eligible to be sent to ports 0 and 1.  
5.7  
Memory Configurations  
The MVTX2601AG supports the following memory configurations. It supports 1M and 2M configurations.  
1 M  
2 M  
Configuration  
(Bootstrap pin  
TSTOUT7 = open)  
(Bootstrap pin  
Connections  
TSTOUT7 = pull down)  
Single Layer  
(Bootstrap pin  
Two 128 K x 32  
SRAM/bank  
Two 256K x 32  
SRAM/bank  
Connect 0E# and WE#  
TSTOUT13 = open)  
or  
One 128 K x 64 SRAM/bank  
Double Layer  
(Bootstrap pin  
NA  
Four 128 K x 32  
SRAM/bank  
Connect 0E0# and WE0#  
Connect 0E1# and WE1#  
TSTOUT13 = pull down)  
or  
Two 128 K x 64 SRAM/bank  
Table 3 - Supported Memory Configurations (SBRAM Mode)  
Frame data Buffer  
Only Bank A  
Bank A and Bank B  
Bank A and Bank B  
1M/bank 2M/bank  
1M  
2M  
1M/bank  
(SRAM)  
2M/bank  
(SRAM)  
(SRAM)  
(SRAM)  
(ZBT SRAM) (ZBT SRAM)  
MVTX2601  
MVTX2602  
MVTX2603  
X
X
X
X
X
X
X
X
Table 4 - Options for Memory Configuration  
19  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
MVTX2603  
X (125Mhz)  
X (125Mhz)  
(Gigabit ports in 2giga mode)  
MVTX2604  
X
X
X
X
MVTX2604 (Gigabit ports in  
2giga mode)  
X (125Mhz)  
X (125Mhz)  
Table 4 - Options for Memory Configuration  
Bank B (1M One Layer)  
Bank A (1M One Layer)  
Data LB_D[63:32]  
Data LA_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
SRAM  
SRAM  
Memory  
128K  
Memory  
128K  
32 bits  
Memory  
128K  
32 bits  
Memory  
128K  
32 bits  
32 bits  
Address LB_A[19:3]  
Address LA_A[19:3]  
Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 6 - Memory Configuration for 2 Banks, 1 Layer, 2MB Total  
20  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bank A (2M One Layer)  
Bank B (2M Two Layers)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
SRAM  
Memory  
128K  
SRAM  
Memory  
128K  
SRAM  
Memory  
128K  
ZBT  
Memory  
128K  
32 bits  
32 bits  
32 bits  
32 bits  
SRAM  
Memory  
128K  
SRAM  
Memory  
128K  
SRAM  
Memory  
128K  
SRAM  
Memory  
128K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LA_A[19:3]  
Address LB_A[19:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open  
Figure 7 - Memory Configuration for: 2 Banks, 2 Layers, 4MB Total  
21  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bank B (2M One Layer)  
Bank A (2M One Layer)  
Data LB_D[63:32]  
Data LA_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
SRAM  
Memory  
256K  
SRAM  
Memory  
256K  
Memory  
256K  
32 bits  
Memory  
256K  
32 bits  
32 bits  
32 bits  
Address LB_A[20:3]  
Address LA_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 8 - Memory Configuration for 2 Banks, 1 Layer, 4MB  
22  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bank A (2M Two Layers)  
Bank B (2M Two Layers)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
ZBT  
Memory  
128K  
ZBT  
Memory  
128K  
ZBT  
Memory  
128K  
ZBT  
Memory  
128K  
32 bits  
32 bits  
32 bits  
32 bits  
ZBT  
Memory  
128K  
ZBT  
Memory  
128K  
ZBT  
Memory  
128K  
ZBT  
Memory  
128K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LA_A[19:3]  
Address LB_A[19:3]  
Figure 9 - Memory Configuration for: 2 Banks, 2 Layers 4MB total  
23  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bank B (2M One Layer)  
Bank A (2M One Layer)  
Data LB_D[63:32]  
Data LA_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
ZBT  
Memory  
256K  
ZBT  
Memory  
256K  
ZBT  
Memory  
256K  
ZBT  
Memory  
256K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LB_A[20:3]  
Address LA_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 10 - Memory Configuration for 2 Banks, 1 Layer, 4MB  
6.0  
Frame Engine  
6.1  
Data Forwarding Summary  
When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the  
FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface.  
A switch request is sent to the Search Engine. The Search Engine processes the switch request.  
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast,  
and its destination port or ports.  
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a  
Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling  
Queue (TxSch Q) or Queues. There are 4 TxSch Q for each 10/100, one for each priority. Creation of a queue  
entry either involves linking a new job to the appropriate linked list if unicast, or adding an entry to a physical  
queue if multicast.  
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one  
of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of  
service). The unicast linked list and the multicast queue for the same port-class pair are treated as one logical  
queue. The older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with  
unicast queue 0 and multicast queue 1 is associated with unicast queue 2.  
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the  
destination port.  
6.2  
This section briefly describes the functions of each of the modules of the MVTX2601AG frame engine.  
6.2.1 FCB Manager  
Frame Engine Details  
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame  
departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values  
can be determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and  
24  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the  
bootstrap pin and the aging time is defined in register FCBAT.  
6.2.2  
Rx Interface  
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of  
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a  
switch request.  
6.2.3  
RxDMA  
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each  
frame for use by the search engine when the switch request has been made.  
6.2.4  
TxQ Manager  
First, the TxQ manager checks the per-class queue status and global reserved resource situation, and using  
this information, makes the frame dropping decision after receiving a switch response. If the decision is not to  
drop, the TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-  
class TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ  
manager can also trigger source port flow control for the incoming frame’s source if that port is flow control  
enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the  
queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads  
the FCB information and writes to the correct port control module.  
6.3  
Port Control  
The port control module calculates the SRAM read address for the frame currently being transmitted. It also  
writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the  
port control module requests that the buffer be released.  
6.4  
TxDMA  
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from  
the port control modules.  
7.0  
Quality of Service and Flow Control  
7.1  
Model  
Quality of service is an all-encompassing term for which different people have different interpretations. In  
general, the approach to quality of service described here assumes that we do not know the offered traffic  
pattern. We also assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the  
network manager knows his applications, such as voice, file transfer, or web browsing, and their relative  
importance. The manager can then subdivide the applications into classes and set up a service contract with  
each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an  
estimate of the traffic mix offered to the switch. As an added bonus, although we do not assume anything about  
the arrival pattern, if the incoming traffic is policed or shaped, we may be able to provide additional assurances  
about our switch’s performance.  
25  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Table 5 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may  
form a fourth class with no bandwidth or latency assurances.  
Total  
Low Drop Probability  
(low-drop)  
High Drop Probability  
(high-drop)  
Goals  
Assured Bandwidth  
(user defined)  
Highest transmission  
priority, P3  
50 Mbps  
Apps: phone calls, circuit  
emulation.  
Apps: training video.  
Latency: < 1 ms.  
Latency: < 1 ms.  
Drop: No drop if P3 not  
oversubscribed.  
Drop: No drop if P3 not  
oversubscribed; first P3 to  
drop otherwise.  
Middle transmission  
priority, P2  
37.5 Mbps  
Apps: interactive apps, Web  
business.  
Apps: non-critical interactive  
apps.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed; firstP2 to  
drop otherwise.  
Low transmission  
priority, P1  
12.5 Mbps  
Apps: emails, file backups.  
Latency: < 16 ms desired,  
but not critical.  
Apps: casual web browsing.  
Latency: < 16 ms desired,  
but not critical.  
Drop: No drop if P1 not  
oversubscribed.  
Drop: No drop if P1 not  
oversubscribed; first to drop  
otherwise.  
Total  
100 Mbps  
Table 5 - Two Dimensional World Traffic  
A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at  
a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the  
agreed-upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve  
high link utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not  
degrade the quality of service (QoS) received by well-behaved classes.  
As Table 6 illustrates, the six traffic types may each have their own distinct properties and applications. As  
shown, classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission  
class, requires that all frames be transmitted within 1 ms, and receives 50% of the 100 Mbps of bandwidth at  
that port.  
Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have  
any traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class  
has even one frame to transmit, then it goes first. In the MVTX2601AG, each 10/100 Mbps port will support four  
total classes, and each 1000 Mbps port will support eight classes. We will discuss the various modes of  
scheduling these classes in the next section.  
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should  
rarely lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame  
loss, and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion,  
eventually some low-drop frames are dropped, and then all frames in the worst case.  
Table 6 shows that different types of applications may be placed in different boxes in the traffic table. For  
example, casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits  
into the category of low-loss, low-latency traffic.  
26  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
7.2  
Four QoS Configurations  
There are four basic pieces to QoS scheduling in the MVTX2601AG: strict priority (SP), delay bound, weighted  
fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation,  
as shown in Tables 4 and 5. For 10/100 Mbps ports, these modes are selected by the following registers:  
QOSC24 [7:6]  
QOSC28 [7:6]  
QOSC32 [7:6]  
QOSC36 [7:6]  
CREDIT_C00  
CREDIT_C10  
CREDIT_C20  
CREDIT_C30  
P3  
P2  
P1  
P0  
Op1 (default)  
Op2  
Delay Bound  
BE  
BE  
SP  
SP  
Delay Bound  
WFQ  
Op3  
Op4  
WFQ  
Table 6 - Four QoS Configurations for a 10/100Mbps Port  
The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The  
delay bounds per class are 0.8 ms for P3, 2 ms for P2, and 12.8 ms for P1. Best effort traffic is only served  
when there is no delay-bounded traffic to be served.  
We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay  
bounded queues, and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1.  
If the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly  
bounded (e.g. if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not  
admission-controlled at a prior stage to the MVTX2601AG, can have an adverse effect on all other classes’  
performance.  
The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a  
bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully  
controlled. In the fourth configuration, all queues are served using a WFQ service discipline.  
7.3  
Delay Bound  
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2601AG may not know the mix  
of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically  
adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-  
of-line (HOL) frames. As a result, we assure latency bounds for all admitted frames with high confidence, even  
in the presence of system-wide congestion. Our algorithm identifies misbehaving classes and intelligently  
discards frames at no detriment to well-behaved classes. Our algorithm also differentiates between high-drop  
and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping prevents  
congestion by randomly dropping a percentage of high-drop frames even before the chip’s buffers are  
completely full, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early,  
as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning  
among classes.  
27  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
7.4  
Strict Priority and Best Effort  
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first.  
Two of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used  
for IETF expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is  
important that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other  
traffic classes.  
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other  
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for  
best effort classes to be used for non-essential traffic, because we provide no assurances about best effort  
performance. However, in a typical network setting, much best effort traffic will indeed be transmitted, and with  
an adequate degree of expediency.  
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping  
best effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before  
entering the MVTX2601AG, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To  
summarize, dropping to enforce bandwidth or delay does not apply to strict priority or best effort queues. We  
only drop frames from best effort and strict priority queues when global buffer resources become scarce.  
7.5  
Weighted Fair Queuing  
In some environments – for example, in an environment in which delay assurances are not required, but precise  
bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling  
discipline. The MVTX2601AG provides the user with a WFQ option with the understanding that delay  
assurances can not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights”  
such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with  
error within 2%.  
In WFQ mode, though we do not assure frame latency, the MVTX2601AG still retains a set of dropping rules  
that helps to prevent congestion and trigger higher level protocol end-to-end flow control.  
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority  
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do  
indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100  
port are treated as best effort from a dropping perspective, though they still are assured a percentage of  
bandwidth from a WFQ scheduling perspective. What this means is that these particular queues are only  
affected by dropping when the global buffer count becomes low.  
7.6  
WRED Drop Threshold Management Support  
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified  
parameters. The following table summarizes the behavior of the WRED logic.  
In KB (kilobytes)  
P3  
P2  
P1  
High Drop  
Low Drop  
Level 1  
X%  
0%  
N 120  
P3 AKB  
P2 AKB  
P1 AKB  
Level 2  
Y%  
Z%  
N 140  
Level 3  
100%  
100%  
N 160  
Table 7 - WRED Drop Thresholds  
Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value  
of N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals  
P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined  
28  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that  
can be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all  
packets are dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte  
count thresholds for each priority queue. They can be programmed by the QOS control register (refer to the  
register group 5). See Programming Qos Registers application note for more information.  
7.7  
Buffer Management  
Because the number of FDB slots is a scarce resource, and because we want to ensure that one misbehaving  
source port or class cannot harm the performance of a well-behaved source port or class, we introduce the  
concept of buffer management into the MVTX2601AG. Our buffer management scheme is designed to divide  
the total buffer space into numerous reserved regions and one shared pool, as shown in Figure 11 on page 30.  
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames  
stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the  
frame first enters the MVTX2601AG, its destination port and class are as yet unknown, and so the decision to  
drop or not needs to be temporarily postponed. This ensures that every frame can be received first before  
subjecting them to the frame drop discipline after classifying.  
Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots  
per class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps  
ports, a frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight  
classes use only four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is  
concerned, there are still eight distinguishable classes.  
Another segment of the FDB reserves space for each of the 24 ports. One parameters can be set for the source  
port reservation for 10/100 Mbps. These 24 reserved regions make sure that no well-behaved source port can  
be blocked by another misbehaving source port.  
In addition, there is a shared pool, which can store any type of frame. The frame engine allocates the frames  
first in the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is  
allocated in the shared poll. Once the shared poll is full the frames are allocated in the section reserved for the  
source port.  
The following registers define the size of each section of the frame data buffer:  
PR100 - Port Reservation for 10/100 Ports  
SFCB - Share FCB Size  
C2RS - Class 2 Reserve Size  
C3RS - Class 3 Reserve Size  
C4RS - Class 4 Reserve Size  
C5RS - Class 5 Reserve Size  
C6RS - Class 6 Reserve Size  
C7RS- Class 7 Reserve Size  
29  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
temporary  
reservation  
shared pool  
S
per-class  
reservation  
per-source  
reservations  
(24 10/100M, CPU)  
Figure 11 - Buffer Partition Scheme Used to Implement MVTX2601AG Buffer Management  
Dropping When Buffers Are Scarce  
7.7.1  
Summarizing the two examples of local dropping discussed earlier in this chapter:  
If a queue is a delay-bounded queue, we have a multi level WRED drop scheme, designed to control delay  
and partition bandwidth in case of congestion.  
If a queue is a WFQ-scheduled queue, we have a multi level WRED drop scheme, designed to prevent  
congestion.  
In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The  
function of buffer management is to make sure that such dropping causes as little blocking as possible.  
7.8  
MVTX2601AG Flow Control Basics  
Because frame loss is unacceptable for some applications, the MVTX2601AG provides a flow control option.  
When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal  
tells a source port that is sending a packet to this switch, to temporarily hold off.  
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service.  
When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved  
or not, are halted. A single packet destined for a congested output can block other packets destined for  
uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be  
assured with high confidence when flow control is enabled.  
In the MVTX2601AG, each source port can independently have flow control enabled or disabled. For flow  
control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is  
done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled  
ports feed to only one queue at the destination, the queue of lowest priority. What this means is that if flow  
control is enabled for a given source port, then we can guarantee that no packets originating from that port will  
be lost, but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these  
“downgraded” frames may only use the shared pool or the per-source reserved pool in the FDB; frames from  
flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7).  
30  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
The MVTX2601AG does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for  
frames originating from flow control enabled ports. When this programmable option is active, it is possible that  
some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is  
a major component of the MVTX2601AG’s approach to ensuring bounded delay and minimum bandwidth for  
high priority flows.  
7.8.1  
Unicast Flow Control  
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2601AG’s  
buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed  
number of a source port’s reserved FDB slots have been used, then flow control Xoff is triggered.  
Xon is triggered when a port is currently being flow controlled, and all of that port’s reserved FDB slots have  
been released.  
Note that the MVTX2601AG’s per-source-port FDB reservations assure that a source port that sends a single  
frame to a congested destination will not be flow controlled.  
7.8.2  
Multicast Flow Control  
In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system  
exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system  
returns below this threshold.  
In addition, each source port has a 23-bit port map recording which port or ports of the multicast frame’s fanout  
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is  
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that  
were originally marked as congested in the port map have become uncongested, then Xon is triggered, and the  
23-bit vector is reset to zero.  
7.9  
Mapping to IETF Diffserv Classes  
For 10/100 Mbps ports, the classes of Table 6 are merged in pairs—one class corresponding to NM+EF, two AF  
classes, and a single BE class.  
P3  
P2  
P1  
P0  
VTX  
NM+EF AF0 AF1  
BE0  
IETF  
Table 8 - Mapping between MVTX2601AG and IETF Diffserv Classes for 10/100 Ports  
31  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Features of the MVTX2601AG that correspond to the requirements of their associated IETF classes are  
summarized in the table below.  
Network management  
(NM) and Expedited  
forwarding (EF)  
Global buffer reservation for NM and EF  
Option of strict priority scheduling  
No dropping if admission controlled  
Assured forwarding  
(AF)  
Programmable bandwidth partition, with option of WFQ service  
Option of delay-bounded service keeps delay under fixed levels even if not  
admission-controlled  
Random early discard, with programmable levels  
Global buffer reservation for each AF class  
Best effort (BE)  
Service only when other queues are idle means that QoS not adversely affected  
Random early discard, with programmable levels  
Traffic from flow control enabled ports automatically classified as BE  
Table 9 - MVTX2601AG Features Enabling IETF Diffserv Standards  
8.0  
8.1  
Port Trunking  
Features and Restrictions  
A port group (i.e. trunk) can include up to 4 physical ports, but all of the ports in a group must be in the same  
MVTX2601AG.  
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC  
address and destination MAC address. Three other options include source MAC address only, destination MAC  
address only, and source port (in bidirectional ring mode only). Load distribution for multicast is performed  
similarly.  
The MVTX2601AG also provides a safe fail-over mode for port trunking automatically. If one of the ports in the  
trunking group goes down, the MVTX2601AG will automatically redistribute the traffic over to the remaining  
ports in the trunk.  
8.2  
Unicast Packet Forwarding  
The search engine finds the destination MCT entry, and if the status field says that the destination port found  
belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source  
address belongs to a trunk, then the source port’s trunk membership register is checked.  
A hash key, based on some combination of the source and destination MAC addresses for the current packet,  
selects the appropriate forwarding port.  
8.3  
Multicast Packet Forwarding  
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the  
packet based on the VLAN index and hash key.  
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port  
trunking environment.  
Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding  
port, must be excluded.  
Preventing the multicast packet from looping back to the source trunk.  
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group  
with the source port. This is because, when we select the primary forwarding port for each group, we do not  
32  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
take the source port into account. To prevent this, we simply apply one additional filter, so as to block that  
forwarding port for this multicast packet.  
8.4  
Trunking  
2 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. The supported combinations are  
shown in the following table.  
Group 0  
Port 0  
Port 1  
Port 2  
Port 3  
9
9
9
9
9
9
9
9
9
Select via trunk0_mode register  
Group 1  
Port 4  
Port 5  
Port 6  
Port 7  
9
9
9
9
9
9
Select via trunk1_mode register  
The trunks are individually enabled/disabled by controlling pin trunk 0,1.  
9.0  
9.1  
Port Mirroring  
Port Mirroring Features  
The received or transmitted data of any 10/100 port in the MVTX2601AG chip can be “mirrored” to any other  
port. We support two such mirrored source-destination pairs. A mirror port cannot also serve as a data port.  
Please refer to the Port Mirroring Application note for further details.  
9.2  
Setting Registers for Port Mirroring  
MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be  
mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to  
select between ingress (Rx) or egress (Tx) data.  
MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination  
port to be mirrored. The default is port 23.  
MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to  
be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used  
to select between ingress (Rx) or egress (Tx) data.  
MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the  
destination port to be mirrored. The default is port 0.  
33  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
10.0  
10.1  
GPSI (7WS) Interface  
GPSI connection  
The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped  
low with a 1K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX  
clock, RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted  
into the switch device through external glue logic. The duplex of the port can be controlled by programming the  
ECR register.  
The GPSI interface can be operated in port based VLAN mode only.  
crs  
rxd  
CRS_DV  
RXD[0]  
RXD[1]  
TXD[1]  
rx_clk  
tx_clk  
txd  
link0  
col0  
Port 0  
Ethernet  
PHY  
TXD[0]  
TXEN  
txen  
link1  
link2  
col1  
col2  
260X  
link23  
col23  
Port 23  
Ethernet  
PHY  
Link  
Serializer  
(CPLD)  
Collision  
Serializer  
(CPLD)  
Figure 12 - GPSI (7WS) mode connection diagram  
34  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
10.2  
SCAN LINK and SCAN COL interface  
An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYs and shift  
them into the switch device. The switch device will drive out a signature to indicate the start of the sequence.  
After that, the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra  
link status indicates the polarity of the link signal. One indicates the polarity of the link signal is active high.  
scan_clk  
scan_link/  
scan_col  
25 cycles for link /  
24 cycles for col  
Drived by VTX260x  
Drived by CPLD  
Total 32 cycles period  
Figure 13 - SCAN LINK and SCAN COLLISON status diagram  
11.0  
11.1  
LED Interface  
LED Interface Introduction  
A serial output channel provides port status information from the MVTX2601AG chips. It requires three  
additional pins.  
LED_CLK at 12.5 MHz  
LED_SYN a sync pulse that defines the boundary between status frames  
LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time  
A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display.  
This device can be customized for different needs.  
11.2  
Port Status  
In the MVTX2601AG, each port has 8 status indicators, each represented by a single bit. The 8 LED status  
indicators are:  
Bit 0: Flow control  
Bit 1:Transmit data  
Bit 2: Receive data  
Bit 3: Activity (where activity includes either transmission or reception of data)  
Bit 4: Link up  
Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s)  
Bit 6: Full-duplex  
Bit 7: Collision  
Eight clocks are required to cycle through the eight status bits for each port.  
When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock  
cycles providing information for the following ports.  
Port 0 (10/100): cycles #0 to cycle #7  
Port 1 (10/100): cycles#8 to cycle #15  
35  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Port 2 (10/100): cycle #16 to cycle #23  
...  
Port 22 (10/100): cycle #176 to cycle #183  
Port 23 (10/100): cycle #184 to cycle #191  
Reserved: cycle #192 to cycle #199  
Reserved: cycle #200 to cycle #207  
Byte 26 (additional status): cycle #208 to cycle #215  
Byte 27 (additional status): cycle #216 to cycle #223  
Cycles #224 to 256 present data with a value of zero.  
Byte 26 and byte 27 provides bist status  
26[0]: Reserved  
26[1]: Reserved  
26[2]: initialization done  
26[3]: initialization start  
26[4]: checksum ok  
26[5]: link_init_complete  
26[6]: bist_fail  
26[7]: ram_error  
27[0]: bist_in_process  
27[1]: bist_done  
11.3  
LED Interface Timing Diagram  
The signal from the MVTX2601AG to the LED decoder is shown in Figure 14.  
Figure 14 - Timing Diagram of LED Interface  
36  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
12.0  
Register Definition  
12.1  
MVTX2601AG Register Description  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register Description  
R/W  
Default Notes  
ETHERNET Port Control Registers Substitute [N] with Port number (0..18)  
ECR1P”N”  
ECR2P”N”  
Port Control Register 1 for Port N 000 + 2 x N R/W  
Port Control Register 2 for Port N 001 + 2 x N R/W  
000-018  
01B-033  
020  
000  
VLAN Control Registers Substitute [N] with Port number (0..1A)  
AVTCL  
VLAN Type Code Register Low  
VLAN Type Code Register High  
Port “N” Configuration Register 0  
Port “N” Configuration Register 1  
Port “N” Configuration Register 2  
Port “N” Configuration Register 3  
VLAN Operating Mode  
100  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
036  
037  
000  
081  
0FF  
0FF  
0FF  
007  
000  
000  
AVTCH  
101  
PVMAP”N”_0  
PVMAP”N”_1  
PVMAP”N”_2  
PVMAP”N”_3  
PVMODE  
102 + 4N  
103 + 4N  
104 + 4N  
105 + 4N  
170  
038-050  
053-06B  
06E-086  
089-0A1  
0A4  
PVROUTE7-0  
VLAN Router Group Enable  
171-178  
NA  
TRUNK Control Registers  
TRUNK0_L  
Trunk Group 0 Low  
200  
201  
202  
203  
204  
R/W  
R/W  
R/W  
R/W  
R/W  
NA  
NA  
NA  
0A5  
NA  
000  
000  
000  
003  
000  
TRUNK0_M  
Trunk Group 0 Medium  
Trunk Group 0 High  
Trunk Group 0 Mode  
TRUNK0_H  
TRUNK0_ MODE  
TRUNK0_ HASH0  
Trunk Group 0 Hash 0  
Destination Port  
TRUNK0_ HASH1  
TRUNK0_ HASH2  
TRUNK0_ HASH3  
Trunk Group 0 Hash 1  
Destination Port  
205  
206  
207  
R/W  
R/W  
R/W  
NA  
NA  
NA  
001  
002  
003  
Trunk Group 0 Hash 2  
Destination Port  
Trunk Group 0 Hash 3  
Destination Port  
TRUNK1_L  
Trunk Group 1 Low  
Trunk Group 1 Medium  
Trunk Group 1 High  
Trunk Group 1 Mode  
208  
209  
20A  
20B  
20C  
R/W  
R/W  
R/W  
R/W  
R/W  
NA  
NA  
NA  
0A6  
NA  
000  
000  
000  
003  
004  
TRUNK1_M  
TRUNK1_H  
TRUNK1_ MODE  
TRUNK1_ HASH0  
Trunk Group 1 Hash 0  
Destination Port  
37  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
Description  
R/W  
Default Notes  
TRUNK1_ HASH1  
Trunk Group 1 Hash 1  
Destination Port  
20D  
20E  
20F  
R/W  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
005  
TRUNK1_ HASH2  
TRUNK1_ HASH3  
Trunk Group 1 Hash 2  
Destination Port  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
006  
007  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
Trunk Group 1 Hash 3  
Destination Port  
Multicast_ HASH0-0 Multicast hash result 0 mask byte 220  
0
Multicast_ HASH0-1 Multicast hash result 0 mask byte 221  
1
Multicast_ HASH0-2 Multicast hash result 0 mask byte 222  
2
Multicast_ HASH0-3 Multicast hash result 0 mask byte 223  
3
Multicast_ HASH1-0 Multicast hash result 1 mask byte 224  
0
Multicast_ HASH1-1 Multicast hash result 1 mask byte 225  
1
Multicast_ HASH1-2 Multicast hash result 1 mask byte 226  
2
Multicast_ HASH1-3 Multicast hash result 1 mask byte 227  
3
Multicast_ HASH2-0 Multicast hash result 2 mask byte 228  
0
Multicast_ HASH2-1 Multicast hash result 2 mask byte 229  
1
Multicast_ HASH2-2 Multicast hash result 2 mask byte 22A  
2
Multicast_ HASH2-3 Multicast hash result 2 mask byte 22B  
3
Multicast_ HASH3-0 Multicast hash result 3 mask byte 22C  
0
Multicast_ HASH3-1 Multicast hash result 3 mask byte 22D  
1
Multicast_ HASH3-2 Multicast hash result 3 mask byte 22E  
2
Multicast_ HASH3-3 Multicast hash result 3 mask byte 22F  
3
38  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
Description  
R/W  
Default Notes  
CPU Port Configuration  
MAC0  
CPU MAC Address byte 0  
CPU MAC Address byte 1  
CPU MAC Address byte 2  
CPU MAC Address byte 3  
CPU MAC Address byte 4  
CPU MAC Address byte 5  
Interrupt Mask 0  
300  
301  
302  
303  
304  
305  
306  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
000  
000  
000  
000  
000  
000  
000  
000  
MAC1  
MAC2  
MAC3  
MAC4  
MAC5  
INT_MASK0  
INTP_MASK”N”  
Interrupt Mask for MAC Port 2N,  
2N+1  
310+N(310  
-313)  
RQS  
Receive Queue Select  
323  
324  
325  
R/W  
RO  
NA  
NA  
000  
N/A  
008  
RQSS  
TX_AGE  
Receive Queue Status  
Transmission Queue Aging Time  
R/W  
0A7  
Search Engine Configurations  
AGETIME_LOW  
MAC Address Aging Time Low  
400  
R/W  
0A8  
2M:05C  
/
4M:02E  
AGETIME_ HIGH  
V_AGETIME  
SE_OPMODE  
SCAN  
MAC Address Aging Time High  
VLAN to Port Aging Time  
Search Engine Operating Mode  
Scan control register  
401  
402  
403  
404  
R/W  
R/W  
R/W  
R/W  
0A9  
NA  
NA  
NA  
000  
Off  
000  
000  
Buffer Control and QOS Control  
FCBAT  
QOSC  
FCB Aging Timer  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0AA  
0AB  
0AC  
0AD  
0AE  
0AF  
0B0  
0B1  
0B2  
0B3  
0FF  
000  
008  
000  
000  
000  
000  
000  
000  
000  
QOS Control  
FCR  
Flooding Control Register  
VLAN Priority Map Low  
VLAN Priority Map Middle  
VLAN Priority Map High  
TOS Priority Map Low  
TOS Priority Map Middle  
TOS Priority Map High  
VLAN Discard Map  
AVPML  
AVPMM  
AVPMH  
TOSPML  
TOSPMM  
TOSPMH  
AVDM  
39  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
Description  
TOS Discard Map  
R/W  
Default Notes  
TOSDML  
BMRC  
UCC  
50A  
50B  
50C  
R/W  
R/W  
R/W  
0B4  
0B5  
0B6  
000  
000  
Broadcast/Multicast Rate Control  
Unicast Congestion Control  
1M:008  
/
2M:010  
MCC  
Multicast Congestion Control  
50D  
R/W  
R/W  
0B7  
0B8  
050  
PR100  
Port Reservation for 10/100 Ports 50E  
1M:035  
/
2M:058  
SFCB  
Share FCB Size  
510  
R/W  
0BA  
1M:046  
/
2M:0E6  
C2RS  
C3RS  
C4RS  
C5RS  
C6RS  
C7RS  
QOSC”N”  
Class 2 Reserve Size  
Class 3 Reserve Size  
Class 4 Reserve Size  
Class 5 Reserve Size  
Class 6 Reserve Size  
Class 7 Reserve Size  
QOS Control (N=0 - 5)  
QOS Control (N=6 - 11)  
QOS Control (N=12 - 23)  
QOS Control (N=24 - 59)  
QOS Control (N=0 59)  
WRED Drop Rate Control 0  
WRED Drop Rate Control 1  
511  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0BB  
0BC  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
08F  
088  
000  
512  
513  
0BD  
514  
0BE  
515  
0BF  
516  
0C0  
517- 51C  
51D- 522  
523- 52E  
52F- 552  
517 512  
553  
0C1-0C6  
NA  
0C7-0D2  
NA  
QOSC”N”  
RDRC0  
RDRC1  
0C1-0D2  
0FB  
554  
0FC  
USER_  
User Define Logical Port “N” Low  
(N=0-7)  
580 + 2N  
R/W 0D6-0DD  
PORT”N”_LOW  
USER_  
User Define Logical Port “N” High 581 + 2N  
R/W  
R/W  
R/W  
R/W  
0DE-0E5  
0E6  
000  
000  
000  
000  
PORT”N”_HIGH  
USER_ PORT1:0_  
PRIORITY  
User Define Logic Port 1 and 0  
Priority  
590  
591  
592  
USER_ PORT3:2_  
PRIORITY  
User Define Logic Port 3 and 2  
Priority  
0E7  
USER_ PORT5:4_  
PRIORITY  
User Define Logic Port 5 and 4  
Priority  
0E8  
40  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
Description  
R/W  
Default Notes  
USER_  
User Define Logic Port 7 and 6  
Priority  
593  
R/W  
0E9  
000  
PORT7:6_PRIORIT  
Y
USER_PORT_  
ENABLE  
User Define Logic Port Enable  
594  
R/W  
R/W  
R/W  
R/W  
R/W  
0EA  
0EB  
0EC  
0ED  
0EE  
000  
000  
000  
000  
000  
WLPP10  
WLPP32  
WLPP54  
WLPP76  
Well known Logic Port Priority for 595  
1 and 0  
Well known Logic Port Priority for 596  
3 and 2  
Well known Logic Port Priority for 597  
5 and 4  
Well-known Logic Port Priority for 598  
7 & 6  
WLPE  
Well known Logic Port Enable  
User Define Range Low Bit7:0  
User Define Range Low Bit 15:8  
User Define Range High Bit 7:0  
User Define Range High Bit 15:8  
User Define Range Priority  
599  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0EF  
0F4  
0F5  
0D3  
0D4  
0D5  
NA  
000  
000  
000  
000  
000  
000  
000  
RLOWL  
59A  
RLOWH  
59B  
RHIGHL  
59C  
RHIGHH  
RPRIORITY  
CPUQOSC1~3  
59D  
59E  
Byte limit for TxQ on CPU port  
5A0-5A2  
MISC Configuration Registers  
MII_OP0  
MII_OP1  
FEN  
MII Register Option 0  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
60A  
60B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0F0  
0F1  
0F2  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0F3  
N/A  
0FF  
000  
000  
010  
000  
000  
000  
000  
N/A  
N/A  
000  
000  
000  
MII Register Option 1  
Feature Registers  
MIIC0  
MIIC1  
MIIC2  
MIIC3  
MIID0  
MIID1  
LED  
MII Command Register 0  
MII Command Register 1  
MII Command Register 2  
MII Command Register 3  
MII Data Register 0  
MII Data Register 1  
RO  
LED Control Register  
Device id and test  
R/W  
R/W  
R/W  
DEVICE  
SUM  
EEPROM Checksum Register  
Port Mirroring Controls  
41  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
Description  
R/W  
Default Notes  
MIRROR1_SRC  
MIRROR1_ DEST  
MIRROR2_SRC  
MIRROR2_ DEST  
Port Mirror 1 Source Port  
Port Mirror 1 Destination Port  
Port Mirror 2 Source Port  
Port Mirror 2 Destination Port  
700  
701  
702  
703  
R/W  
R/W  
R/W  
R/W  
N/A  
N/A  
N/A  
N/A  
07F  
017  
0FF  
000  
Device Configuration Register  
GCR  
DCR  
Global Control Register  
F00  
F01  
R/W  
RO  
N/A  
N/A  
000  
N/A  
Device Status and Signature  
Register  
DCR1  
DPST  
DTST  
DA  
Chip status  
F02  
F03  
F04  
FFF  
RO  
R/W  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
000  
N/A  
DA  
Device Port Status Register  
Data read back register  
DA Register  
RO  
12.2  
Group 0 Address MAC Ports Group  
12.2.1 ECR1Pn: Port N Control Register  
I2C Address 000-018; CPU Address:0000+2xN (N = port number)  
Accessed by serial interface and I2C (R/W)  
7
6
5
4
2
1
0
3
Sp State  
Bit [0]  
A-FC  
Port Mode  
1 - Flow Control Off  
0 - Flow Control On  
When Flow Control On:  
In half duplex mode, the MAC transmitter applies back pressure for flow  
control.  
In full duplex mode, the MAC transmitter sends Flow Control frames when  
necessary. The MAC receiver interprets and processes incoming flow control  
frames. The Flow Control Frame Received counter is incremented whenever a  
flow control is received.  
When Flow Control off:  
In half duplex mode, the MAC Transmitter does not assert flow control by sending  
flow control frames or jamming collision.  
In full duplex mode, the Mac transmitter does not send flow control frames. The  
MAC receiver does not interpret or process the flow control frames. The Flow  
Control Frame Received counter is not incremented.  
42  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bit [1]  
1 - Half Duplex - Only 10/100 mode  
0 - Full Duplex  
Bit [2]  
1 - 10Mbps  
0 - 100Mbps  
Bit [4:3]  
00 - Automatic Enable Auto Neg. This enables hardware state machine for  
auto-negotiation.  
01 - Limited Disable auto Neg. This disables hardware for speed auto-  
negotiation. Poll MII for link status.  
10 - Link Down. Disable auto Neg. state machine and force link down  
(disable the port)  
11 - Link Up. User ERC1 [2:0] for config.  
Bit [5]  
Asymmetric Flow Control Enable  
0 - Disable asymmetric flow control  
1 - Enable asymmetric flow control  
Asymmetric Flow Control Enable. When this bit is set and flow control is on  
(bit[0] = 0, don't send out a flow control frame. But MAC receiver interprets  
and process flow control frames. Default is 0  
Bit [7:6]  
SS - Spanning tree state Default is 11  
00 – Blocking: Frame is dropped  
01 - Listening:  
10 - Learning:  
Frame is dropped  
Frame is dropped. Source MAC address is learned.  
11 - Forwarding: Frame is forwarded. Source MAC address is learned.  
12.2.2 ECR2Pn: Port N Control Register  
I2C Address: 01B-035; CPU Address:0001+2xN  
Accessed by and serial interface and I2C (R/W)  
7
6
5
4
2
1
0
QoS Sel  
Reserve  
DisL  
Ftf  
Futf  
Bit[0]:  
Bit[1]:  
Bit[2]:  
Bit[3]:  
Filter untagged frame (Default 0)  
• 0: Disable  
• 1: All untagged frames from this port are discarded  
Filter Tag frame (Default 0)  
• 0: Disable  
• 1: All tagged frames from this port are discarded  
Learning Disable (Default 0)  
• 1 Learning is disabled on this port  
• 0 Learning is enabled on this port  
Must be set to ‘1’  
43  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bit [5:4:]  
QOS mode selection (Default 00)  
Determines which of the 4 sets of QoS settings is used for 10/100 ports.  
Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ  
ratios programmed. These bits select among the 4 choices for each 10/100  
port. Refer to QoS Application Note.  
00: select class byte limit set 0 and classes WFQ credit set 0  
01: select class byte limit set 1 and classes WFQ credit set 1  
10: select class byte limit set 2 and classes WFQ credit set 2  
11: select class byte limit set 3 and classes WFQ credit set 3  
Bit[7:6]  
Group 1 Address VLAN Group  
12.3.1 AVTCL – VLAN Type Code Register Low  
Reserved  
12.3  
ƒ
ƒ
I2C Address 036; CPU Address:h100  
Accessed by serial interface and I2C (R/W)  
Bit[7:0]:  
LANType_LOW: Lower 8 bits of the VLAN type code (Default 00)  
12.3.2 AVTCH – VLAN Type Code Register High  
I2C Address 037; CPU Address:h101  
Accessed by serial interface and I2C (R/W)  
Bit[7:0]:  
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)  
12.3.3 PVMAP00_0 – Port 00 Configuration Register 0  
I2C Address 038, CPU Address:h102)  
Accessed by serial interface and I2C (R/W)  
Bit[7:0]:  
VLAN Mask for ports 7 to 0 (Default FF)  
This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0”  
on bit 7 means that any packet destined to port 7 will be discarded. This register works with registers 1 and 2 to  
form a 24 bit mask to all egress ports.  
12.3.4 PVMAP00_1 – Port 00 Configuration Register 1  
I2C Address h39, CPU Address:h103  
Accessed by serial interface and I2C (R/W)  
Bit[7:0]:  
VLAN Mask for ports 15 to 8 (Default is FF)  
12.3.5 PVMAP00_2 – Port 00 Configuration Register 2  
I2C Address h3A, CPU Address:h104  
Accessed by serial interface and I2C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 23 to 16 (Default FF)  
44  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
12.3.6 PVMAP00_3 – Port 00 Configuration Register 3  
I2C Address h3b, CPU Address:h105)  
Accessed by serial interface and I2C (R/W)  
7
6
5
3
2
0
FP en  
Drop  
Default tx priority  
Bit [2:0]:  
Bit [5:3]:  
Reserved (Default 7)  
Default Transmit priority. Used when Bit[7] = 1 (Default 0)  
000 Transmit Priority Level 0 (Lowest)  
001 Transmit Priority Level 1  
010 Transmit Priority Level 2  
011 Transmit Priority Level 3  
100 Transmit Priority Level 4  
101 Transmit Priority Level 5  
110 Transmit Priority Level 6  
111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Default Discard priority (Default 0)  
0 – Discard Priority Level 0 (Lowest)  
1 – Discard Priority Level 7(Highest)  
Enable Fix Priority (Default 0)  
0 Disable fix priority. All frames are analyzed. Transmit Priority and  
Discard Priority are based on VLAN Tag, TOS field or Logical Port.  
1 Transmit Priority and Discard Priority are based on values programmed  
in bit [6:3]  
12.4  
Port Configuration Register  
PVMAP01_0,1,2,3 I2C Address h3C,3D,3E,3F; CPU Address:h106,107,108,109)  
PVMAP02_0,1,2,3 I2C Address h40,41,42,43; CPU Address:h10A, 10B, 10C, 10D)  
PVMAP03_0,1,2,3 I2C Address h44,45,46,47; CPU Address:h10E, 10F, 110, 111)  
PVMAP04_0,1,2,3 I2C Address h48,49,4A,4B; CPU Address:h112, 113, 114, 115)  
PVMAP05_0,1,2,3 I2C Address h4C,4D,4E,4F; CPU Address:h116, 117, 118, 119)  
PVMAP06_0,1,2,3 I2C Address h50,51,52,53; CPU Address:h11A, 11B, 11C, 11D)  
PVMAP07_0,1,2,3 I2C Address h54,55,56,57; CPU Address:h11E, 11F, 120, 121)  
PVMAP08_0,1,2,3 I2C Address h58,59,5A,5B; CPU Address:h122, 123, 124, 125)  
PVMAP09_0,1,2,3 I2C Address h5C,5D,5E,5F; CPU Address:h126, 127, 128, 129)  
PVMAP10_0,1,2,3 I2C Address h60,61,62,63; CPU Address:h12A, 12B, 12C, 12D)  
PVMAP11_0,1,2,3 I2C Address h64,65,66,67; CPU Address:h12E, 12F, 130, 131)  
PVMAP12_0,1,2,3 I2C Address h68,69,6A,6B; CPU Address:h132, 133, 134, 135)  
PVMAP13_0,1,2,3 I2C Address h6C,6D,6E,6F; CPU Address:h136, 137, 138, 139)  
PVMAP14_0,1,2,3 I2C Address h70,71,72,73; CPU Address:h13A, h13B, 13C, 13D)  
PVMAP15_0,1,2,3 I2C Address h74,75,76,77; CPU Address:h13E, 13F, 140, 141)  
PVMAP16_0,1,2,3 I2C Address h78,79,7A,7B; CPU Address:h142, 143, 144, 145)  
PVMAP17_0,1,2,3 I2C Address h7C,7D,7E,7F; CPU Address:h146, 147, 148, 149)  
PVMAP18_0,1,2,3 I2C Address h80,81,82,83; CPU Address:h14A, 14B, 14C, 14D)  
45  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
PVMAP19_0,1,2,3 I2C Address h84,85,86,87; CPU Address:h14E, 14F, 150, 151)  
PVMAP20_0,1,2,3 I2C Address h88,89,8A,8B; CPU Address:h152, 153, 154, 155)  
PVMAP21_0,1,2,3 I2C Address h8C,8D,8E,8F; CPU Address:h156, 157, 158, 159)  
PVMAP22_0,1,2,3 I2C Address h90,91,92,93; CPU Address:h15A, 15B, 15C, 15D)  
PVMAP23_0,1,2,3 I2C Address h94,95,96,97; CPU Address:h15E, 15F, 160, 161)  
12.4.1 PVMODE  
I2C Address: h0A4, CPU Address:h170  
Accessed by serial interface, and I2C (R/W)  
7
0
DF  
SL  
Bit [0]:  
Bit [1]:  
Reserved  
Must be ‘0’  
Slow learning  
• Same function as SE_OP MODE bit 7. Either bit can enable the function; both  
need to be turned off to disable the feature.  
Bit [2]:  
Disable dropping frames with destination MAC addresses  
0180C2000001 to 0180C200000F  
• 0: Drop all frames in the range  
• 1: Treats frames as multicast  
Bit [3]:  
Bit [4]:  
Reserved  
Support MAC address 0  
• 0: MAC address 0 is not learned.  
• 1: MAC address 0 is learned.  
Bit [7:5]:  
Reserved  
12.5  
Group 2 Address Port Trunking Group  
12.5.1 TRUNK0_MODE– Trunk group 0 mode  
I2C Address h0A5; CPU Address:203  
Accessed by serial interface and I2C (R/W)  
7
3
2
1
0
Hash Select  
Port Select  
Bit [1:0]:  
Port selection in unmanaged mode. Input pin TRUNK0 enable/disable  
trunk group 0.  
• 00 Reserved  
• 01 Port 0 and 1 are used for trunk0  
• 10 Port 0,1 and 2 are used for trunk0  
• 11 Port 0,1,2 and 3 are used for trunk0  
46  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
Bit [3:2]  
Hash Select. The Hash selected is valid for Trunk 0, 1 and 2.  
(Default 00)  
• 00 Use Source and Destination Mac Address for hashing  
• 01 Use Source Mac Address for hashing  
• 10 Use Destination Mac Address for hashing  
• 11 Use source destination MAC address and ingress physical port number  
for hashing  
12.5.2 TRUNK1_MODE – Trunk group 1 mode  
I2C Address h0A6; CPU Address:20B  
Accessed by serial interface and I2C (R/W)  
7
3
2
1
0
Port Select  
Bit [1:0]:  
Port selection in unmanaged mode. Input pin TRUNK1  
enable/disable trunk group 1.  
• 00 Reserved  
• 01 Port 4 and 5 are used for trunk1  
• 10 Reserved  
• 11 Port 4,5,6 and 7 are used for trunk1  
12.5.3 TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number  
CPU Address:h20C  
Accessed by serial interface (R/W)  
Bit [4:0]  
Hash result 0 destination port number (Default 04)  
12.5.4 TX_AGE – Tx Queue Aging timer  
I2C Address: h07;CPU Address:h325  
Accessed by serial interface (RW)  
7
5
0
Tx Queue Agent  
Bit[5:0]: Unit of 100ms (Default 8)  
Disable transmission queue aging if value is zero. Aging timer for all ports and queues.  
For no packet loss flow control, this register must be set to 0.  
12.6  
Group 4 Address Search Engine Group  
12.6.1 AGETIME_LOW – MAC address aging time Low  
I2C Address h0A8; CPU Address:h400  
Accessed by serial interface and I2C (R/W)  
Bit [7:0] Low byte of the MAC address aging timer.  
MAC address aging is enable/disable by boot strap TSTOUT9  
47  
Zarlink Semiconductor Inc.  
MVTX2601AG  
Data Sheet  
12.6.2 E_HIGH –MAC address aging time High  
I2C Address h0A9; CPU Address h401  
Accessed by serial interface and I2C (R/W)  
Bit [7:0]: High byte of the MAC address aging timer.  
The default setting provide 300 seconds aging time. Aging time is based on the following equation:  
{AGETIME_TIME,AGETIME_LOW} X (# of MAC address entries in the memory x 100µsec). Number of  
MAC entries = 32K when 1MB is used. Number of MAC entries = 64K when 2MB is used.  
12.6.3 V_AGETIME – VLAN to Port aging time  
CPU Address h402  
Accessed by serial interface (R/W)  
Bit [7:0] (Default FF) Reserved  
12.6.4 SE_OPMODE – Search Engine Operation Mode  
CPU Address:h403  
Accessed by serial interface (R/W)  
{SE_OPMODE} X(# of entries 100usec)  
7
6
5
4
3
2
1
0
SL  
DMS  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Disable MCT speedup aging  
• 1 – Disable speedup aging when MCT resource is low.  
• 0 – Enable speedup aging when MCT resource is low.  
Bit [7]:  
Slow Learning  
• 1– Enable slow learning. Learning is temporary disabled when search  
demand is high  
• 0 – Learning is performed independent of search deman  
48  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
12.8  
Group 5 Address Buffer Control/QOS Group  
12.8.1 FCBAT – FCB Aging Timer  
I2C Address h0AA; CPU Address:h500  
7
0
FCBAT  
Bit [7:0]:  
FCB Aging time. Unit of 1ms. (Default FF)  
This function is for buffer aging control. It is used to configure the aging  
time, and can be enabled/ disabled through bootstrap pin. It is not  
recommended to use this function for normal operation.  
12.8.2 QOSC – QOS Control  
I²C Address h0AB; CPU Address:h501  
Accessed by serial interface and I2C (R/W)  
7
6
5
4
0
Tos-d  
Tos-p  
VF1c  
L
Bit [0]:  
QoS frame lost is OK. Priority will be available for flow control enabled  
source only when this bit is set (Default 0)  
Bit [4]:  
Per VLAN Multicast Flow Control (Default 0)  
0 – Disable  
1 – Enable  
Bit [5]:  
Bit [6]:  
Reserved  
Select TOS bits for Priority (Default 0)  
0 - Use TOS [4:2] bits to map the transmit priority  
1 - Use TOS [7:5] bits to map the transmit priority  
Bit [7]:  
Select TOS bits for Drop Priority (Default 0)  
0 - Use TOS[4:2] bits to map the drop priority  
1 - Use TOS[7:5] bits to map the drop priority  
12.8.3 FCR – Flooding Control Register  
I2C Address h0AC; CPU Address:h502  
Accessed by serial interface and I2C (R/W)  
7
6
4
3
0
Tos  
TimeBase  
U2MR  
Zarlink Semiconductor Inc.  
49  
MVTX2601AG  
Data Sheet  
Bit [3:0]:  
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in  
bits [6:4]. This is used to limit the amount of flooding traffic. The value  
in U2MR specifies how many packets are allowed to flood within the  
time specified by bit [6:4]. To disable this function, program U2MR to  
0. (Default = 8)  
Bit [6:4]:  
TimeBase:  
000 = 100us  
001 = 200us  
010 = 400us  
011 = 800us  
100 = 1.6ms  
101 = 3.2ms  
110 = 6.4ms  
111 = 100us (same as 000)  
(Default = 000)  
Bit [7]:  
Select VLAN tag or TOS (IP packets) to be preferentially picked to map  
transmit priority and drop priority (Default = 0).  
• 0 – Select VLAN Tag priority field over TOS  
• 1 – Select TOS over VLAN tag priority field  
12.8.4 AVPML – VLAN Priority Map  
I2C Address h0AD; CPU Address:h503  
Accessed by serial interface and I2C (R/W)  
7
6
5
3
2
0
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit  
priorities. Under the internal transmit priority, seven is highest priority where as zero is the lowest. This feature  
allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit  
2:0 of the AVPML register would map VLAN priority 0 into internal transmit priority 7. The new priority is used  
inside the 2601. When the packet goes out it carries the original priority.  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the VLAN tag priority field is 0 (Default 0)  
Priority when the VLAN tag priority field is 1 (Default 0)  
Priority when the VLAN tag priority field is 2 (Default 0)  
12.8.5 AVPMM – VLAN Priority Map  
I2C Address h0AE, CPU Address:h504  
Accessed by serial interface and I2C (R/W)  
50  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
7
6
4
3
1
0
Map VLAN priority into eight level transmit priorities:  
Bit [0]:  
Priority when the VLAN tag priority field is 2 (Default 0)  
Priority when the VLAN tag priority field is 3 (Default 0)  
Priority when the VLAN tag priority field is 4 (Default 0)  
Priority when the VLAN tag priority field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
12.8.6 AVPMH – VLAN Priority Map  
I2C Address h0AF, CPU Address:h505  
Accessed by serial interface and I2C (R/W)  
7
6
4
3
1
0
Map VLAN priority into eight level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the VLAN tag priority field is 5 (Default 0)  
Priority when the VLAN tag priority field is 6 (Default 0)  
Priority when the VLAN tag priority field is 7 (Default 0)  
12.8.7 TOSPML – TOS Priority Map  
I2C Address h0B0, CPU Address:h506  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS field in IP packet into eight level transmit priorities  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the TOS field is 0 (Default 0)  
Priority when the TOS field is 1 (Default 0)  
Priority when the TOS field is 2 (Default 0)  
12.8.8 TOSPMM – TOS Priority Map  
I2C Address h0B1, CPU Address:h507  
Accessed by serial interface and I2C (R/W)  
7
0
Zarlink Semiconductor Inc.  
51  
MVTX2601AG  
Data Sheet  
Map TOS field in IP packet into four level transmit priorities  
Bit [0]:  
Priority when the TOS field is 2 (Default 0)  
Priority when the TOS field is 3 (Default 0)  
Priority when the TOS field is 4 (Default 0)  
Priority when the TOS field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
12.8.9 TOSPMH – TOS Priority Map  
I2C Address h0B2, CPU Address:h508  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS field in IP packet into four level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the TOS field is 5 (Default 0)  
Priority when the TOS field is 6 (Default 0)  
Priority when the TOS field is 7 (Default 0)  
12.8.10 AVDM – VLAN Discard Map  
I2C Address h0B3, CPU Address:h509  
Accessed by serial interface and I2C (R/W)  
7
0
Map VLAN priority into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when VLAN tag priority field is 0 (Default 0)  
Frame drop priority when VLAN tag priority field is 1 (Default 0)  
Frame drop priority when VLAN tag priority field is 2 (Default 0)  
Frame drop priority when VLAN tag priority field is 3 (Default 0)  
Frame drop priority when VLAN tag priority field is 4 (Default 0)  
Frame drop priority when VLAN tag priority field is 5 (Default 0)  
Frame drop priority when VLAN tag priority field is 6 (Default 0)  
Frame drop priority when VLAN tag priority field is 7 (Default 0)  
52  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
12.8.11 TOSDML – TOS Discard Map  
I2C Address h0B4, CPU Address:h50A  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when TOS field is 0 (Default 0)  
Frame drop priority when TOS field is 1 (Default 0)  
Frame drop priority when TOS field is 2 (Default 0)  
Frame drop priority when TOS field is 3 (Default 0)  
Frame drop priority when TOS field is 4 (Default 0)  
Frame drop priority when TOS field is 5 (Default 0)  
Frame drop priority when TOS field is 6 (Default 0)  
Frame drop priority when TOS field is 7 (Default 0)  
12.8.12 BMRC - Broadcast/Multicast Rate Control  
I2C Address h0B5, CPU Address:h50B)  
Accessed by serial interface and I2C (R/W)  
7
0
Broadcast Rate  
Multicast Rate  
This broadcast and multicast rate defines for each port the number of packet allowed to be forwarded within  
a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit,  
program the field to 0. Timebase is based on register 502 [6:4].  
Bit [3:0] :  
Multicast Rate Control Number of multicast packets allowed within the  
time defined in bits 6 to 4 of the Flooding Control Register (FCR).  
(Default 0).  
Bit [7:4] :  
Broadcast Rate Control Number of broadcast packets allowed within  
the time defined in bits 6 to 4 of the Flooding Control Register (FCR).  
(Default 0)  
12.8.13 UCC – Unicast Congestion Control  
I2C Address h0B6, CPU Address: 50C  
Accessed by serial interface and I2C (R/W)  
7
0
Unicast congest threshold  
Zarlink Semiconductor Inc.  
53  
MVTX2601AG  
Data Sheet  
Bit [7:0] :  
Number of frame count. Used for best effort dropping at B% when  
destination port’s best effort queue reaches UCC threshold and shared  
pool is all in use. Granularity 1 frame. (Default: h10 for 2 MB or h08 for  
1 MB)  
12.8.14 MCC – Multicast Congestion Control  
I2C Address h0B7, CPU Address: 50D  
Accessed by serial interface and I2C (R/W)  
7
5
4
0
FC reaction prd  
Multicast congest threshold  
Bit [4:0]:  
Bit [7:5]:  
In multiples of two. Used for triggering MC flow control when  
destination multicast port’s best effort queue reaches MCC  
threshold.(Default 0x10)  
Flow control reaction period (Default 2) Granularity 4uSec.  
12.8.15 PR100 – Port Reservation for 10/100 ports  
I2C Address h0B8, CPU Address 50E  
Accessed by serial interface and I2C (R/W)  
7
4
3
0
Buffer low thd  
SP Buffer reservation  
Bit [3:0]:  
Per port buffer reservation.  
Define the space in the FDB reserved for each 10/100 port. Expressed  
in multiples of 4 packets. For each packet 1536 bytes are reserved in  
the memory.  
Bits [7:4]:  
Expressed in multiples of 4 packets. Threshold for dropping all best  
effort frames when destination port best efforts queues reach UCC  
threshold and shared pool all used and source port reservation is at or  
below the PR100[7:4] level. Also the threshold for initiating UC flow  
control.  
Default:  
• h58 for configuration with 2MB;  
• h35 for configuration with 1MB;  
12.8.16 SFCB – Share FCB Size  
I2C Address h0BA), CPU Address 510  
Accessed by serial interface and I2C (R/W)  
7
0
Shared buffer size  
54  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Bits [7:0]:  
Expressed in multiples of 4 packets. Buffer reservation for shared pool.  
Default:  
• hE6 for configuration with memory of 2MB;  
• h46 for configuration with memory of 1MB;  
12.8.17 C2RS – Class 2 Reserve Size  
I2C Address h0BB, CPU Address 511  
Accessed by serial interface and I2C (R/W)  
7
0
Class 2 FCB Reservation  
Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0)  
12.8.18 C3RS – Class 3 Reserve Size  
ƒ
ƒ
I2C Address h0BC, CPU Address 512  
Accessed by serial interface and I2C (R/W)  
7
0
0
0
0
Class 3 FCB Reservation  
Buffer reservation for class 3. Granularity 1. (Default 0)  
12.8.19 C4RS – Class 4 Reserve Size  
I2C Address h0BD, CPU Address 513  
Accessed by serial interface and I2C (R/W)  
7
Class 4 FCB Reservation  
Buffer reservation for class 4. Granularity 1. (Default 0)  
12.8.20 C5RS – Class 5 Reserve Size  
I2C Address h0BE; CPU Address 514  
Accessed by serial interface and I2C (R/W)  
7
Class 5 FCB Reservation  
Buffer reservation for class 5. Granularity 1. (Default 0)  
12.8.21 C6RS – Class 6 Reserve Size  
I2C Address h0BF; CPU Address 515  
Accessed by serial interface and I2C (R/W)  
7
Class 6 FCB Reservation  
Zarlink Semiconductor Inc.  
55  
MVTX2601AG  
Data Sheet  
Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0)  
12.8.22 C7RS – Class 7 Reserve Size  
I2C Address h0C0; CPU Address 516  
Accessed by serial interface and I2C (R/W)  
7
0
Class 7 FCB Reservation  
Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0)  
12.8.23 Classes Byte Limit Set 0  
Accessed by serial interface and I2C (R/W):  
C — QOSC00 – BYTE_C01 (I2C Address h0C1, CPU Address 517)  
B — QOSC01 – BYTE_C02 (I2C Address h0C2, CPU Address 518)  
A — QOSC02 – BYTE_C03 (I2C Address h0C3, CPU Address 519)  
QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted  
Random Early Drop (WRED) Scheme described in Chapter 7.7. There are four such sets of values A-C  
specified in Classes Byte Limit Set 0, 1, 2, and 3.  
Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in  
bits 5 to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop.  
QOSC02 represents A, and QOSC00 represents C.  
Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes. QOSC00: 512 bytes.  
Granularity when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes.  
12.8.24 Classes Byte Limit Set 1  
Accessed by serial interface and I2C (R/W):  
C - QOSC03 – BYTE_C11 (I2C Address h0C4, CPU Address 51a)  
B - QOSC04 – BYTE_C12 (I2C Address h0C5, CPU Address 51b)  
A - QOSC05 – BYTE_C13 (I2C Address h0C6, CPU Address 51c)  
QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted  
Random Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes. QOSC03: 512 bytes.  
Granularity when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes.  
12.8.25 Classes Byte Limit Set 2  
Accessed by serial interface and I2C (R/W):  
C - QOSC06 – BYTE_C21 (CPU Address 51d)  
B - QOSC07 – BYTE_C22 (CPU Address 51e)  
A - QOSC08 – BYTE_C23 (CPU Address 51f)  
QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted  
Random Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes. QOSC06: 512 bytes.  
Granularity when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes.  
56  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
12.8.26 Classes Byte Limit Set 3  
Accessed by serial interface and I2C (R/W):  
C - QOSC09 – BYTE_C31 (CPU Address 520)  
B - QOSC10 – BYTE_C32 (CPU Address 521)  
A - QOSC11 – BYTE_C33 (CPU Address 522)  
QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted  
Random Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes. QOSC09: 512 bytes.  
Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes.  
12.8.27 Classes WFQ Credit Set 0  
Accessed by serial interface (R/W)  
W3 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f)  
W2 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530)  
W1 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531)  
W0 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532)  
QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets  
of values. The granularity of the numbers is 1, and their sum must be 64. QOSC27 corresponds to W0, and  
QOSC24 corresponds to W3.  
QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4.  
QOSC25[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC25[6]: Flow control pause best effort traffic only  
Both flow control allow and flow control best effort only can take effect only the priority type is WFQ.  
12.8.28 Classes WFQ Credit Set 1  
Accessed by serial interface (R/W)  
W3 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533)  
W2 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534)  
W1 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535)  
W0 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536)  
QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets  
of values. The granularity of the numbers is 1, and their sum must be 64. QOSC31 corresponds to W0, and  
QOSC28 corresponds to W3.  
QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4.  
QOSC29[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC29[6]: Flow control pause best effort traffic only  
12.8.29 Classes WFQ Credit Set 2  
Accessed by serial interface (R/W)  
W3 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537)  
W2 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538)  
W1 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539)  
Zarlink Semiconductor Inc.  
57  
MVTX2601AG  
Data Sheet  
W0 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a)  
QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets  
of values. The granularity of the numbers is 1, and their sum must be 64. QOSC35 corresponds to W0, and  
QOSC32 corresponds to W3.  
QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC33[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC33[6]: Flow Control pause best effort traffic only  
12.8.30 Classes WFQ Credit Set 3  
Accessed by serial interface (R/W)  
W3 - QOSC36[5;0] – CREDIT_C30 (CPU Address 53b)  
W2 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c)  
W1 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d)  
W0 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e)  
QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets  
of values. The granularity of the numbers is 1, and their sum must be 64. QOSC39 corresponds to W0, and  
QOSC36 corresponds to W3.  
QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC37[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC37[6]: Flow Control pause best effort traffic only  
12.8.31 RDRC0 – WRED Rate Control 0  
I2C Address 0FB, CPU Address 553  
Accessed by serial Interface and IcC (R/W)  
7
0
X Rate  
Bits [7:4]:  
Bits[3:0]:  
Y Rate  
Corresponds to the frame drop percentage X% for WRED. Granularity  
6.25%.  
Corresponds to the frame drop percentage Y% for WRED. Granularity  
6.25%.  
See Programming QoS Registers application note for more information.  
12.8.32 RDRC1 – WRED Rate Control 1  
I2C Address 0FC, CPU Address 554  
Accessed by serial Interface and I2C (R/W)  
7
0
Z Rate  
B Rate  
58  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Bits [7:4]:  
Bits[3:0]:  
Corresponds to the frame drop percentage Z% for WRED. Granularity  
6.25%.  
Corresponds to the best effort frame drop percentage B%, when  
shared pool is all in use and destination port best effort queue reaches  
UCC. Granularity 6.25%.  
See Programming QoS Register application note for more information.  
12.8.33 User Defined Logical Ports and Well Known Ports  
The MVTX2600AG supports classifying packet priority through layer 4 logical port information. It can be setup  
by 8 Well Known Ports, 8 User Defined Logical Ports, and 1 User Defined Range. The 8 Well Known Ports  
supported are:  
0:23  
1:512  
2:6000  
3:443  
4:111  
5:22555  
6:22  
7:554  
Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Well_Known_Port_  
Enable can individually turn on/off each Well Known Port if desired.  
Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to  
select specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port  
0-7 registers. Two registers are required to be programmed for the logical port number. The respective priority  
can be programmed to the User_Port [7:0] priority register.  
enabled/disabled via User_Port_Enable register.  
The port priority can be individually  
The User Defined Range provides a range of logical port numbers with the same priority level. Programming is  
similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit  
need to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the  
upper limit is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that  
is less than the upper limit and more than the lower limit will use the priority specified in RPRIORITY.  
12.8.33.1 USER_PORT0_(0~7) – User Define Logical Port (0~7)  
USER_PORT_0 - I2C Address h0D6 + 0DE; CPU Address 580(Low) + 581(High)  
USER_PORT_1 - I2C Address h0D7 + 0DF; CPU Address 582 + 583  
USER_PORT_2 - I2C Address h0D8 + 0E0; CPU Address 584 + 585  
USER_PORT_3 - I2C Address h0D9 + 0E1; CPU Address 586 + 587  
USER_PORT_4 - I2C Address h0DA + 0E2; CPU Address 588 + 589  
USER_PORT_5 - I2C Address h0DB + 0E3; CPU Address 58a + 58b  
USER_PORT_6 - I2C Address h0DC + 0E4; CPU Address 58c + 58d  
USER_PORT_7 - I2C Address h0DD + 0E5; CPU Address 58e + 58f  
Accessed by serial interface and I2C (R/W)  
7
0
TCP/UDP Logic Port Low  
Zarlink Semiconductor Inc.  
59  
MVTX2601AG  
Data Sheet  
7
0
TCP/UDP Logic Port High  
(Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the definition of  
eight separate ports.  
12.8.33.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority  
I2C Address h0E6, CPU Address 590  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop Priority 0  
Drop  
The chip allows the definition of the priority  
Bits[3:0]:  
Bits [7:4]:  
Priority setting, transmission + dropping, for logic port 0  
Priority setting, transmission + dropping, for logic port 1 (Default 00)  
12.8.33.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority  
I2C Address h0E7, CPU Address 591  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
12.8.33.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority  
I2C Address h0E8, CPU Address 592  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
(Default 00)  
12.8.33.5 USER_PORT_[7:6]_PRIORITY - USER DEFINE LOGIC PORT 7 AND 6 PRIORITY  
I2C Address h0E9, CPU Address 593  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
(Default 00)  
60  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
12.8.33.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables  
I2C Address h0EA, CPU Address 594  
Accessed by serial interface and I2C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
(Default 00)  
12.8.33.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority  
I2C Address h0EB, CPU Address 595  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop Priority 0  
Drop  
Priority 0 - Well known port 23 for telnet applications.  
Priority 1 - Well known port 512 for TCP/UDP  
(Default 00)  
12.8.33.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority  
I2C Address h0EC, CPU Address 596  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
Priority 2 - Well known port 6000 for XWIN.  
Priority 3 - Well known port 443 for http. sec  
(Default 00)  
12.8.33.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority  
I2C Address h0ED, CPU Address 597  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
Priority 4 - Well known port 111 for sun rpe.  
Priority 5 - Well known port 22555 for IP Phone call setup.  
(Default 00)  
Zarlink Semiconductor Inc.  
61  
MVTX2601AG  
Data Sheet  
12.8.33.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority  
I2C Address h0EE, CPU Address 598  
Accessed by serial interface and I2C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
Priority 6 - Well known port 22 for ssh.  
Priority 7 - Well known port 554 for rtsp.  
(Default 00)  
12.8.33.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables  
I2C Address h0EF, CPU Address 599  
Accessed by serial interface and I2C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
• 1 - Enable  
• 0 - Disable  
Default 00)  
12.8.33.12 RLOWL – User Define Range Low Bit 7:0  
I2C Address h0F4, CPU Address: 59a  
Accessed by serial interface and I2C (R/W)  
(Default 00)  
12.8.33.13 RLOWH – User Define Range Low Bit 15:8  
I2C Address h0F5, CPU Address: 59b  
Accessed by serial interface and I2C (R/W)  
(Default 00)  
12.8.33.14 RHIGHL – User Define Range High Bit 7:0  
I2C Address h0D3, CPU Address: 59c  
Accessed by serial interface and I2C (R/W)  
(Default 00)  
12.8.33.15 RHIGHH – User Define Range High Bit 15:8  
I2C Address h0D4, CPU Address: 59d  
Accessed by serial interface and I2C (R/W)  
(Default 00)  
12.8.33.16 RPRIORITY – User Define Range Priority  
I2C Address h0D5, CPU Address: 59e  
Accessed by serial interface and I2C (R/W)  
7
3
0
Range Transmit Priority Drop  
RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY.  
62  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Bit[3:1]  
Bits[0]:  
Transmit Priority  
Drop Priority  
12.9  
Group 6 Address MISC Group  
12.9.1 MII_OP0 – MII Register Option 0  
I2C Address F0, CPU Address:h600  
Accessed by serial interface and I2C (R/W)  
7
6
5
4
0
hfc  
1prst  
Vendor Spc. Reg Addr  
Bits [7]:  
Half duplex flow control feature  
• 0 = Half duplex flow control always enable  
• 1 = Half duplex flow control by negotiation  
Bits[6]:  
Bits[5]:  
Link partner reset auto-negotiate disable  
Disable jabber detection. This is for HomePNA application or any serial  
operation slower than 10Mbps.  
• 1 = disable  
• 0 = enable  
Bit[4:0]:  
Vendor specified link status register address (null value means don’t  
use it) (Default 00); used when the Linkup bit position in the PHY is  
non-standard.  
12.9.2 MII_OP1 – MII Register Option 1  
I2C Address F1, CPU Address:h601  
Accessed by serial interface and I2C (R/W)  
7
4
3
0
Speed bit location  
Duplex bit location  
Bits[3:0]:  
Bits [7:4]:  
Duplex bit location in vendor specified register  
Speed bit location in vendor specified register  
(Default 00)  
Zarlink Semiconductor Inc.  
63  
MVTX2601AG  
Data Sheet  
12.9.3 FEN – Feature Register  
I2C Address F2, CPU Address:h602)  
Accessed by serial interface and I2C (R/W)  
7
0
DML MII  
DS  
Bits [0]:  
Bits[1]:  
Bit [2]:  
Reserved (Default 0)  
Reserved (Default 0)  
Support DS EF Code. (Default 0)  
When 101110 is detected in DS field (TOS [7:2]), the frame priority is  
set for 110 and drop is set for 0.  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Reserved (Default 0)  
Reserved (Default 1)  
Reserved (Default 0)  
Disable MII Management State Machine  
• 0: Enable MII Management State Machine (Default 0)  
• 1: Disable MII Management State Machine  
Bit [7]:  
Disable using MCT link list structure  
• 0: Enable using MCT Link List structure (Default 0)  
• 1: Disable using MCT Link List structure  
12.9.4 MIIC0 – MII Command Register 0  
CPU Address:h603  
Accessed by serial interface only (R/W)  
Bit [7:0] MII Data [7:0]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then  
program MII command.  
12.9.5 MIIC1 – MII Command Register 1  
CPU Address:h604  
Accessed by serial interface only (R/W)  
Bit [7:0] MII Data [15:8]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
12.9.6 MIIC2 – MII Command Register 2  
CPU Address:h605  
Accessed by serial interface only (R/W)  
7
0
Mii OP  
Register address  
64  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
• REG_AD – Register PHY Address  
• OP – Operation code “10” for read command and “01” for write command  
Bits [4:0]:  
Bit [6:5]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command. Writing to this register will initiate a serial management cycle to the MII management  
interface. For detail information, please refer to the PHY Control Application Note.  
12.9.7 MIIC3 – MII Command Register 3  
CPU Address:h606  
Accessed by serial interface only (R/W)  
7
0
Rd Valid  
y
PHY address  
Bits [4:0]:  
PHY_AD – 5 Bit PHY Address  
Bit [6]  
Bit [7]  
VALID – Data Valid from PHY (Read Only)  
RDY – Data is returned from PHY (Ready Only)  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
12.9.8 MIID0 – MII Data Register 0  
CPU Address:h607  
Accessed by serial interface only (RO)  
Bit [7:0] MII Data [7:0]  
12.9.9 MIID1 – MII Data Register 1  
ƒ
ƒ
ƒ
CPU Address:h608  
Accessed by serial interface only (RO)  
Bit [7:0] MII Data [15:8]  
12.9.10 LED Mode – LED Control  
CPU Address:h609  
Accessed by serial interface and I2C (R/W)  
7
0
Clock rate  
Hold Time  
Bit [0]  
Reserved (Default 0)  
Bit[2:1]:  
Hold time for LED signal (Default= 00)  
00=8msec 01=16msec  
10=32msec11=64msec  
Zarlink Semiconductor Inc.  
65  
MVTX2601AG  
Data Sheet  
Bit[4:3]:  
LED clock frequency (Default 0)  
For 100 MHz SCLK,  
00=100M/8=12.5 MHz01=100M/16= 6.25 MHz  
10=100M/32= 3.125 MHz11=100M/64=1.5625 MHz  
For 125 MHz SCLK  
00=125M/64=1953 KHz 01=125M/128= 977 KHz  
10=125M/512= 244 KHz11=125M/1024=122 KHz  
Bit[6]:  
Bit[7]:  
Reserved. Must be 0. (Default 0)  
Reserved. Must be 0. (Default 0)  
12.9.11 DEVICE Mode  
CPU Address:h60a  
Accessed by serial interface (R/W)  
7
4
0
Bit[1:0]:  
Bit [7:4]:  
Reserved. Must be 0. (Default 0)  
Reserved  
12.9.12 CHECKSUM - EEPROM Checksum  
I2C Address FF, CPU Address:h60b  
Accessed by serial interface and I2C (R/W)  
Bit [7:0]:  
(Default 0)  
Before requesting that the MVTX2601AG updates the EEPROM device, the correct checksum needs to be  
calculated and written into this checksum register. When the MVTX2604AG boots from the EEPROM the  
checksum is calculated and the value must be zero. If the checksum is not zeroed the MVTX2604AG does not  
start and pin CHECKSUM_OK is set to zero.  
The checksum formula is:  
FF  
Σ I2C register = 0  
I=0  
12.10  
Group 7 Address Port Mirroring Group  
12.10.1 MIRROR1_SRC – Port Mirror source port  
CPU Address 700  
Accessed by serial interface (R/W) (Default 7F)  
7
0
OV  
I/O Src Port Select  
66  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Bit [4:0]:  
Source port to be mirrored. Use illegal port number to disable mirroring  
Bit [5]:  
1 – select ingress data  
0 – select egress data  
Bit [7]:  
Must be ‘1’  
12.10.2 MIRROR1_DEST – Port Mirror destination  
CPU Address 701  
Accessed by serial interface (R/W) (Default 17)  
7
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
12.10.3 MIRROR2_SRC – Port Mirror source port  
CPU Address 702  
Accessed by serial interface (R/W) (Default FF)  
7
0
I/O Src Port Select  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring  
1 – select ingress data  
0 – select egress data  
Bit [7]  
Must be 1  
12.10.4 MIRROR2_DEST – Port Mirror destination  
CPU Address 703  
Accessed by serial interface (R/W) (Default 00)  
7
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
12.11  
Group F Address CPU Access Group  
12.11.1 GCR-Global Control Register  
CPU Address: hF00  
Accessed by serial interface. (R/W)  
7
0
Zarlink Semiconductor Inc.  
67  
MVTX2601AG  
Data Sheet  
Reset  
Bist  
SR  
SC  
Bit [0]:  
Bit[1]:  
Bit[2]:  
Store configuration (Default = 0)  
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM  
Store configuration and reset (Default = 0)  
Write ‘1’ to store configuration into external EEPROM and reset chip  
Start BIST (Default = 0)  
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result  
is found in the DCR register.  
Bit[3]:  
Bit[4]:  
Soft Reset (Default = 0)  
Write ‘1’ to reset chip  
Reserved.  
12.11.2 DCR-Device Status and Signature Register  
CPU Address: hF01  
Accessed by serial interface. (RO)  
7
0
Revision  
Signature  
RE  
BinP  
BR  
BW  
Bit [0]:  
1: Busy writing configuration to I2C  
0: Not busy writing configuration to I2C  
Bit[1]:  
1: Busy reading configuration from I2C  
0: Not busy reading configuration from I2C  
Bit[2]:  
1: BIST in progress  
0: BIST not running  
Bit[3]:  
1: RAM Error  
0: RAM OK  
Bit[5:4]:  
Bit [7:6]:  
Device Signature  
01: MVTX2601AG device  
Revision  
00: Initial Silicon  
01: XA1 Silicon  
68  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
12.11.3 DCR1-Chip status  
CPU Address: hF02  
Accessed by serial interface (RO)  
7
3
2
1
0
CIC  
Bit [7]  
Chip initialization completed  
12.11.4 DPST – Device Port Status Register  
CPU Address:hF03  
Accessed by serial interface (R/W)  
Bit[4:0]:  
Read back index register. This is used for selecting what to read back  
from DTST. (Default 00)  
- 5’b00000 - Port 0 Operating mode and Negotiation status  
- 5’b00001 - Port 1 Operating mode/Neg status  
- 5’b00010 - Port 2 Operating mode/Neg status  
- 5’b00011 - Port 3 Operating mode/Neg status  
- 5’b00100 - Port 4 Operating mode/Neg status  
- 5’b00101 - Port 5 Operating mode/Neg status  
- 5’b00110 - Port 6 Operating mode/Neg status  
- 5’b00111 - Port 7 Operating mode/Neg status  
- 5’b01000 - Port 8 Operating mode/Neg status  
- 5’b01001 - Port 9 Operating mode/Neg status  
- 5’b01010 - Port 10 Operating mode/Neg status  
- 5’b01011 - Port 11 Operating mode/Neg status  
- 5’b01100 - Port 12 Operating mode/Neg status  
- 5’b01101 - Port 13 Operating mode/Neg status  
- 5’b01110 - Port 14 Operating mode/Neg status  
- 5’b01111 - Port 15 Operating mode/Neg status  
- 5’b10000 - Port 16 Operating mode/Neg status  
- 5’b10001 - Port 17 Operating mode/Neg status  
- 5’b10010 - Port 18 Operating mode/Neg status  
- 5’b00011 - Port 19 Operating mode/Neg status  
- 5’b10100 - Port 20 Operating mode/Neg status  
- 5’b10101 - Port 21 Operating mode/Neg status  
- 5’b10110 - Port 22 Operating mode/Neg status  
- 5’b10111 - Port 23 Operating mode/Neg status  
Zarlink Semiconductor Inc.  
69  
MVTX2601AG  
Data Sheet  
12.11.5 DTST – Data read back register  
CPU Address: hF04  
Accessed by serial interface (RO)  
This register provides various internal information as selected in DPST bit[4:0]. Refer to the PHY Control  
Application Note.  
FE  
Fdpx  
FcEn  
Inkdn  
When bit is 1:  
Bit[0] – Flow control enable  
Bit[1] – Full duplex port  
Bit[2] – Fast Ethernet port  
Bit[3] – Link is down  
Bit[7:4] – Reserved  
12.11.6 DA – DA Register  
CPU Address: hFFF  
Accessed by CPU and serial interface (RO)  
Always return 8’h DA. Indicate the serial port connection is good.  
70  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
13.0  
BGA and Ball Signal Descriptions  
13.1  
BGA Views  
13.1.1 Encapsulated View  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 3  
1 2  
1 6  
1 3  
1 9  
1 4  
3 3  
1 5  
3 6  
1 6  
3 9  
1 7  
4 2  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ O LA_ A LA_ A LA_ A LA_ A LA_ D LA_ D LA_ D LA_ D LA_ D R ES E R ES E TR UN R ES E R ES E  
S TR O TS TO  
S C L S DA  
A
B
C
4
7
1 0  
1 3  
1 5  
4
E0  
8
4 5 R VED R VED K1 R VED R VED  
B E  
UT7  
LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ O LA_ A LA_ A LA_ A LA_ A LA_ D LA_ D LA_ D LA_ D LA_ D R ES E R ES E LA_ D R ES E R ES E R ES E R ES E  
TS TO TS TO  
UT8 UT3  
D0  
1
3
6
9
1 2 1 4 DS C E1 1 2 1 5 1 8 3 2 3 5 3 8 4 1 4 4 R VED R VED 6 2 R VED R VED R VED R VED  
7
LA_ C LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ O LA W T_ MO LA_ A LA_ A LA_ A LA_ A LA_ D LA_ D LA_ D LA_ D R ES E R ES E R ES E TR UN R ES E R ES E AUTO TS TO TS TO TS TO TS TO  
LK 1 1 E_ E_ DE1 1 1 1 4 1 7 2 0 3 4 3 7 4 0 4 3 R VED R VED R VED K0 R VED R VED F D UT1 1 UT9 UT4 UT0  
0
2
5
8
3
AGN LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ A LA W LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D S C AN S C AN TS TO TS TO TS TO TS TO TS TO TS TO  
D
E
F
D
1 7  
1 9  
2 1  
2 3  
2 5  
2 7  
2 9  
3 1  
6
1 0  
E0  
4 9  
5 1  
5 3  
5 5  
5 7  
5 9  
6 1  
6 3  
4 7  
C OL C LK UT1 4 UT1 3 UT1 2 UT1 0 UT5 UT1  
S C AN  
LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ A LA W LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D R ES E LA_ D  
S C AN TS TO R ES E R ES E  
LINK UT1 5 R VED R VED  
TS TO TS TO  
UT6 UT2  
S C LK  
MOD  
E
1 6  
1 8  
2 0  
2 2  
2 4  
2 6  
2 8  
3 0  
5
9
E1  
4 8  
5 0  
5 2  
5 4  
5 6  
5 8  
6 0 R VED 4 6  
AVC R ES I S C AN R ES E R ES E  
N_ EN R VED R VED  
VDD VDD VDD VDD VDD  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
C
3 3 3 3 3 3 3 3 3 3  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
G
H
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
J
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
VDD VDD  
VDD VDD  
K
L
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
VDD  
VDD  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
VDD  
VDD  
M
N
R ES E  
R ES E  
R ES E R ES E R ES E R ES E  
VDD  
3 3  
VDD  
3 3  
R ES E  
R VED  
R ES E  
R VED  
R VE  
R VE  
D
R VED R VED R VED R VED  
D
R ES E  
R ES E  
R VE  
D
R ES E R ES E R ES E R ES E  
VDD  
3 3  
VDD  
3 3  
R ES E  
R VED  
R ES E  
R VED  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
MDIO  
MDC  
P
R VE  
R VED R VED R VED R VED  
D
R ES E  
R ES E  
R VE  
D
R ES E R ES E R ES E R ES E  
VDD  
3 3  
VDD  
3 3  
R ES E  
R VED  
M_ C L  
K
R
R VE  
R VED R VED R VED R VED  
D
R ES E  
R ES E  
R VE  
D
R ES E R ES E R ES E R ES E  
VDD  
3 3  
VDD  
3 3  
R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
T
R VE  
R VED R VED R VED R VED  
D
R ES E  
R ES E  
R VE  
D
R ES E R ES E R ES E R ES E  
VDD  
3 3  
VDD  
3 3  
R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED  
VDD  
VDD  
VDD  
VDD  
U
V
R VE  
R VED R VED R VED R VED  
D
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
W
Y
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
VDD VDD  
VDD VDD  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
A
A
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
A
B
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
R ES E R ES E M2 3 _ M2 3 _ M2 3 _  
R VED R VED C R S R XD0 R XD1  
A
C
R ES E R ES E R ES E R ES E R ES E  
R VED R VED R VED R VED R VED  
VDD VDD VDD VDD VDD  
3 3 3 3 3 3 3 3 3 3  
R ES E R ES E M2 3 _ M2 3 _ M2 3 _  
R VED R VED TXD1 TXD0 TXEN  
A
D
M0 _ T M0 _ T M0 _ T M3 _ T M3 _ T M3 _ R M5 _ T M5 _ T M5 _ R M8 _ T M8 _ T M8 _ R M1 0 _ M1 0 _ M1 0 _ M1 3 _ M1 6 _ M1 5 _ M1 6 _ M1 5 _ M1 5 _ M1 8 _ M1 8 _ M1 8 _ M2 0 _ M2 0 _ M2 0 _ M2 2 _  
XEN XD0 XD1 XD1 XEN XD0 XD1 XEN XD0 XD1 XEN XD0 TXD1 TXEN R XD0 TXD1 TXD0 TXD1 R XD1 TXEN R XD0 TXD1 TXEN R XD0 TXD1 TXEN R XD0 R XD1  
A
E
M0 _ R M0 _ R M0 _ C M3 _ T M3 _ C M3 _ R M5 _ T M5 _ C M5 _ R M8 _ T M8 _ C M8 _ R M1 0 _ M1 0 _ M1 0 _ M1 3 _ M1 3 _ M1 3 _ M1 4 _ M1 6 R M1 5 _ M1 7 _ M1 7 _ M1 8 _ M2 0 _ M2 0 _ M2 0 _ M2 2 _ M2 2 _  
AF  
XD1 XD0  
R S  
XD0  
R S  
XD1 XD0  
R S  
XD1 XD0  
R S  
XD1 TXD0 C R S R XD1 TXD0 C R S R XD1 C R S XD0 R XD1 R XD0 C R S R XD1 TXD0 C R S R XD1 R XD0 C R S  
M1 _ T M1 _ T M1 _ T M2 _ T M2 _ C M4 _ T M4 _ C M6 _ T M6 _ C M7 _ T M7 _ C M9 _ T M9 _ C M1 1 _ M1 1 _ M1 2 _ M1 2 _ M1 4 _ M1 5 _ M1 6 _ M1 6 _ M1 8 _ M1 8 _ M1 9 _ M1 9 _ M2 1 _ M2 1 _ M2 2 _ M2 2 _  
A
G
XEN XD0 XD1 XD1  
R S  
XD1  
R S  
XD1  
R S  
XD1  
R S  
XD1  
R S TXD1 C R S TXD1 C R S TXD1 TXD0 TXD1 C R S TXD0 C R S TXD1 C R S TXD1 C R S TXEN TXD0  
M1 _ R M1 _ C M2 _ T M2 _ R M4 _ T M4 _ R M6 _ T M6 _ R M7 _ T M7 _ R M9 _ T M9 _ R M1 1 _ M1 1 _ M1 2 _ M1 2 _ M1 4 _ M1 4 _ M1 3 _ M1 5 _ M1 7 _ M1 7 _ M1 9 _ M1 9 _ M2 1 _ M2 1 _ M2 2 _  
A
H
XD0  
R S  
XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 TXD0 R XD0 TXD0 R XD0 TXD0 R XD0 R XD0 C R S TXD0 R XD1 TXD0 R XD0 TXD0 R XD0 TXD1  
M1 _ R M2 _ T M2 _ R M4 _ T M4 _ R M6 _ T M6 _ R M7 _ T M7 _ R M9 _ T M9 _ R M1 1 _ M1 1 _ M1 2 _ M1 2 _ M1 4 _ M1 4 _ M1 6 _ M1 3 _ M1 7 _ M1 7 _ M1 9 _ M1 9 _ M2 1 _ M2 1 _  
XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 TXEN R XD1 TXEN R XD1 TXEN R XD1 TXEN TXEN TXEN TXD1 TXEN R XD1 TXEN R XD1  
AJ  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
Zarlink Semiconductor Inc.  
71  
MVTX2601AG  
Data Sheet  
13.1.2 Power and Ground Distribution  
The following figure provides an encapsulated view of the power and ground distribution  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 3  
1 2  
1 6  
1 3  
1 9  
1 4  
3 3  
1 5  
3 6  
1 6  
3 9  
1 7  
4 2  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ O LA_ A LA_ A LA_ A LA_ A LA_ D LA_ D LA_ D LA_ D LA_ D R ES E R ES E TR UN MIR R MIR R  
S TR O TS TO  
S C L S DA  
A
B
C
4
7
1 0  
1 3  
1 5  
4
E0  
8
4 5 R VED R VED K1  
OR 4 OR 1  
B E  
UT7  
LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ O LA_ A LA_ A LA_ A LA_ A LA_ D LA_ D LA_ D LA_ D LA_ D R ES E R ES E LA_ D MIR R MIR R TR UN R ES E  
TS TO TS TO  
UT8 UT3  
D0  
1
3
6
9
1 2 1 4 DS C E1 1 2 1 5 1 8 3 2 3 5 3 8 4 1 4 4 R VED R VED 6 2 OR 5 OR 2 K2 R VED  
7
LA_ C LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ O LA W T_ MO LA_ A LA_ A LA_ A LA_ A LA_ D LA_ D LA_ D LA_ D R ES E R ES E R ES E TR UN MIR R MIR R AUTO TS TO TS TO TS TO TS TO  
LK 1 1 E_ E_ DE1 1 1 1 4 1 7 2 0 3 4 3 7 4 0 4 3 R VED R VED R VED K0 OR 3 OR 0 F D UT1 1 UT9 UT4 UT0  
0
2
5
8
3
AGN LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ A LA W LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D S C AN S C AN TS TO TS TO TS TO TS TO TS TO TS TO  
D
E
F
D
1 7  
1 9  
2 1  
2 3  
2 5  
2 7  
2 9  
3 1  
6
1 0  
E0  
4 9  
5 1  
5 3  
5 5  
5 7  
5 9  
6 1  
6 3  
4 7  
C OL C LK UT1 4 UT1 3 UT1 2 UT1 0 UT5 UT1  
S C AN  
LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ A LA_ A LA W LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D LA_ D R ES E LA_ D  
S C AN TS TO M2 6 _ M2 6 _  
LINK UT1 5 C R S TXER  
TS TO TS TO  
UT6 UT2  
S C LK  
MOD  
E
1 6  
1 8  
2 0  
2 2  
2 4  
2 6  
2 8  
3 0  
5
9
E1  
4 8  
5 0  
5 2  
5 4  
5 6  
5 8  
6 0 R VED 4 6  
M2 6 _  
M2 6 _  
TXC L  
TXEN  
K
M2 6 _ M2 6 _ M2 6 _  
MTX R XD R XC L  
AVC R ES I S C AN LB _ D LB _ D  
VDD VDD VDD VDD VDD  
C
N_  
EN  
6 3  
6 2  
3 3 3 3 3 3 3 3 3 3  
C LK  
V
K
R ES E  
TOUT  
_
M2 6 _ M2 6 _ M2 6 _  
LB _ C  
LK  
LB _ D LB _ D LB _ D  
M2 6 _ M2 6 _  
R XER C OL  
G
H
TXD1 TXD1 R XD1  
4 7 6 1 6 0  
4
5
5
M2 6 _ M2 6 _ M2 6 _ M2 6 _ M2 6 _  
TXD1 TXD1 R XD1 R XD1 R XD1  
LB _ D LB _ D LB _ D LB _ D LB _ D  
4 6 4 5 4 4 5 9 5 8  
2
3
2
3
4
M2 6 _ M2 6 _  
M2 6 _ M2 6 _  
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 6 _  
R XD9  
J
TXD1 TXD1  
R XD1 R XD1  
4 3  
4 2  
4 1  
5 7  
5 6  
0
1
0
1
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 6 _ M2 6 _ M2 6 _ M2 6 _ M2 6 _  
TXD9 TXD8 R XD6 R XD7 R XD8  
VDD VDD  
VDD VDD  
K
L
4 0  
3 9  
3 8  
5 5  
5 4  
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 6 _ M2 6 _ M2 6 _ M2 6 _ M2 6 _  
TXD4 TXD6 R XD3 R XD4 R XD5  
3 7 3 6 3 5 5 3 5 2  
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 6 _ M2 6 _ M2 6 _ M2 6 _ M2 6 _  
TXD7 TXD5 R XD0 R XD1 R XD2  
VDD  
VDD  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
VDD  
VDD  
M
N
3 4  
3 3  
3 2  
5 1  
5 0  
D_ C O D_ C O GR EF  
LB _ A LB _ A LB _ A LB _ D LB _ D VDD  
VDD M2 6 _ M2 6 _  
NF IG NF IG _ C LK  
1 8  
1 9  
2 0  
4 9  
4 8  
3 3  
3 3 TXD2 TXD3  
1
0
1
GR EF  
_ C LK  
0
LB _ A LB _ A LB _ A LB W LB _  
VDD  
3 3  
VDD M2 6 _ M2 6 _  
3 3 TXD0 TXD1  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
MDIO  
P
1 5  
1 6  
1 7  
E0  
W E1  
LB _ A LB _ A LB _ A LB _ A LB _ A VDD  
VDD M2 5 _ M2 5 _  
M_ C L  
MDC  
R
1 0  
1 1  
1 2  
1 3  
1 4  
3 3  
3 3  
C R S TXER  
K
M2 5 _  
M2 5 _  
TXC L  
TXEN  
K
M2 5 _ M2 5 _ M2 5 _  
MTX R XD R XC L  
LB _ A LB _ A LB _ A LB _ A LB _ A VDD  
VDD  
3 3  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
VS S VS S VS S VS S VS S VS S VS S  
T
5
6
7
8
9
3 3  
C LK  
V
K
M2 5 _ M2 5 _ M2 5 _  
LB _ O LB _ O T_ MO LB _ D LB _ D VDD  
VDD  
3 3  
M2 5 _ M2 5 _  
R XER C OL  
VDD  
VDD  
VDD  
VDD  
U
V
TXD1 TXD1 R XD1  
E0  
E1  
DE0  
3 1  
3 0  
3 3  
4
5
5
M2 5 _ M2 5 _ M2 5 _ M2 5 _ M2 5 _  
TXD1 TXD1 R XD1 R XD1 R XD1  
LB _ A LB _ O LB W LB _ D LB _ D  
DS C E_ E_ 2 9 2 8  
2
3
2
3
4
M2 5 _ M2 5 _  
M2 5 _ M2 5 _  
LB _ D LB _ A LB _ A LB _ D LB _ D  
M2 5 _  
R XD9  
W
Y
TXD1 TXD1  
R XD1 R XD1  
1 5  
3
4
2 7  
2 6  
0
1
0
1
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 5 _ M2 5 _ M2 5 _ M2 5 _ M2 5 _  
R XD6 TXD8 TXD9 R XD7 R XD8  
VDD VDD  
VDD VDD  
1 4 1 3 1 2 2 5 2 4  
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 5 _ M2 5 _ M2 5 _ M2 5 _ M2 5 _  
TXD6 TXD7 R XD3 R XD4 R XD5  
A
A
1 1  
1 0  
9
2 3  
2 2  
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 5 _ M2 5 _ M2 5 _ M2 5 _ M2 5 _  
TXD4 TXD5 R XD0 R XD1 R XD2  
A
B
8
7
6
2 1  
2 0  
LB _ D LB _ D LB _ D LB _ D LB _ D  
M2 5 _ M2 5 _ M2 3 _ M2 3 _ M2 3 _  
TXD2 TXD3 C R S R XD0 R XD1  
A
C
5
4
3
1 9  
1 8  
LB _ D LB _ D LB _ D LB _ D LB _ D  
VDD VDD VDD VDD VDD  
3 3 3 3 3 3 3 3 3 3  
M2 5 _ M2 5 _ M2 3 _ M2 3 _ M2 3 _  
TXD0 TXD1 TXD1 TXD0 TXEN  
A
D
2
1
0
1 7  
1 6  
M0 _ T M0 _ T M0 _ T M3 _ T M3 _ T M3 _ R M5 _ T M5 _ T M5 _ R M8 _ T M8 _ T M8 _ R M1 0 _ M1 0 _ M1 0 _ M1 3 _ M1 6 _ M1 5 _ M1 6 _ M1 5 _ M1 5 _ M1 8 _ M1 8 _ M1 8 _ M2 0 _ M2 0 _ M2 0 _ M2 2 _  
XEN XD0 XD1 XD1 XEN XD0 XD1 XEN XD0 XD1 XEN XD0 TXD1 TXEN R XD0 TXD1 TXD0 TXD1 R XD1 TXEN R XD0 TXD1 TXEN R XD0 TXD1 TXEN R XD0 R XD1  
A
E
M0 _ R M0 _ R M0 _ C M3 _ T M3 _ C M3 _ R M5 _ T M5 _ C M5 _ R M8 _ T M8 _ C M8 _ R M1 0 _ M1 0 _ M1 0 _ M1 3 _ M1 3 _ M1 3 _ M1 4 _ M1 6 R M1 5 _ M1 7 _ M1 7 _ M1 8 _ M2 0 _ M2 0 _ M2 0 _ M2 2 _ M2 2 _  
AF  
XD1 XD0  
R S  
XD0  
R S  
XD1 XD0  
R S  
XD1 XD0  
R S  
XD1 TXD0 C R S R XD1 TXD0 C R S R XD1 C R S XD0 R XD1 R XD0 C R S R XD1 TXD0 C R S R XD1 R XD0 C R S  
M1 _ T M1 _ T M1 _ T M2 _ T M2 _ C M4 _ T M4 _ C M6 _ T M6 _ C M7 _ T M7 _ C M9 _ T M9 _ C M1 1 _ M1 1 _ M1 2 _ M1 2 _ M1 4 _ M1 5 _ M1 6 _ M1 6 _ M1 8 _ M1 8 _ M1 9 _ M1 9 _ M2 1 _ M2 1 _ M2 2 _ M2 2 _  
A
G
XEN XD0 XD1 XD1  
R S  
XD1  
R S  
XD1  
R S  
XD1  
R S  
XD1  
R S TXD1 C R S TXD1 C R S TXD1 TXD0 TXD1 C R S TXD0 C R S TXD1 C R S TXD1 C R S TXEN TXD0  
M1 _ R M1 _ C M2 _ T M2 _ R M4 _ T M4 _ R M6 _ T M6 _ R M7 _ T M7 _ R M9 _ T M9 _ R M1 1 _ M1 1 _ M1 2 _ M1 2 _ M1 4 _ M1 4 _ M1 3 _ M1 5 _ M1 7 _ M1 7 _ M1 9 _ M1 9 _ M2 1 _ M2 1 _ M2 2 _  
A
H
XD0  
R S  
XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 TXD0 R XD0 TXD0 R XD0 TXD0 R XD0 R XD0 C R S TXD0 R XD1 TXD0 R XD0 TXD0 R XD0 TXD1  
M1 _ R M2 _ T M2 _ R M4 _ T M4 _ R M6 _ T M6 _ R M7 _ T M7 _ R M9 _ T M9 _ R M1 1 _ M1 1 _ M1 2 _ M1 2 _ M1 4 _ M1 4 _ M1 6 _ M1 3 _ M1 7 _ M1 7 _ M1 9 _ M1 9 _ M2 1 _ M2 1 _  
XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 TXEN R XD1 TXEN R XD1 TXEN R XD1 TXEN TXEN TXEN TXD1 TXEN R XD1 TXEN R XD1  
AJ  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
72  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
13.2  
Ball – Signal Descriptions  
All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive.  
13.2.1 Ball Signal Descriptions  
Ball No(s)  
Symbol  
I/O  
Description  
C19, B19, A19, C20, B20, P_DATA[15:8][5:0]  
A20, C21, E20, B22, A22,  
I/O with pull up  
Not used. Leave unconnected  
C23, B23, A23, C24  
P_INT#  
Output  
Not used  
B25  
I2C Interface (0) Note: In unmanaged mode, Use I2C and Serial control interface to configure the system  
A24  
SCL  
SDA  
Output  
I2C Data Clock  
I2C Data I/O  
A25  
I/O-TS with pull up  
Serial Control Interface  
A26  
STROBE  
Input with weak internal Serial Strobe Pin  
pull up  
B26  
C25  
D0  
Input  
Serial Data Input  
AUTOFD  
Output with pull up  
Serial Data Output (AutoFD)  
Frame Buffer Interface  
D20, B21, D19, E19,D18, LA_D[63:0]  
E18, D17, E17, D16, E16,  
D15, E15, D14, E14, D13,  
E13, D21, E21, A18, B18,  
C18, A17, B17, C17, A16,  
B16, C16, A15, B15, C15,  
A14, B14, D9, E9, D8,  
I/O-TS with pull up  
Frame Bank A– Data Bit [63:0]  
E8, D7, E7, D6, E6, D5,  
E5, D4, E4, D3, E3, D2,  
E2, A7, B7, A6, B6, C6,  
A5, B5, C5, A4, B4, C4,  
A3, B3, C3, B2, C2  
C14, A13, B13, C13, A12, LA_A[20:3]  
B12, C12, A11, B11, C11,  
D11, E11, A10, B10, D10,  
E10, A8, C7  
Output  
Frame Bank A – Address Bit  
[20:3]  
B8  
LA_ADSC#  
Output with pull up  
Frame Bank A Address Status  
Control  
C1  
C9  
LA_CLK  
LA_WE#  
Output  
Frame Bank A Clock Input  
Output with pull up  
Frame Bank A Write Chip  
Select for one layer SRAM  
application  
Zarlink Semiconductor Inc.  
73  
MVTX2601AG  
Data Sheet  
Ball No(s)  
Symbol  
LA_WE0#  
I/O  
Description  
D12  
Output with pull up  
Frame Bank A Write Chip  
Select for lower layer of two  
layers SRAM application  
E12  
C8  
A9  
LA_WE1#  
LA_OE#  
Output with pull up  
Output with pull up  
Output with pull up  
Output with pull up  
Frame Bank A Write Chip  
Select for upper layer of two  
layers SRAM application  
Frame Bank A Read Chip  
Select for one layer SRAM  
application  
LA_OE0#  
LA_OE1#  
Frame Bank A Read Chip  
Select for lower layer of two  
layers SRAM application  
B9  
Frame Bank A Read Chip  
Select for upper layer of two  
layers SRAM application  
Fast Ethernet Access Ports [23:0] RMII  
R28  
P28  
R29  
M_MDC  
Output  
MII Management Data Clock –  
(Common for all MII Ports  
[23:0])  
M_MDIO  
I/O-TS with pull up  
MII Management Data I/O –  
(Common for all MII Ports –  
[23:0]))  
M_CLKI  
Input  
Reference Input Clock  
AC29, AE28, AJ27,  
M[23:0]_RXD[1]  
Input with weak internal Ports [23:0] – Receive Data  
pull up resistors. Bit [1]  
AF27, AJ25, AF24, AH23,  
AE19, AF21, AJ19, AF18,  
AJ17, AJ15, AF15, AJ13,  
AF12, AJ11, AJ9, AF9,  
AJ7, AF6, AJ5, AJ3, AF1  
AC28, AF28, AH27,  
AE27, AH25, AE24,  
AF22, AF20, AE21,  
AH19, AH20, AH17,  
AH15, AE15, AH13,  
AE12, AH11, AH9, AE9,  
AH7, AE6, AH5, AH2,  
AF2  
M[23:0]_RXD[0]  
Input with weak internal Ports [23:0] – Receive Data  
pull up resistors Bit [0]  
AC27, AF29, AG27,  
AF26, AG25, AG23,  
AF23, AG21, AH21,  
AF19, AF17, AG17,  
AG15, AF14, AG13,  
AF11, AG11, AG9, AF8,  
AG7, AF5, AG5, AH3,  
AF3  
M[23:0]_CRS_DV  
Input with weak internal Ports [23:0] – Carrier Sense  
pull down resistors. and Receive Data Valid  
74  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Ball No(s)  
Symbol  
I/O  
Description  
AD29, AG28, AJ26,  
M[23:0]_TXEN  
I/O- TS with pull up,  
slew  
Ports [23:0] – Transmit Enable  
Strap option for RMII/GPSI  
AE26, AJ24, AE23, AJ22,  
AJ20, AE20, AJ18, AJ21,  
AJ16, AJ14, AE14, AJ12,  
AE11, AJ10, AJ8, AE8,  
AJ6, AE5, AJ4, AG1, AE1  
AD27, AH28, AG26,  
AE25, AG24, AE22,  
AJ23, AG20, AE18,  
AG18, AE16, AG16,  
AG14, AE13, AG12,  
AE10, AG10, AG8, AE7,  
AG6, AE4, AG4, AG3,  
AE3  
M[23:0]_TXD[1]  
M[23:0]_TXD[0]  
Output, slew  
Output, slew  
Ports [23:0] – Transmit Data  
Bit [1]  
AD28, AG29, AH26,  
AF25, AH24, AG22,  
AH22, AE17, AG19,  
AH18, AF16, AH16,  
AH14, AF13, AH12,  
AF10, AH10, AH8, AF7,  
AH6, AF4, AH4, AG2,  
AE2  
Ports [23:0] – Transmit Data  
Bit [0]  
LED Interface  
C29  
LED_CLK/TSTOUT0  
LED_SYN/TSTOUT1  
LED_BIT/TSTOUT2  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
LED Serial Interface Output  
Clock  
D29  
E29  
LED Output Data Stream  
Envelope  
LED Serial Data Output  
Stream  
B28  
C28  
D28  
E28  
A27  
B27  
C27  
TSTOUT3  
TSTOUT4  
TSTOUT5  
TSTOUT6  
TSTOUT7  
TSTOUT8  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
INIT_DONE/TSTOUT I/O- TS with pull up  
9
System start operation  
D27  
C26  
INIT_START/TSTOU  
T10  
I/O- TS with pull up  
Start initialization  
CHECKSUM_OK/TS  
TOUT11  
I/O- TS with pull up  
EEPROM read OK  
Zarlink Semiconductor Inc.  
75  
MVTX2601AG  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
D26  
FCB_ERR/TSTOUT1  
2
I/O- TS with pull up  
FCB memory self test fail  
MCT memory self test fail  
Processing memory self test  
Memory self test done  
D25  
D24  
E24  
MCT_ERR/TSTOUT1 I/O- TS with pull up  
3
BIST_IN_PRC/TSTO  
UT14  
I/O- TS with pull up  
BIST_DONE/TSTOU  
T15  
I/O- TS with pull up  
Trunk Enable  
C22  
TRUNK0  
TRUNK1  
Input w/ weak internal  
pull down resistors  
Trunk Port Enable  
Trunk Port Enable  
A21  
Input w/ weak internal  
pull down resistors  
Test Facility  
U3  
T_MODE0  
T_MODE1  
I/O-TS  
I/O-TS  
Test Pin – Set Mode upon  
Reset, and provides NAND  
Tree test output during test  
mode (Pull Up)  
C10  
Test Pin – Set Mode upon  
Reset, and provides NAND  
Tree test output during test  
mode (Pull Up)  
T_MODE1 T_MODE0  
0
0
1
0
NandTree  
0
Reserved  
1
reserved  
1
1
Regular  
operation  
T_MODE0 and T_MODE1 are  
used for manufacturing tests.  
The signals should both be set  
to 1 for regular operation.  
F3  
SCAN_EN  
Input with pull down  
Input with pull down  
Scan Enable  
0 - Normal mode  
(unconnected)  
E27  
SCANMODE  
1 - Enables Test mode.  
0 - Normal mode  
(unconnected)  
System Clock, Power and Ground Pins  
76  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Ball No(s)  
Symbol  
I/O  
Description  
E1  
SCLK  
VDD  
Input  
System Clock at 100 MHz  
+2.5 Volt DC Supply  
K12, K13, K17,K18 M10,  
N10, M20, N20, U10,  
V10, U20, V20, Y12, Y13,  
Y17, Y18  
Power  
F13, F14, F15, F16, F17,  
N6, P6, R6, T6, U6, N24,  
P24, R24, T24, U24,  
AD13, AD14, AD15,  
AD16, AD17  
VDD33  
VSS  
Power  
+3.3 Volt DC Supply  
Ground  
M12, M13, M14, M15,  
M16, M17, M18, N12,  
N13, N14, N15, N16,  
Power Ground  
N17, N18, P12, P13, P14,  
P15, P16, P17, P18, R12,  
R13, R14, R15, R16,  
R17, R18, T12, T13, T14,  
T15, T16, T17, T18, U12,  
U13, U14, U15, U16,  
U17, U18, V12, V13, V14,  
V15, V16, V17, V18,  
F1  
AVCC  
AGND  
Analog Power  
Analog Ground  
Used for the PLL  
Used for the PLL  
D1  
MISC  
D22  
SCANCOL  
SCANCLK  
SCANLINK  
Input  
Scans the Collision signal of  
Home PHY  
D23  
E23  
Input/ output  
Input  
Clock for scanning Home PHY  
collision and link  
Link up signal from Home  
PHY  
F2  
RESIN#  
Input  
Reset Input  
Reset PHY  
G2  
RESETOUT_  
Output  
Zarlink Semiconductor Inc.  
77  
MVTX2601AG  
Data Sheet  
Ball No(s)  
Symbol  
Reserved  
I/O  
Description  
Reserved Pin  
B22, F4, F5, G4, G5, H4,  
H5, J4, J5, K4, K5, L4,  
L5, M4, M5, N4, N5, G3,  
H1, H2, H3, J1, J2, J3,  
K1, K2, K3, L1, L2, L3,  
M1, M2, M3, U4, U5, V4,  
V5, W4, W5, Y4, Y5,  
I/O-TS  
AA4, AA5, AB4, AB5,  
AC4, AC5, AD4, AD5,  
W1, Y1, Y2, Y3, AA1,  
AA2, AA3, AB1, AB2,  
AB3, AC1, AC2, AC3,  
AD1, AD2, AD3, N3, N2,  
N1, P3, P2, P1, R5, R4,  
R3, R2, R1, T5, T4, T3,  
T2, T1, W3, W2, V1, G1,  
V3, P4, P5, V2, U1, U2,  
U26, U25, V26, V25,  
W26, W25, Y27, Y26,  
AA26, AA25, AB26,  
AB25, AC26, AC25,  
AD26, AD25, T28, U28,  
R25, U29, T29, U27, V29,  
V28, V27, W29, W28,  
W27, Y29, Y28, Y25,  
AA29, AA28, AA27,  
AB29, AB28, AB27, T26,  
R26, T27, T25, P29, G26,  
G25, H26, H25, J26, J25,  
K25, K26, M25, L26,  
M26, L25, N26, N25, P26,  
P25, F28, G28, E25, G29,  
F29, G27,H29, H28, H27,  
J29, J28, J27, K29, K28,  
K27, L29, L28, L27, M29,  
M28, M27, F26, E26,  
F27, F25, N29,B24  
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)  
After reset TSTOUT0 to TSTOUT15 are used by the LED interface.  
C29  
D29  
TSTOUT0  
TSTOUT1  
Default: 1  
Reserved  
Default: Enable (1)  
RMII MAC Power Saving  
Enable  
0 - No power saving  
1 - Power saving  
E29  
B28  
C28  
TSTOUT2  
TSTOUT3  
TSTOUT4  
Default: (1)  
Default: (1)  
Default: (1)  
Reserved  
Reserved  
Reserved  
78  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Ball No(s)  
Symbol  
TSTOUT5  
I/O  
Description  
D28  
Default: SCLK (1)  
Scan Speed  
0 - ¼ SCLK(HPNA)  
1 - SCLK  
E28  
A27  
TSTOUT6  
TSTOUT7  
Default: (1)  
Reserved  
Default: 128K x 32 or  
128K x 64 (1)  
Memory Size  
0 - 256K x 32 or 256K x 64  
(4M total)  
1 - 128K x 32 or 128K x 64  
(2M total)  
B27  
C27  
D27  
C26  
TSTOUT8  
TSTOUT9  
TSTOUT10  
TSTOUT11  
Default: Not Installed  
(1)  
EEPROM Installed  
0 - EEPROM installed  
1 - EEPROM not installed  
Default: MCT aging  
enable (1)  
MCT Aging  
0 - MCT aging disable  
1 - MCT aging enable  
Default: FCB aging  
enable (1)  
FCB Aging  
0 - FCB aging disable  
1 - FCB aging enable  
Default: Timeout reset  
enable (1)  
Timeout Reset  
0 - Time out reset disable  
1 - Time out reset enable.  
Issue reset if any state  
machine did not go back to  
idle for 5 Sec.  
D26  
D25  
TSTOUT12  
TSTOUT13  
Default: Normal (1)  
Test Speed Up  
0 - Enable test speed up. Do  
not use.  
1 - Disable test speed up  
Default: Single depth  
(1)  
FDB RAM depth (1 or 2  
layers)  
0 - Two layers  
1 - One layer  
D24  
E24  
TSTOUT14  
TSTOUT15  
Default: (1)  
Reserved. Leave  
unconnected  
Default: Normal  
operation  
SRAM Test Mode  
0 - Enable test mode  
1 - Normal operation  
AD29, AG28, AJ26,  
AE26, AJ24, AE23, AJ22,  
AJ20, AE20, AJ18, AJ21,  
AJ16, AJ14, AE14, AJ12,  
AE11, AJ10, AJ8, AE8,  
AJ6, AE5, AJ4, AG1,  
AE1,  
M[23:0]_TXEN  
Default: RMII  
0 – GPSI  
1 - RMII  
Zarlink Semiconductor Inc.  
79  
MVTX2601AG  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
C21  
P_D[9]  
Default: PLL Enable  
PLL enable for LA_CLK.  
0 – Disable PLL, Use delay  
specified by P_D[15:10] strap  
option  
1 – Enable PLL  
C19, B19, A19  
C20, B20, A20  
P_D[15:13]  
P_D[12:10]  
Default: 111  
Default: 111  
Programmable delay for  
internal OE_CLK from SCLK  
input when PLL is disabled.  
The OE_CLK is used for  
generating the OE0 and OE1  
signals  
Suggested value is 001.  
Programmable delay for  
LA_CLK from internal  
OE_CLK when PLL is diabled.  
The LA_CLK delay from SCLK  
is the sum of the delay  
programmed in here and the  
delay in P_D[15:13].  
Suggested value is 011.  
Notes:  
Active low signal  
Input signal  
# =  
Input =  
In-ST =  
Output =  
Input signal with Schmitt-Trigger  
Output signal (Tri-State driver)  
Output signal with Open-Drain driver  
Out-OD=  
I/O-TS =  
I/O-OD =  
Input & Output signal with Tri-State driver  
Input & Output signal with Open-Drain driver  
80  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
13.3  
Ball – Signal Name  
Ball  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
No.  
D20  
B21  
D19  
E19  
D18  
E18  
D17  
E17  
D16  
E16  
D15  
E15  
D14  
E14  
D13  
E13  
D21  
E21  
A18  
B18  
C18  
A17  
B17  
C17  
A16  
B16  
C16  
A15  
B15  
LA_D[63]  
LA_D[62]  
LA_D[61]  
LA_D[60]  
LA_D[59]  
LA_D[58]  
LA_D[57]  
LA_D[56]  
LA_D[55]  
LA_D[54]  
LA_D[53]  
LA_D[52]  
LA_D[51]  
LA_D[50]  
LA_D[49]  
LA_D[48]  
LA_D[47]  
LA_D[46]  
LA_D[45]  
LA_D[44]  
LA_D[43]  
LA_D[42]  
LA_D[41]  
LA_D[40]  
LA_D[39]  
LA_D[38]  
LA_D[37]  
LA_D[36]  
LA_D[35]  
D3  
E3  
LA_D[19]  
LA_D[18]  
LA_D[17]  
LA_D[16]  
LA_D[15]  
LA_D[14]  
LA_D[13]  
LA_D[12]  
LA_D[11]  
LA_D[10]  
LA_D[9]  
LA_D[8]  
LA_D[7]  
LA_D[6]  
LA_D[5]  
LA_D[4]  
LA_D[3]  
LA_D[2]  
LA_D[1]  
LA_D[0]  
LA_A[20]  
LA_A[19]  
LA_A[18]  
LA_A[17]  
LA_A[16]  
LA_A[15]  
LA_A[14]  
LA_A[13]  
LA_A[12]  
A9  
B9  
F4  
F5  
G4  
G5  
H4  
H5  
J4  
LA_OE0#  
LA_OE1#  
D2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
E2  
A7  
B7  
A6  
B6  
C6  
A5  
J5  
B5  
K4  
K5  
L4  
L5  
M4  
M5  
N4  
N5  
G3  
H1  
H2  
H3  
J1  
C5  
A4  
B4  
C4  
A3  
B3  
C3  
B2  
C2  
C14  
A13  
B13  
C13  
A12  
B12  
C12  
A11  
B11  
J2  
J3  
K1  
K2  
K3  
L1  
Zarlink Semiconductor Inc.  
81  
MVTX2601AG  
Data Sheet  
Ball  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
No.  
C15  
A14  
B14  
D9  
LA_D[34]  
LA_D[33]  
C11  
D11  
E11  
LA_A[11]  
LA_A[10]  
L2  
L3  
RESERVED  
RESERVED  
LA_D[32]  
LA_A[9]  
M1  
RESERVED  
LA_D[31]  
A10  
B10  
D10  
E10  
A8  
LA_A[8]  
M2  
RESERVED  
E9  
LA_D[30]  
LA_A[7]  
M3  
RESERVED  
D8  
LA_D[29]  
LA_A[6]  
U4  
RESERVED  
E8  
LA_D[28]  
LA_A[5]  
U5  
RESERVED  
D7  
LA_D[27]  
LA_A[4]  
V4  
RESERVED  
E7  
LA_D[26]  
C7  
LA_A[3]  
V5  
RESERVED  
D6  
LA_D[25]  
B8  
LA_DSC#  
LA_CLK  
W4  
RESERVED  
E6  
LA_D[24]  
C1  
W5  
RESERVED  
D5  
LA_D[23]  
C9  
LA_WE#  
Y4  
RESERVED  
E5  
LA_D[22]  
D12  
E12  
C8  
LA_WE0#  
LA_WE1#  
LA_OE#  
Y5  
RESERVED  
D4  
LA_D[21]  
AA4  
AA5  
AH7  
AE6  
AH5  
AH2  
AF2  
AC27  
AF29  
AG27  
AF26  
AG25  
AG23  
AF23  
AG21  
AH21  
AF19  
AF17  
RESERVED  
E4  
LA_D[20]  
RESERVED  
AB4  
AB5  
AC4  
AC5  
AD4  
AD5  
W1  
Y1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
U2  
RESERVED  
MDC  
M[4]_RXD[0]  
M[3]_RXD[0]  
M[2]_RXD[0]  
M[1]_RXD[0]  
M[0]_RXD[0]  
M[23]_CRS_DV  
M[22]_CRS_DV  
M[21]_CRS_DV  
M[20]_CRS_DV  
M[19]_CRS_DV  
M[18]_CRS_DV  
M[17]_CRS_DV  
M[16]_CRS_DV  
M[15]_CRS_DV  
M[14]_CRS_DV  
M[13]_CRS_DV  
R28  
P28  
R29  
AC29  
AE28  
AJ27  
AF27  
AJ25  
AF24  
AH23  
AE19  
AF21  
AJ19  
AF18  
AJ17  
MDIO  
M_CLK  
M[23]_RXD[1]  
M[22]_RXD[1]  
M[21]_RXD[1]  
M[20]_RXD[1]  
M[19]_RXD[1]  
M[18]_RXD[1]  
M[17]_RXD[1]  
M[16]_RXD[1]  
M[15]_RXD[1]  
M[14]_RXD[1]  
M[13]_RXD[1]  
M[12]_RXD[1]  
Y2  
Y3  
AA1  
AA2  
AA3  
AB1  
AB2  
AB3  
82  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Ball  
No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AC1  
AC2  
AC3  
AD1  
AD2  
AD3  
N3  
N2  
N1  
P3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
AJ15  
AF15  
AJ13  
AF12  
AJ11  
AJ9  
M[11]_RXD[1]  
M[10]_RXD[1]  
M[9]_RXD[1]  
M[8]_RXD[1]  
M[7]_RXD[1]  
M[6]_RXD[1]  
M[5]_RXD[1]  
M[4]_RXD[1]  
M[3]_RXD[1]  
M[2]_RXD[1]  
M[1]_RXD[1]  
M[0]_RXD[1]  
M[23]_RXD[0]  
M[22]_RXD[0]  
M[21]_RXD[0]  
M[20]_RXD[0]  
M[19]_RXD[0]  
M[18]_RXD[0]  
M[17]_RXD[0]  
M[16]_RXD[0]  
M[15]_RXD[0]  
M[14]_RXD[0]  
M[13]_RXD[0]  
M[12]_RXD[0]  
M[11]_RXD[0]  
M[10]_RXD[0]  
M[9]_RXD[0]  
M[8]_RXD[0]  
M[7]_RXD[0]  
M[6]_RXD[0]  
M[5]_RXD[0]  
AG17  
AG15  
AF14  
AG13  
AF11  
AG11  
AG9  
M[12]_CRS_DV  
M[11]_CRS_DV  
M[10]_CRS_DV  
M[9]_CRS_DV  
M[8]_CRS_DV  
M[7]_CRS_DV  
M[6]_CRS_DV  
M[5]_CRS_DV  
M[4]_CRS_DV  
M[3]_CRS_DV  
M[2]_CRS_DV  
M[1]_CRS_DV  
M[0]_CRS_DV  
M[23]_TXEN  
M[22]_TXEN  
M[21]_TXEN  
M[20]_TXEN  
M[19]_TXEN  
M[18]_TXEN  
M[17]_TXEN  
M[16]_TXEN  
M[15]_TXEN  
M[14]_TXEN  
M[13]_TXEN  
M[12]_TXEN  
M[11]_TXEN  
M[10]_TXEN  
M[9]_TXEN  
AF9  
AJ7  
AF8  
AF6  
AG7  
AJ5  
AF5  
P2  
AJ3  
AG5  
P1  
AF1  
AH3  
R5  
R4  
R3  
R2  
R1  
T5  
AC28  
AF28  
AH27  
AE27  
AH25  
AE24  
AF22  
AF20  
AE21  
AH19  
AH20  
AH17  
AH15  
AE15  
AH13  
AE12  
AH11  
AH9  
AF3  
AD29  
AG28  
AJ26  
AE26  
AJ24  
AE23  
AJ22  
AJ20  
AE20  
AJ18  
AJ21  
AJ16  
AJ14  
AE14  
AJ12  
AE11  
AJ10  
AJ8  
T4  
T3  
T2  
T1  
W3  
W2  
V1  
G1  
V3  
P4  
P5  
M[8]_TXEN  
V2  
M[7]_TXEN  
U1  
AE9  
M[6]_TXEN  
Zarlink Semiconductor Inc.  
83  
MVTX2601AG  
Data Sheet  
Ball  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
No.  
AE8  
AJ6  
M[5]_TXEN  
M[4]_TXEN  
AH8  
AF7  
M[6]_TXD[0]  
M[5]_TXD[0]  
M[4]_TXD[0]  
M[3]_TXD[0]  
M[2]_TXD[0]  
M[1]_TXD[0]  
M[0]_TXD[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
G27  
H29  
H28  
H27  
J29  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
AE5  
M[3]_TXEN  
AH6  
AF4  
AJ4  
M[2]_TXEN  
AG1  
M[1]_TXEN  
AH4  
AG2  
AE2  
U26  
AE1  
M[0]_TXEN  
J28  
AD27  
AH28  
AG26  
AE25  
AG24  
AE22  
AJ23  
AG20  
AE18  
AG18  
AE16  
AG16  
AG14  
AE13  
AG12  
AE10  
AG10  
AG8  
M[23]_TXD[1]  
M[22]_TXD[1]  
M[21]_TXD[1]  
M[20]_TXD[1]  
M[19]_TXD[1]  
M[18]_TXD[1]  
M[17]_TXD[1]  
M[16]_TXD[1]  
M[15]_TXD[1]  
M[14]_TXD[1]  
M[13]_TXD[1]  
M[12]_TXD[1]  
M[11]_TXD[1]  
M[10]_TXD[1]  
M[9]_TXD[1]  
M[8]_TXD[1]  
M[7]_TXD[1]  
M[6]_TXD[1]  
M[5]_TXD[1]  
M[4]_TXD[1]  
M[3]_TXD[1]  
M[2]_TXD[1]  
M[1]_TXD[1]  
M[0]_TXD[1]  
M[23]_TXD[0]  
J27  
K29  
K28  
K27  
L29  
L28  
L27  
M29  
M28  
M27  
G26  
G25  
H26  
H25  
J26  
U25  
V26  
V25  
W26  
W25  
Y27  
Y26  
AA26  
AA25  
AB26  
AB25  
AC26  
AC25  
AD26  
AD25  
U27  
J25  
K25  
K26  
M25  
L26  
M26  
L25  
N26  
N25  
P26  
AE7  
V29  
AG6  
V28  
AE4  
V27  
AG4  
W29  
W28  
W27  
Y29  
AG3  
AE3  
AD28  
84  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Ball  
No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AG29  
AH26  
AF25  
AH24  
AG22  
AH22  
AE17  
AG19  
AH18  
AF16  
AH16  
AH14  
AF13  
AH12  
M[22]_TXD[0]  
M[21]_TXD[0]  
M[20]_TXD[0]  
M[19]_TXD[0]  
M[18]_TXD[0]  
M[17]_TXD[0]  
M[16]_TXD[0]  
M[15]_TXD[0]  
M[14]_TXD[0]  
M[13]_TXD[0]  
M[12]_TXD[0]  
M[11]_TXD[0]  
M[10]_TXD[0]  
M[9]_TXD[0]  
Y28  
Y25  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
P25  
F28  
G28  
E25  
G29  
F29  
F26  
E26  
F25  
E24  
D24  
D25  
D26  
C26  
RESERVED  
RESERVED  
AA29  
AA28  
AA27  
AB29  
AB28  
AB27  
R26  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
T25  
BIST_DONE/TSTOUT[15]  
BIST_IN_PRC/TST0UT[14]  
MCT_ERR/TSTOUT[13]  
FCB_ERR/TSTOUT[12]  
T26  
T28  
U28  
R25  
CHECKSUM_OK/TSTOUT[  
11]  
AF10  
AH10  
B27  
M[8]_TXD[0]  
M[7]_TXD[0]  
TSTOUT[8]  
TSTOUT[7]  
TSTOUT[6]  
TSTOUT[5]  
TSTOUT[4]  
TSTOUT[3]  
U29  
T29  
U18  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
N14  
N15  
N16  
N17  
N18  
P12  
RESERVED  
RESERVED  
VSS  
D27  
C27  
N12  
N13  
K17  
K18  
M10  
N10  
M20  
N20  
U10  
V10  
U20  
V20  
Y12  
Y13  
INIT_START/TSTOUT[10]  
INIT_DONE/TSTOUT[9]  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
A27  
VSS  
E28  
VSS  
D28  
C28  
B28  
VSS  
VSS  
VSS  
E29  
D29  
C29  
N29  
P29  
F3  
LED_BIT/TSTOUT[2]  
LED_SYN/TSTOUT[1]  
LED_CLK/TSTOUT[0]  
RESERVED  
VSS  
VSS  
VSS  
VSS  
RESERVED  
VSS  
SCAN_EN  
VSS  
E1  
SCLK  
VSS  
U3  
T_MODE0  
VSS  
Zarlink Semiconductor Inc.  
85  
MVTX2601AG  
Data Sheet  
Ball  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
No.  
C10  
B24  
A21  
C22  
A26  
B26  
C25  
A24  
A25  
F1  
T_MODE1  
RESERVED  
TRUNK1  
TRUNK0  
STROBE  
D0  
P13  
P14  
P15  
P16  
C19  
B19  
A19  
R13  
R14  
R15  
R16  
R17  
R18  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
U12  
U13  
U14  
U15  
U16  
U17  
M12  
M13  
M14  
M15  
P17  
VSS  
VSS  
Y17  
Y18  
K12  
K13  
M16  
M17  
M18  
F16  
F17  
N6  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
RESERVED  
RESERVED  
RESERVED  
VSS  
VSS  
VSS  
AUTOFD  
SCL  
VSS  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
SDA  
VSS  
AVCC  
VSS  
D1  
AGND  
VSS  
P6  
D22  
E23  
E27  
N28  
N27  
F2  
SCANCOL  
SCANLINK  
SCANMODE  
VSS  
R6  
VSS  
T6  
VSS  
U6  
VSS  
N24  
P24  
R24  
T24  
U24  
AD13  
AD14  
AD15  
AD16  
AD17  
F13  
F14  
F15  
VSS  
RESIN#  
RESETOUT_  
Reserved  
VSS  
G2  
VSS  
B22  
A22  
C23  
B23  
A23  
C24  
D23  
T27  
F27  
C20  
B20  
A20  
C21  
VSS  
Reserved  
VSS  
Reserved  
VSS  
Reserved  
VSS  
Reserved  
VSS  
RESERVED  
SCANCLK  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
86  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
Ball  
No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
E20  
B25  
RESERVED  
RESERVED  
P18  
R12  
VSS  
VSS  
13.4  
AC/DC Timing  
13.4.1 Absolute Maximum Ratings  
Storage Temperature-65°C to +150°C  
Operating Temperature-40°C to +85°C  
Supply Voltage VDD33 with Respect to VSS+3.0 V to +3.6 V  
Supply Voltage VDD with Respect to VSS +2.38 V to +2.75 V  
Voltage on Input Pins-0.5 V to (VDD33 + 3.3 V)  
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for  
extended periods may affect device reliability. Functionality at or above these limits is not implied.  
13.4.2 DC Electrical Characteristics  
VDD33 = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40°C to +85°C  
VDD = 2.5V +10% - 5%  
Zarlink Semiconductor Inc.  
87  
MVTX2601AG  
Data Sheet  
13.4.3 Recommended Operation Conditions  
Preliminary  
Symbol  
fosc  
IDD1  
IDD2  
VOH  
Parameter Description  
Frequency of Operation  
Supply Current – @ 100 MHz (VDD33=3.3 V)  
Supply Current – @ 100 MHz (VDD=2.5 V)  
Output High Voltage (CMOS)  
Unit  
Min  
Typ  
Max  
100  
MHz  
mA  
mA  
V
450  
1500  
VDD33 -  
0.5  
VOL  
VIH-TTL  
Output Low Voltage (CMOS)  
Input High Voltage (TTL 5V tolerant)  
0.5  
V
V
VDD33 x  
70%  
VDD33 +  
2.0  
VIL-TTL  
IIH-5VT  
Input Low Voltage (TTL 5V tolerant)  
VDD33 x  
30%  
V
Input Leakage Current (0.1 V < VIN < VDD33)(all  
pins except those with internal pull-up/pull-down  
resistors)  
10  
µA  
CIN  
COUT  
CI/O  
θja  
θja  
θja  
Input Capacitance  
Output Capacitance  
I/O Capacitance  
Thermal resistance with 0 air flow  
Thermal resistance with 1 m/s air flow  
Thermal resistance with 2m/s air flow  
5
5
7
11.2  
10.2  
8.9  
pF  
pF  
pF  
C/W  
C/W  
C/W  
88  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
13.5  
Local Frame Buffer SBRAM Memory Interface  
13.5.1 Local SBRAM Memory Interface:  
LA_CLK  
L1  
L2  
LA_D[63:0]  
Figure 15 - Local Memory Interface – Input setup and hold timing  
LA_CLK  
L3-max  
L3-min  
LA_D[63:0]  
L4-max  
L4-min  
LA_A[20:3]  
L6-max  
L6-min  
LA_ADSC#]  
L3-max  
L3-min  
LA_WE[1:0]#  
####  
L3-max  
L3-min  
LA_OE[1:0]#  
L3-max  
L3-min  
LA_WE#  
L3-max  
L3-min  
LA_OE#  
Figure 16 - Local Memory Interface - Output valid delay timing  
AC Characteristics – Local frame buffer SBRAM Memory Interface  
-100MHz  
Symbol  
Parameter  
Note:  
Min (ns)  
Max (ns)  
L1  
LA_D[63:0] input set-up time  
LA_D[63:0] input hold time  
LA_D[63:0] output valid delay  
LA_A[20:3] output valid delay  
LA_ADSC# output valid delay  
4
1.5  
1.5  
2
L2  
L3  
L4  
L6  
7
7
7
CL = 25pf  
CL = 30pf  
CL = 30pf  
1
Zarlink Semiconductor Inc.  
89  
MVTX2601AG  
Data Sheet  
AC Characteristics – Local frame buffer SBRAM Memory Interface  
L7  
LA_WE[1:0]#output valid delay  
LA_OE[1:0]# output valid delay  
LA_WE# output valid delay  
LA_OE# output valid delay  
1
-1  
1
7
1
7
5
CL = 25pf  
L8  
CL = 25pf  
CL = 25pf  
CL = 25pf  
L9  
L10  
1
M_CLKI  
M6-max  
M6-min  
M[23:0]_TXEN  
M7-max  
M7-min  
M[23:0]_TXD[1:0]  
Figure 17 - AC Characteristics – Reduced media independent Interface  
M_CLKI  
M2  
M[23:0]_RXD  
M3  
M4  
M[23:0]_CRS_DV  
M5  
Figure 18 - AC Characteristics – Reduced Media Independent Interface  
13.6  
AC Characteristics  
13.6.1 Reduced Media Independent Interface  
-50MHz  
Symbol  
M2  
Parameter  
Note:  
Min (ns)  
Max (ns)  
M[23:0]_RXD[1:0] Input Setup Time  
M[23:0]_RXD[1:0] Input Hold Time  
M[23:0]_CRS_DV Input Setup Time  
M[23:0]_CRS_DV Input Hold Time  
M[23:0]_TXEN Output Delay Time  
M[23:0]_TXD[1:0] Output Delay Time  
4
1
4
1
2
2
M3  
M4  
M5  
M6  
M7  
11  
11  
CL = 20 pF  
CL = 20 pF  
Table 10 - AC Characteristics – Reduced Media Independent Interface  
90  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
13.6.2 LED Interface  
LED_CLK  
LE5-max  
LE5-min  
LED_SYN  
LED_BIT  
LE6-max  
LE6-min  
Figure 19 - AC Characteristics – LED Interface  
Variable FREQ.  
Parameter  
Symbol  
Note:  
Min (ns)  
Max (ns)  
LE5  
LE6  
LED_SYN Output Valid Delay  
LED_BIT Output Valid Delay  
-1  
-1  
7
7
CL = 30pf  
CL = 30pf  
Table 10 - AC Characteristics – LED Interface  
13.6.3 SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C5-max  
C5-min  
SCANLINK  
SCANCOL  
C7-max  
C7-min  
Figure 20 - SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C1  
C2  
SCANLINK  
C3  
SCANCOL  
C4  
Figure 21 - SCANLINK, SCANCOL Setup Timing  
Zarlink Semiconductor Inc.  
91  
MVTX2601AG  
Data Sheet  
-25MHz  
Symbol  
Parameter  
Note:  
Min (ns)  
Max (ns)  
C1  
C2  
C3  
C4  
C5  
C7  
SCANLINK input set-up time  
SCANLINK input hold time  
SCANCOL input setup time  
SCANCOL input hold time  
SCANLINK output valid delay  
SCANCOL output valid delay  
20  
2
20  
1
0
10  
10  
CL = 30pf  
CL = 30pf  
0
Table 10 - SCANLINK, SCANCOL Timing  
13.6.4 MDIO Input Setup and Hold Timing  
MDC  
D1  
D3  
MDIO  
Figure 22 - MDIO Input Setup and Hold Timing  
MDC  
D3-max  
D3-min  
MDIO  
Figure 23 - MDIO Output Delay Timing  
1MHz  
Symbol  
D1  
Parameter  
Min (ns)  
10  
Max (ns)  
20  
Note:  
MDIO input setup time  
D2  
D3  
MDIO input hold time  
2
1
MDIO output delay time  
CL = 50pf  
Table 10 - MDIO Timing  
92  
Zarlink Semiconductor Inc.  
Data Sheet  
MVTX2601AG  
2
13.6.5  
I C Input Setup Timing  
SCL  
S1  
S2  
SDA  
Figure 24 - I2C Input Setup Timing  
SCL  
S3-max  
S3-min  
SDA  
Figure 25 - I2C Output Delay Timing  
50KHz  
Symbol  
Parameter  
Min (ns)  
Max (ns)  
Note:  
S1  
SDA input setup time  
SDA input hold time  
SDA output delay time  
20  
1
S2  
S3*  
4 usec  
6 usec  
CL = 30pf  
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.  
Table 10 - I2C Timing  
Zarlink Semiconductor Inc.  
93  
MVTX2601AG  
Data Sheet  
13.6.6 Serial Interface Setup Timing  
STROBE  
D4  
D5  
D1  
D2  
D2  
D1  
D0  
Figure 26 - Serial Interface Setup Timing  
STROBE  
D3-max  
D3-min  
AutoFd  
Figure 27 - Serial Interface Output Delay Timing  
Symbol  
D1  
Parameter  
Note:  
Min (ns)  
Max (ns)  
D0 setup time  
20  
3µs  
1
D2  
D3  
D4  
D5  
D0 hold time  
AutoFd output delay time  
Strobe low time  
Strobe high time  
50  
CL = 100pf  
5µs  
5µs  
Table 10 - Serial Interface Timing  
94  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively  
“Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the  
application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may  
result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under  
patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified  
that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property  
rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2601AG

Unmanaged 24-Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2601AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, MS-034, HSBGA-553
MICROSEMI

MVTX2601AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FRFEE, MS-034, HSBGA-553
MICROSEMI

MVTX2602

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602A

MVTX260x Port Mirroring
ETC

MVTX2602AG

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI

MVTX2603

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
ZARLINK

MVTX2603A

Unmanaged 24 port 10/100Mb + 2 port 1Gb Ethernet switch
ETC

MVTX2603AG

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
ZARLINK

MVTX2603AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, MS-034, HSBGA-553
MICROSEMI

MVTX2603AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI