NG80960KB-20 [ETC]

MICROPROCESSOR|32-BIT|CMOS|QFP|132PIN|PLASTIC ;
NG80960KB-20
型号: NG80960KB-20
厂家: ETC    ETC
描述:

MICROPROCESSOR|32-BIT|CMOS|QFP|132PIN|PLASTIC

外围集成电路 装置 时钟
文件: 总44页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80960KB  
80960KB  
EMBEDDED 32-BIT MICROPROCESSOR  
WITH INTEGRATED FLOATING-POINT UNIT  
High-Performance Embedded  
Built-in Interrupt Controller  
Architecture  
— 25 MIPS Burst Execution at 25 MHz  
— 31 Priority Levels, 256 Vectors  
— 3.4 µs Latency @ 25 MHz  
— 9.4 MIPS* Sustained Execution at  
25 MHz  
Easy to Use, High Bandwidth 32-Bit Bus  
— 66.7 Mbytes/s Burst  
512-Byte On-Chip Instruction Cache  
— Up to 16 Bytes Transferred per Burst  
— Direct Mapped  
— Parallel Load/Decode for Uncached  
Instructions  
132-Lead Packages:  
— Pin Grid Array (PGA)  
— Plastic Quad Flat-Pack (PQFP)  
Multiple Register Sets  
On-Chip Floating Point Unit  
— Sixteen Global 32-Bit Registers  
— Sixteen Local 32-Bit Registers  
— Four Local Register Sets Stored  
On-Chip  
— Supports IEEE 754 Floating Point  
Standard  
— Four 80-Bit Registers  
— 13.6 Million Whetstones/s (Single  
Precision) at 25 MHz  
— Register Scoreboarding  
4 Gigabyte, Linear Address Space  
Pin Compatible with 80960KA  
FOUR  
80-BIT FP  
REGISTERS  
64- BY 32-BIT  
LOCAL  
REGISTER  
CACHE  
SIXTEEN  
32-BIT GLOBAL  
REGISTERS  
32-BIT  
INSTRUCTION  
EXECUTION  
UNIT  
80-BIT  
FPU  
32-BIT  
BUS CONTROL  
LOGIC  
MICRO-  
INSTRUCTION  
SEQUENCER  
512-BYTE  
INSTRUCTION  
CACHE  
MICRO-  
INSTRUCTION  
ROM  
32-BIT  
BURST  
BUS  
INSTRUCTION  
FETCH UNIT  
INSTRUCTION  
DECODER  
Figure 1. The 80960KB Processor’s Highly Parallel Architecture  
© INTEL CORPORATION, 1997  
June, 1997  
Order Number: 270565.007  
Information in this document is provided in connection with Intel products. No license, express or implied, by  
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in  
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel  
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or  
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright  
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life  
sustaining applications. Intel may make changes to specifications and product descriptions at any time, without  
notice. Contact your local Intel sales office or your distributor to obtain the latest specifications and before  
placing your product order.  
Intel retains the right to make changes to specifications and product descriptions at any time, without notice.  
*Third party brands and names are the property of their respective owners.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel  
literature, may be obtained from:  
Intel Corporation  
P.O. Box 7641  
Mt. Prospect IL 60056-7641  
or call 1-800-879-4683.  
Many documents are available for download from Intel’s website at http:\\www.intel.com.  
Copyright © Intel Corporation 1997.  
Contents  
80960KB  
EMBEDDED 32-BIT MICROPROCESSOR  
1.0 THE i960® PROCESSOR .......................................................................................................................... 1  
1.1 Key Performance Features ................................................................................................................. 2  
1.1.1 Memory Space And Addressing Modes ................................................................................... 4  
1.1.2 Data Types ............................................................................................................................... 4  
1.1.3 Large Register Set ................................................................................................................... 4  
1.1.4 Multiple Register Sets .............................................................................................................. 5  
1.1.5 Instruction Cache ..................................................................................................................... 5  
1.1.6 Register Scoreboarding ........................................................................................................... 5  
1.1.7 High Bandwidth Local Bus ....................................................................................................... 6  
1.1.8 Interrupt Handling .................................................................................................................... 6  
1.1.9 Debug Features ....................................................................................................................... 6  
1.1.10 Fault Detection ....................................................................................................................... 7  
1.1.11 Built-in Testability ................................................................................................................... 7  
2.0 ELECTRICAL SPECIFICATIONS ............................................................................................................ 10  
2.1 Power and Grounding ....................................................................................................................... 10  
2.2 Power Decoupling Recommendations ............................................................................................. 10  
2.3 Connection Recommendations ........................................................................................................ 11  
2.4 Characteristic Curves ....................................................................................................................... 11  
2.5 Test Load Circuit ............................................................................................................................... 14  
2.7 DC Characteristics ............................................................................................................................ 15  
2.6 Absolute Maximum Ratings .............................................................................................................. 15  
2.8 AC Specifications ............................................................................................................................. 16  
2.8.1 AC Specification Tables ......................................................................................................... 17  
3.0 MECHANICAL DATA ................................................................................................................................ 21  
3.1 Packaging ......................................................................................................................................... 21  
3.1.1 Pin Assignment ...................................................................................................................... 21  
3.2 Pinout ............................................................................................................................................... 25  
3.3 Package Thermal Specification ........................................................................................................ 29  
4.0 WAVEFORMS .......................................................................................................................................... 33  
5.0 REVISION HISTORY ............................................................................................................................... 38  
iii  
Contents  
FIGURES  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
80960KA Programming Environment ........................................................................................1  
Instruction Formats ....................................................................................................................4  
Multiple Register Sets Are Stored On-Chip ...............................................................................6  
Connection Recommendations for Low Current Drive Network .............................................. 11  
Connection Recommendations for High Current Drive Network .............................................. 11  
Typical Supply Current vs. Case Temperature .........................................................................12  
Typical Current vs. Frequency (Room Temp) ..........................................................................12  
Typical Current vs. Frequency (Hot Temp) ..............................................................................13  
Worst-Case Voltage vs. Output Current on Open-Drain Pins ..................................................13  
Capacitive Derating Curve .......................................................................................................13  
Test Load Circuit for Three-State Output Pins .........................................................................14  
Test Load Circuit for Open-Drain Output Pins ..........................................................................14  
Drive Levels and Timing Relationships for 80960KA Signals ..................................................16  
Processor Clock Pulse (CLK2) ................................................................................................20  
RESET Signal Timing ..............................................................................................................20  
132-Lead Pin-Grid Array (PGA) Package ................................................................................21  
80960KA PGA Pinout—View from Bottom (Pins Facing Up) ...................................................22  
80960KA PGA Pinout—View from Top (Pins Facing Down) ....................................................23  
80960KA 132-Lead Plastic Quad Flat-Pack (PQFP) Package ................................................23  
PQFP Pinout - View From Top .................................................................................................24  
HOLD Timing ...........................................................................................................................30  
16 MHz Maximum Allowable Ambient Temperature ................................................................31  
20 MHz Maximum Allowable Ambient Temperature ................................................................31  
25 MHz Maximum Allowable Ambient Temperature ................................................................32  
Maximum Allowable Ambient Temperature  
for the Extended Temperature TA-80960KA at 20 MHz in PGA Package ...............................32  
Figure 27.  
Figure 28.  
Figure 29.  
Burst Read and Write Transaction Without Wait States ...........................................................34  
Burst Write Transaction with 2, 1, 1, 1 Wait States ..................................................................35  
Accesses Generated by Quad Word Read Bus Request,  
Misaligned Two Bytes from Quad Word Boundary (1, 0, 0, 0 Wait States) ..............................36  
Figure 30.  
Interrupt Acknowledge Transaction .........................................................................................37  
iv  
Contents  
TABLES  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
80960KA Instruction Set ............................................................................................................ 3  
Memory Addressing Modes ....................................................................................................... 4  
80960KA Pin Description: L-Bus Signals ................................................................................... 8  
80960KA Pin Description: Support Signals ............................................................................... 9  
DC Characteristics ................................................................................................................... 15  
80960KA AC Characteristics (16 MHz) ................................................................................... 17  
80960KA AC Characteristics (20 MHz) ................................................................................... 18  
80960KA PGA Pinout — In Pin Order ..................................................................................... 25  
80960KA PGA Pinout — In Signal Order ................................................................................ 26  
80960KA PQFP Pinout — In Pin Order ................................................................................... 27  
80960KA PQFP Pinout — In Signal Order .............................................................................. 28  
80960KA PGA Package Thermal Characteristics ................................................................... 29  
80960KA PQFP Package Thermal Characteristics ................................................................. 30  
v
80960KB  
®
applications require high integration, low power  
consumption, quick interrupt response times and  
high performance. Since time to market is critical,  
embedded microprocessors need to be easy to use  
in both hardware and software designs.  
1.0 THE i960 PROCESSOR  
The 80960KB is a member of Intel’s i960® 32-bit  
processor family, which is designed especially for  
embedded applications. It includes  
a 512-byte  
instruction cache, an integrated floating-point unit  
and a built-in interrupt controller. The 80960KB has  
a large register set, multiple parallel execution units  
and a high-bandwidth burst bus. Using advanced  
RISC technology, this high performance processor is  
capable of execution rates in excess of 9.4 million  
instructions per second*. The 80960KB is well-suited  
for a wide range of applications including non-impact  
printers, I/O control and specialty instrumentation.  
The embedded market includes applications as  
diverse as industrial automation, avionics, image  
processing, graphics and networking. These types of  
All members of the i960 processor family share a  
common core architecture which utilizes RISC  
technology so that, except for special functions, the  
family members are object-code compatible. Each  
new processor in the family adds its own special set  
of functions to the core to satisfy the needs of a  
specific application or range of applications in the  
embedded market.  
Software written for the 80960KB will run without  
modification on any other member of the 80960  
Family. It is also pin-compatible with the 80960KA  
and the 80960MC which is a military-grade version  
that supports multitasking, memory management,  
multiprocessing and fault tolerance.  
*
Relative to Digital Equipment Corporation’s VAX-11/780  
at 1 MIPS (VAX-11™ is a trademark of Digital Equipment  
Corporation)  
0000 0000H  
FFFF FFFFH  
ADDRESS SPACE  
ARCHITECTURALLY  
DEFINED  
DATA STRUCTURES  
FETCH  
LOAD  
STORE  
INSTRUCTION CACHE  
INSTRUCTION  
STREAM  
INSTRUCTION  
EXECUTION  
g0  
g15  
SIXTEEN 32-BIT GLOBAL REGISTERS  
PROCESSOR STATE  
REGISTERS  
REGISTER CACHE  
INSTRUCTION  
POINTER  
r0  
r15  
SIXTEEN 32-BIT LOCAL REGISTERS  
ARITHMETIC  
CONTROLS  
FOUR 80-BIT FLOATING POINT REGISTERS  
CONTROL REGISTERS  
PROCESS  
CONTROLS  
TRACE  
CONTROLS  
Figure 2. 80960KB Programming Environment  
1
80960KB  
to software through the use of a register score-  
board. Conditional instructions also make use  
of a scoreboard so that subsequent unrelated  
instructions may be executed while the condi-  
tional instruction is pending.  
1.1 Key Performance Features  
The 80960 architecture is based on the most recent  
advances in microprocessor technology and is  
grounded in Intel’s long experience in the design and  
manufacture of embedded microprocessors. Many  
features contribute to the 80960KB’s exceptional  
performance:  
6. Integer Execution Optimization. When the  
result of an arithmetic execution is used as an  
operand in a subsequent calculation, the value  
is sent immediately to its destination register.  
Yet at the same time, the value is put on a  
bypass path to the ALU, thereby saving the  
time that otherwise would be required to  
retrieve the value for the next operation.  
1. Large Register Set. Having a large number of  
registers reduces the number of times that a  
processor needs to access memory. Modern  
compilers can take advantage of this feature to  
optimize execution speed. For maximum flexi-  
bility, the 80960KB provides thirty-two 32-bit  
registers and four 80-bit floating point registers.  
(See Figure 2.)  
7. Bandwidth Optimizations. The 80960KB gets  
optimal use of its memory bus bandwidth  
because the bus is tuned for use with the  
on-chip instruction cache: instruction cache  
line size matches the maximum burst size for  
instruction fetches. The 80960KB automatically  
fetches four words in a burst and stores them  
directly in the cache. Due to the size of the  
cache and the fact that it is continually filled in  
anticipation of needed instructions in the  
program flow, the 80960KB is relatively insen-  
sitive to memory wait states. The benefit is that  
the 80960KB delivers outstanding performance  
even with a low cost memory system.  
2. Fast Instruction Execution. Simple functions  
make up the bulk of instructions in most  
programs so that execution speed can be  
improved by ensuring that these core instruc-  
tions are executed as quickly as possible. The  
most frequently executed instructions such as  
register-register moves, add/subtract, logical  
operations and shifts execute in one to two  
cycles. (Table 1 contains a list of instructions.)  
3. Load/Store Architecture. One way to improve  
execution speed is to reduce the number of  
times that the processor must access memory  
to perform an operation. As with other  
processors based on RISC technology, the  
80960KB has a Load/Store architecture. As  
such, only the LOAD and STORE instructions  
reference memory; all other instructions  
operate on registers. This type of architecture  
simplifies instruction decoding and is used in  
combination with other techniques to increase  
parallelism.  
8. Cache Bypass. If a cache miss occurs, the  
processor fetches the needed instruction then  
sends it on to the instruction decoder at the  
same time it updates the cache. Thus, no extra  
time is spent to load and read the cache.  
4. Simple Instruction Formats. All instructions  
in the 80960KB are 32 bits long and must be  
aligned on word boundaries. This alignment  
makes it possible to eliminate the instruction  
alignment stage in the pipeline. To simplify the  
instruction decoder, there are only five  
instruction formats; each instruction uses only  
one format. (See Figure 3.)  
5. Overlapped Instruction Execution. Load  
operations allow execution of subsequent  
instructions to continue before the data has  
been returned from memory, so that these  
instructions can overlap the load. The  
80960KB manages this process transparently  
2
80960KB  
Table 1. 80960KB Instruction Set  
Arithmetic Logical  
Data Movement  
Load  
Bit and Bit Field  
Set Bit  
Add  
And  
Store  
Move  
Load Address  
Subtract  
Multiply  
Divide  
Remainder  
Modulo  
Shift  
Not And  
And Not  
Or  
Exclusive Or  
Not Or  
Or Not  
Exclusive Nor  
Not  
Clear Bit  
Not Bit  
Check Bit  
Alter Bit  
Scan For Bit  
Scan Over Bit  
Extract  
Modify  
Nand  
Rotate  
Comparison  
Branch  
Call/Return  
Fault  
Conditional Fault  
Compare  
Conditional Compare  
Compare and Increment Compare and Branch  
Compare and Decrement  
Unconditional Branch  
Conditional Branch  
Call  
Call Extended  
Call System  
Return  
Synchronize Faults  
Branch and Link  
Debug  
Miscellaneous  
Atomic Add  
Decimal  
Floating Point  
Modify Trace Controls  
Mark  
Force Mark  
Decimal Move  
Move Real  
Add  
Subtract  
Multiply  
Atomic Modify  
Decimal Add with Carry  
Decimal Subtract with  
Carry  
Flush Local Registers  
Modify Arithmetic  
Controls  
Divide  
Scan Byte for Equal  
Test Condition Code  
Modify Process Controls  
Remainder  
Scale  
Round  
Square Root  
Sine  
Cosine  
Tangent  
Arctangent  
Log  
Log Binary  
Log Natural  
Exponent  
Classify  
Copy Real Extended  
Compare  
Synchronous  
Conversion  
Synchronous Load  
Synchronous Move  
Convert Real to Integer  
Convert Integer to Real  
3
80960KB  
OpcodeDisplacement  
Control  
Compare and  
Branch  
Register to  
Register  
OpcodeReg/LitRegMDisplacement  
OpcodeRegReg/LitModesExt’d OpReg/Lit  
Memory  
Access—Short  
Memory  
Access—Long  
OpcodeRegBaseMXOffset  
OpcodeRegBaseModeScalexxOffset  
Displacement  
Figure 3. Instruction Formats  
1.1.1 Memory Space And Addressing Modes  
The 80960KB offers linear programming  
1.1.2 Data Types  
a
The 80960KB recognizes the following data types:  
environment so that all programs running on the  
processor are contained in a single address space.  
Maximum address space size is 4 Gigabytes (232  
bytes).  
Numeric:  
• 8-, 16-, 32- and 64-bit ordinals  
• 8-, 16-, 32- and 64-bit integers  
• 32-, 64- and 80-bit real numbers  
For ease of use the 80960KB has a small number of  
addressing modes, but includes all those necessary  
to ensure efficient execution of high-level languages  
such as C. Table 2 lists the modes.  
Non-Numeric:  
• Bit  
• Bit Field  
Table 2. Memory Addressing Modes  
• Triple Word (96 bits)  
• Quad-Word (128 bits)  
• 12-Bit Offset  
• 32-Bit Offset  
• Register-Indirect  
1.1.3 Large Register Set  
• Register + 12-Bit Offset  
• Register + 32-Bit Offset  
• Register + (Index-Register x Scale-Factor)  
• Register x Scale Factor + 32-Bit Displacement  
The 80960KB programming environment includes a  
large number of registers. In fact, 32 registers are  
available at any time. The availability of this many  
registers greatly reduces the number of memory  
accesses required to perform algorithms, which  
leads to greater instruction processing speed.  
• Register + (Index-Register x Scale-Factor) +  
32-Bit Displacement  
• Scale-Factor is 1, 2, 4, 8 or 16  
There are two types of general-purpose registers:  
local and global. The 20 global registers consist of  
sixteen 32-bit registers (G0 though G15) and four  
80-bit registers (FP0 through FP3). These registers  
4
80960KB  
perform the same function as the general-purpose  
registers provided in other popular microprocessors.  
The term global refers to the fact that these registers  
retain their contents across procedure calls.  
read instructions into the processor is greatly  
reduced.  
To load the instruction cache, instructions are  
fetched in 16-byte blocks; up to four instructions can  
be fetched at one time. An efficient prefetch  
algorithm increases the probability that an instruction  
will already be in the cache when it is needed.  
The local registers, on the other hand, are procedure  
specific. For each procedure call, the 80960KB  
allocates 16 local registers (R0 through R15). Each  
local register is 32 bits wide. Any register can also be  
used for single or double-precision floating-point  
operations; the 80-bit floating-point registers are  
provided for extended precision.  
Code for small loops often fits entirely within the  
cache, leading to a great increase in processing  
speed since further memory references might not be  
necessary until the program exits the loop. Similarly,  
when calling short procedures, the code for the  
calling procedure is likely to remain in the cache so it  
will be there on the procedure’s return.  
1.1.4 Multiple Register Sets  
To further increase the efficiency of the register set,  
multiple sets of local registers are stored on-chip  
(See Figure 4). This cache holds up to four local  
register frames, which means that up to three  
procedure calls can be made without having to  
access the procedure stack resident in memory.  
1.1.6 Register Scoreboarding  
The instruction decoder is optimized in several ways.  
One optimization method is the ability to overlap  
instructions by using register scoreboarding.  
Although programs may have procedure calls nested  
many calls deep, a program typically oscillates back  
and forth between only two to three levels. As a  
result, with four stack frames in the cache, the  
probability of having a free frame available on the  
cache when a call is made is very high. In fact, runs  
of representative C-language programs show that  
80% of the calls are handled without needing to  
access memory.  
Register scoreboarding occurs when a LOAD moves  
a variable from memory into a register. When the  
instruction initiates, a scoreboard bit on the target  
register is set. Once the register is loaded, the bit is  
reset. In between, any reference to the register  
contents is accompanied by a test of the scoreboard  
bit to ensure that the load has completed before  
processing continues. Since the processor does not  
need to wait for the LOAD to complete, it can  
execute additional instructions placed between the  
LOAD and the instruction that uses the register  
contents, as shown in the following example:  
ld data_2, r4  
ld data_2, r5  
Unrelated instruction  
Unrelated instruction  
add R4, R5, R6  
If four or more procedures are active and a new  
procedure is called, the 80960KB moves the oldest  
local register set in the stack-frame cache to a  
procedure stack in memory to make room for a new  
set of registers. Global register G15 is the frame  
pointer (FP) to the procedure stack.  
Global and floating point registers are not  
exchanged on a procedure call, but retain their  
contents, making them available to all procedures for  
fast parameter passing.  
In essence, the two unrelated instructions between  
LOAD and ADD are executed “for free” (i.e., take no  
apparent time to execute) because they are  
executed while the register is being loaded. Up to  
three load instructions can be pending at one time  
with three corresponding scoreboard bits set. By  
exploiting this feature, system programmers and  
compiler writers have a useful tool for optimizing  
execution speed.  
1.1.5 Instruction Cache  
To further reduce memory accesses, the 80960KB  
includes a 512-byte on-chip instruction cache. The  
instruction cache is based on the concept of locality  
of reference; most programs are not usually  
executed in a steady stream but consist of many  
branches, loops and procedure calls that lead to  
jumping back and forth in the same small section of  
code. Thus, by maintaining a block of instructions in  
cache, the number of memory references required to  
5
80960KB  
REGISTER  
CACHE  
LOCAL REGISTER SET  
ONE OF FOUR  
LOCAL  
REGISTER SETS  
R
0
R
15  
0
31  
Figure 4. Multiple Register Sets Are Stored On-Chip  
1.1.7 Floating-Point Arithmetic  
Table 3. Sample Floating-Point Execution Times  
(µs) at 25 MHz  
In the 80960KB, floating-point arithmetic has been  
made an integral part of the architecture. Having the  
floating-point unit integrated on-chip provides two  
advantages. First, it improves the performance of the  
chip for floating-point applications, since no  
additional bus overhead is associated with  
floating-point calculations, thereby leaving more time  
for other bus operations such as I/O. Second, the  
cost of using floating-point operations is reduced  
Function  
Add  
Subtract  
Multiply  
Divide  
32-Bit  
0.4  
0.4  
64-Bit  
0.5  
0.5  
0.7  
1.3  
1.3  
2.9  
Square Root  
Arctangent  
Exponent  
Sine  
3.7  
3.9  
because  
a separate coprocessor chip is not  
10.1  
11.3  
15.2  
15.2  
13.1  
12.5  
16.6  
16.6  
required.  
The 80960KB floating-point (real-number) data types  
include single-precision (32-bit), double-precision  
(64-bit) and extended precision (80-bit) floating-point  
numbers. Any registers may be used to execute  
floating-point operations.  
Cosine  
1.1.8  
High Bandwidth Local Bus  
The 80960KB CPU resides on a high-bandwidth  
address/data bus known as the local bus (L-Bus).  
The L-Bus provides a direct communication path  
between the processor and the memory and I/O  
subsystem interfaces. The processor uses the L-Bus  
to fetch instructions, manipulate memory and  
respond to interrupts. L-Bus features include:  
The processor provides hardware support for both  
mandatory and recommended portions of IEEE  
Standard 754 for floating-point arithmetic, including  
all arithmetic, exponential, logarithmic and other  
transcendental functions. Table 3 shows execution  
times for some representative instructions.  
• 32-bit multiplexed address/data path  
• Four-word burst capability which allows transfers  
from 1 to 16 bytes at a time  
• High bandwidth reads and writes with  
66.7 MBytes/s burst (at 25 MHz)  
Table 4 defines L-bus signal names and functions;  
Table 5 defines other component-support signals  
such as interrupt lines.  
6
80960KB  
1.1.9 Interrupt Handling  
1.1.11 Fault Detection  
The 80960KB can be interrupted in two ways: by the  
activation of one of four interrupt pins or by sending  
a message on the processor’s data bus.  
The 80960KB has an automatic mechanism to  
handle faults. Fault types include floating point, trace  
and arithmetic faults. When the processor detects a  
fault, it automatically calls the appropriate fault  
handling routine and saves the current instruction  
pointer and necessary state information to make  
efficient recovery possible. Like interrupt handling  
routines, fault handling routines are usually written to  
meet the needs of specific applications and are often  
included as part of the operating system or kernel.  
The 80960KB is unusual in that it automatically  
handles interrupts on a priority basis and can keep  
track of pending interrupts through its on-chip  
interrupt controller. Two of the interrupt pins can be  
configured to provide 8259A-style handshaking for  
expansion beyond four interrupt lines.  
For each of the fault types, there are numerous  
subtypes that provide specific information about a  
fault. For example, a floating point fault may have  
the subtype set to an Overflow or Zero-Divide fault.  
The fault handler can use this specific information to  
respond correctly to the fault.  
1.1.10 Debug Features  
The 80960KB has built-in debug capabilities. There  
are two types of breakpoints and six trace modes.  
Debug features are controlled by two internal 32-bit  
registers: the Process-Controls Word and the  
Trace-Controls Word. By setting bits in these control  
words, a software debug monitor can closely control  
how the processor responds during program  
execution.  
1.1.12 Built-in Testability  
Upon reset, the 80960KB automatically conducts an  
exhaustive internal test of its major blocks of logic.  
Then, before executing its first instruction, it does a  
zero check sum on the first eight words in memory to  
ensure that the memory image was programmed  
correctly. If a problem is discovered at any point  
during the self-test, the 80960KB asserts its  
FAILURE pin and will not begin program execution.  
Self test takes approximately 47,000 cycles to  
complete.  
The 80960KB provides two hardware breakpoint  
registers on-chip which, by using  
command, can be set to any value. When the  
instruction pointer matches either breakpoint register  
value, the breakpoint handling routine is automati-  
cally called.  
a
special  
The 80960KB also provides software breakpoints  
through the use of two instructions: MARK and  
FMARK. These can be placed at any point in a  
program and cause the processor to halt execution  
at that point and call the breakpoint handling routine.  
The breakpoint mechanism is easy to use and  
provides a powerful debugging tool.  
System manufacturers can use the 80960KB’s  
self-test feature during incoming parts inspection. No  
special diagnostic programs need to be written. The  
test is both thorough and fast. The self-test capability  
helps ensure that defective parts are discovered  
before systems are shipped and, once in the field,  
the self-test makes it easier to distinguish between  
problems caused by processor failure and problems  
resulting from other causes.  
Tracing is available for instructions (single step  
execution), calls and returns and branching. Each  
trace type may be enabled separately by a special  
debug instruction. In each case, the 80960KB  
executes the instruction first and then calls a trace  
handling routine (usually part of a software debug  
monitor). Further program execution is halted until  
the routine completes, at which time execution  
resumes at the next instruction. The 80960KB’s  
tracing mechanisms, implemented completely in  
hardware, greatly simplify the task of software test  
and debug.  
1.1.13 CHMOS  
The 80960KB is fabricated using Intel’s CHMOS IV  
(Complementary High Speed Metal Oxide Semicon-  
ductor) process. The 80960KB is currently available  
in 16, 20 and 25 MHz versions.  
7
80960KB  
Table 4. 80960KB Pin Description: L-Bus Signals (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION  
CLK2  
I
SYSTEM CLOCK provides the fundamental timing for 80960KB systems. It is  
divided by two inside the 80960KB and four 80-bit registers (FP0 through FP3) to  
generate the internal processor clock.  
LAD31:0  
I/O  
LOCAL ADDRESS / DATA BUS carries 32-bit physical addresses and data to  
and from memory. During an address (Ta) cycle, bits 2-31 contain a physical word  
address (bits 0-1 indicate SIZE; see below). During a data (Td) cycle, bits 0-31  
contain read or write data. These pins float to a high impedance state when not  
active.  
T.S.  
Bits 0-1 comprise SIZE during a Ta cycle. SIZE specifies burst transfer size in  
words.  
LAD1  
LAD0  
0
0
1
1
0
1
0
1
1 Word  
2 Words  
3 Words  
4 Words  
ALE  
ADS  
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is  
asserted during a Ta cycle and deasserted before the beginning of the Td state. It  
is active LOW and floats to a high impedance state during a hold cycle (Th).  
T.S.  
O
ADDRESS/DATA STATUS indicates an address state. ADS is asserted every Ta  
state and deasserted during the following Td state. For a burst transaction, ADS is  
asserted again every Td state where READY was asserted in the previous cycle.  
O.D.  
W/R  
O
WRITE/READ specifies, during a Ta cycle, whether the operation is a write or  
read. It is latched on-chip and remains valid during Td cycles.  
O.D.  
O
DT/R  
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from  
the L-Bus. It is low during Ta and Td cycles for a read or interrupt acknowl-  
edgment; it is high during Ta and Td cycles for a write. DT/R never changes state  
when DEN is asserted.  
O.D.  
DEN  
O
DATA ENABLE (active low) enables data transceivers. The processor asserts  
DEN# during all Td and Tw states. The DEN# line is an open drain-output of the  
80960KB-processor.  
O.D.  
READY  
LOCK  
I
READY indicates that data on LAD lines can be sampled or removed. If READY  
is not asserted during a Td cycle, the Td cycle is extended to the next cycle by  
inserting a wait state (Tw) and ADS is not asserted in the next cycle.  
I/O  
BUS LOCK prevents bus masters from gaining control of the L-Bus during  
Read/Modify/Write (RMW) cycles. The processor or any bus agent may assert  
LOCK.  
O.D.  
At the start of a RMW operation, the processor examines the LOCK pin. If the pin  
is already asserted, the processor waits until it is not asserted. If the pin is not  
asserted, the processor asserts LOCK during the Ta cycle of the read transaction.  
The processor deasserts LOCK in the Ta cycle of the write transaction. During the  
time LOCK is asserted, a bus agent can perform a normal read or write but not a  
RMW operation.  
The processor also asserts LOCK during interrupt-acknowledge transactions.  
Do not leave LOCK unconnected. It must be pulled high for the processor to  
function properly.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
ERRATA - 6/13/97  
DEN pin description omitted.  
8
80960KB  
Table 4. 80960KB Pin Description: L-Bus Signals (Sheet 2 of 2)  
TYPE DESCRIPTION  
NAME  
BE3:0  
O
BYTE ENABLE LINES specify the data bytes (up to four) on the bus which are  
used in the current bus cycle. BE3 corresponds to LAD31:24; BE0 corresponds to  
LAD7:0.  
O.D.  
The byte enables are provided in advance of data:  
Byte enables asserted during Ta specify the bytes of the first data word.  
Byte enables asserted during Td specify the bytes of the next data word, if any  
(the word to be transmitted following the next assertion of READY).  
Byte enables that occur during Td cycles that precede the last assertion of  
READY are undefined. Byte enables are latched on-chip and remain constant  
from one Td cycle to the next when READY is not asserted.  
For reads, byte enables specify the byte(s) that the processor will actually use.  
L-Bus agents are required to assert only adjacent byte enables (e.g., asserting  
just BE0 and BE2 is not permitted) and are required to assert at least one byte  
enable. Address bits A0 and A1 can be decoded externally from the byte enables.  
HOLD  
I
HOLD: A request from an external bus master to acquire the bus. When the  
processor receives HOLD and grants bus control to another master, it floats its  
three-state bus lines and open-drain control lines, asserts HLDA and enters the  
Th state. When HOLD deasserts, the processor deasserts HLDA and enters the  
Ti or Ta state.  
HLDA  
O
T.S.  
O
HOLD ACKNOWLEDGE: Notifies an external bus master that the processor has  
relinquished control of the bus.  
CACHE  
CACHE indicates when an access is cacheable during a Ta cycle. It is not  
asserted during any synchronous access, such as a synchronous load or move  
instruction used for sending an IAC message. The CACHE signal floats to a high  
impedance state when the processor is idle.  
T.S.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
Table 5. 80960KB Pin Description: Support Signals (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION  
BADAC  
I
BAD ACCESS, if asserted in the cycle following the one in which the last READY  
of a transaction is asserted, indicates that an unrecoverable error has occurred  
on the current bus transaction or that a synchronous load/store instruction has not  
been acknowledged.  
During system reset the BADAC signal is interpreted differently. If the signal is  
high, it indicates that this processor will perform system initialization. If it is low,  
another processor in the system will perform system initialization instead.  
RESET  
I
RESET clears the processor’s internal logic and causes it to reinitialize.  
During RESET assertion, the input pins are ignored (except for BADAC and  
IAC/INT0), the three-state output pins are placed in a high impedance state and  
other output pins are placed in their non-asserted states.  
RESET must be asserted for at least 41 CLK2 cycles for a predictable RESET.  
The HIGH to LOW transition of RESET should occur after the rising edge of both  
CLK2 and the external bus clock and before the next rising edge of CLK2.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
9
80960KB  
Table 5. 80960KB Pin Description: Support Signals (Sheet 2 of 2)  
NAME  
TYPE  
DESCRIPTION  
FAILURE  
O
INITIALIZATION FAILURE indicates that the processor did not initialize correctly.  
After RESET deasserts and before the first bus transaction begins, FAILURE  
asserts while the processor performs a self-test. If the self-test completes  
successfully, then FAILURE deasserts. The processor then performs a zero  
checksum on the first eight words of memory. If it fails, FAILURE asserts for a  
second time and remains asserted. If it passes, system initialization continues  
and FAILURE remains deasserted.  
O.D.  
IAC/INT0  
I
INTERAGENT COMMUNICATION REQUEST/INTERRUPT 0 indicates an IAC  
message or an interrupt is pending. The bus interrupt control register determines  
how the signal is interpreted. To signal an interrupt or IAC request in a  
synchronous system, this pin — as well as the other interrupt pins — must be  
enabled by being deasserted for at least one bus cycle and then asserted for at  
least one additional bus cycle. In an asynchronous system the pin must remain  
deasserted for at least two bus cycles and then asserted for at least two more bus  
cycles.  
During system reset, this signal must be in the logic high condition to enable  
normal processor operation. The logic low condition is reserved.  
INT1  
I
I
INTERRUPT 1, like INT0, provides direct interrupt signaling.  
INT2/INTR  
INTERRUPT2/INTERRUPT REQUEST: The interrupt control register determines  
how this pin is interpreted. If INT2, it has the same interpretation as the INT0 and  
INT1 pins. If INTR, it is used to receive an interrupt request from an external  
interrupt controller.  
INT3/INTA  
N.C.  
I/O  
INTERRUPT3/INTERRUPT ACKNOWLEDGE: The bus interrupt control register  
determines how this pin is interpreted. If INT3, it has the same interpretation as  
the INT0, INT1 and INT2 pins. If INTA, it is used as an output to control  
interrupt-acknowledge transactions. The INTA output is latched on-chip and  
remains valid during Td cycles; as an output, it is open-drain.  
O.D.  
N/A  
NOT CONNECTED indicates pins should not be connected. Never connect any  
pin marked N.C. as these pins may be reserved for factory use.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
must be made to all 80960KB power and ground  
2.0 ELECTRICAL SPECIFICATIONS  
pins. On the circuit board, all Vcc pins must be  
strapped closely together, preferably on a power  
plane; all Vss pins should be strapped together,  
preferably on a ground plane.  
2.1 Power and Grounding  
The 80960KB is implemented in CHMOS IV  
technology and therefore has modest power require-  
ments. Its high clock frequency and numerous  
output buffers (address/data, control, error and  
arbitration signals) can cause power surges as  
multiple output buffers simultaneously drive new  
signal levels. For clean on-chip power distribution,  
VCC and VSS pins separately feed the device’s  
functional units. Power and ground connections  
2.2 Power Decoupling  
Recommendations  
Place a liberal amount of decoupling capacitance  
near the 80960KB. When driving the L-bus the  
processor can cause transient power surges, partic-  
ularly when connected to a large capacitive load.  
10  
80960KB  
Low inductance capacitors and interconnects are  
recommended for best high frequency electrical  
performance. Inductance is reduced by shortening  
board traces between the processor and decoupling  
capacitors as much as possible.  
VCC  
OPEN-DRAIN OUTPUT  
180 Ω  
2.3 Connection Recommendations  
For reliable operation, always connect unused inputs  
to an appropriate signal level. In particular, if one or  
more interrupt lines are not used, they should be  
pulled up. No inputs should ever be left floating.  
High Drive Network:  
VOH = 3.4 V  
390 Ω  
IOL = 25.3 mA  
Figure 6. Connection Recommendations  
for High Current Drive Network  
All open-drain outputs require a pullup device. While  
in most cases a simple pullup resistor is adequate, a  
network of pullup and pulldown resistors biased to a  
valid VIH (>3.0 V) and terminated in the characteristic  
impedance of the circuit board is recommended to  
limit noise and AC power consumption. Figure 5 and  
Figure 6 show recommended values for the resistor  
network for low and high current drive, assuming a  
characteristic impedance of 100 Ω. Terminating  
output signals in this fashion limits signal swing and  
reduces AC power consumption.  
2.4 Characteristic Curves  
Figure 7 shows typical supply current requirements  
over the operating temperature range of the  
processor at supply voltage (VCC) of 5 V. Figure 8  
and Figure 9 show the typical power supply current  
(ICC) that the 80960KB requires at various operating  
frequencies when measured at three input voltage  
(VCC) levels and two temperatures.  
NOTE: Do not connect external logic to pins marked  
N.C.  
For a given output current (IOL) the curve in Figure  
10 shows the worst case output low voltage (VOL).  
Figure 11 shows the typical capacitive derating  
curve for the 80960KB measured from 1.5V on the  
system clock (CLK) to 1.5V on the falling edge and  
1.5V on the rising edge of the L-Bus address/data  
(LAD) signals.  
VCC  
OPEN-DRAIN OUTPUT  
220 Ω  
Low Drive Network:  
VOH = 3.0 V  
330 Ω  
IOL = 20.7 mA  
Figure 5. Connection Recommendations  
for Low Current Drive Network  
11  
80960KB  
380  
360  
340  
320  
300  
280  
VCC = 5.0 V  
25 MHz  
20 MHz  
16 MHz  
260  
240  
220  
200  
-60-40-20020406080100120140  
CASE TEMPERATURE (°C)  
Figure 7. Typical Supply Current vs. Case Temperature  
400  
TEMP = +22°C  
380  
360  
340  
320  
300  
280  
260  
240  
220  
@5.5V  
@5.0V  
@4.5V  
200  
180  
16  
20  
25  
OPERATING FREQUENCY (MHz)  
Figure 8. Typical Current vs. Frequency (Room Temp)  
12  
80960KB  
380  
360  
340  
320  
300  
280  
260  
240  
TEMP = +22°C  
@5.5V  
@5.0V  
@4.5V  
220  
200  
180  
160  
16  
20  
25  
OPERATING FREQUENCY (MHz)  
Figure 9. Typical Current vs. Frequency (Hot Temp)  
(TEMP = +85°C, VCC = 4.5V)  
(TEMP = +85°C, VCC = 4.5V)  
30  
25  
20  
15  
10  
FALLING  
0.8  
0.6  
0.4  
0.2  
0.0  
RISING  
5
0
0
10 20 30 40 50  
0
20 40 60 80 100  
OUTPUT LOW CURRENT(mA)  
CAPACITIVE LOAD(pF)  
Figure 10. Worst-Case Voltage vs. Output  
Current on Open-Drain Pins  
Figure 11. Capacitive Derating Curve  
80960KB’s three-state pins; Figure 13 shows the  
load circuit used to test the open drain outputs. The  
open drain test uses an active load circuit in the form  
2.5 Test Load Circuit  
Figure 12 illustrates the load circuit used to test the  
13  
80960KB  
of a matched diode bridge. Since the open-drain  
outputs sink current, only the IOL legs of the bridge  
are necessary and the IOH legs are not used. When  
the 80960KB driver under test is turned off, the  
output pin is pulled up to VREF (i.e., VOH). Diode D1  
is turned off and the IOL current source flows through  
diode D2.  
THREE-STATE OUTPUT  
CL  
When the 80960KB open-drain driver under test is  
on, diode D1 is also on and the voltage on the pin  
being tested drops to VOL. Diode D2 turns off and IOL  
flows through diode D1.  
C
L = 50 pF for all signals  
Figure 12. Test Load Circuit for Three-State  
Output Pins  
IOL  
OPEN-DRAIN OUTPUT  
D2  
D1  
CL  
IOL Tested at 25 mA  
VREF = VCC  
D1 and D2 are matched  
CL = 50 pF for all signals  
Figure 13. Test Load Circuit for Open-Drain  
Output Pins  
14  
80960KB  
NOTICE:This is a production data sheet. The specifi-  
cations are subject to change without notice.  
2.6 Absolute Maximum Ratings  
*WARNING: Stressing the device beyond the  
“Absolute Maximum Ratings” may cause  
permanent damage. These are stress ratings  
only. Operation beyond the “Operating Condi-  
tions” is not recommended and extended  
exposure beyond the “Operating Conditions” may  
affect device reliability.  
Operating Temperature(PGA)................... 0°C to +85°C Case  
(PQFP)............. 0°C to +100°C Case  
Storage Temperature .................................... –65°C to +150°C  
Voltage on Any Pin .................................. –0.5V to VCC +0.5V  
Power Dissipation............................................ 2.5W (25 MHz)  
2.7 DC Characteristics  
PGA:  
80960KB (16 MHz) TCASE = 0°C to +85°C, VCC = 5V ± 10%  
80960KB (20 and 25 MHz) TCASE = 0°C to +85°C, VCC = 5V ± 5%  
80960KB (16 MHz) TCASE = 0°C to +100°C, VCC = 5V ± 10%  
80960KB (20 and 25 MHz) TCASE = 0°C to +100°C, VCC = 5V ± 5%  
PQFP:  
Table 6. DC Characteristics  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Units  
Notes  
VIL  
–0.3  
+0.8  
V
VIH  
VCL  
VCH  
VOL  
VOH  
ICC  
Input High Voltage  
2.0  
–0.3  
VCC + 0.3  
+0.8  
V
V
V
V
V
CLK2 Input Low Voltage  
CLK2 Input High Voltage  
Output Low Voltage  
Output High Voltage  
0.55 VCC  
VCC + 0.3  
0.45  
(1,2)  
(3,4)  
2.4  
Power Supply Current:  
16 MHz  
20 MHz  
315  
360  
420  
mA  
mA  
mA  
(5)  
(5)  
(5)  
25 MHz  
ILI  
ILO  
Input Leakage Current  
Output Leakage Current  
Input Capacitance  
±15  
±15  
10  
µA  
µA  
pF  
pF  
pF  
0 VIN VCC  
0.45 VO VCC  
fC = 1 MHz (6)  
fC = 1 MHz (6)  
fC = 1 MHz (6)  
CIN  
CO  
Output Capacitance  
Clock Capacitance  
12  
CCLK  
NOTES:  
10  
1. For three-state outputs, this parameter is measured at:  
Address/Data ........................................ 4.0 mA  
Controls.................................................. 5.0 mA  
2. For open-drain outputs ........................... 25 mA  
3. This parameter is measured at:  
Address/Data ...................................... -1.0 mA  
Controls................................................ -0.9 mA  
ALE ..................................................... -5.0 mA  
4. Not measured on open-drain outputs.  
5. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions  
in Figures 12 and 13. Figure 7, Figure 8 and Figure 9 indicate typical values.  
6. Input, output and clock capacitance are not tested.  
15  
80960KB  
For input timings the specifications refer to the time  
at which the signal reaches (for input setup) or  
leaves (for hold time) the TTL levels of LOW (0.8 V)  
or HIGH (2.0 V). All AC testing should be done with  
input voltages of 0.4 V and 2.4 V, except for the  
clock (CLK2), which should be tested with input  
2.8 AC Specifications  
This section describes the AC specifications for the  
80960KB pins. All input and output timings are  
specified relative to the 1.5 V level of the rising edge  
of CLK2. For output timings the specifications refer  
to the time it takes the signal to reach 1.5 V.  
voltages of 0.45 V and 0.55 VCC  
.
D
A
A
B
C
B
C
EDGE  
CLK2  
1.5V  
1.5V  
1.5V  
1.5V  
0.8V  
T6  
T9  
OUTPUTS:  
LAD 31:0  
ADS  
1.5V  
1.5V  
VALID OUTPUT  
W/R, DEN  
BE3:0  
HLDA  
CACHE  
LOCK, INTA  
T8  
T8  
T13  
T14  
1.5V  
1.5V  
ALE  
T7  
T6  
T9  
VALID OUTPUT  
1.5V  
1.5V  
DT/R  
T10  
T11  
INPUTS:  
LAD31:0  
BADAC  
2.0V 2.0V  
0.8V 0.8V  
IAC/INT0, INT1  
INT2/INTR, INT3  
T12  
T11  
VALID INPUT  
HOLD  
LOCK  
READY  
2.0V 2.0V  
0.8V 0.8V  
Figure 14. Drive Levels and Timing Relationships for 80960KB Signals  
16  
80960KB  
2.8.1 AC Specification Tables  
Table 7. 80960KB AC Characteristics (16 MHz)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock  
T1  
T2  
T3  
T4  
T5  
Processor Clock Period (CLK2)  
Processor Clock Low Time (CLK2)  
Processor Clock High Time (CLK2)  
Processor Clock Fall Time (CLK2)  
Processor Clock Rise Time (CLK2)  
31.25  
125  
ns  
ns  
ns  
ns  
ns  
VIN = 1.5V  
VIL = 10% Point = 1.2V  
8
8
VIH = 90% Point = 0.1V + 0.5 VCC  
VIN = 90% Point to 10% Point (1)  
VIN = 10% Point to 90% Point (1)  
10  
10  
Synchronous Outputs  
T6  
T6H  
T7  
Output Valid Delay  
HLDA Output Valid Delay  
ALE Width  
2
4
25  
28  
ns  
ns  
ns  
ns  
ns  
ns  
15  
2
T8  
ALE Output Valid Delay  
Output Float Delay  
HLDA Output Float Delay  
18  
20  
20  
T9  
2
(2)  
(2)  
T9H  
4
Synchronous Inputs  
3
T10  
T11  
Input Setup 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
(3)  
(3)  
(3)  
Input Hold  
5
4
T11H  
T12  
HOLD Input Hold  
Input Setup 2  
8
T13  
Setup to ALE Inactive  
Hold after ALE Inactive  
Reset Hold  
10  
8
T14  
T15  
3
(3)  
T16  
Reset Setup  
5
(3)  
T17  
Reset Width  
1281  
41 CLK2 Periods Minimum  
NOTES:  
1. Clock rise and fall times are not tested.  
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested; however, it  
should not be longer than the valid delay.  
3. LAD31:0, BADAC, HOLD, LOCK and READY are synchronous inputs. IAC/INT0, INT1, INT2/INTR and INT3 may be syn-  
chronous or asynchronous.  
17  
80960KB  
Symbol  
Table 8. 80960KB AC Characteristics (20 MHz)  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock  
T1  
T2  
T3  
T4  
T5  
Processor Clock Period (CLK2)  
Processor Clock Low Time (CLK2)  
Processor Clock High Time (CLK2)  
Processor Clock Fall Time (CLK2)  
Processor Clock Rise Time (CLK2)  
25  
6
125  
ns  
ns  
ns  
ns  
ns  
VIN = 1.5V  
VIL = 10% Point = 1.2V  
6
VIH = 90% Point = 0.1V + 0.5 VCC  
VIN = 90% Point to 10% Point (1)  
VIN = 10% Point to 90% Point (1)  
10  
10  
Synchronous Outputs  
T6  
T6H  
T7  
Output Valid Delay  
HLDA Output Valid Delay  
ALE Width  
2
4
20  
23  
ns  
ns  
ns  
ns  
ns  
ns  
12  
2
T8  
ALE Output Valid Delay  
Output Float Delay  
HLDA Output Float Delay  
18  
20  
20  
T9  
2
(2)  
(2)  
T9H  
4
Synchronous Inputs  
3
T10  
T11  
Input Setup 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
(3)  
(3)  
(3)  
Input Hold  
5
4
T11H  
T12  
HOLD Input Hold  
Input Setup 2  
7
T13  
Setup to ALE Inactive  
Hold after ALE Inactive  
Reset Hold  
10  
8
T14  
T15  
3
T16  
Reset Setup  
5
T17  
Reset Width  
1025  
41 CLK2 Periods Minimum  
NOTES:  
1. Clock rise and fall times are not tested.  
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested; however, it  
should not be longer than the valid delay.  
3. LAD31:0, BADAC, HOLD, LOCK and READY are synchronous inputs. IAC/INT0, INT1, INT2/INTR and INT3 may be syn-  
chronous or asynchronous.  
18  
80960KB  
Table 9. 80960KB AC Characteristics (25 MHz)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock  
T1  
T2  
T3  
T4  
T5  
Processor Clock Period (CLK2)  
Processor Clock Low Time (CLK2)  
Processor Clock High Time (CLK2)  
Processor Clock Fall Time (CLK2)  
Processor Clock Rise Time (CLK2)  
20  
5
125  
ns  
ns  
ns  
ns  
ns  
VIN = 1.5V  
VIL = 10% Point = 1.2V  
5
VIH = 90% Point = 0.1V + 0.5 VCC  
VIN = 90% Point to 10% Point (1)  
VIN = 10% Point to 90% Point (1)  
10  
10  
Synchronous Outputs  
T6  
T6H  
T7  
Output Valid Delay  
HLDA Output Valid Delay  
ALE Width  
2
4
18  
23  
ns  
ns  
ns  
ns  
ns  
ns  
12  
2
T8  
ALE Output Valid Delay  
Output Float Delay  
HLDA Output Float Delay  
18  
18  
20  
T9  
2
(2)  
(2)  
T9H  
4
Synchronous Inputs  
3
T10  
T11  
Input Setup 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
(3)  
Input Hold  
5
4
T11H  
T12  
HOLD Input Hold  
Input Setup 2  
7
T13  
Setup to ALE Inactive  
Hold after ALE Inactive  
Reset Hold  
8
T14  
8
T15  
3
T16  
Reset Setup  
5
T17  
Reset Width  
820  
41 CLK2 Periods Minimum  
NOTES:  
1. Clock rise and fall times are not tested.  
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested; however, it  
should not be longer than the valid delay.  
3. LAD31:0, BADAC, HOLD, LOCK and READY are synchronous inputs. IAC/INT0, INT1, INT2/INTR and INT3 may be syn-  
chronous or asynchronous.  
19  
80960KB  
T1  
T3  
HIGH LEVEL (MIN) 0.55VCC  
90%  
1.5 V  
LOW LEVEL (MAX) 0.8V  
10%  
T2  
T5  
T4  
Figure 15. Processor Clock Pulse (CLK2)  
FIRST  
A
B
C
D
A
...  
...  
CLK2  
CLK  
T16  
T15  
...  
RESET  
T17  
...  
OUTPUTS  
INIT PARAMETERS (BADAC,  
INT0/IAC) MUST BE SET UP 8 CLOCKS  
PRIOR TO THIS CLK2 EDGE  
T15 = RESET HOLD  
16 = RESET SETUP  
T17 = RESET WIDTH  
T
INIT PARAMETERS MUST BE HELD  
BEYOND THIS CLK2 EDGE  
Figure 16. RESET Signal Timing  
20  
80960KB  
3.1.1 Pin Assignment  
3.0 MECHANICAL DATA  
The PGA and PQFP have different pin assignments.  
Figure 18 shows the view from the PGA bottom (pins  
facing up) and Figure 19 shows a view from the PGA  
top (pins facing down). Figure 20 shows the PQFP  
package; Figure 21 shows the PQFP pinout with  
signal names. Notice that the pins are numbered in  
order from 1 to 132 around the package perimeter.  
Table 10 and Table 11 list the function of each PGA  
pin; Table 12 and Table 13 list the function of each  
PQFP pin.  
3.1 Packaging  
The 80960KB is available in two package types:  
• 132-lead ceramic pin-grid array (PGA). Pins are  
arranged 0.100 inch (2.54 mm) center-to-center, in  
a 14 by 14 matrix, three rows around (see Figure  
17).  
• 132-lead plastic quad flat pack (PQFP). This  
package uses fine-pitch gull wing leads arranged  
in a single row along the package perimeter with  
0.025 inch (0.64 mm) spacing (see Figure 20).  
Dimensions for both package types are given in the  
Intel Packaging handbook (Order #240800).  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 17. 132-Lead Pin-Grid Array (PGA) Package  
21  
80960KB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P
P
VCC N.C. N.C. N.C. N.C. N.C.  
N.C. N.C. N.C. N.C. N.C. N.C. VSS VCC  
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.  
N
N
VSS  
N.C. N.C. N.C. N.C. N.C.  
M
M
VSS  
VSS VCC  
VSS  
VCC  
N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
VSS N.C. N.C.  
VCC N.C. N.C.  
N.C. VCC  
L
K
J
L
K
J
DEN N.C. VCC  
BE3 FAIL VSS  
DT/R BE2 VSS  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
H
G
F
H
G
F
W/R  
BE0 LOCK  
LAD30 READY BE1  
CACHE  
LAD29 LAD31  
N.C. N.C. N.C.  
N.C. VSS N.C.  
VCC N.C. N.C.  
E
D
E
D
LAD28  
LAD26 LAD27  
ALE ADS HLDA  
C
B
A
C
B
A
HOLD LAD25 BADAC VCC VSS LAD20  
LAD8 LAD3 VCC  
VSS INT3 INT1 INT0  
LAD13  
VSS  
LAD23 LAD24 LAD22 LAD21 LAD18 LAD15 LAD12 LAD10 LAD6 LAD2 CLK2 LAD0 RESET  
LAD17  
LAD19  
LAD11  
LAD9 LAD7 LAD5 LAD4 LAD1 INT2 VCC  
VCC  
VSS  
LAD16 LAD14  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 18. 80960KB PGA Pinout—View from Bottom (Pins Facing Up)  
ERRATA  
6-17-97:  
Pin M2 was N.C.; should be VCC  
.
Pin M13 was VCC; should be N.C.  
This page now shows it correctly.  
22  
 
80960KB  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
P
P
VCC VSS N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VCC  
N
N
VSS  
N.C. N.C.  
N.C.  
VCC VSS  
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.  
M
M
VCC VSS  
N.C. N.C. N.C.  
N.C. N.C. VSS  
N.C. N.C. VCC  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C. N.C.  
VSS  
VCC  
VSS  
VSS  
VCC N.C.  
N.C. DEN  
FAIL BE3  
BE2 DT/R  
L
L
K
J
K
J
H
G
F
E
D
H
G
F
E
D
LOCK BE0 W/R  
BE1 READY LAD30  
CACHE LAD31 LAD29  
LAD27 LAD26 LAD28  
VSS  
N.C.  
N.C.  
VCC  
N.C. N.C.  
HLDA ADS ALE  
C
B
A
C
B
A
INT0 INT1 INT3 VSS VCC LAD3 LAD8 LAD13 LAD20 VSS VCC BADAC LAD25 HOLD  
VSS RESET LAD0 CLK2 LAD2 LAD6 LAD10 LAD12 LAD15 LAD18 LAD21 LAD22 LAD24 LAD23  
VCC INT2 LAD1 LAD4 LAD5 LAD7 LAD9 LAD11 LAD14 LAD16 LAD17 LAD19 VSS VCC  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 19. 80960KB PGA Pinout—View from Top (Pins Facing Down)  
Figure 20. 80960KB 132-Lead Plastic Quad Flat-Pack (PQFP) Package  
23  
80960KB  
99 98 97  
100  
96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68  
6766  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
NC  
NC  
LAD0  
LAD1  
LAD2  
VSS  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VCC  
VCC  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
VSS  
NC  
VSS  
VSS  
NC  
LAD13  
LAD14  
LAD15  
LAD16  
LAD17  
LAD18  
LAD19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VCC  
LAD20  
LAD21  
LAD22  
VSS  
LAD23  
LAD24  
NC  
NC  
NC  
NC  
VCC  
VCC  
LAD25  
BADAC  
HOLD  
NC  
NC  
ADS  
2
3
4
5
6
7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  
Figure 21. PQFP Pinout - View From Top  
24  
80960KB  
3.2 Pinout  
Table 10. 80960KB PGA Pinout — In Pin Order  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
A1  
VCC  
VSS  
C6  
LAD20  
H1  
W/R  
M10  
VSS  
VCC  
N.C.  
N.C.  
N.C.  
VSS  
A2  
A3  
C7  
C8  
LAD13  
LAD8  
LAD3  
VCC  
H2  
H3  
BE0  
LOCK  
N.C.  
N.C.  
N.C.  
DT/R  
BE2  
M11  
M12  
M13  
M14  
N1  
LAD19  
LAD17  
LAD16  
LAD14  
LAD11  
LAD9  
A4  
C9  
H12  
H13  
H14  
J1  
A5  
C10  
C11  
C12  
C13  
C14  
D1  
A6  
VSS  
A7  
INT3/INTA  
INT1  
N2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
A8  
J2  
N3  
A9  
LAD7  
IAC/INT0  
ALE  
J3  
VSS  
N4  
A10  
A11  
A12  
A13  
A14  
B1  
LAD5  
J12  
J13  
J14  
K1  
N.C.  
N.C.  
N.C.  
BE3  
N5  
LAD4  
D2  
ADS  
N6  
LAD1  
D3  
HLDA  
VCC  
N7  
INT2/INTR  
VCC  
D12  
D13  
D14  
E1  
N8  
N.C.  
K2  
FAILURE  
VSS  
N9  
LAD23  
LAD24  
LAD22  
LAD21  
LAD18  
LAD15  
LAD12  
LAD10  
LAD6  
N.C.  
K3  
N10  
N11  
N12  
N13  
N14  
P1  
B2  
LAD28  
LAD26  
LAD27  
N.C.  
K12  
K13  
K14  
L1  
VCC  
B3  
E2  
N.C.  
N.C.  
DEN  
N.C.  
VCC  
B4  
E3  
B5  
E12  
E13  
E14  
F1  
B6  
VSS  
L2  
B7  
N.C.  
L3  
P2  
B8  
LAD29  
LAD31  
CACHE  
L12  
L13  
L14  
VSS  
P3  
B9  
F2  
N.C.  
N.C.  
P4  
B10  
LAD2  
F3  
P5  
B11  
B12  
CLK2  
LAD0  
F12  
F13  
N.C.  
N.C.  
M1  
M2  
N.C.  
VCC  
P6  
P7  
N.C.  
N.C.  
B13  
B14  
C1  
RESET  
VSS  
F14  
G1  
G2  
G3  
N.C.  
LAD30  
READY  
BE1  
M3  
M4  
M5  
M6  
VSS  
VSS  
VCC  
N.C.  
P8  
P9  
N.C.  
N.C.  
N.C.  
N.C.  
HOLD  
LAD25  
P10  
P11  
C2  
C3  
C4  
BADAC  
VCC  
G12  
G13  
N.C.  
N.C.  
M7  
M8  
N.C.  
N.C.  
P12  
P13  
N.C.  
VSS  
C5  
VSS  
G14  
N.C.  
M9  
N.C.  
P14  
VCC  
NOTE: Do not connect any external logic to any pins marked N.C.  
25  
80960KB  
Table 11. 80960KB PGA Pinout — In Signal Order  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
ADS  
ALE  
D2  
LAD15  
B6  
N.C.  
J14  
N.C.  
P9  
D1  
C3  
H2  
G3  
J2  
LAD16  
LAD17  
LAD18  
LAD19  
LAD20  
LAD21  
LAD22  
LAD23  
LAD24  
LAD25  
LAD26  
LAD27  
LAD28  
LAD29  
LAD30  
LAD31  
LOCK  
N.C.  
A5  
A4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
K13  
K14  
L13  
L14  
M1  
M6  
M7  
M8  
M9  
M12  
M13  
M14  
N2  
N.C.  
N.C.  
N.C.  
N.C.  
READY  
RESET  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
P10  
P11  
P12  
L2  
BADAC  
BE0  
B5  
BE1  
A3  
BE2  
C6  
G2  
BE3  
K1  
B4  
B13  
A1  
CACHE  
CLK2  
DEN  
F3  
B3  
B11  
L1  
B1  
A14  
C4  
B2  
DT/R  
J1  
C2  
C10  
D12  
K12  
L3  
FAILURE  
HLDA  
HOLD  
IAC/INT0  
INT1  
K2  
E2  
D3  
C1  
C14  
C13  
A13  
C12  
B12  
A12  
B10  
C9  
A11  
A10  
B9  
E3  
E1  
F1  
N3  
M2  
G1  
N4  
M5  
INT2/INTR  
INT3/INTA  
LAD0  
F2  
N5  
M11  
P1  
H3  
N6  
D13  
D14  
E12  
E14  
F12  
F13  
F14  
G12  
G13  
G14  
H12  
H13  
H14  
J12  
J13  
N7  
P14  
A2  
LAD1  
N.C.  
N8  
LAD2  
N.C.  
N9  
VSS  
B14  
C5  
LAD3  
N.C.  
N10  
N11  
N12  
N13  
N14  
P2  
VSS  
LAD4  
N.C.  
VSS  
C11  
E11  
J3  
LAD5  
N.C.  
VSS  
LAD6  
N.C.  
VSS  
LAD7  
A9  
N.C.  
VSS  
K3  
LAD8  
C8  
A8  
N.C.  
VSS  
L12  
M3  
LAD9  
N.C.  
P3  
VSS  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
B8  
N.C.  
P4  
VSS  
M4  
A7  
N.C.  
P5  
VSS  
M10  
N1  
B7  
N.C.  
P6  
VSS  
C7  
A6  
N.C.  
P7  
VSS  
P13  
H1  
N.C.  
P8  
W/R  
NOTE: Do not connect any external logic to any pins marked N.C.  
26  
80960KB  
Table 12. 80960KB PQFP Pinout — In Pin Order  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Pin  
Pin  
1
HLDA  
ALE  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
N.C.  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
VSS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
LAD0  
2
VCC  
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
VCC  
VSS  
VSS  
N.C.  
LAD1  
LAD2  
VSS  
LAD26  
LAD27  
LAD28  
LAD29  
LAD30  
3
4
VCC  
5
VCC  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
VSS  
6
N.C.  
7
VSS  
LAD31  
VSS  
8
VCC  
9
N.C.  
CACHE  
W/R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
READY  
DT/R  
BE0  
N.C.  
VSS  
VSS  
BE1  
N.C.  
BE2  
VCC  
LAD13  
LAD14  
LAD15  
LAD16  
LAD17  
LAD18  
LAD19  
LAD20  
LAD21  
LAD22  
VSS  
BE3  
VCC  
FAILURE  
VSS  
VSS  
IAC/INT0  
INT1  
LOCK  
DEN  
VSS  
VSS  
N.C.  
VCC  
VCC  
VSS  
NT2/INTR  
NT3/INTA  
N.C.  
VSS  
N.C.  
N.C.  
VSS  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLK2  
VCC  
VSS  
RESET  
N.C.  
LAD23  
LAD24  
LAD25  
BADAC  
N.C.  
VCC  
N.C.  
VCC  
N.C.  
31  
32  
N.C.  
VSS  
64  
65  
N.C.  
N.C.  
97  
98  
N.C.  
N.C.  
130  
131  
HOLD  
N.C.  
33  
VSS  
66  
N.C.  
99  
VSS  
132  
ADS  
NOTE: Do not connect any external logic to any pins marked N.C.  
27  
80960KB  
Table 13. 80960KB PQFP Pinout — In Signal Order  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
ADS  
ALE  
132  
LAD15  
117  
N.C.  
49  
VCC  
41  
2
LAD16  
LAD17  
LAD18  
LAD19  
LAD20  
LAD21  
LAD22  
LAD23  
LAD24  
LAD25  
LAD26  
LAD27  
LAD28  
LAD29  
LAD30  
LAD31  
LOCK  
N.C.  
118  
119  
120  
121  
122  
123  
124  
126  
127  
128  
3
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
READY  
RESET  
VCC  
50  
51  
54  
58  
59  
60  
61  
62  
63  
64  
65  
66  
69  
72  
75  
76  
77  
78  
81  
89  
94  
95  
96  
97  
98  
131  
12  
93  
29  
30  
35  
36  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
W/R  
55  
56  
70  
71  
74  
82  
83  
92  
9
BADAC  
BE0  
129  
14  
BE1  
15  
BE2  
16  
BE3  
17  
CACHE  
CLK2  
DEN  
10  
91  
21  
DT/R  
13  
19  
22  
23  
26  
27  
32  
33  
42  
52  
53  
57  
67  
68  
73  
79  
80  
84  
90  
99  
103  
114  
125  
11  
FAILURE  
HLDA  
HOLD  
IAC/INT0  
INT1  
18  
1
4
130  
85  
5
6
86  
7
INT2/INTR  
INT3/INTA  
LAD0  
87  
8
88  
20  
24  
25  
28  
31  
34  
37  
38  
39  
40  
43  
44  
45  
46  
47  
48  
100  
101  
102  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
115  
116  
LAD1  
N.C.  
LAD2  
N.C.  
LAD3  
N.C.  
LAD4  
N.C.  
LAD5  
N.C.  
LAD6  
N.C.  
LAD7  
N.C.  
LAD8  
N.C.  
LAD9  
N.C.  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
N.C.  
N.C.  
N.C.  
VCC  
N.C.  
VCC  
N.C.  
VCC  
NOTE: Do not connect any external logic to any pins marked N.C.  
28  
80960KB  
If the 80960KB is to be used in a harsh environment  
where the ambient temperature may exceed the  
limits for the normal commercial part, consider using  
3.3 Package Thermal Specification  
The 80960KB is specified for operation when case  
temperature is within the range 0°C to 85°C (PGA)  
or 0°C to 100°C (PQFP). Measure case temperature  
at the top center of the package. Ambient temper-  
ature can be calculated from:  
an  
extended  
temperature  
device.  
These  
components are designated by the prefix “TA” and  
are available at 16, 20 and 25 MHz in the ceramic  
PGA package. Extended operating temperature  
range is –40° C to +125°C (case).  
TJ = TC + P*θjc  
TA = TJ + P*θja  
Figure 26 shows the maximum allowable ambient  
temperature for the 20 MHz extended temperature  
TA80960KB at various airflows. The curve assumes  
an ICC of 420 mA, VCC of 5.0 V and a TCASE of  
+125°C.  
TC = TA + P*ja−θjc]  
Values for θja and θjc for various airflows are given in  
Table 12 for the PGA package and in Table 12 for  
the PQFP package. The PGA’s θja can be reduced  
by adding a heatsink. For the PQFP, however, a  
heatsink is not generally used since the device is  
intended to be surface mounted.  
Maximum allowable ambient temperature (TA)  
permitted without exceeding TC is shown by the  
graphs in Figures 23, 24, 25 and 26. The curves  
assume the maximum permitted supply current (ICC  
)
at each speed, VCC of +5.0 V and a TCASE of +85°C  
(PGA) or +100°C (PQFP).  
Table 14. 80960KB PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
100 200 400  
(0.25) (0.50) (1.01) (2.03) (3.04) (4.06)  
Parameter  
0
50  
600  
800  
(0)  
θ Junction-to-Case  
2
2
2
2
2
2
2
9
θ Case-to-Ambient  
(No Heatsink)  
19  
18  
17  
15  
12  
10  
θJA  
θJ-PIN  
θJC  
θ Case-to-Ambient  
(Omnidirectional  
Heatsink)  
16  
15  
15  
14  
14  
13  
12  
11  
9
8
7
6
6
5
θJ-CAP  
θ Case-to-Ambient  
(Unidirectional Heat-  
sink)  
NOTES:  
1. This table applies to 80960KB PGA plugged into socket or soldered directly to board.  
2. θJA = θJC + θCA  
3. θJ-CAP = 4°C/W (approx.)  
θJ-PIN = 4°C/W (inner pins) (approx.)  
θJ-PIN = 8°C/W (outer pins) (approx.)  
29  
80960KB  
Table 15. 80960KB PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θ Junction-to-Case  
θ Case-to-Ambient (No Heatsink)  
NOTES:  
9
9
9
9
9
9
9
9
8
22  
19  
18  
16  
11  
1. This table applies to 80960KB PQFP soldered directly to board.  
2.  
θJA = θJC + θCA  
3.  
θ
θ
JL = 18°C/W (approx.)  
JB = 18°C/W (approx.)  
θJC  
θJL  
θJB  
Th  
Th  
Th  
CLK2  
CLK  
T12  
T11  
HOLD  
HLDA  
T6H  
T9H  
Figure 22. HOLD Timing  
30  
80960KB  
90  
85  
80  
75  
70  
65  
60  
55  
0
200  
400  
600  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 23. 16 MHz Maximum Allowable Ambient Temperature  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
200  
400  
600  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 24. 20 MHz Maximum Allowable Ambient Temperature  
31  
80960KB  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0
100  
200  
300  
400  
500  
600  
700  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 25. 25 MHz Maximum Allowable Ambient Temperature  
120  
115  
110  
105  
100  
95  
90  
0
100  
200  
300  
400  
500  
600  
700  
800  
AIRFLOW (ft/min)  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 26. Maximum Allowable Ambient Temperature for the Extended Temperature TA-80960KB at 20  
MHz in PGA Package  
32  
80960KB  
4.0 WAVEFORMS  
Figures 27, 28, 29 and 30 show the waveforms for various transactions on the 80960KB’s local bus.  
Ta  
Td  
Tr  
Ta  
Td  
Tr  
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:0  
W/R  
DT/R  
DEN  
READY  
Figure 27. Non-Burst Read and Write Transactions Without Wait States  
33  
80960KB  
Ta  
Td  
Td  
Tr  
Ta  
Td  
Td  
Td  
Tr  
Td  
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:0  
W/R  
DT/R  
DEN  
READY  
Figure 28. Burst Read and Write Transaction Without Wait States  
34  
80960KB  
Ta  
Tw  
Tw  
Td  
Tw  
Td  
Tw  
Td  
Tw  
Td  
Tr  
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:0  
W/R  
DT/R  
DEN  
READY  
Figure 29. Burst Write Transaction with 2, 1, 1, 1 Wait States  
35  
80960KB  
Ta  
Tw  
Td  
Td  
Td  
Td  
Tr  
Ta  
Tw  
Td  
Tr  
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:2  
BE1:0  
W/R  
DT/R  
DEN  
READY  
Figure 30. Accesses Generated by Quad Word Read Bus Request, Misaligned Two Bytes from Quad  
Word Boundary (1, 0, 0, 0 Wait States)  
36  
80960KB  
PREVIOUS  
CYCLE  
INTERRUPT  
ACKNOWLEDGEMENT  
INTERRUPT  
ACKNOWLEDGEMENT  
IDLE  
(5 BUS STATES)  
CYCLE 1  
CYCLE 2  
TX  
TX  
Ta  
Td  
Tr  
TI  
TI  
TI  
TI  
TI  
Ta  
Tw  
Td  
Tr  
CLK2  
CLK  
INTR  
VECTOR  
ADDR  
ADDR  
LAD31:0  
ALE  
ADS  
INTA  
DT/R  
DEN  
LOCK  
READY  
NOTE:  
INTR can go low no sooner than the input hold time following the beginning of interrupt acknowledgment cycle 1.  
For a second interrupt to be acknowledged, INTR must be low for at least three cycles before it can be reasserted.  
Figure 31. Interrupt Acknowledge Transaction  
37  
80960KB  
5.0 REVISION HISTORY  
No revision history was maintained in earlier revisions of this data sheet. All errata that has been  
identified to date is incorporated into this revision. The sections significantly changed since the  
previous revision are:  
Last  
Rev.  
Section  
Description  
Table 4. 80960KB Pin  
-005  
LOCK pin description rewritten for clarity.  
Description: L-Bus Signals (pg. 8)  
2.3. Connection Recommenda-  
tions (pg. 11)  
-005  
Changed suggested open-drain termination networks to reflect  
more realistic operating conditions with reduction in DC power  
consumption.  
Figure 9. Typical Current vs.  
Frequency (Hot Temp) (pg. 13)  
-005  
-005  
Added figure for typical power supply current at hot  
temperature to aid thermal analysis.  
Figure 12. Test Load Circuit for  
Three-State Output Pins (pg. 14)  
All outputs now specified with standard 50 pF test loads to  
agree with actual test methodology.  
Figure 13. Test Load Circuit for  
Open-Drain Output Pins (pg. 14)  
2.7. DC Characteristics (pg. 15)  
-005  
-005  
ICC max specification reduced:  
WAS:  
IS:  
AT:  
375 mA  
420 mA  
480 mA  
315 mA  
360 mA  
420 mA  
16 MHz  
20 MHz  
25 MHz  
Figures 7, 8, 9, 23, 24, 25 and 26 have also been changed  
accordingly.  
2.8. AC Specifications (pg. 16)  
25 MHz operation extended to product in PQFP package. T8  
min. improved at all frequencies from 0 ns to 2 ns and T8 max.  
improved from 20 ns to 18 ns.  
T8H max improvement:  
WAS:  
31ns  
26ns  
24ns  
IS:  
AT:  
28ns  
23ns  
23ns  
16 MHz  
20 MHz  
25 MHz  
Functional Waveforms  
Various  
-005  
Redrawn for clarity. CLK signal drawn with more likely phase  
relationship to CLK2. Open-drain output signals drawn to show  
correct inactive states.  
-005  
-006  
-006  
Deleted all references to 10 MHz. Intel no longer offers a  
10 MHz 80960KB device.  
Table 4. 80960KB Pin  
Description: L-Bus Signals (pg. 8)  
DEN pin description omitted from revision -005.  
Figure 18, 80960KB PGA  
Pinout—View from Bottom (Pins  
Facing Up) (pg. 22)  
Pin M2 was N.C., now shows as VCC  
Pin M13 was VCC, now shows as N.C.  
38  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY