PFM19030 [ETC]

1930-1990 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs; 一九三零年至1990年兆赫, 30W , 2级功率模块,增强模式横向的MOSFET
PFM19030
型号: PFM19030
厂家: ETC    ETC
描述:

1930-1990 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs
一九三零年至1990年兆赫, 30W , 2级功率模块,增强模式横向的MOSFET

文件: 总15页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PFM19030 SPECIFICATION  
1930-1990 MHz, 30W, 2-Stage Power Module  
Enhancement-Mode Lateral MOSFETs  
This versatile PCS module provides excellent linearity and efficiency in a  
low-cost surface mount package. The PFM19030 includes two stages of  
amplification, along with internal sense FETs that are on the same silicon  
die as the RF devices. These thermally coupled sense FETs simplify the  
task of bias temperature compensation of the overall amplifier. The module  
includes RF input, interstage, and output matching elements. The source  
and load impedances required for optimum operation of the module are  
much higher (and simpler to realize) than for unmatched Si LDMOS  
transistors of similar performance.  
Package Type: Surface Mount  
PN: PFM19030SM  
The surface mount package base is typically soldered to a conventional  
PCB pad with an array of via holes for grounding and thermal sinking  
of the module. Optimized internal construction supports low FET  
channel temperature for reliable operation.  
Package Type: Flange  
PN: PFM19030F  
28 dB Gain  
IS95 CDMA Performance  
5 Watts Average Output Level  
20% Power Added Efficiency  
–49 dBc ACPR  
30 Watts Peak Output Power  
Internal Sense FETs  
(for improved bias control)  
Module Schematic Diagram  
Module Substrate  
Q2 Die Carrier  
Q1 Die Carrier  
Drain 2  
Q2  
RF OUT  
Q1  
Gate 1  
RF IN  
Input  
Match  
Output  
Match  
Lead  
Input  
Match  
Output  
Match  
Lead  
S2  
S1  
Lead  
Lead  
Sense S1  
Gate 2  
Sense S2  
Lead  
Lead  
D1  
Note: Additionally, there are 250 KOhm resistors connected in shunt with all leads, to enhance ESD protection.  
Page 1 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Electrical Specification  
Parameter  
Min  
Limits  
Typ  
Units  
Comments  
Max  
1
2
Operating Frequency  
1930  
-
1990  
MHz  
dB  
Gain  
27.0  
29.0  
31.5  
1.5  
Note 1.  
Pulsed CW compression measurement  
(12 µsec pulse, 120 µsec period, 10%  
duty cycle).  
Gain Compression at  
Pout =30 Watts  
3
4
5
6
-
-
-
0.8  
dB  
dB  
°
Gain Flatness over any  
30 MHz bandwidth  
Deviation from Linear  
Phase over any 30  
MHz bandwidth  
± 0.2  
± 0.8  
± 0.3  
± 1.5  
Includes delay of test fixture (~0.6  
nanosec.).  
Note 3. Refer to applications data for  
performance with other protocols.  
Group Delay  
-
3.1  
-49  
20.5  
42  
3.7  
-
nanosec  
dBc  
%
ACPR with IS95A  
CDMA Pave = 5 W  
Efficiency under IS-95  
Protocol, Pave = 5 W  
Efficiency @ 30W  
CW Output  
7
8
-45  
18  
-
Note 3.  
9
-
%
DC Drain Supply  
Voltage  
Operating  
Testing for conformance with RF  
specifications is at +27 V.  
10  
24  
-40  
-
27  
30  
Volts  
Testing for conformance with RF  
specification is at +25 °C.  
11 Temperature Range  
(base temperature)  
-
-0.033  
-
+115  
-
°C  
Gain Variation versus  
Temperature  
12  
Bias quiescent currents held constant.  
dB/°C  
VSWR 10:1, all phase angles. No  
degradation in output power before &  
after test.  
Output Mismatch  
Stress  
Watts  
CW  
13  
-
30  
14 Stability  
-60  
-
-
-
dBc  
0<Pout<44.8 dBm CW, 3:1 VSWR  
Theta jc is for output device. Verified  
with IR scan. Note 2.  
15 Theta jc (channel)  
1.9  
2.1  
°C/W  
Quiescent Currents  
16 a) Q1  
These DC quiescent currents are typical  
of the levels that produce optimum  
linearity for CDMA protocol.  
75  
260  
mA  
mA  
b) Q2  
Sense FET Current/RF  
FET Current Ratio  
Ratio of sense FET current, relative to RF  
FET current. Ratios are: Stg 1: 33:1;  
Stg 2: 58:1 Gates of sense & RF FETs  
are DC connected. Measured with no RF  
signal present.  
17  
18  
a) Stg 1 Sense  
b) Stg 2 Sense  
3.0  
1.7  
%
%
ESD Protection  
a) Human Body Model  
b) Machine Model  
a) 2000V, 100 pF, 1500 Ohms  
b) 400V, 200 pF, zero Ohms  
Mil STD 883E, Method 3015 for Human  
Body Model and for Machine Model.  
Class 1  
Class M3  
Page 2 of 15 Specifications subject to change without notice. US Patent No.6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Electrical Specification (Continued)  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Units  
DC Drain Supply  
a) Drain-to-Source Voltage, (VGS=0), D1 & D2  
& Track D1 & Track D2  
b) Normal Operation (Class AB operation)  
VDS  
+50  
+30  
Volts DC  
Volts DC  
19  
VD_SUPPLY  
DC Gate Supply  
20  
a) Gate-to-source Voltage (VDS=0)  
Normal Operation (Class AB operation)  
VGS  
VG_SUPPLY  
-0.5<VGS<+15  
0<VGS<+6  
Volts DC  
Volts DC  
21  
22  
RF Input Power  
PIN  
+25  
dBm  
PTOTAL  
65  
-0.7  
Watts  
Watts/°C  
Maximum Power Dissipation (T +85 °C)  
a) Derate above +85 °C base temperature.  
23  
24  
Maximum Channel Operating Temperature  
Storage Temperature Range  
TCH  
TSTG  
+200  
-40 to +150  
°C  
°C  
RECOMMENDED SOURCE AND LOAD IMPEDANCES  
Impedance Units  
Comments  
Nominal Source  
Impedance for  
Optimum Operation  
Matched for near-optimum linearity and gain flatness.  
19 + j1.9  
21 + j6.3  
Ohms  
Ohms  
Impedance is looking from the module input lead into the  
input matching circuit. Reference plane is 0.105 inches from  
the input end (case edge)of the module.  
Matched for near-optimum linearity under CDMA protocol.  
Impedance is from the module output lead looking into the  
output matching circuit. Reference plane is 0.105 inches from  
the output end (case edge) of the module.  
Nominal Load  
Impedance for  
Optimum Operation  
Specification Notes:  
1) The module is mounted in a test fixture with external matching elements for all testing. Quiescent current bias  
conditions are those appropriate for minimum ACPR under CDMA protocol. Supply voltage for all tests is  
+27 volts DC. Testing is at +25 °C unless otherwise specified.  
2) Theta jc is measured with a package mounting (base) temp of +85 °C, and with 10 Watts CW output.  
3) Pout=5Watts average; IS-95A protocol: IS95 Forward Link PPS+ 9CH.  
ACPR conditions: a) 900 kHz offset, 30 kHz BW, b) 2.75 MHz offset, 1 MHz BW.  
4) Sense FETs are scaled versions of the main RF FETs, formed from electrically isolated cells at end of the RF  
structure. Current scales according to periphery (threshold voltages offset is less than ±150 millivolts between  
adjacent devices). RF & Sense FET gates and sources are DC connected. Drains are DC isolated. Leads S1 & S2  
are DC connected to drains of sense FETs 1 & 2. Sources are connected to package base. Sense FETs are  
electrically isolated from the RF signals.  
Page 3 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Typical Module Performance  
T=+25 °C, unless otherwise noted. Data is for module in a test fixture with external matching elements. See following  
page for test fixture details.  
Gain & Efficiency vs. Output Power  
Typical Small-Signal Gain vs. Frequency  
Pulsed Measurement, Vdc=+27V, F=1960 MHz  
29  
28  
27  
26  
25  
24  
60%  
50%  
40%  
30%  
20%  
10%  
31  
30  
29  
28  
27  
26  
1840  
1870  
1900  
1930  
1960  
1990  
2020  
2050  
2080  
30  
32  
34  
36  
38  
40  
42  
44  
46  
Frequency (MHz)  
Ouptput Power (dBm)  
Typical Output Power at 1 dB Gain  
Input and Output Return Loss vs Frequency.  
Compression vs Freq. & Supply Voltage  
47  
46  
45  
44  
43  
0
-2  
P1dB(+26V)  
P1dB(+27V)  
P1dB(+28V)  
-4  
OUTPUT  
INPUT  
-6  
-8  
-10  
-12  
-14  
1870  
1900  
1930  
1960  
1990  
2020  
2050  
Frequency (MHz)  
1900  
1930  
1960  
1990  
2020  
Frequency (MHz)  
Typical CW Gain vs Swept CW Output Power,  
with Various Quiescent Bias Conditions  
Typical S21 Phase Variation Versus Frequency  
30  
29  
28  
27  
26  
25  
24  
(normalized about average insertion phase)  
3
2
Bias for Best 2-Tone  
IMDs  
1
0
-1  
-2  
-3  
G(75/250 mA)  
G(68/225 mA)  
G(60/200 mA)  
G(82/275 mA)  
1930  
1945  
1960  
1975  
1990  
Frequency (MHz)  
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
CW Swept Output Power (dBm)  
T
t
i
m
e
d
e
l
a
y
o
f
f
s
e
s
t
=
3
.
2
n
a
.
n
o
s
e
c
(
i
n
c
l
u
d
e s  
Note: This data illustrates the significance of quiescent bias  
current level. The unit was press mounted in the fixture &  
thermal effects are exagerated for this CW test.  
i
m
e
d
e
l
a
y
o
f
t
e
t
f
i
x
t
u
r e )  
Page 4 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Typical Module Performance  
T=+25 °C, unless otherwise noted. Data is for module in a test fixture with external matching elements. See following  
page for test fixture details.  
Single-Signal IS95 CDMA ACPR & Efficiency  
Typical CW 2-Tone Intermods vs. Output Power  
vs Average Output Power (F=1960 MHz)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
30  
27  
24  
21  
18  
15  
12  
9
IM3L  
IM3U  
IM5L  
IM5U  
IM7L  
IM7U  
ACPR(-900 KHz)  
ACPR(+900 KHz)  
ACPR(-1.25 MHz)  
ACPR(+1.25 MHz)  
ACPR(-2.75 MHz)  
ACPR(+2.75 MHz)  
PAE (%)  
6
3
30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Average Output Power (dBm)  
0
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
F1=1959.5 MHz, F2=1960.5 MHz  
Vsupply = +27 V, Idsq1 = 75 mA, Idsq2=250 mA  
Average CDMA Output Power (dBm)  
2 IS95 CDMA Signal IM Distortion  
vs. Ave Output Power (F=1955, 1965 MHz)  
2-Tone IMD Rejection vs. Tone Separation  
(Peak Envelope Power = 44.5 dBm)  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
0
IM3L  
IM3U  
IM5L  
IM5U  
IM7L  
IM7U  
IM3(+15 MHz)  
IM3(-15 MHz)  
IM5(-25 MHz)  
IM5(+25 MHz)  
-10  
-20  
-30  
-40  
-50  
-60  
0
10  
20  
30  
40  
50  
30  
31  
32  
33  
34  
35  
36  
37  
38  
CW Tone Separation (MHz)  
CDMA Total Average Power (dBm)  
WCDMA ACLR & Efficiency vs Output  
Power (F=1960 MHz, Test Model 1)  
F1=1930 MHz, F2=1930.5 MHz to 1980 MHz  
Vsupply = +27 V, Idsq1 = 75 mA, Idsq2=250 mA  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
28  
24  
20  
16  
12  
8
ACLR(-5 MHz)  
ACLR (+5 MHz)  
Efficiency  
4
0
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Average WCDMA Output Power (dBm)  
Page 5 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Typical Module Performance  
T=+25 °C, unless otherwise noted. Data is for module in a test fixture with external matching elements. See following  
page for test fixture details.  
EDGE EVM & Efficiency vs. Pout  
2-Tone 3rd Order IMD Rejection vs. Pout  
& First Stage Quiescent Bias Currents  
12  
10  
8
30.0%  
25.0%  
20.0%  
15.0%  
10.0%  
5.0%  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
IM3(75/250)  
IM3(82/250)  
IM3(67/250)  
IM3(60/250)  
Efficiency  
RMS EVM %  
Efficiency  
Idsq1=Opt-20%  
-10%  
+10%  
6
4
EVM  
Idsq1=Optimum,  
75 mA  
2
0
0.0%  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Average Output Power (dBm)  
Average Output Power (dBm)  
2-Tone 3rd Order IMD Rejection vs. Pout  
& Second Stage Quiescent Bias Currents  
EDGE ACPR vs. Average Pout  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
IM3(75/250)  
IM3(75/275)  
IM3(75/225)  
lower 200khz  
upper 200khz  
lower 250khz  
upper 250khz  
lower 400khz  
upper 400khz  
lower 600khz  
upper 600khz  
lower 1.2mhz  
upper 1.2mhz  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
IM3(75/200)  
Idsq2=Optimum -20%  
+10%  
-10%  
Idsq2 = Optimum,  
250 mA  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
36  
37  
38  
39  
40  
41  
42  
43  
Average Output Power (dBm)  
Average Output Power (dBm)  
Page 6 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
PFM19030SM Package Outline  
PFM19030F Package Outline  
Page 7 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Module Application Notes  
The PFM19030 was designed to provide a versatile low cost solution for a wide variety of wireless applications  
requiring 30 Watt peak output levels. This hybrid module contains two stages of Si LDMOS FET amplification:  
a nominally 5 Watt input stage driving a 30 Watt output stage. The module is optimized for efficient, linear operation  
with EDGE and CDMA signals. The input and output of this module are partially matched, and require source and load  
impedances of nominally 19 and 21 Ohms (much higher than typically required by unmatched Si LDMOS FETs).  
These source and load impedances can be achieved with compact conventional external PCB circuitry.  
Performance for particular signal protocols can be improved slightly by small adjustments in quiescent currents and  
load impedances presented to the module. The data presented in the previous pages was taken at one set of quiescent  
currents and in a fixture with source and load impedances that were fixed for all measurements. The data presented is  
generally representative of the performance – benefits from further optimization in quiescent current are small.  
In addition to the two RF gain stages, there are Sense FET (thermally tracking) devices that serve as optional DC circuit  
elements. The Sense FETs are fabricated on the same epi material with nominally identical physical characteristics (but  
smaller gate periphery) as the RF devices. The sense devices can be applied as temperature compensation elements in  
conjunction with external bias circuitry. Alternatively, the two-stage amplifier can be operated with the Sense FETs  
unused (S1 and S2 leads floating).  
The base of the module is high conductivity copper of 40 mil thickness. It is well matched to typical PCB material, and  
it serves as a heat spreader for the device when mounted as a surface-mount component. The module thermal  
characteristics were measured with the unit soldered to a 20 mil thick PCB material with an array of plated via holes for  
electrical grounding and thermal sinking. IR scans of this configuration demonstrated maximum die channel  
temperatures of 142 degrees C with a PCB base temperature of +95 degrees C, and 10 Watts CW output power.  
These modules can be provided in tape-and-reel configuration for high volume applications.  
Typical PCB Mounting Pattern  
The module outline is indicated by dashed line (0.60 X 1.00 inches). The ground pad is 1.030 X 0.630  
inches. Ground vias in this example are 28 mil diameter on 35 mil (or 70 mil) centers. Thermal resistance is  
proportional to the thickness of the PC board (height of vias), and inversely proportional to the total ground  
hole array periphery (and thickness of plating in the holes). The densely spaced vias in this layout (on 35 mil  
spaces) are located in areas of maximum heat generation. The gap between the lead pads and the ground  
pad is 25 mils. Note that the underside of the PCB must be connected to a thermal heat sink and ground.  
The above hole pattern is an example of one that maximizes thermal transfer. There are numerous  
alternative approaches. Depending on the application (signal protocol, thermal environment, etc.), the  
number of via holes can be reduced. High average power applications require the most extensive thermal  
sinking.  
Page 8 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Recommended Passive Bias Circuit  
This schematic demonstrates a method of applying the Sense FETs internal to the module that uses passive  
external circuitry. The circuit maintains a constant current through the Sense FETS, independent of  
temperature of the die. The Sense FETs are configured in this case as diodes. The temperature dependence  
of the Vf of the diode is very similar to that of the RF FET gate voltage, and therefore the quiescent current  
remains nearly constant over a wide temperature range. The advantage of this circuit is its simplicity and  
stability (avoidance of operational amplifiers) under all layout conditions. The main limitation of the circuit  
is that quiescent currents must be adjusted for each individual module (they are not easily pre-set with  
precision).  
+10 to  
+20 V  
Gate  
GND  
+27 V  
Note: Typical Q1 diode bias = 1.4 mA (VG1 ~ 3.96V)  
Typical Q2 diode bias = 2.7 mA (VG2 ~ 4.21V)  
(based on 6/4/04 measurements)  
J1  
8
7
6
5
4
3
2
1
C29  
S1  
S2  
C28  
C27  
C12 C11 C10  
R6  
R5  
C24  
C23  
R2  
C22  
C20  
C21  
C19  
C9  
C18 C17 C16 C15  
C8  
Drain 1  
C7  
Sense D2  
Gate 2  
C2  
R3  
C6  
R1  
Sense D1  
PFM19030  
RF  
OUT  
RF  
Out  
RF IN  
RF  
C1  
Input  
C4  
C5  
C3  
Page 9 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Passive Bias Circuit Parts List  
Designator  
Description  
Qty  
C2  
C3  
C5  
C4  
C6  
1
1
1
1
1
4
4
4
1
CAP, 1.2 PF±0.1 pF, 0603, ATC 600S  
CAP, 2.0 PF±0.1 pF, 0603, ATC 600S  
CAP, 1.8 PF±0.1 pF, 0603, ATC 600S  
CAP, 4.7 PF±0.1 pF, 0603, ATC 600S  
CAP, 3.0 PF±0.1 pF, 0603, ATC 600S  
CAP, 27 PF±5%, 0603, ATC 600S  
CAP, 27 PF±5%, 100V (min), 0603, any vendor.  
CAP, 470 PF ±10%,100 V, 0603, any vendor.  
CAP, 3300 PF±10%, 100 V, 0603, Murata GRM39X7R332K100??, or  
equivalent.  
C1, C7, C19, C20  
C10, C13, C14, C15,  
C8, C11, C16, C21  
C22  
C23, C9, C17, C12  
C24, C18  
4
2
CAP, 15000 PF±10%, 100 V, 0805, MurataGRM40X7R153K100??,  
or equivalent.  
CAP, 150000 1206, 50V, X7R, 10%  
Suggest Murata GRM42-6-X7R-154-K-050-A-L or equivalent.  
R5  
RES, potentiometer, 10Kohms, Digikey SM4W103-ND  
1
1
1
1
1
1
1
2
R6  
RES, potentiometer, 5 Kohms, Digikey SM4W502-ND  
RES, 1/16W, 0603, 1000 ohms, 5%  
RES, 1/16W, 0805, 124 Ohms, 5%  
R1  
R3  
C27  
C29  
C28  
S1, S2  
CAP, 2.2uf SMT TANTALUM, 50V (240097)  
CAP, 10uf 16V SMT TANTALUM (240096)  
CAP, 47UF, 50V, ELECTR SMT (240087)  
SPST Switch, Digikey PN CKN1100CT-ND  
Page 10 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Test Fixture  
A metal-backed PCB with clamps for securing the module is used for module electrical testing and for  
product demonstration. The fixture is supplied mounted to a finned heat sink. The fixture schematic is  
provided on the following page.  
This test fixture uses an active bias circuit, which sets the bias circuit through the Sense FETs (configured as  
FETs) and applies the derived gate voltage to the associated RF FETs. This assures particular quiescent bias  
currents, with accuracy determined by the Sense FET-to-RF FET current ratios.  
Page 11 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Test Fixture Schematic  
+27 V  
OpAmp  
+27 V  
GND  
J2 Not Used for Demo Fixture  
J1  
J2  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
RZ_FS1  
RZ_FS2  
C31  
C37  
C34  
R33  
C36  
R36  
R12  
C32  
R32  
R31  
R11  
R16  
U2  
5
4
-
5 U1  
R13  
C43  
4
3
LM8261  
-
+
C42  
3
LM8261  
R34  
C35  
2
C41  
+
1
R14  
C40  
2
R39  
R37  
R19  
R40  
R35  
R20  
C33  
R15  
R38  
R17  
S2  
D2  
R18  
S1  
D1  
C28  
C27  
C26  
C12 C11 C10  
C25  
C24  
C22  
C23  
C21  
C14  
C9  
C8  
C7  
C20  
C19  
C18 C17 C16 C15  
Drain 1  
Sense D2  
Gate 2  
C2  
R2  
C6  
R1  
Sense D1  
RF IN  
PFM19030SM  
RF  
OUT  
RF  
Out  
RF  
Input  
C1  
C4  
C5  
C3  
See the following pages for the parts list and a description of the principle of operation. Note that an  
alternative, less complex bias scheme is provided later in this applications note. The advantage of the above  
bias design is that bias currents are set by the RF-to-Sense FET ratios, and once the optimum bias circuit  
resistor (potentiometer) values are established, the circuit can stay fixed for multiple modules (thus  
eliminating module-specific bias alignment). Additionally, aging effects are minimized because of the  
Page 12 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
similar bias conditions for Sense and RF FETs. The disadvantage of this design is its relative complexity and  
the incorporation of operational amplifiers, for which stability is potentially circuit layout dependent.  
Parts List for Cree Microwave Test Fixture  
Designator  
Qty  
Description  
C2  
C3  
C5  
C4  
C6  
1
1
1
1
1
4
4
4
1
4
6
CAP, 1.2 PF±0.1 pF, 0603, ATC 600S  
CAP, 2.0 PF±0.1 pF, 0603, ATC 600S  
CAP, 1.8 PF±0.1 pF, 0603, ATC 600S  
CAP, 4.7 PF±0.1 pF, 0603, ATC 600S  
CAP, 3.0 PF±0.1 pF, 0603, ATC 600S  
CAP, 27 PF±5%, 0603, ATC 600S  
CAP, 27 PF±5%, 100V (min), 0603, any vendor.  
CAP, 470 PF ±10%,100 V, 0603, any vendor.  
CAP, 3300 PF±10%, 100 V, 0603, Murata GRM39X7R332K100  
CAP, 15000 PF±10%, 100 V, 0805, MurataGRM40X7R153K100  
CAP, 150000 1206, 50V, X7R, 10%  
C1, C7, C19, C20  
C10, C13, C14, C15,  
C8, C11, C16, C21  
C22  
C9, C23, C17, C12  
C18, C24, C25, C26,  
C31, C34  
Murata GRM42-6-X7R-154-K-050-A-L  
C27, C37  
C28  
CAP, 2.2uf SMT TANTALUM, 50V  
CAP, 47UF, 50V, ELECTR SMT  
2
1
2
2
4
1
1
2
2
4
4
2
1
1
2
2
2
2
2
2
C33, C35  
C32, C36  
C40, C41, C42, C43  
R1  
CAP, 18,000 PF ±10%,100 V, 0603  
CAP, 33,000 PF ±10%,100 V, 0603  
CAP, 1000 PF ±10%,100 V, 0603.  
RES, 1/16W, 0603, 1000 ohms, 5%  
R2  
RES, 1/16W, 0805, 124 Ohms, 5%  
RES, 1/16W, 0603, 332 Ohms, 1%  
R11, R12  
R31, R32  
R13, R14, R33, R34  
R16, R15, R35, R36  
R19, R39  
R18  
RES, 1/16W, 0603, 147 Ohms, 1%  
RES, 1/16W, 0603, 2370 Ohms, 1%  
RES, 1/16W, 0603, 511 KOhms, 1%  
RES, 1/16W, 0603, 100 KOhms, 5%  
RES, 1/16W, 0603, 3320 Ohms, 5%  
RES, 1/16W, 0603, 2000 Ohms, 5%  
R38  
R20, R40  
R17, R37  
RZ_FS1, RZ_FS2  
D1, D2  
RES, 1/8W, 1206, 1000 Ohms, 5%  
RES, potentiometer, 10 Kohms, Digikey SM4W103-ND, 11T  
RES, 1/16W, 0805, 0 Ohms (used as jumpers, demo fixture only)  
Zener diode, 6.2 V, Digikey PN BZT52C6V27DICT-ND  
SPST Switch, Digikey PN CKN1100CT-ND  
Op Amp, High Output, LM8261M5 (5 pin, SOT23 package)  
S1, S2  
U1, U2  
It is also possible to bias the two stages in a conventional manner, with the two tracking FET drains left  
unused (floating or grounded). The above bias circuits are just two of several possibilities.  
Page 13 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Test Fixture Active Bias Circuit Principles of Operation  
The test fixture operates off of a single voltage supply. It contains two switches and two potentiometers.  
The switches provide for independent on/off for the input and output devices of the module. The  
potentiometers allow adjustment of quiescent current level of each stage. The adjustments should be made  
with no RF applied to the module.  
Q1 Die Carrier  
Q1  
Output  
Match  
Input  
Match  
Vsupply  
S1  
Vsupply  
R1 <<Rbias  
R1  
R1  
-
Differental Amp  
+
Ids_sense  
Ireference  
Rbias  
Principal of Operation of Bias Circuitry  
The principal of operation of the fixture bias circuit is demonstrated in the above Figure. The potentiometer  
establishes a reference current, and the operational amplifier adjusts gate voltage to maintain that current in  
the sense device. The same DC gate voltage is also applied to the main (RF) device. Sense devices are  
scaled versions of the main (RF) devices, on the same die (to facilitate temperature tracking). As the  
temperature of the die changes due to RF drive (or ambient temperature changes), the operational amplifier  
maintains constant current through the Sense FET, and thus constant quiescent bias for the main (RF) FET.  
No RF signal is applied to the Sense FET.  
There is a separate independent bias circuit for the input (Q1) device and for the output device (Q2) of the  
module.  
Experience has shown this bias circuit to be a reliable method of maintaining tight control of quiescent  
current over operating temperature, and for minimizing the impact of device aging effects on amplifier  
performance. However, there are some precautions regarding use of this circuit. The principle of the circuit  
is for the differential amplifier (op amp) to adjust gate voltage until the desired current is achieved through  
the sense FETs. If the current path is interrupted (thereby not allowing Ids_sense to flow), the operational  
amplifier will increase gate bias in an attempt to increase current, with the possibility that the quiescent bias  
current in the RF FET may increase beyond a safe limit (the device may be destroyed). The zener diodes in  
the test fixture circuit (D1 and D2, test fixture schematic) are safeguards for prohibiting excessive gate  
voltage to be applied to the transistors.  
Page 14 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  
PFM19030  
Disclaimer: Specifications are subject to change without notice. Cree Microwave, Inc. believes the  
information contained within this data sheet to be accurate and reliable. However, no responsibility is  
assumed by Cree Microwave for any infringement of patents or other rights of third parties which may  
result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
Cree Microwave. Cree Microwave makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose. “Typical” parameters are the average values  
expected by Cree Microwave in large quantities and are provided for information purposes only. These  
values can and do vary in different applications, and actual performance can vary over time. All  
operating parameters should be validated by customer’s technical experts for each application. Cree  
Microwave products are not designed, intended, or authorized for use as components in applications  
intended for surgical implant into the body or to support or sustain life, in applications in which the  
failure of the Cree product could result in personal injury or death, or in applications for planning,  
construction, maintenance or direct operation of a nuclear facility. Cree Microwave is a trademark and  
Cree and the Cree logo are registered trademarks of Cree, Inc.  
Contact Information:  
Cree Microwave, Inc.  
160 Gibraltar Court  
Sunnyvale, CA 94089-1319  
Sheryle Henson (Cree Microwave—Marketing Manager) 408-962-7783  
Tom Dekker (Cree Microwave—Sales Director) 919-313-5639  
Page 15 of 15 Specifications subject to change without notice. U.S. Patent No. 6,822,321  
Rev. 2  
http://www.cree.com/  

相关型号:

PFM19030F

1930-1990 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs
ETC

PFM19030SM

1930-1990 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs
ETC

PFM2100-M

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER

PFM2100-S

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER

PFM21030

2110-2170 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs
ETC

PFM21030F

2110-2170 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs
ETC

PFM21030SM

2110-2170 MHz, 30W, 2-Stage Power Module Enhancement-Mode Lateral MOSFETs
ETC

PFM2150-M

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER

PFM2150-S

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER

PFM220-M

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER

PFM220-S

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER

PFM2200-M

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS -20V- 200V
PACELEADER