NB100LVEP56/D [ETC]

2.5 V / 3.3 V 5 V ECL Dual Differential 2:1 Multiplexer ; 2.5 V / 3.3 V,5 V ECL双差分2 : 1多路复用器\n
NB100LVEP56/D
型号: NB100LVEP56/D
厂家: ETC    ETC
描述:

2.5 V / 3.3 V 5 V ECL Dual Differential 2:1 Multiplexer
2.5 V / 3.3 V,5 V ECL双差分2 : 1多路复用器\n

复用器
文件: 总12页 (文件大小:96K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB100LVEP56  
2.5V / 3.3V / 5VꢀECL Dual  
Differential 2:1 Multiplexer  
The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The  
differential data path makes the device ideal for multiplexing low  
skew clock or differential data signals. The device features both  
individual and common select inputs to address both data path and  
random logic applications. Common and individual selects can accept  
http://onsemi.com  
MARKING  
both ECL and CMOS input voltage levels. Multiple V pins are  
BB  
DIAGRAMS*  
provided.  
The V pin, an internally generated voltage supply, is available to  
this device only. For single-ended input operation, the unused  
BB  
20  
20  
differential input is connected to V as a switching reference voltage.  
BB  
1
N100  
LP56  
ALYW  
V
BB  
may also rebias AC coupled inputs. When used, decouple V  
BB  
TSSOP-20  
DT SUFFIX  
CASE 948E  
and V via a 0.01 mF capacitor and limit current sourcing or sinking  
CC  
to 0.5 mA. When not used, V should be left open.  
BB  
1
Maximum Input Clock Frequency > 2.5 GHz Typical  
Maximum Input Data Rate > 2.5 Gb/s Typical  
24  
1
525 ps Typical Propagation Delays  
Low Profile QFN Package  
N100  
LP56  
ALYW  
24  
1
24 PIN QFN  
MN SUFFIX  
CASE 485L  
PECL Mode Operating Range: V = 2.375 V to 5.5 V  
CC  
with V = 0 V  
EE  
NECL Mode Operating Range: V = 0 V  
CC  
A
L
Y
= Assembly Location  
= Wafer Lot  
= Year  
with V = -2.375 V to -5.5 V  
EE  
Separate, Common Select, and Individual Select  
W = Work Week  
(Compatible with ECL and CMOS Input Voltage Levels)  
Q Output Will Default LOW with Inputs Open or at V  
EE  
*For additional information, see Application Note  
AND8002/D  
Multiple V Outputs  
BB  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB100LVEP56DT  
TSSOP-20  
75 Units/Rail  
NB100LVEP56DTR2 TSSOP-20 2500 Tape & Reel  
NB100LVEP56MN QFN-24 92 Units/Rail  
NB100LVEP56MNR2 QFN-24 3000 Tape & Reel  
Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
April, 2003 - Rev. 3  
NB100LVEP56/D  
NB100LVEP56  
Table 1. PIN DESCRIPTION  
Pin No.  
Default  
State  
TSSOP  
QFN  
Name  
I/O  
Description  
14,20  
3,9,18,19,  
20  
V
CC  
-
-
Positive Supply Voltage. All VCC Pins must be Externally Con-  
nected to Power Supply to Guarantee Proper Operation.  
11  
3,8  
1
15,24  
6,12  
4
V
-
-
Negative Supply Voltage. All VEE Pins must be Externally Con-  
nected to Power Supply to Guarantee Proper Operation.  
EE  
V
BB0  
,
-
-
ECL Reference Voltage Output  
V
BB1  
D0a  
ECL Input  
ECL Input  
ECL Input  
ECL Input  
ECL Input  
ECL Input  
ECL Input  
ECL Input  
ECL Output  
ECL Output  
ECL Output  
ECL Output  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
-
Noninverted Differential Data a Input to MUX 0. Internal 75 kW to  
V
EE  
.
2
5
D0a  
Inverted Differential Data a Input to MUX 0. Internal 75 kW to V  
EE  
and 37 kW to V  
.
CC  
4
7
D0b  
Noninverted Differential Data b Input to MUX 0. Internal 75 kW to  
V
EE  
.
5
8
D0b  
Inverted Differential Data b Input to MUX 0. Internal 75 kW to V  
EE  
and 37 kW to V  
.
CC  
6
10  
11  
13  
14  
2
D1a  
Noninverted Differential Data a Input to MUX 1. Internal 75 kW to  
V
EE  
.
7
D1a  
Inverted Differential Data a Input to MUX 1. Internal 75 kW to V  
EE  
and 37 kW to V  
.
CC  
9
D1b  
Noninverted Differential Data b Input to MUX 1. Internal 75 kW to  
V
EE  
.
10  
19  
18  
13  
12  
17  
16  
15  
N/A  
D1b  
Inverted Differential Data b Input to MUX 1. Internal 75 kW to V  
EE  
and 37 kW to V  
.
CC  
Q0  
Noninverted Differential Output MUX 0. Typically Terminated with  
50 W to V = V - 2 V.  
TT  
CC  
1
Q0  
-
Inverted Differential Output MUX 0. Typically Terminated with  
50 W to V = V - 2 V.  
TT  
CC  
17  
16  
23  
22  
21  
-
Q1  
-
Noninverted Differential Output MUX 1. Typically Terminated with  
50 W to V = V - 2 V.  
TT  
CC  
Q1  
-
Inverted Differential Output MUX 1. Typically Terminated with  
50 W to V = V - 2 V.  
TT  
CC  
SEL0  
COM_SEL  
SEL1  
EP  
ECL, CMOS  
Input  
Low  
Low  
Low  
Noninverted Differential Select Input to MUX 0. Internal 75 W to  
V
EE  
.
ECL, CMOS  
Input  
Noninverted Differential Common Select Input to Both MUX. In-  
ternal 75 W to V  
.
EE  
ECL, CMOS  
Input  
Noninverted Differential Select Input to MUX 1. Internal 75 W to  
V
EE  
.
-
Exposed Pad. (Note 1)  
1. The thermally conductive exposed pad on the package bottom (see case drawing) must be attached to a heat sinking conduit.  
http://onsemi.com  
2
NB100LVEP56  
D0a  
R
1
1
1
R
R
2
2
Q0  
Q0  
D0a  
R
D0b  
0
Table 2. TRUTH TABLE  
R
1
1
SEL0  
SEL0  
SEL1  
COM_SEL Q0, Q0  
Q1, Q1  
R
R
R
1
1
1
D0b  
R
X
L
L
H
H
X
L
H
H
L
H
L
L
L
L
a
b
b
a
a
a
b
a
a
b
COM_SEL  
SEL1  
D1a  
R
1
1
1
R
R
2
2
D1a  
Q1  
Q1  
R
D1b  
0
R
1
1
V
CC  
V
EE  
D1b  
R
Exposed Pad  
(EP)  
COM  
SEL  
Figure 1. Logic Diagram  
V
EE  
SEL0  
SEL1 V  
V
CC CC  
24  
23  
22  
21  
20  
19  
Q0  
Q0  
1
2
3
4
5
6
18  
V
CC  
20 19 18 17 16 15 14 13 12  
11  
17 Q1  
16  
15  
14  
13  
V
CC  
Q1  
NB100LVEP56  
NB100LVEP56  
D0a  
V
EE  
D1b  
D1b  
D0a  
1
2
3
4
5
6
7
8
9
10  
V
BB0  
7
8
9
10  
11  
12  
D0b D0b V  
D1a D1a V  
CC  
BB1  
Figure 1. TSSOP-20 Lead Pinout (Top View)  
Figure 2. QFN-24 Lead Pinout (Top View)  
Table 3. ATTRIBUTES  
Characteristics  
Value  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
ESD Protection  
(R1)  
(R2)  
75 kW  
37 kW  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 150 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Level 1  
Flammability Rating  
Transistor Count  
Oxygen Index: 28 to 34  
UL 94 V-0 @ 0.125 in  
354 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
http://onsemi.com  
3
NB100LVEP56  
Table 4. MAXIMUM RATINGS (Note 2)  
Symbol Parameter  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
CC  
V
EE  
V
I
Positive Mode Power Supply  
Negative Mode Power Supply  
V
V
6
EE  
= 0 V  
-6  
V
CC  
Positive Mode Input Voltage  
Negative Mode Input Voltage  
V
EE  
V
CC  
= 0 V  
= 0 V  
V v V  
6
-6  
V
V
I
CC  
EE  
V w V  
I
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
I
V
Sink/Source  
"0.5  
mA  
°C  
BB  
BB  
T
Operating Temperature Range  
Storage Temperature Range  
-40 to +85  
-65 to +150  
A
T
°C  
stg  
q
Thermal Resistance (Junction-to-Ambient)  
JEDEC 51-3 (1S - Single Layer Test Board)  
0 LFPM  
500 LFPM  
20 TSSOP  
20 TSSOP  
140  
50  
°C/W  
°C/W  
JA  
q
Thermal Resistance (Junction-to-Ambient)  
JEDEC 51-6 (2S2P-Multi Layer Test Board) with Filled Thermal  
Vias  
0 LFPM  
500 LFPM  
24 QFN  
24 QFN  
37  
32  
°C/W  
°C/W  
JA  
q
Thermal Resistance (Junction-to-Case)  
Standard Board  
20 TSSOP  
24 QFN  
23 to 41  
11  
°C/W  
°C  
JC  
T
sol  
Wave Solder  
<2 to 3 sec @ 248°C  
265  
2. Maximum Ratings are those values beyond which device damage may occur.  
Table 5. DC CHARACTERISTICS, PECL V = 2.5 V, V = 0 V (Note 3)  
CC  
EE  
-40 °C  
Typ  
45  
25°C  
85°C  
Min  
Max  
Min  
Typ  
Max  
55  
Min  
Typ  
Max  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 4)  
Output LOW Voltage (Note 4)  
Unit  
mA  
mV  
mV  
mV  
I
EE  
35  
55  
35  
45  
35  
48  
58  
V
OH  
V
OL  
V
IH  
1355 1480 1605 1355 1480 1605 1355 1480 1605  
555  
775  
900  
555  
775  
900  
555  
775  
900  
Input HIGH Voltage (SEL0, SEL1, COM_SEL) 1335  
V
CC  
1335  
V
CC  
1275  
V
CC  
1335  
1620 1335  
1620 1275  
1620  
Input HIGH Voltage (D Inputs) (Note 5)  
V
V
Input LOW Voltage (SEL0, SEL1, COM_SEL)  
Input LOW Voltage (D Inputs) (Note 5)  
V
555  
875  
875  
V
555  
875  
875  
V
EE  
555  
875  
875  
mV  
V
IL  
EE  
EE  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 6)  
1.2  
2.5  
1.2  
2.5  
1.2  
2.5  
IHCMR  
I
I
Input HIGH Current (@V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@V )  
D
D
SEL  
0.5  
-150  
-150  
0.5  
-150  
-150  
0.5  
-150  
-150  
IL  
IL  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
3. Input and output parameters vary 1:1 with V . V can vary +0.125 V to -1.3 V.  
CC  
EE  
4. All loading with 50 W to V -2.0 V.  
CC  
5. Do not use V at V < 3.0 V.  
BB  
CC  
6. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
4
NB100LVEP56  
Table 6. DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 7)  
CC  
EE  
-40 °C  
Typ  
45  
25°C  
Typ  
45  
85°C  
Typ  
Min  
Max  
Min  
Max  
Min  
Max  
58  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 8)  
Output LOW Voltage (Note 8)  
Unit  
mA  
mV  
mV  
mV  
I
EE  
35  
55  
35  
55  
35  
48  
V
OH  
V
OL  
V
IH  
2155 2280 2405 2155 2280 2405 2155  
1355 1575 1700 1355 1575 1700 1355  
2280  
1575  
2405  
1700  
Input HIGH Voltage (SEL0, SEL1, COM_SEL)  
Input HIGH Voltage (D Inputs)  
2135  
2135  
V
CC  
2135  
V
CC  
2135  
V
CC  
2420  
2420 2135  
2420 2135  
V
IL  
Input LOW Voltage (SEL0, SEL1, COM_SEL)  
Input LOW Voltage (D Inputs)  
V
1355  
1675  
1675 1355  
V
1675  
1675 1355  
V
1675  
1675  
mV  
EE  
EE  
EE  
V
V
Output Reference Voltage (Note 9)  
1775 1875 1975 1775 1875 1975 1775  
1875  
1975  
3.3  
mV  
V
BB  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 10)  
1.2  
3.3  
1.2  
3.3  
1.2  
IHCMR  
I
I
Input HIGH Current (@V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@V )  
D
D
SEL  
0.5  
-150  
-150  
0.5  
-150  
-150  
0.5  
-150  
-150  
IL  
IL  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
7. Input and output parameters vary 1:1 with V . V can vary +0.925 V to -0.5 V.  
CC  
EE  
8. All loading with 50 W to V -2.0 V.  
CC  
9. Single-Ended input operation is limited to V 3.0 V in PECL mode.  
CC  
10.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 7. DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 11)  
CC  
EE  
-40 °C  
Typ  
50  
25°C  
Typ  
50  
85°C  
Typ  
Min  
Max  
Min  
Max  
Min  
Max  
65  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 12)  
Output LOW Voltage (Note 12)  
Unit  
mA  
mV  
mV  
mV  
I
EE  
40  
60  
40  
60  
45  
55  
V
OH  
V
OL  
V
IH  
3855 3980 4105 3855 3980 4105 3855  
3055 3275 3400 3055 3275 3400 3055  
3980  
3275  
4105  
3400  
Input HIGH Voltage (SEL0, SEL1, COM_SEL)  
Input HIGH Voltage (D Inputs)  
3775  
3775  
V
CC  
3775  
V
CC  
3775  
V
CC  
4120  
4120 3775  
4120 3775  
V
IL  
Input LOW Voltage (SEL0, SEL1, COM_SEL)  
Input LOW Voltage (D Inputs)  
V
3055  
3375  
3375 3055  
V
3375  
3375 3055  
V
3375  
3375  
mV  
EE  
EE  
EE  
V
V
Output Voltage Reference  
3475 3575 3675 3475 3575 3675 3475  
3575  
3675  
5.0  
mV  
V
BB  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 13)  
1.2  
5.0  
1.2  
5.0  
1.2  
IHCMR  
I
I
Input HIGH Current (@V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@V )  
D
D
SEL  
0.5  
-150  
-150  
0.5  
-150  
-150  
0.5  
-150  
-150  
IL  
IL  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
11. Input and output parameters vary 1:1 with V . V can vary +2.0 V to -0.5 V.  
CC  
EE  
12.All loading with 50 ohms to V -2.0 V.  
CC  
13.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
5
NB100LVEP56  
Table 8. DC CHARACTERISTICS, NECL V = 0 V, V = -3.8 V to -2.375 V (Note 14)  
CC  
EE  
-40 °C  
25°C  
Typ  
45  
85°C  
Typ  
48  
Min  
Typ  
Max  
55  
Min  
Max  
55  
Min  
Max  
58  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 15)  
Output LOW Voltage (Note 15)  
Input HIGH Voltage  
Unit  
mA  
mV  
mV  
mV  
I
EE  
35  
45  
35  
35  
V
OH  
V
OL  
V
IH  
-1145 -1020  
-895  
-1145 -1020  
-895  
-1145 -1020  
-895  
-1945 -1725 -1600 -1945 -1725 -1600 -1945 -1725 -1600  
-1165  
-1165  
V
CC  
-1165  
-1165  
V
CC  
-1165  
-1165  
V
CC  
(SEL0, SEL1, COM_SEL)  
Input HIGH Voltage  
-880  
-880  
-880  
(D Inputs)  
V
IL  
Input LOW Voltage  
(SEL0, SEL1, COM_SEL)  
Input LOW Voltage  
mV  
V
-1600  
V
-1600  
V
-1600  
-1600  
EE  
EE  
EE  
-1945  
-1600 -1945  
-1600 -1945  
(D Inputs)  
V
V
Output Reference Voltage (Note 16)  
-1525 -1425 -1325 -1525 -1425 -1325 -1525 -1425 -1325  
mV  
V
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 17)  
V
EE  
+1.2  
0.0  
V
EE  
+1.2  
0.0  
V
EE  
+1.2  
0.0  
IHCMR  
I
I
Input HIGH Current (@V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@V )  
D
D
0.5  
-150  
0.5  
-150  
-150  
0.5  
-150  
-150  
IL  
IL  
SEL -150  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
14.Input and output parameters vary 1:1 with V  
.
CC  
15.All loading with 50 W to V -2.0 V.  
CC  
16.Single-Ended input operation is limited to V from -3.0 V to -5.5 V in NECL mode.  
EE  
17.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 9. DC CHARACTERISTICS, NECL V = 0 V, V = -3.8 V to -5.5 V (Note 18)  
CC  
EE  
-40 °C  
25°C  
Typ  
50  
85°C  
Typ  
55  
Min  
Typ  
Max  
60  
Min  
Max  
60  
Min  
Max  
65  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 19)  
Output LOW Voltage (Note 19)  
Input HIGH Voltage  
Unit  
mA  
mV  
mV  
mV  
I
EE  
40  
50  
40  
45  
V
OH  
V
OL  
V
IH  
-1145 -1020  
-895  
-1145 -1020  
-895  
-1145 -1020  
-895  
-1945 -1725 -1600 -1945 -1725 -1600 -1945 -1725 -1600  
-1165  
-1165  
V
CC  
-1165  
-1165  
V
CC  
-1165  
-1165  
V
CC  
(SEL0, SEL1, COM_SEL)  
Input HIGH Voltage  
-880  
-880  
-880  
(D Inputs)  
V
IL  
Input LOW Voltage  
(SEL0, SEL1, COM_SEL)  
Input LOW Voltage  
mV  
V
-1600  
V
-1600  
V
-1600  
-1625  
EE  
EE  
EE  
-1945  
-1625 -1945  
-1625 -1945  
(D Inputs)  
V
V
Output Reference Voltage (Note 20)  
-1525 -1425 -1325 -1525 -1425 -1325 -1525 -1425 -1325  
mV  
V
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 21)  
V
EE  
+1.2  
0.0  
V
EE  
+1.2  
0.0  
V
EE  
+1.2  
0.0  
IHCMR  
I
I
Input HIGH Current (@V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@V )  
D
D
0.5  
-150  
0.5  
-150  
-150  
0.5  
-150  
-150  
IL  
IL  
SEL -150  
NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
18.Input and output parameters vary 1:1 with V  
.
CC  
19.All loading with 50 W to V -2.0 V.  
CC  
20.Single-Ended input operation is limited to V from -3.0 V to -5.5 V in NECL mode.  
EE  
21.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
6
NB100LVEP56  
Table 10. AC CHARACTERISTICS V = 0 V; V = -2.375 V to -3.8 V or V = 2.375 V to 3.8 V; V = 0 V (Note 22)  
CC  
EE  
CC  
EE  
-40 °C  
25°C  
85°C  
Min Typ Max Min Typ Max Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude  
(See Figure 2)  
f
v 1 GHz 525 700  
in  
550 700  
500 600  
350 450  
500  
400  
200  
700  
500  
300  
mV  
OUTPP  
f = 2 GHz 500 600  
in  
f
= 2.5 GHz 400 500  
in  
t
t
,
Propagation Delay to Output Differential  
ps  
ps  
ps  
PLH  
PHL  
D to Q, Q 375 500  
SEL to Q, Q 575 775  
625 400 525  
975 625 825 1025 700  
950 600 800 1000 700  
650 450  
575  
900  
900  
700  
1100  
1100  
COM_SEL to Q, Q 550 750  
t
Pulse Skew (Note 23)  
Within Device Input Skew (Note 24)  
Within Device Output Skew (Note 25)  
Device-to-Device Skew (Note 26)  
10  
5
15  
50  
50  
30  
50  
10  
5
15  
50  
10  
5
15  
50  
50  
30  
50  
Skew  
200  
200  
t
RMS Random Clock Jitter  
(Note 27)  
f
in  
= 2.5 GHz  
1
1
1
JITTER  
Peak-to-Peak Data Dependent Jitter  
(Note 28)  
f
in  
=1.5 Gb/s  
= 2.5 Gb/s  
5
15  
10  
25  
10  
25  
in  
f
V
INPP  
Input Voltage Swing (Differential Configuration)  
(Note 29)  
150 800 1200 150 800 1200 150  
800  
1200 mV  
t
r
t
f
Output Rise/Fall Times @ 50 MHz  
(20% - 80%)  
Q, Q  
ps  
60  
110  
150  
60  
120  
170  
90  
140  
230  
22.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to V -2.0 V. Input edge rates 150 ps (20% - 80%).  
CC  
23.Pulse Skew |t  
- t  
|
PLH  
PHL  
24.Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input.  
25.Worst case difference between Q0 and Q1 outputs.  
26.Skew is measured between outputs under identical transitions.  
27.Additive RMS jitter with 50% Duty Cycle Clock Signal at f = 2.5 GHz.  
in  
31  
28.Additive Peak-to-Peak jitter with input NRZ data at PRBS 2 -1 at f = 2.5 Gb/s.  
in  
29.Input voltage swing is a single-ended measurement operating in differential mode.  
Table 11. AC CHARACTERISTICS V = 0 V; V = -4.2 V to -5.5 V or V = 4.2 V to 5.5 V; V = 0 V (Note 30)  
CC  
EE  
CC  
EE  
-40 °C  
25°C  
85°C  
Min Typ Max Min Typ Max Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude  
(See Figure 3)  
f
v 1 GHz 600 750  
in  
600 750  
500 600  
350 450  
600  
400  
200  
750  
500  
300  
mV  
OUTPP  
f = 2 GHz 550 650  
in  
f
= 2.5 GHz 400 550  
in  
t
t
,
Propagation Delay to Output Differential  
ps  
ps  
ps  
PLH  
PHL  
D to Q, Q 375 500  
SEL to Q, Q 575 775  
625 400 525  
975 625 825 1025 700  
950 600 800 1000 700  
650 450  
575  
900  
900  
700  
1100  
1100  
COM_SEL to Q, Q 550 750  
t
Pulse Skew (Note 31)  
Within Device Input Skew (Note 32)  
Within Device Output Skew (Note 33)  
Device-to-Device Skew (Note 34)  
5
15  
20  
50  
50  
30  
50  
5
50  
30  
50  
5
50  
30  
50  
Skew  
15  
20  
50  
15  
20  
50  
200  
200  
200  
t
RMS Random Clock Jitter  
(Note 35)  
f
in  
= 2.5 GHz  
1
1
1
JITTER  
Peak-to-Peak Data Dependent Jitter  
(Note 36)  
f
in  
=1.5 Gb/s  
= 2.5 Gb/s  
5
15  
10  
25  
10  
20  
in  
f
V
INPP  
Input Voltage Swing (Differential Configuration)  
(Note 37)  
150 800 1200 150 800 1200 150  
800  
1200 mV  
t
r
t
f
Output Rise/Fall Times @ 50 MHz  
(20% - 80%)  
Q, Q  
ps  
60  
110  
150  
60  
120  
170  
90  
140  
230  
30.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to V -2.0 V. Input edge rates 150 ps (20% - 80%).  
CC  
31.Pulse Skew |t  
- t  
|
PLH  
PHL  
32.Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input.  
33.Worst case difference between Q0 and Q1 outputs.  
34.Skew is measured between outputs under identical transitions.  
35.Additive RMS jitter with 50% Duty Cycle Clock Signal at f = 2.5 GHz.  
in  
31  
36.Additive Peak-to-Peak jitter with input NRZ data at PRBS 2 -1 at f = 2.5 Gb/s.  
in  
37.Input voltage swing is a single-ended measurement operating in differential mode.  
http://onsemi.com  
7
NB100LVEP56  
850  
750  
650  
550  
450  
350  
250  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Q AMP (mV)  
JITTER (ps)  
1.0  
0.5  
1.5  
2.0  
2.5  
INPUT FREQUENCY (GHz)  
Figure 2. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.  
Input Frequency (fin) at VCC = 2.5 V, 255C  
850  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Q AMP (mV)  
750  
650  
550  
450  
350  
JITTER (ps)  
250  
0.5  
1.0  
1.5  
2.0  
2.5  
INPUT FREQUENCY (GHz)  
Figure 3. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.  
Input Frequency (fin) at VCC = 5.0 V, 255C  
D
V
INPP  
= V (D) - V (D)  
IH IL  
D
Q
V
= V (Q) - V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 4. AC Reference Measurement  
http://onsemi.com  
8
NB100LVEP56  
Q
Q
D
Receiver  
Device  
Driver  
Device  
D
50  
TT  
50  
W
W
V
TT  
V
V
=
- 2.0 V  
CC  
Figure 5. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020 - Termination of ECL Logic Devices.)  
Resource Reference of Application Notes  
AN1404  
AN1405  
AN1406  
AN1504  
AN1568  
AN1672  
AND8002  
AND8009  
AND8020  
-
-
-
-
-
-
-
-
-
ECLinPS Circuit Performance at Non-Standard V Levels  
IH  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Marking and Date Codes  
ECLinPS Plus Spice I/O Model Kit  
Termination of ECL Logic Devices  
For an updated list of Application Notes, please see our website at http://onsemi.com.  
http://onsemi.com  
9
NB100LVEP56  
PACKAGE DIMENSIONS  
TSSOP-20  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948E-02  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
20X K REF  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
2. ICONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
K
K1  
20  
11  
2X L/2  
J J1  
B
L
-U-  
PIN 1  
IDENT  
SECTION N-N  
1
10  
0.25 (0.010)  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
N
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
0.15 (0.006) T U  
M
A
-V-  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.260  
0.177  
0.047  
0.006  
0.030  
A
B
6.40  
4.30  
−−−  
6.60 0.252  
4.50 0.169  
N
C
1.20  
−−−  
D
0.05  
0.50  
0.15 0.002  
0.75 0.020  
F
F
G
H
0.65 BSC  
0.026 BSC  
DETAIL E  
0.27  
0.09  
0.09  
0.19  
0.19  
0.37  
0.011  
0.015  
0.008  
0.006  
0.012  
0.010  
J
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
-W-  
J1  
K
C
K1  
L
6.40 BSC  
0 8 0 8  
0.252 BSC  
G
D
M
_
_
_
_
H
DETAIL E  
0.100 (0.004)  
-T- SEATING  
PLANE  
http://onsemi.com  
10  
NB100LVEP56  
PACKAGE DIMENSIONS  
QFN 24  
MN SUFFIX  
24 PIN QFN, 4x4  
CASE 485L-01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM  
FROM TERMINAL.  
D
A
B
E
PIN 1  
IDENTIFICATION  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
0.80  
2X  
A
A1  
A2  
A3  
b
0.80  
0.00  
0.60  
0.15  
C
0.20 REF  
2X  
0.15  
C
0.23  
0.28  
D
4.00 BSC  
A2  
D2  
E
2.70  
2.70  
2.90  
0.10  
C
4.00 BSC  
E2  
e
2.90  
A
0.50 BSC  
0.08  
C
L
0.35  
0.45  
A3  
SEATING  
PLANE  
REF  
A1  
C
D2  
e
L
7
12  
6
1
13  
E2  
24X  
b
18  
24  
19  
e
0.10 C A B  
0.05 C  
http://onsemi.com  
11  
NB100LVEP56  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051  
Phone: 81-3-5773-3850  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800-282-9855 Toll Free USA/Canada  
NB100LVEP56/D  

相关型号:

NB100LVEP56DT

2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56DTG

2.5V / 3.3V ECL DUAL Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56DTR2

2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56DTR2G

2.5V / 3.3V ECL DUAL Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56MN

2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56MNG

2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56MNR2

2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56MNR2G

2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer
ONSEMI

NB100LVEP56_06

2.5V / 3.3V ECL DUAL Differential 2:1 Multiplexer
ONSEMI

NB100LVEP91

2.5V / 3.3V Any Level Positive Input to -2.5V -3.3V / -5V NECL Output Translator
ONSEMI

NB100LVEP91-D

2.5V / 3.3V AnyLevel? Positive Input to -2.5V / -3.3V / -5V NECL Output Translator
ONSEMI

NB100LVEP91DW

2.5V / 3.3V Any Level Positive Input to -2.5V -3.3V / -5V NECL Output Translator
ONSEMI