PCM3000/PCM3001 [ETC]

PCM3000. PCM3001 - Sound Plus Stereo Audio CODEC 18-BITS. SERIAL INTERFACE ; PCM3000 。 PCM3001 - 声音加上立体声音频编解码器18位。串行接口\n
PCM3000/PCM3001
型号: PCM3000/PCM3001
厂家: ETC    ETC
描述:

PCM3000. PCM3001 - Sound Plus Stereo Audio CODEC 18-BITS. SERIAL INTERFACE
PCM3000 。 PCM3001 - 声音加上立体声音频编解码器18位。串行接口\n

解码器 编解码器 PC
文件: 总20页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
49%  
F
PCM3001E  
PCM3000  
PCM3001  
PCM3000E  
Stereo Audio CODEC  
TM  
18-BITS, SERIAL INTERFACE  
FEATURES  
MONOLITHIC 18-BIT ∆Σ ADC AND DAC  
DESCRIPTION  
The PCM3000/3001 is a low cost single chip stereo  
audio CODEC (analog-to-digital and digital-to-analog  
converter) with single-ended analog voltage input and  
output.  
16- OR 18-BIT INPUT/OUTPUT DATA  
STEREO ADC:  
Single-ended Voltage Input  
Both ADCs and DACs employ delta-sigma modula-  
tion with 64X oversampling. The ADCs include a  
digital decimation filter and the DACs include an 8X  
oversampling digital interpolation filter. The DACs  
also include digital attenuation, de-emphasis, infinite  
zero detection and soft mute to form a complete  
subsystem. PCM3000/3001 operates with left-justi-  
fied, right-justified, I2S or DSP data formats.  
64X Oversampling  
High Performance:  
–88dB  
94dB  
94dB  
THD+N  
SNR  
Dynamic Range  
Digital High-Pass Filter  
STEREO DAC:  
Single-ended Voltage Output  
Analog Low Pass Filter  
8X Oversampling Digital Filter  
High Performance:  
PCM3000 can be bit-mapped with a 3-wire serial  
interface for special features and data formats.  
PCM3001 can be pin-programmed for data formats.  
–90dB  
98dB  
97dB  
THD+N  
SNR  
Dynamic Range  
Fabricated on a highly advanced 0.6µ CMOS process,  
PCM3000/3001 is suitable for a wide variety of cost-  
sensitive consumer applications where good perfor-  
mance is required. Applications include sampling key-  
boards, digital mixers, mini-disc recorders, hard-disk  
recorders, karaoke systems, DSP-based car stereo,  
DAT recorders, and video conferencing.  
SPECIAL FEATURES (PCM3000):  
Digital De-emphasis  
Digital Attenuation (256 Steps)  
Soft Mute  
Analog Loop Back  
SAMPLE RATE: Up to 48kHz  
SYSTEM CLOCK: 256fS, 384fS, 512fS  
SINGLE +5V POWER SUPPLY  
SMALL PACKAGE: 28-Pin SSOP  
Digital Out  
Lch In  
Decimation  
Digital Filter  
Delta-Sigma  
Modulator  
Analog Front-End  
Digital In  
Rch In  
Serial Interface  
and  
Mode Control  
Lch Out  
Rch Out  
Low Pass Filter  
and  
Output Buffer  
Multi-Level  
Delta-Sigma  
Modulator  
Oversampling  
Interpolation  
Digital Filter  
Mode Control  
System Clock  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
• Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
© 1996 Burr-Brown Corporation  
PDS-1342D  
Printed in U.S.A., August, 1998  
SPECIFICATIONS  
All specifications at +25°C, VDD = VCC = +5V, fS = 44.1kHz, SYSCLK = 384fS, CLKIO Input, 18-bit data, unless otherwise noted.  
PCM3000E/3001E  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUT/OUTPUT  
Input Logic  
(1)  
Input Logic Level: VIH  
2.0  
VDC  
VDC  
µA  
(1)  
VIL  
0.8  
±1  
(2)  
Input Logic Current: IIN  
(3)  
Input Logic Current: IIN  
–120  
µA  
(4)  
Input Logic Level: VIH  
0.64 x VDD  
VDC  
VDC  
µA  
(4)  
VIL  
0.28 x VDD  
(4)  
Input Logic Current: IIN  
±40  
Output Logic  
(5)  
Output Logic Level: VOH  
IOUT = –1.6mA  
IOUT = +3.2mA  
IOUT = –3.2mA  
IOUT = +3.2mA  
4.5  
4.5  
VDC  
VDC  
VDC  
VDC  
(5)  
VOL  
0.5  
0.5  
(6)  
Output Logic Level: VOH  
(6)  
VOL  
CLOCK FREQUENCY  
Sampling Frequency (fS)  
System Clock Frequency  
32  
44.1  
48  
kHz  
MHz  
MHz  
MHz  
256fS  
384fS  
512fS  
8.1920  
12.2880  
16.3840  
11.2896  
16.9344  
22.5792  
12.2880  
18.4320  
24.5760  
ADC CHARACTERISTICS  
RESOLUTION  
18  
Bits  
DC ACCURACY  
Gain Mismatch Channel-to-Channel  
Gain Error  
±1.0  
±2.0  
±20  
±1.7  
±20  
±5.0  
±5.0  
% of FSR  
% of FSR  
Gain Drift  
ppm of FSR/°C  
%of FSR  
Bipolar Zero Error  
Bipolar Zero Drift  
High-Pass Filter Off(7)  
High-Pass Filter Off(7)  
ppm of FSR/°C  
DYNAMIC PERFORMANCE(8)  
THD+N: VIN = –0.5dB  
VIN = –60dB  
f = 1kHz  
–88  
–31  
94  
–80  
dB  
dB  
dB  
dB  
dB  
f = 1kHz  
Dynamic Range  
f = 1kHz, A-Weighted  
f = 1kHz, A-Weighted  
90  
90  
88  
Signal-to-Noise Ratio  
Channel Separation  
94  
92  
DIGITAL FILTER PERFORMANCE(8)  
Passband  
0.454fS  
Hz  
Hz  
dB  
dB  
sec  
Stopband  
0.583fS  
–65  
Passband Ripple  
±0.05  
Stopband Attenuation  
Delay Time (Latency)  
17.4/fS  
0.019fS  
DIGITAL HIGH PASS FILTER RESPONSE  
–3dB Frequency  
mHz  
ANALOG INPUT  
Voltage Range  
Center Voltage  
Input Impedance  
0dB (Full Scale)  
CEXT = 470pF  
2.9  
2.1  
15  
Vp-p  
V
kΩ  
ANTI-ALIASING FILTER  
–3dB Frequency  
170  
kHz  
NOTES: (1) Pins 16, 17, 18, 22, 25, 26, 27, 28: LRCIN, BCKIN, DIN, CLKIO, MC/FMT2, MD/FMT1, ML/FMT0, RSTB. (2) Pins 16, 17, 18, 22: LRCIN, BCKIN, DIN,  
CLKIO (Schmitt Trigger Input). (3) Pins 25, 26, 27, 28: MC/FMT2, MD/FMT1, ML/FMT0, RSTB (Schmitt Trigger Input, 70kInternal Pull-Up Resistor). (4) Pin 20:  
XTI. (5) Pins 19, 22: DOUT,CLKIO. (6) Pin 21: XTO. (7) High Pass Filter disabled (PCM3000 only) to measure DC offset. (8) fIN = 1kHz, using Audio Precision System  
II, rms mode with 20kHz LPF, 400Hz HPF used for performance calculation. (9) With no load on XTO and CLKIO.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no  
responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice.  
No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN  
product for use in life support devices and/or systems.  
®
2
PCM3000/3001  
SPECIFICATIONS (CONT)  
All specifications at +25°C, VDD = VCC = 5V, fS = 44.1kHz, SYSCLK = 384fS, CLKIO Input, 18-bit data, unless otherwise noted.  
PCM3000E/3001E  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DAC CHARACTERISTICS  
RESOLUTION  
18  
Bits  
DC ACCURACY  
Gain Mismatch Channel-to-Channel  
Gain Error  
Gain Drift  
Bipolar Zero Error  
Bipolar Zero Drift  
±1.0  
±1.0  
±20  
±1.0  
±20  
±5.0  
±5.0  
% of FSR  
% of FSR  
ppm of FSR/°C  
% of FSR  
ppm of FSR/°C  
DYNAMIC PERFORMANCE(8)  
THD+N: VOUT = 0dB (Full Scale)  
VOUT = –60dB  
Dynamic Range  
Signal-to-Noise Ratio (Idle Channel)  
Channel Separation  
–90  
–34  
97  
98  
95  
–80  
dB  
dB  
dB  
dB  
dB  
EIAJ A-Weighted  
EIAJ A-Weighted  
90  
92  
90  
DIGITAL FILTER PERFORMANCE  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Delay Time  
0.445fS  
Hz  
Hz  
dB  
dB  
sec  
0.555fS  
–35  
±0.17  
11.1/fS  
ANALOG OUTPUT  
Voltage Range  
Center Voltage  
0.62 x VCC  
0.5 x VCC  
Vp-p  
VDC  
kΩ  
Load Impedance  
AC Load  
5
ANALOG LOW PASS FILTER  
Frequency Response  
f = 20kHz  
–0.16  
dB  
POWER SUPPLY REQUIREMENTS  
Voltage Range: VCC  
VDD  
Supply Current: +ICC, +IDD  
4.5  
4.5  
5
5
32  
160  
5.5  
5.5  
50  
VDC  
VDC  
mA  
(9)  
VCC = VDD = 5V  
VCC = VDD = 5V  
Power Dissipation  
250  
mW  
TEMPERATURE RANGE  
Operation  
Storage  
–25  
–55  
+85  
+125  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE INFORMATION  
Supply Voltage  
PACKAGE DRAWING  
+VDD, +VCC1, +VCC2 ...................................................................... +6.5V  
Supply Voltage Differences............................................................... ±0.1V  
GND Voltage Differences.................................................................. ±0.1V  
Digital Input Voltage ...................................................... –0.3 to VDD + 0.3V  
Analog Input Voltage......................................... –0.3 to VCC1, VCC2 + 0.3V  
Power Dissipation .......................................................................... 300mW  
Input Current ................................................................................... ±10mA  
Operating Temperature Range ......................................... –25°C to +85°C  
Storage Temperature ...................................................... –55°C to +125°C  
Lead Temperature (soldering, 5s).................................................. +260°C  
(reflow, 10s) ..................................................... +235°C  
PRODUCT  
PACKAGE  
NUMBER(1)  
PCM3000E/3001E  
28-Pin SSOP  
324  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Thermal Resistance, θJA .............................................................. 100°C/W  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
®
3
PCM3000/3001  
PIN CONFIGURATION—PCM3000  
PIN CONFIGURATION—PCM3001  
Top View  
SSOP  
Top View  
SSOP  
1
2
VIN  
CC1  
AGND1  
L
RSTB 28  
ML 27  
1
2
VIN  
CC1  
AGND1  
L
RSTB 28  
FMT0 27  
FMT1 26  
FMT2 25  
DGND 24  
VDD 23  
V
V
3
MD 26  
3
4
V
V
V
REFL  
REFR  
INR  
MC 25  
4
V
V
V
REFL  
REFR  
INR  
5
DGND 24  
VDD 23  
5
6
6
7
C
C
C
C
INPR  
INNR  
INNL  
INPL  
CLKIO 22  
XTO 21  
XTI 20  
7
C
C
C
C
INPR  
INNR  
INNL  
INPL  
CLKIO 22  
XTO 21  
8
8
9
9
XTI 20  
10  
DOUT 19  
DIN 18  
10  
DOUT 19  
DIN 18  
11 VCOM  
12  
OUTR  
13 AGND2  
14  
CC2  
11 VCOM  
12  
OUTR  
13 AGND2  
14  
CC2  
V
BCKIN 17  
LRCIN 16  
V
BCKIN 17  
LRCIN 16  
V
V
OUTL 15  
V
VOUTL 15  
PIN ASSIGNMENTS PCM3000/3001  
PIN  
NAME  
VIN  
CC1  
AGND1  
REFL  
REFR  
I/O  
DESCRIPTION  
1
L
IN  
ADC Analog Input, Lch  
ADC Analog Power Supply  
ADC Analog Ground  
2
V
3
4
V
ADC Input Reference, Lch  
ADC Input Reference, Rch  
ADC Analog Input, Rch  
ADC Anti-alias Filter Capacitor (+), Rch  
ADC Anti-alias Filter Capacitor (–), Rch  
ADC Anti-alias Filter Capacitor (–), Lch  
ADC Anti-alias Filter Capacitor (+), Lch  
DAC Output Common  
5
V
6
VINR  
IN  
7
CINPR  
8
C
INNR  
CINNL  
INPL  
VCOM  
OUTR  
AGND2  
CC2  
VOUT  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
C
V
OUT  
DAC Analog Output, Rch  
DAC Analog Ground  
V
DAC Analog Power Supply  
DAC Analog Output, Lch  
Sample Rate Clock Input (fS)(2)  
Bit Clock Input  
L
OUT  
IN  
LRCIN  
BCKIN  
DIN  
IN  
IN  
Data Input  
DOUT  
XTI  
OUT  
IN  
Data Output  
Oscillator Input  
XTO  
OUT  
I/O  
Oscillator Output  
CLKIO  
Buffered Output of Oscillator or External Clock  
Input(2)  
23  
24  
VDD  
IN  
Digital Power Supply  
Digital Ground  
DGND  
25 MC/FMT2  
26 MD/FMT1  
27 ML/FMT0  
Serial Control Bit Clock (PCM3000)/Data  
Format Control 2 (PCM3001)(1, 2)  
IN  
IN  
IN  
Serial Control Data (PCM3000)/Data Format  
Control 1 (PCM3001)(1, 2)  
Serial Control Strobe Pulse/Data Format  
Control 0 (PCM3001)(1, 2)  
Reset(1)  
28  
RSTB  
NOTES: (1) With 70ktypical internal pull-up resistor. (2) Schmitt trigger input.  
®
4
PCM3000/3001  
TYPICAL PERFORMANCE CURVES  
ADC SECTION  
At TA = +25°C, VCC = VDD = +5V, fIN = 1.0kHz, VIN = 2.9Vp-p, and SYSCLK = 384fS, unless otherwise noted.  
THD+N vs TEMPERATURE  
THD+N vs POWER SUPPLY  
0.01  
0.008  
0.006  
0.004  
0.002  
4.0  
3.0  
2.0  
1.0  
0
0.01  
0.008  
0.006  
0.004  
0.002  
4.0  
3.0  
2.0  
1.0  
0
–60dB  
–60dB  
0dB  
0dB  
–25  
0
25  
50  
75 85  
100  
4.5  
4.75  
5.0  
5.25  
5.5  
Temperature (°C)  
V
CC (V)  
THD+N vs SYSTEM CLOCK  
and SAMPLING FREQUENCY  
SNR and DYNAMIC RANGE vs POWER SUPPLY  
0.01  
0.008  
0.006  
0.004  
0.002  
4.0  
3.0  
2.0  
1.0  
0
98  
96  
94  
92  
90  
98  
96  
94  
92  
90  
44.1kHz  
–60dB  
Dynamic Range  
48kHz  
48kHz  
SNR  
0dB  
44.1kHz  
256fS  
384fS  
512fS  
4.5  
4.75  
5.0  
5.25  
5.50  
System Clock  
VCC (V)  
THD+N vs OUTPUT DATA RESOLUTION  
–60dB  
0.01  
4.0  
3.0  
2.0  
1.0  
0
0.008  
0.006  
0.004  
0.002  
0dB  
16-Bit  
18-Bit  
Resolution  
®
5
PCM3000/3001  
TYPICAL PERFORMANCE CURVES  
DAC SECTION  
At TA = +25°C, VCC = VDD = +5V, fIN = 1.0kHz, and SYSCLK = 384fS, unless otherwise noted.  
THD+N vs TEMPERATURE  
THD+N vs POWER SUPPLY  
0.01  
0.008  
0.006  
0.004  
0.002  
4.0  
3.0  
2.0  
1.0  
0
0.01  
0.008  
0.006  
0.004  
0.002  
4.0  
3.0  
2.0  
1.0  
0
–60dB  
–60dB  
0dB  
0dB  
–25  
0
25  
50  
75 85  
100  
4.5  
4.75  
5.0  
5.25  
5.5  
Temperature (°C)  
V
CC (V)  
THD+N vs SYSTEM CLOCK  
and SAMPLING FREQUENCY  
SNR and DYNAMIC RANGE vs POWER SUPPLY  
Dynamic Range  
100  
98  
96  
94  
92  
100  
98  
96  
94  
92  
0.01  
0.008  
0.006  
0.004  
0.002  
4.0  
3.0  
2.0  
1.0  
0
48kHz  
SNR  
–60dB  
0dB  
48kHz  
44.1kHz  
512fS  
44.1kHz  
4.5  
4.75  
5.0  
5.25  
5.50  
256fS  
384fS  
System Clock  
VCC (V)  
THD+N vs INPUT DATA RESOLUTION  
0.01  
4.0  
0.008  
0.006  
0.004  
0.002  
3.0  
2.0  
1.0  
0
–60dB  
0dB  
16-Bit  
18-Bit  
Resolution  
®
6
PCM3000/3001  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VCC = VDD = +5V, and SYSCLK = 384fS, unless otherwise noted.  
ADC DIGITAL FILTER  
OVERALL CHARACTERISTICS  
0
STOPBAND ATTENUATION CHARACTERISTICS  
0
–20  
–50  
–100  
–150  
–200  
–40  
–60  
–80  
–100  
0
8
16  
24  
32  
0
0.25  
0.50  
0.75  
1.00  
Normalized Frequency (x fS Hz)  
Normalized Frequency (x fS Hz)  
PASSBAND RIPPLE CHARACTERISTICS  
HIGH PASS FILTER RESPONSE  
0.2  
0.0  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0.125  
0.250  
0.375  
0.500  
0
1
2
3
4
Normalized Frequency (x fS Hz)  
Normalized Frequency (x fS/1000 Hz)  
ANTI-ALIASING FILTER  
ANTI-ALIASING FILTER OVERALL  
FREQUENCY RESPONSE (CEXT = 470pF, 1000pF)  
ANTI-ALIASING FILTER PASSBAND  
FREQUENCY RESPONSE (CEXT = 470pF, 1000pF)  
0
–10  
–20  
–30  
–40  
–50  
0.2  
0.0  
470pF  
470pF  
–0.2  
–0.4  
–0.6  
–0.8  
–0.1  
1000pF  
1000pF  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
®
7
PCM3000/3001  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VCC = VDD = +5V, and SYSCLK = 384fS, unless otherwise noted.  
DAC DIGITAL FILTER  
OVERALL FREQUENCY CHARACTERISTIC  
0
PASSBAND RIPPLE CHARACTERISTIC  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–20  
–40  
–60  
–80  
–100  
0
0.4536fS  
1.3605fS  
2.2675fS  
3.1745fS  
4.0815fS  
0
0.1134fS  
0.2268fS  
0.3402fS  
0.4535fS  
Frequency (Hz)  
Frequency (Hz)  
DE-EMPHASIS FREQUENCY RESPONSE (3kHz)  
DE-EMPHASIS ERROR (3kHz)  
0
–2  
0.6  
0.4  
–4  
0.2  
–6  
0
–8  
–10  
–12  
–0.2  
–0.4  
–0.6  
0
0
0
5k  
10k  
15k  
20k  
25k  
0
0
0
3628  
7256  
10884  
14512  
19999.35  
21768  
Frequency (Hz)  
Frequency (Hz)  
DE-EMPHASIS FREQUENCY RESPONSE (44.1kHz)  
DE-EMPHASIS ERROR (44.1kHz)  
0.6  
0.4  
0.2  
0
–2  
–4  
–6  
–8  
0
–0.2  
–0.4  
–0.6  
–10  
–12  
5k  
10k  
15k  
20k  
25k  
4999.8375  
9999.675  
14999.5125  
Frequency (Hz)  
Frequency (Hz)  
DE-EMPHASIS FREQUENCY RESPONSE (48kHz)  
DE-EMPHASIS ERROR (48kHz)  
0
–2  
–4  
–6  
–8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–10  
–12  
5k  
10k  
15k  
20k  
25k  
5442  
10884  
16326  
Frequency (Hz)  
Frequency (Hz)  
ANALOG OUTPUT FILTER  
INTERNAL ANALOG FILTER FREQUENCY RESPONSE  
(10Hz~10MHz)  
INTERNAL ANALOG FILTER FREQUENCY RESPONSE  
(20Hz~24kHz, Expanded Scale)  
10  
5
0
1.0  
0.5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0
–0.5  
–1.0  
10  
100  
1k  
10k  
100k  
1M  
10M  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
®
8
PCM3000/3001  
BLOCK DIAGRAM  
C
INPL  
CINNL  
(+)  
(–)  
Analog  
Front-End  
Circuit  
Decimation  
and  
High Pass Filter  
Delta-Sigma  
Modulator  
LRCIN  
BCKIN  
DIN  
VIN  
L
VREF  
L
Serial Data  
Interface  
Reference  
ADC  
VREFR  
(–)  
(+)  
Analog  
Front-End  
Circuit  
Decimation  
and  
High Pass Filter  
Delta-Sigma  
Modulator  
VINR  
DOUT  
CINNR  
INPR  
Loop Control  
C
ML (FMT0)(1)  
MC (FMT2)(1)  
MD (FMT1)(1)  
Analog  
Low-Pass  
Filter  
Multi-Level  
Delta-Sigma  
Modulator  
Interpolation  
Filter  
8X Oversampling  
VOUT  
L
Mode  
Control  
Interface  
VCOM  
DAC  
Analog  
Low-Pass  
Filter  
Multi-Level  
Delta-Sigma  
Modulator  
Interpolation  
Filter  
8X Oversampling  
VOUTR  
Reset  
RSTB  
Power Supply  
Clock/OSC Manager  
AGND2 VCC  
2
AGND1 VCC  
1
DGND  
VDD  
CLKIO  
XTO  
XTI  
NOTE: (1) FMT0, FMT1, FMT2 are for PCM3001 only.  
470pF  
CINPL  
CINNL  
10  
9
2.2µF  
+
15kΩ  
VIN  
L
1
4
1kΩ  
1kΩ  
(+)  
(–)  
Delta-Sigma  
Modulator  
VREF  
L
+
4.7µF  
VREF  
FIGURE 1. Analog Front-End (Single-Channel).  
®
9
PCM3000/3001  
PCM AUDIO INTERFACE  
The three-wire digital audio interface for PCM3000/3001 is  
on LRCIN (Pin 16), BCKIN (Pin 17), DIN (Pin 18), and  
DOUT (Pin 19). PCM3000/3001 can operate with seven  
different data formats. For PCM3000, these formats are  
selected through PROGRAM REGISTER 3 in the software  
mode. For PCM3001, data formats are selected by pin-  
strapping the three format pins. Figures 2, 3 and 4 illustrate  
audio data input/output format and timing.  
PCM3000/3001 can accept 32, 48, or 64 bit clocks (BCKIN)  
in one clock of LRCIN. Only formats 0, 2, and 6 can be  
selected when 32 bit clocks/LRCIN are applied.  
FORMAT 0: FMT[2:0] = “000”  
DAC: 16-Bit, MSB-First, Right-Justified  
L–ch  
3
R–ch  
LRCIN  
BCKIN  
DIN  
16  
1
2
14 15 16  
LSB  
1
2
3
14 15 16  
LSB  
MSB  
MSB  
ADC: 16-Bit, MSB-First, Left-Justified  
LRCIN  
BCKIN  
L–ch  
R–ch  
1
2
3
14 15 16  
1
2
3
14 15 16  
1
DOUT  
MSB  
LSB  
MSB  
LSB  
FORMAT 1: FMT[2:0] = “001”  
DAC: 18-Bit, MSB-First, Right-Justified  
L–ch  
R–ch  
LRCIN  
BCKIN  
18  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
DIN  
MSB  
MSB  
ADC: 18-Bit, MSB-First, Left-Justified  
LRCIN  
BCKIN  
L–ch  
R–ch  
DOUT  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
1
MSB  
MSB  
FORMAT 2: FMT[2:0] = “010”  
DAC: 16-Bit, MSB-First, Right-Justified  
L–ch  
3
R–ch  
LRCIN  
BCIN  
16  
1
2
14 15 16  
LSB  
1
2
3
14 15 16  
LSB  
DIN  
MSB  
MSB  
ADC: 16-Bit, MSB-First, Right-Justified  
LRCIN  
BCIN  
L–ch  
3
R–ch  
16  
1
2
14 15 16  
LSB  
1
2
3
14 15 16  
LSB  
DOUT  
MSB  
MSB  
FIGURE 2. Audio Data Input/Output Format.  
®
10  
PCM3000/3001  
FORMAT 3: FMT[2:0] = "011"  
DAC: 18-Bit, MSB-First, Right-Justified  
R-ch  
LRCIN  
BCKIN  
L-ch  
18  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
DIN  
MSB  
MSB  
ADC: 18-Bit, MSB-First, Right-Justified  
R-ch  
LRCIN  
BCKIN  
L-ch  
18  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
DOUT  
MSB  
MSB  
FORMAT 4: FMT[2:0] = "100 "  
DAC: 18-Bit, MSB-First, Left-Justified  
R-ch  
LRCIN  
BCKIN  
L-ch  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
1
DIN  
MSB  
MSB  
ADC: 18-Bit, MSB-First, Left-Justified  
R-ch  
LRCIN  
BCKIN  
L-ch  
DOUT  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
1
MSB  
FORMAT 5: FMT[2:0] = "101"  
DAC: 18-Bit, MSB-First, I2S  
L_ch  
LRCIN  
BCKIN  
R-ch  
1
2
3
16 17 18  
1
2
3
16 17 18  
DIN  
MSB  
LSB  
MSB  
LSB  
ADC: 18-Bit, MSB-First, I2S  
L-ch  
LRCIN  
BCKIN  
R-ch  
1
2
3
16 17 18  
LSB  
1
2
3
16 17 18  
LSB  
DOUT  
MSB  
MSB  
FORMAT 6: FMT[2:0] = "110"  
DAC: 16-Bit, MSB-First, DSP-Frame  
L-ch  
LRCIN  
BCKIN  
R-ch  
16  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
LSB  
1
DIN  
MSB  
LSB  
MSB  
ADC: 16-Bit, MSB-First, DSP-Frame  
L-ch  
LRCIN  
R-ch  
BCKIN  
16  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
LSB  
1
DOUT  
MSB  
LSB  
MSB  
FIGURE 3. Audio Data Input/Output Format.  
®
11  
PCM3000/3001  
tLRP  
LRCIN  
BCKIN  
1.4V  
1.4V  
tLB  
tBL  
tBCH  
tBCL  
tBCY  
tDIS  
tDIH  
DIN  
1.4V  
tBDO  
tLDO  
DOUT  
0.5 x VDD  
BCKIN Pulse Cycle Time  
BCKIN Pulse Width High  
BCKIN Pulse Width Low  
tBCY  
tBCH  
tBCL  
tBL  
300ns (min)  
120ns (min)  
120ns (min)  
40ns (min)  
40ns (min)  
tBCY (min)  
BCKIN Rising Edge to LRCIN Edge  
LRCIN Edge to BCKIN Rising Edge  
LRCIN Pulse Width  
tLB  
tLRP  
tDIS  
DIN Set-up Time  
40ns (min)  
40ns (min)  
40ns (max)  
40ns (max)  
20ns (max)  
20ns (max)  
DIN Hold Time  
tDIH  
tBDO  
tLDO  
tRISE  
tFALL  
DOUT Delay Time to BCKIN Falling Edge  
DOUT Delay Time to LRCIN Edge  
Rising Time of All Signals  
Falling Time of All Signals  
FIGURE 4. Audio Data Input/Output Timing.  
Table I lists the relationship of typical sampling frequencies  
and system clock frequencies, and Figures 5 and 6 illustrate  
the typical system clock connections and external system  
clock timing.  
SYSTEM CLOCK  
The system clock for PCM3000/3001 must be either 256fS,  
384fS or 512fS, where fS is the audio sampling frequency.  
The system clock can be either a crystal oscillator placed  
between XTI (Pin 20) and XTO (Pin 21), or an external  
clock input. If an external clock is used, the clock is  
provided to either XTI or CLKIO (Pin 22), and XTO is open.  
PCM3000/3001 has an XTI clock detection circuit which  
senses if an XTI clock is operating. When the external clock  
is delivered to XTI, CLKIO is a buffered output of XTI.  
When XTI is connected to ground, the external clock must  
be tied to CLKIO. For best performance, the “External  
Clock Input 2” circuit in Figure 5 is recommended.  
SAMPLING RATE FREQUENCY  
(kHz)  
SYSTEM CLOCK FREQUENCY  
(MHz)  
256fS  
384fS  
512fS  
32  
44.1  
48  
8.1920  
11.2896  
12.2880  
12.2880  
16.9340  
18.4320  
16.3840  
22.5792  
24.5760  
TABLE I. System Clock Frequencies.  
RESET  
PCM3000/3001 also has a system clock detection circuit  
which automatically senses if the system clock is operating at  
256fS, 384fS, or 512fS. When 384fS or 512fS system clock is  
used, the clock is divded into 256fS automatically. The 256fS  
clock is used to operate the digital filter and the modulator.  
PCM3000/3001 has an internal power-on reset circuit, as  
well as an external forced reset (RSTB, Pin 28). The internal  
power-on reset initializes (resets) when the supply voltage  
VDD >4V (typ). External forced reset occurs when RSTB =  
LOW, setting the outputs of the DAC to VCC/2. The power-  
on reset has an initialization period equal to 1024 system  
clock periods after VDD >4V and RSTB = “HIGH”. During  
®
12  
PCM3000/3001  
CLKIO  
256fS Internal System Clock  
Clock Divider  
C1  
X’tal  
XTI  
R
C2  
XTO  
C1, C2 = 10 to 33pF  
PCM3000/3001  
CRYSTAL RESONATOR CONNECTION  
CLKIO  
CLKIO  
External Clock  
(TTL I/F)  
256fS Internal System Clock  
Clock Divider  
256fS Internal System Clock  
Clock Divider  
XTI  
XTI  
External Clock  
(CMOS I/F)  
R
R
XTO  
XTO  
PCM3000/3001  
EXTERNAL CLOCK INPUT 1: (XTO is open)  
PCM3000/3001  
EXTERNAL CLOCK INPUT 2: (XTO is open)  
FIGURE 5. System Clock Connections.  
tCLKIH tCLKIL  
XTI  
CLKIO  
3.2V  
1.4V  
2.0V  
0.8V  
XTI or CLKIO  
System Clock Pulse Width High tCLKIH  
System Clock Pulse Width Low tCLKIL  
12ns (min)  
12ns (min)  
FIGURE 6. External System Clock Timing.  
®
13  
PCM3000/3001  
the initialization period, the outputs of the DAC are invalid,  
and the analog outputs are forced to VCC/2. The output of the  
ADC is also invalid during initialization or forced reset, and  
the digital outputs are forced to all zeroes. Digital output  
data is valid after 4096/fS once reset conditions are removed.  
Figures 7 and 8 illustrate the power-on reset and reset-pin  
reset timing.  
SYNCHRONIZATION WITH THE DIGITAL AUDIO  
SYSTEM  
PCM3000/3001 operates with LRCIN synchronized to the  
system clock. The CODEC does not require any specific  
phase relationship between LRCIN and the system clock, but  
there must be synchronization. If the synchronization be-  
tween the system clock and LRCIN changes more than 6 bit  
FUNCTION  
ADC/DAC  
DEFAULT (PCM3000/3001)  
Audio Data Format (7 Selectable Formats)  
ADC/DAC  
DAC: 16-bit, MSB-first, Right-Justified  
ADC: 16-bit, MSB-first, Left-Justified  
LRCIN Polarity  
Loop Back Control  
Left Channel Attenuation  
Right Channel Attenuation  
Attenuation Control  
ADC/DAC  
ADC/DAC  
DAC  
DAC  
DAC  
Left/Right = High/Low  
OFF  
0dB  
0dB  
Left Channel and Right Channel = Individual Control  
Infinite Zero Detection  
DAC Output Control  
Soft Mute Control  
DAC  
DAC  
DAC  
OFF  
Output Enabled  
OFF  
De-emphasis (OFF, 32kHz, 44.1kHz, 48kHz)  
Power Down Control  
DAC  
ADC  
OFF  
OFF  
High Pass Filter Operation  
ADC  
ON  
TABLE II. Selectable Functions.  
4.4V  
4.0V  
3.6V  
VDD  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clock Periods  
FIGURE 7. Internal Power-On Reset Timing.  
tRST = 40ns minimum  
RSTB-pin  
tRST  
Reset  
Reset Removal  
Internal Reset  
1024 System Clock Periods  
System Clock  
FIGURE 8. External Forced Reset Timing.  
ML  
MC  
MD  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
FIGURE 9. Control Data Input Format.  
®
14  
PCM3000/3001  
some noise may occur. During the transitions between  
normal data and undefined states, the output has  
discontinuities, which will cause output noise.  
clocks (BCKIN) during one sample (LRCIN) period because  
of phase jitter on LRCIN, internal operation of the DAC will  
stop within 1/fS, and the analog output will be forced to  
bipolar zero (VCC/2) until the system clock is re-synchronized  
to LRCIN. Internal operation of the ADC will also stop with  
1/fS, and the digital output codes will be set to bipolar zero  
until re-synchronization occurs. If LRCIN is synchronized  
with 5 or less bit clocks to the system clock, operation will be  
normal.  
OPERATIONAL CONTROL  
PCM3000 can be controlled in a software mode with a  
three-wire serial interface on MC (Pin 25), MD (Pin 26), and  
ML (Pin 27). Table II indicates selectable functions, and  
Figures 9 and 12 illustrate control data input format and  
timing. PCM3001 only allows for control of data format.  
Figures 10 and 11 illustrate the effects on the output when  
synchronization is lost. Before the outputs are forced to  
bipolar zero (<1/fS seconds), the outputs are not defined and  
Reset Removal or Power-Down(1) OFF  
Internal Reset  
DAC VOUT  
Reset  
32/fS  
VCOM  
(= 1/2 x VCC2)  
4096/fS  
(2)  
Zero  
ADC DOUT  
NOTES: (1) Power-Down is for PCM3000 only. (2) The HPF transient response  
(exponentially attenuationed signal with 200ms time constant) appears intially.  
FIGURE 10. DAC Output and ADC Output for Reset and Power-Down.  
State of  
Synchronization  
Synchronous  
Asynchronous  
Synchronous  
within  
1/fS  
22.2/fS  
Undefined Data  
VCOM  
(= 1/2 x VCC2)  
Undefined  
Data  
DAC VOUT  
Normal  
Normal  
32/fS  
Undefined Data  
Normal(1)  
Normal  
ADC DOUT  
ZERO  
NOTE: (1) The HPF transient response (exponentially attenuationed signal with 200ms time constant) appears initally.  
FIGURE 11. DAC Output and ADC Output When Synchronization is Lost.  
®
15  
PCM3000/3001  
tMHH  
tMLH  
tMLS  
1.4V  
1.4V  
ML  
MC  
MD  
tMCH  
tMCL  
tMLL  
tMCY  
LSB  
1.4V  
tMDS  
tMDH  
MC Pulse Cycle Time  
tMCY  
tMCL  
tMCH  
tMDS  
tMDH  
tMLL  
tMLH  
tMLS  
tMLH  
100ns (min)  
40ns (min)  
40ns (min)  
40ns (min)  
MC Pulse Width LOW  
MC Pulse Width HIGH  
MD Setup Time  
MD Hold Time  
40ns (min)  
ML Low Level Time  
ML High Level Time  
ML Setup Time  
40ns + 1SYSCLK (min)  
40ns + 1SYSCLK (min)  
40ns (min)  
ML Hold Time  
40ns (min)  
SYSCLK: 1/256fS or 1/384fS  
FIGURE 12. Control Data Input Timing.  
MAPPING OF PROGRAM REGISTERS  
B15  
res  
B14  
res  
B13  
res  
B12  
res  
B11  
res  
B10  
A1  
B9  
A0  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 0  
REGISTER 1  
LDL  
AL7  
AL6  
AL5  
AL4  
AL3  
AL2  
AL1  
AL0  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
A1  
A1  
A1  
A0  
A0  
A0  
LDR  
AR7  
AR6  
res  
AR5  
ATC  
LOP  
AR4  
IZD  
AR3  
OUT  
AR2  
DM1  
AR1  
AR0  
REGISTER 2  
REGISTER 3  
PDWN BYPS  
res res  
DM0 MUT  
LRP res  
res  
FMT2 FMT1 FMT0  
PROGRAM REGISTER 0  
A (1:0): Bit 10, 9 Register Address  
These bits define the address for REGISTER 0:  
PROGRAM REGISTER (PCM3000)  
The software mode allows the user to control special functions.  
PCM3000’s special functions are controlled using four pro-  
gram registers which are 16 bits long. There are four distinct  
registers, with bits 9 and 10 determining which register is in  
use. Table III describes the functions of the four registers.  
A1  
A0  
0
0
Register 0  
res:  
Bit 11 : 15 Reserved  
REGISTER  
NAME  
BIT  
NAME  
DESCRIPTION  
These bits are reserved and should be set to “0”.  
Register 0  
Register 1  
Register 2  
A (1:0)  
res  
LDL  
Register Address “00”  
LDL:  
Bit 8 DAC Attenuation Data Load Control for  
Left Channel  
Reserved, should be set to “0”  
DAC Attenuation Data Load Control for Lch  
Attenuation Data for Lch  
AL (7:0)  
This bit is used to simultaneously set analog  
outputs of the left and right channels. The output  
level is controlled by AL (7:0) attenuation data  
when this bit is set to “1”. When set to “0”, the  
new attenuation data will be stored into a register,  
and the output level will remain at the previous  
attenuation level. The LDR bit in REGISTER 1  
has the equivalent function as LDL. When either  
LDL or LDR is set to “1”, the output level of the  
left and right channels are simultaneously con-  
trolled.  
A (1:0)  
res  
LDR  
Register Address “01”  
Reserved, should be set to “0”  
DAC Attenuation Data Load Control for Rch  
DAC Attenuation for Rch  
AR (7:0)  
A (1:0)  
res  
PDWN  
BYPS  
ATC  
IZD  
OUT  
DEM (1:0)  
MUT  
Register Address “10”  
Reserved, should be set to “0”  
ADC Power Down Control  
ADC High-Pass Filter Operation Control  
DAC Attenuation Data Mode Control  
DAC Infinite Zero Detection Circuit Control  
DAC Output Enable Control  
DAC De-emphasis Control  
Lch and Rch Soft Mute Control  
Register 3  
A (1:0)  
res  
Register Address “11”  
Reserved, should be set to “0”  
LOP  
FMT (2:0)  
LRP  
ADC/DAC Analog Loop-back Control  
ADC/DAC Audio Data Format Selection  
ADC/DAC Polarity of LR-clock Selection  
TABLE III. Functions of the Registers.  
®
16  
PCM3000/3001  
AL (7:0): Bit 7 :0 DAC Attenuation Data for Left Channel  
BYPS: Bit 7  
ADC High-Pass Filter Bypass Control  
AL7 and AL0 are MSB and LSB, respectively.  
The attenuation level (ATT) is given by:  
This bit determines enables or disables the high-  
pass filter for the ADC.  
ATT = 20 x log10 (ATT data/256) (dB)  
BYPS  
AL (7:0)  
ATTENUATION LEVEL  
0
1
High-Pass Filter Enabled  
High-Pass Filter Disabled (bypassed)  
00h  
01h  
:
FEh  
FFh  
dB (Mute)  
–48.16dB  
:
–0.07dB  
0dB  
ATC:  
Bit 5  
DAC Attenuation Channel Control  
When set to “1”, the REGISTER 0 attenuation  
data can be used for both DAC channels. In this  
case, the REGISTER 1 attenuation data is ig-  
nored.  
PROGRAM REGISTER 1  
A (1:0): Register Address  
ATC  
These bits define the address for REGISTER 1:  
0
1
Individual Channel Attenuation Data Control  
Common Channel Attenuation Data Control  
A1  
A0  
0
1
Register 1  
IZD:  
Bit 4  
DAC Infinite Zero Detection Circuit  
Control  
res:  
Bit 15 : 11 Reserved  
This bit enables the Infinite Zero Detection Circuit  
in PCM3000. When enabled, this circuit will dis-  
connect the analog output amplifier from the delta-  
sigma DAC when the input is continuously zero for  
65,536 consecutive cycles of BCKIN.  
These bits are reserved and should be set to “0”  
LDR:  
Bit 8 DAC Attenuation Data Load Control for  
Right Channel  
This bit is used to simultaneously set analog  
outputs of the left and right channels. The output  
level is controlled by AR (7:0) attenuation data  
when this bit is set to “1”. When set to “0”, the  
new attenuation data will be stored into a register,  
and the output level will remain at the previous  
attenuation level. The LDL bit in REGISTER 0  
has the equivalent function as LDR. When either  
LDL or LDR is set to “1”, the output level of the  
left and right channels are simultaneously con-  
trolled.  
IZD  
0
1
Infinite Zero Detection Disabled  
Infinite Zero Detection Enabled  
OUT:  
Bit 3  
DAC Output Enable Control  
When set to “1”, the outputs are forced to VCC/2  
(bipolar zero). In this case, all registers in  
PCM3000 hold the present data. Therefore, when  
set to “0”, the outputs return to the previous  
programmed state.  
AR (7:0): Bit 7 : 0  
DAC Attenuation Data for Right  
Channel  
OUT  
0
1
DAC Outputs Enabled (normal operation)  
DAC Outputs Disabled (forced to BPZ)  
AR7 and AR0 are MSB and LSB respectively.  
See REGISTER 0 for the attenuation formula.  
DM (1:0):Bit 2,1  
DAC De-emphasis Control  
These bits select the de-emphasis mode as shown  
below:  
PROGRAM REGISTER 2  
A (1:0): Bit 10, 9 Register Address  
These bits define the address for REGISTER 2:  
DM1  
DM0  
0
0
1
0
1
0
De-emphasis OFF  
De-emphasis 48kHz ON  
De-emphasis 44.1kHz ON  
A1  
A0  
1
0
Register 2  
1
1
De-emphasis 32kHz ON  
res:  
Bit 15:11, 6 Reserved  
These bits are reserved and should be set to “0”.  
PDWN: Bit 8 ADC Power-Down Control  
MUT:  
Bit 0  
DAC Soft Mute Control  
When set to “1”, both left and right-channel DAC  
outputs are muted at the same time. This muting  
is done by attenuating the data in the digital filter,  
so there is no audible click noise when soft mute  
is turned on.  
This bit places the ADC section in a power-down  
mode, forcing the output data to all zeroes. This  
has no effect on the DAC section.  
MUT  
PDWN  
0
1
Mute Disable  
Mute Enable  
0
1
Power Down Mode Disabled  
Power Down Mode Enabled  
®
17  
PCM3000/3001  
PROGRAM REGISTER 3  
A (1:0): Bit 10, 9 Register Address  
These bits define the address for REGISTER 3:  
LOP:  
Bit 5  
ADC to DAC Loop-back Control  
When this bit is set to “1”, the ADC’s audio data  
is sent directly to the DAC. The data format will  
default to I2S. In Format 6 (DSP Frame), Loop-  
back is not supported.  
A1  
A0  
1
1
Register 3  
LOP  
res:  
Bit 15:11, 8:6, 0  
Reserved  
0
1
Loop-back Disable  
Loop-back Enable  
These bits are reserved, and should be set to “0”.  
FMT (2:0) Bit 4:2 Audio Data Format Select  
LRP:  
Bit 1  
ADC and DAC Polarity of LR-clock  
Selection. Applies only to Formats  
0 through 4.  
These bits determine the input and output audio  
data formats.  
LRP  
FMT2 FMT1 FMT0  
DAC  
ADC  
Data Format  
Data Format  
0
1
Left-Channel is “H”, Right-Channel is “L”.  
Left-Channel is “L”, Right-Channel is “H”.  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
16-bit, MSB-first,  
Right-justified  
16-bit, MSB-first,  
Left-justified  
18-bit, MSB-first,  
Right-justified  
18-bit, MSB-first,  
Left-justified  
PCM3001 DATA FORMAT CONTROL  
16-bit, MSB-first,  
Right-justified  
16-bit, MSB-first,  
Right-justified  
The input and output data formats are controlled by pins 27  
(FMT0), 26 (FMT1), and 25 (FMT2). Setting these pins to  
the same values shown for the bit-mapped PCM3001 con-  
trols the data formats.  
18-bit, MSB-first,  
Right-justified  
18-bit, MSB-first,  
Right-justified  
16-/18-bit, MSB-first,  
Left-justified  
18-bit, MSB-first,  
Left-justified  
1
1
0
1
1
0
16-/18-bit, MSB-first, I2S  
18-bit, MSB-first, I2S  
16-bit, MSB-first,  
DSP-frame  
16-bit, MSB-first,  
DSP-frame  
1
1
1
Reserved  
Reserved  
+5V  
Register Control  
Interface  
1
Reset  
Serial  
Control  
or  
Format  
Control  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
(1)  
3
Line In Left-Channel  
2.2µF(2)  
4.7µF  
4.7µF  
+
+
+
+
4
5
Reference  
Line In Right-Channel  
2.2µF(2)  
Analog  
Front-End  
Analog  
Front-End  
(1)  
6
7
10 to 33pF  
470pF  
Delta-Sigma  
8
CLK/OSC  
Manager  
9
470pF  
10µF  
Decimation  
Filter  
10  
11  
12  
13  
14  
Digital  
Line Out Right-Channel  
+
Audio  
Digital  
Audio  
Data  
Interpolation  
Filter  
Post  
Low-Pass  
Filter  
Interface  
Delta-Sigma  
Bias  
(1)  
LPF and  
Buffer  
LPF and  
Buffer  
Line Out Left-Channel  
Post  
Low-Pass  
Filter  
NOTES: (1) Bypass capacitor = 0.1µF to 10µF. (2) The input capacitor  
affects the pole of the HPF. Example: 2.2µF sets the cut-off frequency  
to 4.8Hz, with a 66ms time constant.  
FIGURE 13. Typical Connection Diagram for PCM3000/3001.  
®
18  
PCM3000/3001  
CINP AND CINN INPUTS  
APPLICATION AND LAYOUT  
CONSIDERATIONS  
A 470pF to 1000pF film capacitor is recommended between  
CINPL and CINNL, CINPR, and CINNR to create an anti-alias  
filter, which will have an 170kHz to 80kHz cut-off frequency.  
These capacitors should be located as close as possible to the  
CINP and CINN pins to avoid introducing unexpected noise or  
dynamic errors into the delta-sigma modulator.  
POWER SUPPLY BYPASSING  
The digital and analog power supply lines to PCM3000/  
3001 should be bypassed to the corresponding ground pins  
with both 0.1µF ceramic and 10µF tantalum capacitors as  
close to the device pins as possible. Although PCM3000/  
3001 has three power supply lines to optimize dynamic  
performance, the use of one common power supply is  
generally recommended to avoid unexpected latch-up or pop  
noise due to power supply sequencing problems. If separate  
power supplies are used, back-to-back diodes are recom-  
mended to avoid latch-up problems.  
VCOM INPUTS  
A 4.7µF to 10µF tantalum capacitor is recommended be-  
tween VCOM and AGND2 to ensure low source impedance  
of the DAC output common. This capacitor should be  
located as close as possible to the VCOM pin to reduce  
dynamic errors on the DAC common.  
GROUNDING  
SYSTEM CLOCK  
In order to optimize dynamic performance of PCM3000/  
3001, the analog and digital grounds are not internally  
connected. PCM3000/3001 performance is optimized with a  
single ground plane for all returns. It is recommended to tie  
all PCM3000/3001 ground pins with low impedance con-  
nections to the analog ground plane. PCM3000/3001 should  
reside entirely over this plane to avoid coupling high fre-  
quency digital switching noise into the analog ground plane.  
The quality of the system clock can influence dynamic  
performance of both the ADC and DAC in the PCM3000/  
3001. The duty cycle, jitter, and threshold voltage at the  
system clock input pin must be carefully managed. When  
power is supplied to the part, the system clock, bit clock  
(BCKIN) and a word clock (LCRIN) should also be supplied  
simultaneously. Failure to supply the audio clocks will result  
in a power dissipation increase of up to three times normal  
dissipation and may degrade long term reliability if the  
maximum power dissipation limit is exceeded.  
VOLTAGE INPUT PINS  
A tantalum capacitor, between 2.2µF and 10µF, is recom-  
mended as an AC-coupling capacitor at the inputs. Combined  
with the 15kcharacteristic input impedance, a 2.2µF cou-  
pling capacitor will establish a 4.8Hz cutoff frequency for  
blocking DC. The input voltage range can be increased by  
adding a series resistor on the analog input line. This series  
resistor, when combined with the 15kinput impedance,  
creates a voltage divider and enables larger input ranges.  
RSTB CONTROL  
If the capacitance between VREF and VCOM exceeds 4.7µF,  
an external reset control delay time circuit must be used.  
THEORY OF OPERATION  
ADC SECTION  
VREF INPUTS  
The PCM3000/3001 ADC consists of a bandgap reference,  
a stereo single-to-differential converter, a fully differential  
5th-order delta-sigma modulator, a decimation filter (includ-  
ing digital high pass), and a serial interface circuit. The  
Block Diagram in this data sheet illustrates the architecture  
of the ADC section, Figure 1 shows the single-to-differential  
converter, and Figure 14 illustrates the architecture of the  
5th-order delta-sigma modulator and transfer functions.  
A 4.7µF to 10µF tantalum capacitor is recommended be-  
tween VREFL, VREFR, and AGND1 to ensure low source  
impedance for the ADC’s references. These capacitors should  
be located as close as possible to the reference pins to reduce  
dynamic errors on the ADC reference.  
Analog In  
X(z)  
+
1st SW-CAP  
Integrator  
+
2nd SW-CAP  
Integrator  
3rd SW-CAP  
Integrator  
+
4th SW-CAP  
Integrator  
5th SW-CAP  
Integrator  
Qn(z)  
Digital Out  
Y(z)  
+
+
+
+
+
+
+
+
H(z)  
Comparator  
1-Bit  
DAC  
Y(z) = STF(z) • X(z) + NTF(z) • Qn(z)  
Signal Transfer Function  
Noise Transfer Function  
STF(z) = H(z)/[1 + H(z)]  
NTF(z) = 1/[1 + H(z)]  
FIGURE 14. Simplified 5th-Order Delta-Sigma Modulator.  
®
19  
PCM3000/3001  
sigma modulator is shown in Figure 15. This 5-level delta-  
sigma modulator has the advantage of stability and clock  
jitter sensitivity over the typical one-bit (2 level) delta-sigma  
modulator.  
An internal high precision reference with two external ca-  
pacitors provides all reference voltages which are required  
by the ADC, which defines the full scale range for the  
converter. The internal single-to-differential voltage con-  
verter saves the design, space and extra parts needed for  
external circuitry required by many delta-sigma converters.  
The internal full differential signal processing architecture  
provides a wide dynamic range and excellent power supply  
rejection performance.  
The combined oversampling rate of the delta-sigma modu-  
lator and the internal 8X interpolation filter is 64fS for a  
256fSsystem clock. The theoretical quantization noise per-  
formance of the 5-level delta-sigma modulator is shown in  
Figure 16.  
The input signal is sampled at 64X oversampling rate,  
eliminating the need for a sample-and-hold circuit, and  
simplifying anti-alias filtering requirements. The 5th-order  
delta-sigma noise shaper consists of five integrators which  
use a switched-capacitor topology, a comparator and a  
feedback loop consisting of a one-bit DAC. The delta-sigma  
modulator shapes the quantization noise, shifting it out of  
the audio band in the frequency domain. The high order of  
the modulator enables it to randomize the modulator out-  
puts, reducing idle tone levels.  
3rd ORDER ∆Σ MODULATOR  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
The 64fS one-bit data stream from the modulator is con-  
verted to 1fS 18-bit data words by the decimation filter,  
which also acts as a low pass filter to remove the shaped  
quantization noise. The DC components are removed by a  
high pass filter function contained within the decimation  
filter.  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
THEORY OF OPERATION  
DAC SECTION  
0
5
10  
15  
20  
25  
30  
The delta-sigma DAC section of PCM3000/3001 is based on  
a 5-level amplitude quantizer and a 3rd-order noise shaper.  
This section converts the oversampled input data to 5-level  
delta-sigma format. A block diagram of the 5-level delta-  
Frequency (kHz)  
FIGURE 16. Quanitzation Noise Spectrum.  
+
+
+
+
+
+
Z–1  
Z–1  
Z–1  
In  
8fS  
18-Bit  
+
+
+
5-level Quantizer  
4
3
2
1
0
Out  
64fS (256fS)  
FIGURE 15. 5-Level ∆Σ Modulator Block Diagram.  
®
20  
PCM3000/3001  

相关型号:

PCM3000E

Stereo Audio CODEC 18-BITS, SERIAL INTERFACE TM
BB

PCM3000E

SINGLE-ENDED ANALOG INPUT/OUTPUT
TI

PCM3000E/2K

Consumer Circuit, CMOS, PDSO28, SSOP-28
BB

PCM3000E/2K

SINGLE-ENDED ANALOG INPUT/OUTPUT
TI

PCM3001

Stereo Audio CODEC 18-BITS, SERIAL INTERFACE TM
BB

PCM3001

SINGLE-ENDED ANALOG INPUT/OUTPUT
TI

PCM3001E

Stereo Audio CODEC 18-BITS, SERIAL INTERFACE TM
BB

PCM3001E

SINGLE-ENDED ANALOG INPUT/OUTPUT
TI

PCM3001E/2K

Consumer Circuit, CMOS, PDSO28, SSOP-28
BB

PCM3001E/2K

SINGLE-ENDED ANALOG INPUT/OUTPUT
TI

PCM3001EG/2K

SPECIALTY CONSUMER CIRCUIT, PDSO28, ROHS COMPLIANT, PLASTIC, SSOP-28
TI

PCM3002

16/20-BIT SINGLE-ENDED ANALOG INPUT/OUTPUT STEREO AUDIO CODECS
BB