PIC16C63AT-20E/SOXXX [ETC]

8-Bit Microcontroller ; 8位微控制器\n
PIC16C63AT-20E/SOXXX
型号: PIC16C63AT-20E/SOXXX
厂家: ETC    ETC
描述:

8-Bit Microcontroller
8位微控制器\n

微控制器 光电二极管 可编程只读存储器
文件: 总184页 (文件大小:2122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C63A/65B/73B/74B  
8-Bit CMOS Microcontrollers with A/D Converter  
Devices included in this data sheet:  
PIC16C7X Peripheral Features:  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• PIC16C63A  
• PIC16C65B  
• PIC16C73B  
• PIC16C74B  
• Timer1: 16-bit timer/counter with prescaler  
can be incremented during SLEEP via external  
crystal/clock  
PIC16CXX Microcontroller Core Features:  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• High performance RISC CPU  
• Only 35 single word instructions to learn  
• Capture, Compare, PWM modules  
• All single cycle instructions except for program  
branches which are two cycle  
- Capture is 16-bit, max. resolution is 200 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
• 8-bit multichannel Analog-to-Digital converter  
• 4 K x 14 words of Program Memory,  
192 x 8 bytes of Data Memory (RAM)  
• Synchronous Serial Port (SSP) with SPITM  
and I2CTM  
• Interrupt capability  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI)  
• Eight-level deep hardware stack  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
• Parallel Slave Port (PSP), 8-bits wide with  
external RD, WR and CS controls  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out detection circuitry for Brown-out Reset  
(BOR)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Pin Diagram:  
• Programmable code protection  
• Power-saving SLEEP mode  
• Selectable oscillator options  
PDIP, Windowed CERDIP  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
MCLR/VPP  
RA0/AN0  
RB7  
2
RB6  
• Low power, high speed CMOS EPROM  
technology  
3
RB5  
RA1/AN1  
4
RB4  
RA2/AN2  
5
RB3  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
• Wide operating voltage range: 2.5V to 5.5V  
• High Sink/Source Current 25/25 mA  
6
RB2  
7
RB1  
8
RB0/INT  
VDD  
9
• Commercial, Industrial and Automotive  
temperature ranges  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
VSS  
• Low power consumption:  
- < 5 mA @ 5V, 4 MHz  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
- 23 µA typical @ 3V, 32 kHz  
- < 1.2 µA typical standby current  
RC3/SCK/SCL  
RD0/PSP0  
RD1/PSP1  
I/O  
A/D  
Devices  
PSP  
Interrupts  
Pins Chan.  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
22  
33  
22  
33  
-
-
No  
Yes  
No  
10  
11  
11  
12  
5
8
Yes  
2000 Microchip Technology Inc.  
DS30605C-page 1  
PIC16C63A/65B/73B/74B  
SDIP, SOIC, Windowed CERDIP  
1  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
2
3
4
5
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
6
7
8
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
10  
11  
12  
13  
14  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
PLCC  
MQFP  
TQFP  
RB3  
39  
38  
37  
36  
RA4/T0CKI  
RA5/SS/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
7
8
9
10  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
NC  
RB2  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
RB1  
RB0/INT  
VDD  
PIC16C65B  
PIC16C74B  
35  
34  
11  
12  
13  
14  
15  
16  
17  
PIC16C65B  
VSS  
VDD  
33  
32  
31  
30  
29  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
PIC16C74B 27  
VSS  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/SS/AN4  
RA4/T0CKI  
VDD  
26  
25  
24  
23  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
RB0/INT  
RB1  
10  
11  
RB2  
RB3  
Key Features  
PICmicroMid-Range MCU Family  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
Reference Manual (DS33023)  
Program Memory (EPROM) x 14  
Data Memory (Bytes) x 8  
Pins  
4 K  
192  
28  
2
4 K  
192  
40  
Yes  
2
4 K  
192  
28  
2
4 K  
192  
40  
Yes  
2
Parallel Slave Port  
Capture/Compare/PWM Modules  
Timer Modules  
3
3
3
3
A/D Channels  
5
8
2
2
2
2
Serial Communication  
In-Circuit Serial Programming  
Brown-out Reset  
SPI/I C, USART  
SPI/I C, USART  
SPI/I C, USART  
SPI/I C, USART  
Yes  
Yes  
10  
Yes  
Yes  
11  
Yes  
Yes  
11  
Yes  
Yes  
12  
Interrupt Sources  
Packages  
28-pin SDIP, SOIC,  
SSOP,  
Windowed CERDIP  
40-pin PDIP;  
44-pin PLCC,  
MQFP, TQFP,  
28-pin SDIP, SOIC,  
SSOP,  
Windowed CERDIP  
40-pin PDIP;  
44-pin PLCC,  
MQFP, TQFP,  
Windowed CERDIP  
Windowed CERDIP  
DS30605C-page 2  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Table of Contents  
1.0 General Description...................................................................................................................................................................... 5  
2.0 PIC16C63A/65B/73B/74B Device Varieties ................................................................................................................................. 7  
3.0 Architectural Overview ................................................................................................................................................................. 9  
4.0 Memory Organization................................................................................................................................................................. 15  
5.0 I/O Ports ..................................................................................................................................................................................... 29  
6.0 Timer0 Module ........................................................................................................................................................................... 39  
7.0 Timer1 Module ........................................................................................................................................................................... 43  
8.0 Timer2 Module ........................................................................................................................................................................... 47  
9.0 Capture/Compare/PWM Modules .............................................................................................................................................. 49  
10.0 Synchronous Serial Port (SSP) Module ..................................................................................................................................... 55  
11.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)................................................................ 65  
12.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................. 79  
13.0 Special Features of the CPU...................................................................................................................................................... 85  
14.0 Instruction Set Summary............................................................................................................................................................ 99  
15.0 Development Support............................................................................................................................................................... 107  
16.0 Electrical Characteristics.......................................................................................................................................................... 113  
17.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 139  
18.0 Packaging Information.............................................................................................................................................................. 153  
Appendix A: Revision History ........................................................................................................................................................ 165  
Appendix B: Device Differences..................................................................................................................................................... 165  
Appendix C: Device Migrations - PIC16C63/65A/73A/74A PIC16C63A/65B/73B/74B ............................................................. 166  
Appendix D: Migration from Baseline to Mid-Range Devices......................................................................................................... 168  
On-Line Support................................................................................................................................................................................. 175  
Reader Response.............................................................................................................................................................................. 176  
Product Identification System ............................................................................................................................................................ 177  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2000 Microchip Technology Inc.  
DS30605C-page 3  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 4  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
A highly reliable Watchdog Timer (WDT), with its own  
on-chip RC oscillator, provides protection against soft-  
ware lockup, and also provides one way of waking the  
device from SLEEP.  
1.0  
GENERAL DESCRIPTION  
The PIC16C63A/65B/73B/74B devices are low cost,  
high performance, CMOS, fully-static, 8-bit micro-  
controllers in the PIC16CXX mid-range family.  
A UV erasable CERDIP packaged version is ideal for  
code development, while the cost effective One-Time-  
Programmable (OTP) version is suitable for production  
in any volume.  
All PICmicro® microcontrollers employ an advanced  
RISC architecture. The PIC16CXX microcontroller  
family has enhanced core features, eight-level deep  
stack and multiple internal and external interrupt  
sources. The separate instruction and data buses of  
the Harvard architecture allow a 14-bit wide instruction  
word with the separate 8-bit wide data. The two stage  
instruction pipeline allows all instructions to execute in  
a single cycle, except for program branches, which  
require two cycles. A total of 35 instructions (reduced  
instruction set) are available. Additionally, a large reg-  
ister set gives some of the architectural innovations  
used to achieve a very high performance.  
The PIC16C63A/65B/73B/74B devices fit nicely in  
many applications ranging from security and remote  
sensors to appliance control and automotive. The  
EPROM technology makes customization of applica-  
tion programs (transmitter codes, motor speeds,  
receiver frequencies, etc.) extremely fast and con-  
venient. The small footprint packages make this micro-  
controller series perfect for all applications with space  
limitations. Low cost, low power, high performance,  
ease of use and I/O flexibility make the PIC16C63A/  
65B/73B/74B devices very versatile, even in areas  
where no microcontroller use has been considered  
before (e.g., timer functions, serial communication,  
capture and compare, PWM functions and coprocessor  
applications).  
The PIC16C63A/73B devices have 22 I/O pins. The  
PIC16C65B/74B devices have 33 I/O pins. Each  
device has 192 bytes of RAM. In addition, several  
peripheral features are available, including: three timer/  
counters, two Capture/Compare/PWM modules, and  
two serial ports. The Synchronous Serial Port (SSP)  
can be configured as either a 3-wire Serial Peripheral  
Interface (SPI) or the two-wire Inter-Integrated Circuit  
(I2C) bus. The Universal Synchronous Asynchronous  
Receiver Transmitter (USART) is also known as the  
Serial Communications Interface or SCI. Also, a 5-  
channel high speed 8-bit A/D is provided on the  
PIC16C73B, while the PIC16C74B offers 8 channels.  
The 8-bit resolution is ideally suited for applications  
requiring low cost analog interface, e.g., thermostat  
control, pressure sensing, etc.  
1.1  
Family and Upward Compatibility  
Users familiar with the PIC16C5X microcontroller fam-  
ily will realize that this is an enhanced version of the  
PIC16C5X architecture. Please refer to Appendix A for  
a detailed list of enhancements. Code written for the  
PIC16C5X can be easily ported to the PIC16CXX fam-  
ily of devices (Appendix B).  
1.2  
Development Support  
PICmicro® devices are supported by the complete line  
of Microchip Development tools.  
The PIC16C63A/65B/73B/74B devices have special  
features to reduce external components, thus reducing  
cost, enhancing system reliability and reducing power  
consumption. There are four oscillator options, of which  
the single pin RC oscillator provides a low cost solution,  
the LP oscillator minimizes power consumption, XT is  
a standard crystal, and the HS is for high speed crys-  
tals. The SLEEP (power-down) feature provides a  
power-saving mode. The user can wake-up the chip  
from SLEEP through several external and internal  
interrupts and RESETS.  
Please refer to Section 15.0 for more details about  
Microchips development tools.  
2000 Microchip Technology Inc.  
DS30605C-page 5  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 6  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
2.3  
Quick-Turnaround-Production  
(QTP) Devices  
2.0  
PIC16C63A/65B/73B/74B  
DEVICE VARIETIES  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your local  
Microchip Technology sales office for more details.  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C63A/65B/73B/74B  
Product Identification System section at the end of this  
data sheet. When placing orders, please use that page  
of the data sheet to specify the correct part number.  
For the PIC16C7X family, there are two device types”  
as indicated in the device number:  
1. C, as in PIC16C74. These devices have  
EPROM type memory and operate over the  
standard voltage range.  
2.4  
Serialized Quick-Turnaround  
Production (SQTPSM) Devices  
2. LC, as in PIC16LC74. These devices have  
EPROM type memory and operate over an  
extended voltage range.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are pro-  
grammed with different serial numbers. The serial num-  
bers may be random, pseudo-random or sequential.  
2.1  
UV Erasable Devices  
Serial programming allows each device to have a  
unique number, which can serve as an entry code,  
password or ID number.  
The UV erasable version, offered in windowed CERDIP  
packages, is optimal for prototype development and  
pilot programs. This version can be erased and  
reprogrammed to any of the oscillator modes.  
Microchip's PICSTARTPlus and PRO MATEII  
programmers both support programming of the  
PIC16C63A/65B/73B/74B.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must also be  
programmed.  
2000 Microchip Technology Inc.  
DS30605C-page 7  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 8  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
PIC16CXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
the data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXX family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16CXX uses a Harvard architecture, in which  
program and data are accessed from separate memo-  
ries using separate buses. This improves bandwidth  
over traditional von Neumann architecture, in which  
program and data are fetched from the same memory  
using the same bus. Separating program and data  
buses further allows instructions to be sized differently  
than the 8-bit wide data word. Instruction opcodes are  
14-bits wide, making it possible to have all single word  
instructions. A 14-bit wide program memory access  
bus fetches a 14-bit instruction in a single cycle. A  
two-stage pipeline overlaps fetch and execution of  
instructions (Example 3-1). Consequently, most  
instructions execute in a single cycle (200 ns @  
20 MHz) except for program branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the working register (W register). The  
other operand is a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a borrow bit and a digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
All devices covered by this data sheet contain  
4K x 14-bit program memory and 192 x 8-bit data  
memory.  
The PIC16CXX can directly, or indirectly, address its  
register files or data memory. All Special Function Reg-  
isters, including the program counter, are mapped in  
the data memory. The PIC16CXX has an orthogonal  
(symmetrical) instruction set that makes it possible to  
carry out any operation on any register using any  
addressing mode. This symmetrical nature and lack of  
special optimal situationsmake programming with the  
PIC16CXX simple yet efficient. In addition, the learning  
curve is reduced significantly.  
2000 Microchip Technology Inc.  
DS30605C-page 9  
PIC16C63A/65B/73B/74B  
FIGURE 3-1:  
PIC16C63A/65B/73B/74B BLOCK DIAGRAM  
13  
8
PORTA  
PORTB  
Data Bus  
Program Counter  
RA0/AN0(2)  
RA1/AN1(2)  
RA2/AN2(2)  
RA3/AN3/VREF  
RA4/T0CKI  
EPROM  
Program  
Memory  
(2)  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
RA5/SS/AN4(2)  
Program  
Bus  
14  
RAM Addr(1)  
9
Addr MUX  
RB0/INT  
RB7:RB1  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
PORTC  
STATUS reg  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
3
MUX  
Power-up  
Timer  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
PORTD(3)  
8
Timing  
Generation  
Watchdog  
Timer  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
Parallel Slave Port  
(3)  
PORTE(3)  
MCLR VDD, VSS  
RE0/RD/AN5(2,3)  
RE1/WR/AN6(2,3)  
RE2/CS/AN7(2,3)  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
A/D(2)  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: A/D is not available on the PIC16C63A/65B.  
3: PSP and Ports D and E are not available on PIC16C63A/73B.  
DS30605C-page 10  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 3-1:  
PIC16C63A/73B PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
MCLR/VPP  
1
1
I/P  
ST  
Master clear (RESET) input or programming voltage input.  
This pin is an active low RESET to the device.  
PORTA is a bi-directional I/O port.  
(4)  
(4)  
RA0/AN0  
2
3
4
5
2
3
4
5
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
RA0 can also be analog input 0  
RA1 can also be analog input 1  
RA2 can also be analog input 2  
.
.
.
(4)  
(4)  
(4)  
RA1/AN1  
(4)  
RA2/AN2  
(4)  
RA3/AN3/VREF  
RA3 can also be analog input 3 or analog reference  
(4)  
voltage  
.
RA4/T0CKI  
6
7
6
7
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0 module.  
Output is open drain type.  
(4)  
(4)  
RA5/SS/AN4  
TTL  
RA5 can also be analog input 4 or the slave select for  
the synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt-on-change pin.  
RB5  
TTL  
Interrupt-on-change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt-on-change pin. Serial programming clock.  
Interrupt-on-change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1 can also be the Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1  
output/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/output  
2
for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
16  
17  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit  
or Synchronous Clock.  
RC7/RX/DT  
18  
18  
I/O  
ST  
RC7 can also be the USART Asynchronous Receive  
or Synchronous Data.  
VSS  
8, 19  
20  
8, 19  
20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
P = power  
VDD  
Legend: I = input  
O = output  
I/O = input/output  
= Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
4: A/D module is not available in the PIC16C63A.  
2000 Microchip Technology Inc.  
DS30605C-page 11  
PIC16C63A/65B/73B/74B  
TABLE 3-2:  
PIC16C65B/74B PINOUT DESCRIPTION  
TQFP  
MQFP  
Pin#  
DIP  
Pin#  
PLCC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
1
2
18  
I/P  
ST  
Master clear (RESET) input or programming voltage input.  
This pin is an active low RESET to the device.  
PORTA is a bi-directional I/O port.  
(5)  
(5)  
RA0/AN0  
2
3
4
5
3
4
5
6
19  
20  
21  
22  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
RA0 can also be analog input 0  
RA1 can also be analog input 1  
RA2 can also be analog input 2  
.
.
.
(5)  
(5)  
(5)  
RA1/AN1  
(5)  
RA2/AN2  
(5)  
RA3/AN3/VREF  
RA3 can also be analog input 3 or analog reference  
(5)  
voltage  
.
RA4/T0CKI  
6
7
7
8
23  
24  
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0 timer/  
counter. Output is open drain type.  
(5)  
(5)  
RA5/SS/AN4  
TTL  
RA5 can also be analog input 4 or the slave select for  
the synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
33  
34  
35  
36  
37  
38  
39  
40  
36  
37  
38  
39  
41  
42  
43  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
9
RB2  
10  
11  
14  
15  
16  
17  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt-on-change pin.  
RB5  
TTL  
Interrupt-on-change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt-on-change pin. Serial programming clock.  
(2)  
RB7  
44  
Interrupt-on-change pin. Serial programming data.  
P = power  
Legend: I = input  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
= Not used  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
5: A/D is not available on the PIC16C65B.  
DS30605C-page 12  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 3-2:  
PIC16C65B/74B PINOUT DESCRIPTION (CONTINUED)  
TQFP  
MQFP  
Pin#  
DIP  
Pin#  
PLCC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
15  
16  
17  
18  
23  
24  
25  
26  
16  
18  
19  
20  
25  
26  
27  
29  
32  
35  
36  
37  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or a  
Timer1 clock input.  
RC1 can also be the Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3 can also be the synchronous serial clock input/  
2
output for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5 can also be the SPI Data Out  
(SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
(5)  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
RE0 can also be read control for the parallel slave port,  
RE0/RD/AN5  
(5)  
or analog input 5  
.
(5)  
10  
11  
RE1 can also be write control for the parallel slave port,  
RE1/WR/AN6  
(5)  
or analog input 6  
.
(5)  
10  
RE2 can also be select control for the parallel slave  
RE2/CS/AN7  
(5)  
port, or analog input 7  
.
VSS  
VDD  
NC  
12,31  
11,32  
13,34  
12,35  
6,29  
7,28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
1,17,28, 12,13,  
40  
These pins are not internally connected. These pins should  
be left unconnected.  
33,34  
Legend: I = input  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
= Not used  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
5: A/D is not available on the PIC16C65B.  
2000 Microchip Technology Inc.  
DS30605C-page 13  
PIC16C63A/65B/73B/74B  
3.1  
Clocking Scheme/Instruction  
Cycle  
3.2  
Instruction Flow/Pipelining  
An Instruction Cycleconsists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 3-1).  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 3-2.  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register" (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
Note:  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is  
flushedfrom the pipeline, while the new instruction is being fetched and then executed.  
DS30605C-page 14  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
4.2  
Data Memory Organization  
4.0  
4.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers (GPR)  
and the Special Function Registers (SFR). Bits RP1  
and RP0 are the bank select bits.  
The PIC16C63A/65B/73B/74B has a 13-bit program  
counter capable of addressing an 8K x 14 program  
memory space. All devices covered by this data sheet  
have 4K x 14 bits of program memory. The address  
range is 0000h - 0FFFh for all devices.  
RP1:RP0 (STATUS<6:5>)  
= 00Bank0  
= 01Bank1  
= 10Bank2  
Accessing a location above 0FFFh will cause a wrap-  
around.  
= 11Bank3  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the SFRs.  
Above the SFRs are GPRs, implemented as static  
RAM.  
The RESET vector is at 0000h and the interrupt vector  
is at 0004h.  
FIGURE 4-1:  
PIC16C63A/65B/73B/74B  
PROGRAM MEMORY MAP  
AND STACK  
All implemented banks contain SFRs. Frequently used  
SFRs from one bank may be mirrored in another bank  
for code reduction and quicker access.  
PC<12:0>  
13  
Note: Maintain the IRP and RP1 bits clear in  
CALL,RETURN  
RETFIE,RETLW  
these devices.  
4.2.1  
GENERAL PURPOSE REGISTER  
FILE  
Stack Level 1  
The register file can be accessed either directly, or indi-  
rectly, through the File Select Register (FSR)  
(Section 4.5).  
Stack Level 8  
RESET Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory (Page 0)  
07FFh  
0800h  
On-chip Program  
Memory (Page 1)  
0FFFh  
1000h  
1FFFh  
2000 Microchip Technology Inc.  
DS30605C-page 15  
PIC16C63A/65B/73B/74B  
FIGURE 4-2:  
REGISTER FILE MAP  
4.2.2  
SPECIAL FUNCTION REGISTERS  
File  
File  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
Address  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
INDF(1)  
INDF(1)  
OPTION_REG 81h  
80h  
TMR0  
PCL  
The Special Function Registers can be classified into  
two sets (core and peripheral). Those registers associ-  
ated with the corefunctions are described in this sec-  
tion, and those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(2)  
PORTE(2)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD(2)  
TRISE(2)  
PCLATH  
INTCON  
PIE1  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
SSPADD  
SSPSTAT  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
TXSTA  
SPBRG  
1Dh CCP2CON  
ADRES(3)  
1Eh  
ADCON0(3)  
1Fh  
20h  
ADCON1(3)  
General  
Purpose  
Register  
General  
Purpose  
Register  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as 0.  
Note 1: Not a physical register.  
2: These registers are not implemented on the  
PIC16C63A/73B, read as '0'.  
3: These registers are not implemented on the  
PIC16C63A/65B, read as '0'.  
DS30605C-page 16  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
all other  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(3)  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF(4)  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000  
TMR0  
Timer0 modules register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
PCL(4)  
Program Counter's (PC) Least Significant Byte  
STATUS(4)  
FSR(4)  
IRP(2)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(2)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD(5)  
PORTE(5)  
PCLATH(1,4)  
INTCON(4)  
PIR1  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
RE2  
RE1  
RE0  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF(6)  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(5)  
TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
PIR2  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
TMR1H  
T1CON  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
TMR2  
Timer2 modules register  
0000 0000 0000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES(6)  
ADCON0(6)  
USART Transmit Data register  
USART Receive Data register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
A/D Result register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 00-0 0000 00-0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as 0.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>.  
2: The IRP and RP1 bits are reserved; always maintain these bits clear.  
3: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers can be addressed from either bank.  
5: PORTD, PORTE and the parallel slave port are not implemented on the PIC16C63A/73B; always maintain these bits and  
registers clear.  
6: The A/D is not implemented on the PIC16C63A/65B; always maintain these bits and registers clear.  
2000 Microchip Technology Inc.  
DS30605C-page 17  
PIC16C63A/65B/73B/74B  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
all other  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(3)  
Bank 1  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INDF(4)  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000  
OPTION_REG RBPU  
INTEDG  
Program Counters (PC) Least Significant Byte  
IRP(2) RP1(2)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
PCL(4)  
STATUS(4)  
FSR(4)  
TRISA  
TRISB  
TRISC  
TRISD(5)  
TRISE(5)  
PCLATH(1,4)  
INTCON(4)  
PIE1  
PD  
Z
DC  
C
PORTB Data Direction register  
PORTC Data Direction register  
PORTD Data Direction register  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction bits  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PSPIE(5)  
PEIE  
ADIE(6)  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE 0000 0000 0000 0000  
CCP2IE ---- ---0 ---- ---0  
PIE2  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period register  
1111 1111 1111 1111  
0000 0000 0000 0000  
--00 0000 --00 0000  
SSPADD  
SSPSTAT  
Synchronous Serial Port (I2C mode) Address register  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
TXSTA  
SPBRG  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Baud Rate Generator register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1(6)  
PCFG2  
PCFG1  
PCFG0 -----000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as 0.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>.  
2: The IRP and RP1 bits are reserved; always maintain these bits clear.  
3: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers can be addressed from either bank.  
5: PORTD, PORTE and the parallel slave port are not implemented on the PIC16C63A/73B; always maintain these bits and  
registers clear.  
6: The A/D is not implemented on the PIC16C63A/65B; always maintain these bits and registers clear.  
DS30605C-page 18  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
It is recommended that only BCF, BSF, SWAPFand  
MOVWFinstructions be used to alter the STATUS regis-  
ter. These instructions do not affect the Z, C or DC bits  
in the STATUS register. For other instructions which do  
not affect status bits, see the "Instruction Set Sum-  
mary."  
4.2.2.1  
STATUS Register  
The STATUS register, shown in Register 4-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS reg-  
ister is the destination for an instruction that affects the Z,  
DC or C bits, then the write to these three bits is disabled.  
These bits are set or cleared according to the device  
logic. Furthermore, the TO and PD bits are not writable.  
Therefore, the result of an instruction with the STATUS  
register as destination may be different than intended.  
Note 1: These devices do not use bits IRP and  
RP1 (STATUS<7:6>), maintain these bits  
clear to ensure upward compatibility with  
future products.  
2: The C and DC bits operate as borrow and  
digit borrow bits, respectively, in subtrac-  
tion. See the SUBLWand SUBWFinstruc-  
tions for examples.  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
REGISTER 4-1:  
STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP(1)  
R/W-0  
RP1(1)  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C(2)  
bit 7  
bit 0  
bit 7  
IRP(1): Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5  
RP1(1):RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF,ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity  
is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C
(2): Carry/borrow bit (ADDWF,ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note 1: Maintain the IRP and RP1 bits clear.  
2: For borrow and digit borrow, the polarity is reversed. A subtraction is executed by  
adding the twos complement of the second operand. For rotate (RRF,RLF) instruc-  
tions, this bit is loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 19  
PIC16C63A/65B/73B/74B  
4.2.2.2  
OPTION Register  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the watchdog timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0/WDT prescaler, the external INT Interrupt,  
TMR0 and the weak pull-ups on PORTB.  
REGISTER 4-2:  
OPTION_REG REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
DS30605C-page 20  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
4.2.2.3  
INTCON Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and external  
RB0/INT pin interrupts.  
REGISTER 4-3:  
INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state(1)  
0= None of the RB7:RB4 pins have changed state  
Note 1: A mismatch condition will exist until PORTB is read. After reading PORTB, the RBIF  
flag bit can be cleared.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 21  
PIC16C63A/65B/73B/74B  
4.2.2.4  
PIE1 Register  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
REGISTER 4-4:  
PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE(2)  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
R/W-0  
R/W-0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE(2): A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: PIC16C63A/73B devices do not have a parallel slave port implemented; always  
maintain this bit clear.  
2: PIC16C63A/65B devices do not have an A/D implemented; always maintain this bit  
clear.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30605C-page 22  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
4.2.2.5  
PIR1 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
REGISTER 4-5:  
PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF(2)  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF TMR2IF  
TMR1IF  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF(2): A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (clear by reading RCREG)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (clear by writing to TXREG)  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: PIC16C63A/73B devices do not have a parallel slave port implemented. This bit loca-  
tion is reserved on these devices.  
2: PIC16C63A/65B devices do not have an A/D implemented. This bit location is  
reserved on these devices.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 23  
PIC16C63A/65B/73B/74B  
4.2.2.6  
PIE2 Register  
This register contains the individual enable bit for the  
CCP2 peripheral interrupt.  
REGISTER 4-6:  
PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
bit 7  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
4.2.2.7  
PIR2 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the CCP2 interrupt flag bit.  
REGISTER 4-7:  
PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
bit 7  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30605C-page 24  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
4.2.2.8  
PCON Register  
Note: BOR is unknown on POR. It must be set by  
the user and checked on subsequent  
RESETS to see if BOR is clear, indicating  
a brown-out has occurred. The BOR status  
bit is a don't careand is not predictable if  
the brown-out circuit is disabled (by clear-  
ing the BODEN bit in the configuration  
word).  
The Power Control (PCON) register contains flag bits  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset (BOR), a Watchdog Reset  
(WDT) and an external MCLR Reset.  
REGISTER 4-8:  
PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-q  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 25  
PIC16C63A/65B/73B/74B  
4.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any RESET, the upper bits of the  
PC will be cleared. Figure 4-3 shows the two situations  
for the loading of the PC. The upper example in the fig-  
ure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW, and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
4.4  
Program Memory Paging  
PIC16CXX devices are capable of addressing a contin-  
uous 8K word block of program memory. The CALLand  
GOTO instructions provide only 11 bits of address to  
allow branching within any 2K program memory page.  
When executing a CALLor GOTOinstruction, the upper  
2 bits of the address are provided by PCLATH<4:3>.  
When doing a CALLor GOTOinstruction, the user must  
ensure that the page select bits are programmed, so  
that the desired program memory page is addressed. If  
a return from a CALL instruction (or interrupt) is exe-  
cuted, the entire 13-bit PC is popped from the stack.  
Therefore, manipulation of the PCLATH<4:3> bits are  
not required for the return instructions (which POPs the  
address from the stack).  
FIGURE 4-3:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PC  
PCL  
Note 1: The contents of PCLATH are unchanged  
after a return or RETFIE instruction is  
executed. The user must set up PCLATH  
for any subsequent CALLs or GOTOs  
8
7
0
GOTO,CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
2: PCLATH<4> is not used in these  
PICmicro® devices. The use of  
PCLATH<4> as a general purpose read/  
write bit is not recommended, since this  
may affect upward compatibility with  
future products.  
4.3.1  
COMPUTED GOTO  
Example 4-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read" (AN556).  
EXAMPLE 4-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
4.3.2  
STACK  
ORG  
BSF  
0x500  
PCLATH,3 ;Select page 1 (800h-FFFh)  
The PIC16CXX family has an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed, or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN,RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
CALL SUB1_P1 ;Call subroutine in  
:
;page 1 (800h-FFFh)  
:
ORG  
0x900  
;page 1 (800h-FFFh)  
SUB1_P1  
:
:
:
;called subroutine  
;page 1 (800h-FFFh)  
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS30605C-page 26  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
EXAMPLE 4-2:  
INDIRECT ADDRESSING  
4.5  
Indirect Addressing, INDF and  
FSR Registers  
movlw  
movwf  
0x20  
FSR  
;initialize pointer  
;to RAM  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT  
clrf  
incf  
btfss  
goto  
INDF  
;clear INDF register  
FSR,F ;inc pointer  
FSR,4 ;all done?  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = 0) will read 00h. Writing to the INDF register  
indirectly results in a no-operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 4-4.  
NEXT  
;no clear next  
CONTINUE  
:
;yes continue  
Note: Maintain the IRP and RP1 bits clear.  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
FIGURE 4-4:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
0
6
0
0
IRP  
0
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note 1: For register file map detail, see Figure 4-2.  
2: Shaded portions are not implemented; maintain the IRP and RP1 bits clear.  
2000 Microchip Technology Inc.  
DS30605C-page 27  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 28  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 5-1:  
BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
5.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
Bus  
D
Q
Q
VDD  
P
WR  
Port  
5.1  
PORTA and TRISA Registers  
CK  
Data Latch  
PORTA is a 6-bit latch.  
(1)  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL  
input levels and full CMOS output drivers. All pins have  
data direction bits (TRIS registers), which can config-  
ure these pins as output or input.  
I/O pin  
N
D
Q
WR  
TRIS  
VSS  
Analog  
Q
CK  
Input  
TRIS Latch  
Setting a TRISA register bit puts the corresponding out-  
put driver in a hi-impedance mode. Clearing a bit in the  
TRISA register puts the contents of the output latch on  
the selected pin(s).  
mode  
TTL  
Input  
Buffer  
RD TRIS  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified and then written to the port  
data latch.  
Q
D
EN  
RD Port  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin.  
To A/D Converter  
On the PIC16C73B/74B, PORTA pins are multiplexed  
with analog inputs and analog VREF input. The opera-  
tion of each pin is selected by clearing/setting the con-  
trol bits in the ADCON1 register (A/D Control  
Register1).  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On all RESETS, pins with analog functions  
FIGURE 5-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
are configured as analog and digital inputs.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data  
Bus  
D
Q
Q
WR  
Port  
CK  
I/O pin(1)  
N
Data Latch  
EXAMPLE 5-1:  
INITIALIZING PORTA  
(PIC16C73B/74B)  
D
Q
VSS  
WR  
TRIS  
BCF  
CLRF  
STATUS, RP0  
PORTA  
;
Schmitt  
Trigger  
Input  
Q
CK  
; Initialize PORTA by  
; clearing output  
; data latches  
TRIS Latch  
Buffer  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW  
MOVWF  
MOVLW  
0x06  
ADCON1  
0xCF  
; Configure all pins  
; as digital inputs  
; Value used to  
; initialize data  
; direction  
RD TRIS  
Q
D
EN  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as ’0’.  
RD Port  
TMR0 Clock Input  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2000 Microchip Technology Inc.  
DS30605C-page 29  
PIC16C63A/65B/73B/74B  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Bit# Buffer Function  
bit0  
RA0/AN0(1)  
RA1/AN1(1)  
RA2/AN2(1)  
RA3/AN3/VREF  
TTL  
TTL  
TTL  
TTL  
Digital input/output or analog input.  
Digital input/output or analog input.  
Digital input/output or analog input.  
Digital input/output or analog input or VREF.  
bit1  
bit2  
bit3  
(1)  
Digital input/output or external clock input for Timer0.  
Output is open drain type.  
RA4/T0CKI  
bit4  
bit5  
ST  
RA5/SS/AN4(1)  
TTL  
Input/output or slave select input for synchronous serial port or analog input.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: The A/D is not implemented on the PIC16C63A/65B. Pins will operate as digital I/O only. ADCON1 is not  
implemented; maintain this register clear.  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
PORTA Data Direction Register  
(1)  
9Fh  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
ADCON1  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note 1: The A/D is not implemented on the PIC16C63A/65B. Pins will operate as digital I/O only. ADCON1 is not implemented;  
maintain this register clear.  
DS30605C-page 30  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a hi-impedance input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
This interrupt-on-mismatch feature, together with soft-  
ware configurable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key depression. Refer to the Embedded  
Control Handbook, Implementing Wake-up on Key  
Stroke(AN552).  
FIGURE 5-3:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
VDD  
RBPU(2)  
Weak  
Pull-up  
P
Data Latch  
Data Bus  
WR Port  
D
Q
RB0/INT is an external interrupt input pin and is config-  
ured using the INTEDG bit (OPTION_REG<6>).  
I/O pin(1)  
CK  
TRIS Latch  
RB0/INT is discussed in detail in Section 13.5.1.  
D
Q
TTL  
FIGURE 5-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
Input  
Buffer  
WR TRIS  
CK  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
RD TRIS  
RD Port  
Data Latch  
Q
D
Data Bus  
WR Port  
D
Q
I/O pin(1)  
EN  
CK  
TRIS Latch  
RB0/INT  
D
Q
Schmitt Trigger  
Buffer  
RD Port  
TTL  
Input  
Buffer  
WR TRIS  
CK  
ST  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
RD TRIS  
RD Port  
Latch  
Q
Q
D
Four of PORTBs pins, RB7:RB4, have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the value latched on the  
last read of PORTB. The mismatchoutputs of  
RB7:RB4 are ORd together to generate the RB Port  
Change Interrupt with flag bit RBIF (INTCON<0>).  
EN  
Q1  
Set RBIF  
D
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
RB7:RB6 in Serial Programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
2000 Microchip Technology Inc.  
DS30605C-page 31  
PIC16C63A/65B/73B/74B  
TABLE 5-3:  
Name  
PORTB FUNCTIONS  
Bit#  
Buffer  
Function  
(1)  
RB0/INT  
bit0  
TTL/ST  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt-on-change). Internal software programmable weak  
pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
TTL/ST  
TTL/ST  
Input/output pin (with interrupt-on-change). Internal software programmable weak  
pull-up.  
(2)  
(2)  
Input/output pin (with interrupt-on-change). Internal software programmable weak  
pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change). Internal software programmable weak  
pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
uuuu uuuu  
1111 1111  
1111 1111  
06h  
86h  
81h  
PORTB  
TRISB  
OPTION_REG RBPU INTEDG T0CS T0SE PSA  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx  
1111 1111  
1111 1111  
PORTB Data Direction register  
PS2  
PS1  
PS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30605C-page 32  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 5-5:  
PORTC BLOCK DIAGRAM  
5.3  
PORTC and TRISC Registers  
PORTC is an 8-bit bi-directional port. Each pin is indi-  
vidually configurable as an input or output through the  
TRISC register. PORTC is multiplexed with several  
peripheral functions (Table 5-5). PORTC pins have  
Schmitt Trigger input buffers.  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
0
VDD  
Data Bus  
D
Q
Q
WR  
P
Port  
CK  
1
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-write  
instructions (BSF, BCF, XORWF) with TRISC as des-  
tination should be avoided. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings.  
Data Latch  
I/O pin(1)  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EN  
RD  
Port  
Peripheral Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
TABLE 5-5:  
Name  
PORTC FUNCTIONS  
Bit#  
bit0  
bit1  
Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2  
output/PWM2 output.  
RC2/CCP1  
bit2  
bit3  
bit4  
bit5  
bit6  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1 output.  
2
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3 can also be the Synchronous Serial Clock for both SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or Data I/O (I C mode).  
Input/output port pin or Synchronous Serial Port Data output.  
RC6/TX/CK  
Input/output port pin or USART Asynchronous Transmit, or USART  
Synchronous Clock.  
RC7/RX/DT  
bit7  
ST  
Input/output port pin or USART Asynchronous Receive, or USART  
Synchronous Data.  
Legend: ST = Schmitt Trigger input  
TABLE 5-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx  
1111 1111  
uuuu uuuu  
1111 1111  
PORTC Data Direction register  
Legend: x= unknown, u= unchanged  
2000 Microchip Technology Inc.  
DS30605C-page 33  
PIC16C63A/65B/73B/74B  
FIGURE 5-6:  
PORTD BLOCK DIAGRAM  
5.4  
PORTD and TRISD Registers  
Data  
Bus  
Note: The PIC16C63A and PIC16C73B do not  
provide PORTD. The PORTD and TRISD  
registers are not implemented.  
D
Q
(1)  
WR  
Port  
I/O pin  
CK  
Data Latch  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configured as an input or  
output.  
D
Q
WR  
TRIS  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
RD TRIS  
Q
D
EN  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 5-7:  
PORTD FUNCTIONS  
Name  
Bit#  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Buffer Type  
Function  
(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
ST/TTL  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.  
TABLE 5-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
TRISD PORTD Data Direction register  
TRISE IBF OBF IBOV PSPMODE  
PORTE Data Direction bits  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTD.  
DS30605C-page 34  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 5-7:  
PORTE BLOCK DIAGRAM  
5.5  
PORTE and TRISE Register  
Data  
Bus  
Note 1: The PIC16C63A and PIC16C73B do not  
provide PORTE. The PORTE and TRISE  
registers are not implemented.  
D
Q
I/O pin(1)  
WR  
Port  
CK  
Data Latch  
2: The PIC16C63A/65B does not provide an  
A/D module. A/D functions are not imple-  
mented.  
D
Q
WR  
TRIS  
PORTE has three pins: RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configured as  
inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs) and that register ADCON1 is configured for dig-  
ital I/O. In this mode, the input buffers are TTL.  
RD TRIS  
Q
D
EN  
RD Port  
Register 5-1 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
PORTE pins may be multiplexed with analog inputs  
(PIC16C74B only). The operation of these pins is  
selected by control bits in the ADCON1 register. When  
selected as an analog input, these pins will read as 0s.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as 0s.  
TABLE 5-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
(1)  
RE0/RD/AN5  
bit0  
ST/TTL  
Input/output port pin or read control input in Parallel Slave Port mode or analog  
input:  
RD  
1 = Idle  
0 = Read operation. Contents of PORTD register is output to PORTD  
I/O pins (if chip selected).  
(1)  
RE1/WR/AN6  
RE2/CS/AN7  
bit1  
bit2  
ST/TTL  
Input/output port pin or write control input in Parallel Slave Port mode or analog  
input:  
WR  
1 = Idle  
0 = Write operation. Value of PORTD I/O pins is latched into PORTD  
register (if chip selected).  
(1)  
ST/TTL  
Input/output port pin or chip select control input in Parallel Slave Port mode or  
analog input:  
CS  
1 = Device is not selected  
0 = Device is selected  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
2000 Microchip Technology Inc.  
DS30605C-page 35  
PIC16C63A/65B/73B/74B  
REGISTER 5-1:  
TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2 TRISE1  
TRISE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared in  
software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0 = General purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
TRISE2: Direction Control bit for pin RE2/CS/AN7  
1= Input  
0 = Output  
bit 1  
bit 0  
TRISE1: Direction Control bit for pin RE1/WR/AN6  
1= Input  
0 = Output  
TRISE0: Direction Control bit for pin RE0/RD/AN5  
1= Input  
0 = Output  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
89h  
9Fh  
PORTE  
TRISE  
IBF  
OBF  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
IBOV PSPMODE  
PORTE Data Direction bits  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTE.  
DS30605C-page 36  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
When not in PSP mode, the IBF and OBF bits are held  
clear. However, if flag bit IBOV was previously set, it  
must be cleared in firmware.  
5.6  
Parallel Slave Port (PSP)  
Note: The PIC16C63A and PIC16C73B do not  
provide a parallel slave port. The PORTD,  
PORTE, TRISD and TRISE registers are  
not implemented.  
An interrupt is generated and latched into flag bit  
PSPIF when a read or write operation is completed.  
PSPIF must be cleared by the user in firmware and the  
interrupt can be disabled by clearing the interrupt  
enable bit PSPIE (PIE1<7>).  
PORTD operates as an 8-bit wide Parallel Slave Port  
(PSP), or microprocessor port when control bit PSP-  
MODE (TRISE<4>) is set. In Slave mode, it is asyn-  
chronously readable and writable by the external world,  
through RD control input pin RE0/RD/AN5 and WR  
control input pin RE1/WR/AN6.  
FIGURE 5-8:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE  
PORT)  
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD/AN5 to be the RD input,  
RE1/WR/AN6 to be the WR input and RE2/CS/AN7 to  
be the CS (chip select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set) and  
the A/D port configuration bits PCFG2:PCFG0  
(ADCON1<2:0>) must be set, which will configure pins  
RE2:RE0 as digital I/O.  
Data Bus  
D
Q
WR  
Port  
RDx  
pin  
CK  
TTL  
Q
D
RD  
Port  
EN  
There are actually two 8-bit latches, one for data out  
(from the PICmicro® MCU) and one for data input. The  
user writes 8-bit data to PORTD data latch and reads  
data from the port pin latch (note that they have the  
same address). In this mode, the TRISD register is  
ignored since the external device is controlling the  
direction of data flow.  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. When either the CS or WR  
lines become high (level triggered), then the Input  
Buffer Full (IBF) status flag bit (TRISE<7>) is set on the  
Q4 clock cycle, following the next Q2 cycle, to signal  
the write is complete (Figure 5-9). The interrupt flag bit  
PSPIF (PIR1<7>) is also set on the same Q4 clock  
cycle. IBF can only be cleared by reading the PORTD  
input latch. The Input Buffer Overflow (IBOV) status  
flag bit (TRISE<5>) is set if a second write to the PSP  
is attempted when the previous byte has not been read  
out of the buffer.  
Read  
RD  
TTL  
Chip Select  
CS  
TTL  
Write  
TTL  
WR  
Note 1: I/O pins have protection diodes to VDD and VSS.  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The Output Buffer Full  
(OBF) status flag bit (TRISE<6>) is cleared immedi-  
ately (Figure 5-10), indicating that the PORTD latch is  
waiting to be read by the external bus. When either the  
CS or RD pin becomes high (level triggered), the inter-  
rupt flag bit PSPIF is set on the Q4 clock cycle, follow-  
ing the next Q2 cycle, indicating that the read is  
complete. OBF remains low until data is written to  
PORTD by the user firmware.  
2000 Microchip Technology Inc.  
DS30605C-page 37  
PIC16C63A/65B/73B/74B  
FIGURE 5-9:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 5-10:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 5-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
09h  
PORTD  
PORTE  
Port data latch when written, Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 000x 0000 000u  
0000 -111 0000 -111  
RBIE  
RE2  
T0IF  
RE1  
RE0  
0Bh, 8Bh INTCON  
GIE  
IBF  
PEIE  
OBF  
T0IE  
INTE  
INTF  
RBIF  
89h  
0Ch  
8Ch  
9Fh  
TRISE  
PIR1  
IBOV PSPMODE  
PORTE Data Direction Bits  
PSPIF ADIF RCIF  
PSPIE ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIE1  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.  
DS30605C-page 38  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment, either on every rising, or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 6.2.  
6.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
8-bit timer/counter  
Readable and writable  
8-bit software programmable prescaler  
Internal or external clock select  
Interrupt on overflow from FFh to 00h  
Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the watchdog timer. The  
prescaler is not readable or writable. Section 6.3  
details the operation of the prescaler.  
Figure 6-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
6.1  
Timer0 Interrupt  
Additional information on the Timer0 module is  
available in the PICmicroMid-Range MCU Family  
Reference Manual (DS33023).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module Interrupt Ser-  
vice Routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP, since the timer is shut-off during SLEEP.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In Timer mode, the Timer0  
module will increment every instruction cycle (without  
prescaler). If the TMR0 register is written, the incre-  
ment is inhibited for the following two instruction cycles.  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
FIGURE 6-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
CLKOUT (= FOSC/4)  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
TMR0 reg  
Cycles  
T0SE  
T0CS  
Set Flag bit T0IF  
on Overflow  
PSA  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
2000 Microchip Technology Inc.  
DS30605C-page 39  
PIC16C63A/65B/73B/74B  
module means that there is no prescaler for the Watch-  
dog Timer, and vice-versa. This prescaler is not read-  
able or writable (see Figure 6-1).  
6.2  
Using Timer0 with an External  
Clock  
The synchronization of T0CKI with the internal phase  
clocks is accomplished by sampling the synchronized  
input on the Q2 and Q4 cycles of the internal phase  
clocks. Therefore, it is necessary for T0CKI to be high  
for at least 2 TOSC (and a small RC delay of 20 ns) and  
low for at least 2 TOSC (and a small RC delay of 20 ns).  
Refer to the electrical specification for the desired  
device.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF1,MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer. The prescaler is not  
readable or writable.  
6.3  
Prescaler  
Note: Writing to TMR0, when the prescaler is  
assigned to Timer0, will clear the prescaler  
count, but will not change the prescaler  
assignment.  
There is only one prescaler available which is mutually  
exclusively shared between the Timer0 module and the  
watchdog timer. A prescaler assignment for the Timer0  
REGISTER 6-1:  
OPTION_REG REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU  
INTEDG  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
bit 3  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0  
PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1= Bit is set  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
Note: To avoid an unintended device RESET, the instruction sequence shown in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023, Section 11.6) must be executed when changing the prescaler assign-  
ment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.  
DS30605C-page 40  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
INTCON  
OPTION_REG RBPU INTEDG T0CS  
Timer0 Modules register  
xxxx xxxx uuuu uuuu  
0Bh,8Bh  
81h  
GIE PEIE T0IE  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF 0000 000x 0000 000u  
PS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
2000 Microchip Technology Inc.  
DS30605C-page 41  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 42  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
7.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L), which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal RESET input. This  
RESET can be generated by either of the two CCP  
modules (Section 9.0) using the special event trigger.  
Register 7-1 shows the Timer1 control register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored, and these pins read as 0.  
Timer1 can operate in one of two modes:  
As a timer  
As a counter  
Additional information on timer modules is available in  
the PICmicroMid-range MCU Family Reference  
Manual (DS33023).  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 7-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut-off (The oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 43  
PIC16C63A/65B/73B/74B  
7.1  
Timer1 Operation in Timer Mode  
7.2  
Timer1 Operation in Synchronized  
Counter Mode  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2, when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when  
bit T1OSCEN is cleared.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The  
prescaler stage is an asynchronous ripple counter.  
In this configuration during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut-off. The  
prescaler, however, will continue to increment.  
FIGURE 7-1:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
(2)  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
(2)  
RC1/T1OSI/CCP2  
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
2: For the PIC16C65B/73B/74B, the Schmitt Trigger is not implemented in External Clock mode.  
DS30605C-page 44  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 7-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
7.3  
Timer1 Operation in  
Asynchronous Counter Mode  
Osc Type  
Freq  
C1  
C2  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt-on-overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 7.3.1).  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In Asynchronous Counter mode, Timer1 can not be  
used as a time-base for capture or compare opera-  
tions.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-up  
time.  
7.3.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems, since  
the timer may overflow between the reads.  
7.5  
Resetting Timer1 using a CCP  
Trigger Output  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers, while  
the register is incrementing. This may produce an  
unpredictable value in the timer register.  
If the CCP1 or CCP2 module is configured in Compare  
mode to generate special event trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
a
Timer1.  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
Reading the 16-bit value requires some care. Exam-  
ples 12-2 and 12-3 in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023) show how to  
read and write Timer1 when it is running in Asynchro-  
nous mode.  
Timer1 must be configured for either timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
7.4  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for use with a 32 kHz crystal. Table 7-1 shows the  
capacitor selection for the Timer1 oscillator.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
7.6  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
TMR1H and TMR1L registers are not reset to 00h on a  
POR, or any other RESET, except by the CCP1 and  
CCP2 special event triggers.  
T1CON register is reset to 00h on a Power-on Reset or a  
Brown-out Reset, which shuts off the timer and leaves a  
1:1 prescale. In all other resets, the register is unaffected.  
7.7  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
2000 Microchip Technology Inc.  
DS30605C-page 45  
PIC16C63A/65B/73B/74B  
TABLE 7-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PSPIF(1) ADIF(2)  
PSPIE(1) ADIE(2)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
0Eh  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
0Fh  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend:  
x= unknown, u= unchanged, - = unimplemented, read as 0. Shaded cells are not used by the Timer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
DS30605C-page 46  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
8.1  
Timer2 Prescaler and Postscaler  
8.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module(s). The TMR2 reg-  
ister is readable and writable, and is cleared on any  
device RESET.  
a write to the TMR2 register  
a write to the T2CON register  
any device RESET (POR, BOR, MCLR Reset, or  
WDT Reset)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4,  
or  
1:16,  
selected  
by  
control  
bits  
TMR2 is not cleared when T2CON is written.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
8.2  
Output of TMR2  
The output of TMR2 (before the postscaler) is fed to the  
SSP module, which optionally uses it to generate the  
shift clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
FIGURE 8-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
Output(1)  
RESET  
bit TMR2IF  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Prescaler  
TMR2 reg  
FOSC/4  
1:1, 1:4, 1:16  
Register 8-1 shows the Timer2 control register.  
Postscaler  
2
Comparator  
1:1 to 1:16  
4
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
EQ  
T2CKPS1:  
T2CKPS0  
PR2 reg  
T2OUTPS3:  
T2OUTPS0  
Note 1: TMR2 register output can be software selected by the  
SSP module as a baud clock.  
REGISTER 8-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 47  
PIC16C63A/65B/73B/74B  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on:  
POR,  
BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
PSPIF(1)  
PSPIE(1)  
ADIF(2)  
ADIE(2)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 Modules register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period register  
12h  
92h  
Legend: x= unknown, u= unchanged, - = unimplemented, read as 0. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
DS30605C-page 48  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
CCP2 Module:  
9.0  
CAPTURE/COMPARE/PWM  
MODULES  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. The special event trigger is  
generated by a compare match and will reset Timer1  
and start an A/D conversion (if the A/D module is  
enabled).  
Each Capture/Compare/PWM (CCP) module contains  
a 16-bit register which can operate as a:  
16-bit Capture register  
16-bit Compare register  
PWM Master/Slave Duty Cycle register  
Additional information on CCP modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023) and in Using the CCP Modules”  
(AN594).  
Both the CCP1 and CCP2 modules are identical in  
operation, with the exception being the operation of the  
special event trigger. Table 9-1 and Table 9-2 show the  
resources and interactions of the CCP module(s). In  
the following sections, the operation of a CCP module  
is described with respect to CCP1. CCP2 operates the  
same as CCP1, except where noted.  
TABLE 9-1:  
CCP MODE - TIMER  
RESOURCES REQUIRED  
CCP Mode  
Timer Resource  
CCP1 Module:  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is  
generated by a compare match and will reset Timer1.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
TABLE 9-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None.  
None.  
PWM  
2000 Microchip Technology Inc.  
DS30605C-page 49  
PIC16C63A/65B/73B/74B  
REGISTER 9-1:  
CCP1CON REGISTER/CCP2CON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCPxM3  
CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
CCPxX:CCPxY: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is  
unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected);  
CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module  
is enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30605C-page 50  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
9.1.2  
TIMER1 MODE SELECTION  
9.1  
Capture Mode  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as one of the fol-  
lowing and is configured using CCPxCON<3:0>:  
Every falling edge  
Every rising edge  
9.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
Every 4th rising edge  
Every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. The  
interrupt flag must be cleared in software. If another  
capture occurs before the value in register CCPR1 is  
read, the previous captured value is overwritten by the  
new captured value.  
9.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. Any RESET will clear  
the prescaler counter.  
9.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 9-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a  
capture condition.  
FIGURE 9-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 9-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
Set Flag bit CCP1IF  
(PIR1<2>)  
CLRF  
CCP1CON  
; Turn CCP module off  
Prescaler  
÷ 1, 4, 16  
MOVLW  
NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
RC2/CCP1  
pin  
CCPR1H CCPR1L  
; move value and CCP ON  
MOVWF  
CCP1CON  
; Load CCP1CON with this  
; value  
Capture  
Enable  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
2000 Microchip Technology Inc.  
DS30605C-page 51  
PIC16C63A/65B/73B/74B  
9.2.4  
SPECIAL EVENT TRIGGER  
9.2  
Compare Mode  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Driven high  
Driven low  
Remains unchanged  
The special event trigger output of CCP2 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled).  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Note: The special event trigger from the  
CCP1and CCP2 modules will not set inter-  
rupt flag bit TMR1IF (PIR1<0>).  
FIGURE 9-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
9.3  
PWM Mode (PWM)  
Special event trigger will:  
In Pulse Width Modulation mode, the CCPx pin pro-  
duces up to a 10-bit resolution PWM output. Since the  
CCP1 pin is multiplexed with the PORTC data latch, the  
TRISC<2> bit must be cleared to make the CCP1 pin  
an output.  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>).  
Special Event Trigger  
Set Flag bit CCP1IF  
(PIR1<2>)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
RC2/CCP1  
pin  
Match  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
Figure 9-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
CCP1CON<3:0>  
Mode Select  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 9.3.3.  
9.2.1  
CCP PIN CONFIGURATION  
FIGURE 9-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
CCP1CON<5:4>  
Duty Cycle Registers  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the PORTC  
I/O data latch.  
CCPR1L  
CCPR1H (Slave)  
Comparator  
9.2.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
Q
R
S
RC2/CCP1  
(Note 1)  
TMR2  
9.2.3  
SOFTWARE INTERRUPT MODE  
TRISC<2>  
Comparator  
PR2  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCPIF bit is set, causing  
a CCP interrupt (if enabled).  
Clear Timer,  
CCP1 pin and  
latch D.C.  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock,  
or 2 bits of the prescale, to create 10-bit time-base.  
DS30605C-page 52  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
A PWM output (Figure 9-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
9.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
FIGURE 9-4:  
PWM OUTPUT  
Period  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Duty Cycle  
TMR2 = PR2 (Timer2 RESET)  
TMR2 = Duty Cycle  
(Timer2 RESET)  
TMR2 = PR2  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
9.3.1  
PWM PERIOD  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock, or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
FOSC  
FPWM  
PWM frequency is defined as 1 / [PWM period].  
log( )  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Resolution  
bits  
=
log(2)  
TMR2 is cleared  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
9.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
Note: The Timer2 postscaler (see Section 8.1) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
1. Set the PWM period by writing to the PR2 register.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 9-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
2000 Microchip Technology Inc.  
DS30605C-page 53  
PIC16C63A/65B/73B/74B  
TABLE 9-4:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
0000 000x 0000 000u  
PSPIF(1) ADIF(2)  
TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
TMR1IE 0000 0000 0000 0000  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
PIR2  
PIE1  
PSPIE(1) ADIE(2)  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
PIE2  
TRISC  
PORTC Data Direction register  
0Eh  
0Fh  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1X  
CCP1Y  
CCP1M3  
CCP2M3  
CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
1Bh  
1Ch  
1Dh  
Capture/Compare/PWM register2 (LSB)  
Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2X  
CCP2Y  
CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as 0. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSP is not implemented on the PIC16C63A/73B; always maintain these bits clear.  
2: The A/D is not implemented on the PIC16C63A/65B; always maintain these bits clear.  
TABLE 9-5:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
---- ---0 ---- ---0  
0000 0000 0000 0000  
---- ---0 ---- ---0  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
PSPIF(1) ADIF(2)  
TMR1IF  
CCP2IF  
TMR1IE  
CCP2IE  
PIR2  
PIE1  
PSPIE(1) ADIE(2)  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
PIE2  
TRISC  
TMR2  
PR2  
PORTC Data Direction register  
Timer2 Modules register  
11h  
92h  
Timer2 Modules Period register  
12h  
T2CON  
CCPR1L  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM register1 (MSB)  
17h  
CCP1CON  
CCPR2L  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1  
CCP2M3 CCP2M2 CCP2M1  
CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
1Bh  
Capture/Compare/PWM register2 (LSB)  
1Ch  
1Dh  
Legend:  
CCPR2H Capture/Compare/PWM register2 (MSB)  
CCP2CON CCP2X CCP2Y  
xxxx xxxx uuuu uuuu  
CCP2M0 --00 0000 --00 0000  
x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
DS30605C-page 54  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 10-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
10.0 SYNCHRONOUS SERIAL PORT  
(SSP) MODULE  
Internal  
Data Bus  
10.1 SSP Module Overview  
Read  
Write  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
SSPBUF reg  
SSPSR reg  
Serial Peripheral Interface (SPI)  
Inter-Integrated Circuit (I2C)  
An overview of I2C operations and additional informa-  
RC4/SDI/SDA  
RC5/SDO  
Shift  
Clock  
bit0  
tion on the SSP module can be found in the PICmicro™  
Mid-Range  
(DS33023).  
MCU  
Family  
Reference Manual  
Control  
Enable  
SS  
Refer to Application Note AN578, Use of the SSP  
Module in the I 2C Multi-Master Environment.”  
RA5/SS/AN4  
Edge  
Select  
10.2 SPI Mode  
2
This section contains register definitions and opera-  
tional characteristics of the SPI module.  
Clock Select  
SSPM3:SSPM0  
4
SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. To accom-  
plish communication, typically three pins are used:  
TMR2 Output  
2
Edge  
Select  
Serial Data Out (SDO) RC5/SDO  
Serial Data In (SDI) RC4/SDI/SDA  
Serial Clock (SCK) RC3/SCK/SCL  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
To enable the serial port, SSP enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
Slave Select (SS) RA5/SS/AN4  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
SDI must have TRISC<4> set  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock Polarity (Idle state of SCK)  
SDO must have TRISC<5> cleared  
SCK (Master mode) must have TRISC<3> cleared  
SCK (Slave mode) must have TRISC<3> set  
SS must have TRISA<5> set  
Clock edge (output data on rising/falling edge of  
SCK)  
ADCON1 must configure RA5 as a digital I/O pin.  
.
Clock Rate (Master mode only)  
Slave Select mode (Slave mode only)  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
2: If the SPI is used in Slave mode with  
CKE = '1', then the SS pin control must be  
enabled.  
2000 Microchip Technology Inc.  
DS30605C-page 55  
PIC16C63A/65B/73B/74B  
REGISTER 10-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: SPI Data Input Sample Phase  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time (Microwire®)  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
I2C mode:  
This bit must be maintained clear  
bit 6  
CKE: SPI Clock Edge Select (see Figure 10-2, Figure 10-3, and Figure 10-4)  
SPI mode:  
CKP = 0:  
1= Data transmitted on rising edge of SCK (Microwire alternate)  
0= Data transmitted on falling edge of SCK  
CKP = 1:  
1= Data transmitted on falling edge of SCK (Microwire default)  
0= Data transmitted on rising edge of SCK  
I2C mode:  
This bit must be maintained clear  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit (I2C mode only). This bit is cleared when the SSP module is disabled, or when the  
START bit is detected last. SSPEN is cleared.  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit (I2C mode only). This bit is cleared when the SSP module is disabled, or when  
the STOP bit is detected last. SSPEN is cleared.  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
R/W: Read/Write bit information (I2C mode only). This bit holds the R/W bit information follow-  
ing the last address match. This bit is only valid from the address match to the next START bit,  
STOP bit, or ACK bit.  
1= Read  
0= Write  
bit 1  
bit 0  
UA: Update Address (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only):  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30605C-page 56  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
REGISTER 10-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Flag bit  
1= The SSPBUF register was written while still transmitting the previous word (must be  
cleared in software)  
0= No collision  
SSPOV: Synchronous Serial Port Overflow Flag bit  
In SPI mode:  
1= A new byte was received while the SSPBUF register is still holding the previous unread  
data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave  
mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting  
overflow. In Master mode, the overflow bit is not set since each new reception (and trans-  
mission) is initiated by writing to the SSPBUF register.  
0= No overflow  
In I2C mode:  
1= A byte was received while the SSPBUF register is still holding the previous unread byte.  
SSPOV is a "dont care" in transmit mode. SSPOV must be cleared in software in either  
mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit. When enabled, the SSP pins must be properly  
configured as input or output.  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level (Microwire default)  
0= Idle state for clock is a low level (Microwire alternate)  
In I2C mode:  
SCK release control  
1= Enable clock  
0 = Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1011= I2C firmware controlled Master mode (Slave idle)  
1110= I2C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 57  
PIC16C63A/65B/73B/74B  
FIGURE 10-2:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
FIGURE 10-3:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
DS30605C-page 58  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 10-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
TABLE 10-1: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
8Ch  
87h  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(2)  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
(2)  
PIE1  
TRISC  
PORTC Data Direction register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
13h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit register  
SSPCON WCOL  
14h  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
85h  
TRISA  
PORTA Data Direction register  
D/A R/W  
--11 1111 --11 1111  
0000 0000 0000 0000  
94h  
SSPSTAT  
SMP  
CKE  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
2000 Microchip Technology Inc.  
DS30605C-page 59  
PIC16C63A/65B/73B/74B  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled to support firmware  
Master mode  
I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled to support firmware  
Master mode  
I2C START and STOP bit interrupts enabled to  
support firmware Master mode, Slave is idle  
2
10.3 SSP I C Operation  
The SSP module in I2C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on START and STOP bits in hardware to  
facilitate firmware implementation of the master func-  
tions. The SSP module implements the standard mode  
specifications as well as 7-bit and 10-bit addressing.  
Two pins are used for data transfer, the RC3/SCK/SCL  
pin, which is the clock (SCL), and the RC4/SDI/SDA  
pin, which is the data (SDA). The user must configure  
these pins as inputs or outputs through the  
TRISC<4:3> bits. External pull-up resistors for the SCL  
and SDA pins must be provided in the application cir-  
cuit for proper operation of the I2C module.  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
The SSP module functions are enabled by setting SSP  
enable bit SSPEN (SSPCON<5>).  
Additional information on SSP I2C operation can be  
found in the PICmicroMid-Range MCU Family Ref-  
erence Manual (DS33023).  
FIGURE 10-5:  
SSP BLOCK DIAGRAM  
(I2C MODE)  
Internal  
Data Bus  
10.3.1  
SLAVE MODE  
Read  
Write  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally generates the acknowledge (ACK) pulse, and  
then loads the SSPBUF register with the received  
value currently in the SSPSR register.  
SSPSR reg  
RC4/SDI/  
SDA  
MSb  
LSb  
Match Detect  
Addr Match  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. They include (either  
or both):  
SSPADD reg  
START and  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
STOP bit Detect  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 10-2 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF  
register while bit SSPOV is cleared through software.  
The SSP module has five registers for I2C operation.  
These are the:  
SSP Control Register (SSPCON)  
SSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
SSP Shift Register (SSPSR) - not directly accessible  
SSP Address Register (SSPADD)  
The SCL clock input must have minimum high and low  
times for proper operation. The high and low times of  
the I2C specification, as well as the requirement of the  
SSP module, is shown in timing parameter #100 and  
parameter #101.  
DS30605C-page 60  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
1. Receive first (high) byte of address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
10.3.1.1  
Addressing  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address, if match releases SCL line, this  
will clear bit UA.  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
7. Receive Repeated START condition.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
In 10-bit address mode, two address bytes need to be  
received by the slave (Figure 10-7). The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if  
this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the sec-  
ond address byte. For a 10-bit address, the first byte  
would equal 1111 0 A9 A8 0, where A9and A8are  
the two MSbs of the address. The sequence of events  
for 10-bit address is as follows, with steps 7 - 9 for  
slave-transmitter:  
TABLE 10-2: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes, SSPOV is set  
Yes  
Yes  
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
2000 Microchip Technology Inc.  
DS30605C-page 61  
PIC16C63A/65B/73B/74B  
a) The Buffer Full flag bit, BF(SSPSTAT<0>) was  
set, indicating that the byte in SSPBUF was  
waiting to be read when another byte was  
received. This sets the SSPOV flag.  
10.3.1.2  
Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
b) The overflow flag, SSPOV (SSPCON1<6>) was  
set.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as any situation where a received byte  
in SSPBUF is overwritten by the next received byte  
before it has been read. An overflow has occurred  
when:  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
FIGURE 10-6:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
A7 A6 A5 A4  
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full  
ACK is not sent  
DS30605C-page 62  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
10.3.1.3  
Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON<4>). The master must monitor  
the SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 10-7).  
As a slave-transmitter, the ACK pulse from the  
master-receiver is latched on the rising edge of the  
ninth SCL input pulse. If the SDA line was high (not  
ACK), then the data transfer is complete. When the  
ACK is latched by the slave, the slave logic is reset  
(resets SSPSTAT register) and the slave then monitors  
for another occurrence of the START bit. If the SDA line  
was low (ACK), the transmit data must be loaded into  
the SSPBUF register, which also loads the SSPSR reg-  
ister. Then pin RC3/SCK/SCL should be enabled by  
setting bit CKP.  
FIGURE 10-7:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
2000 Microchip Technology Inc.  
DS30605C-page 63  
PIC16C63A/65B/73B/74B  
10.3.2  
MASTER MODE  
10.3.3  
MULTI-MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the  
START and STOP conditions. The STOP (P) and  
START (S) bits are cleared from a RESET, or when the  
SSP module is disabled. The STOP (P) and START (S)  
bits will toggle based on the START and STOP condi-  
tions. Control of the I2C bus may be taken when the P  
bit is set, or the bus is idle and both the S and P bits are  
clear.  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the SSP module is disabled. The STOP (P) and  
START (S) bits will toggle based on the START and  
STOP conditions. Control of the I2C bus may be taken  
when bit P (SSPSTAT<4>) is set, or the bus is idle and  
both the S and P bits clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the STOP condition occurs.  
In Master mode, the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<4:3> bit(s).  
The output level is always low, irrespective of the  
value(s) in PORTC<4:3>. So when transmitting data, a  
1data bit must have the TRISC<4> bit set (input) and  
a 0data bit must have the TRISC<4> bit cleared (out-  
put). The same scenario is true for the SCL line with the  
TRISC<3> bit.  
In Multi-Master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (an SSP Interrupt will occur, if  
enabled):  
Address Transfer  
Data Transfer  
START condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be gener-  
ated. If arbitration was lost during the data transfer  
stage, the device will need to re-transfer the data at a  
later time.  
STOP condition  
Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
Slave mode idle (SSPM3:SSPM0 = 1011), or with the  
slave active. When both Master and Slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
TABLE 10-3: REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh  
0Ch  
8Ch  
13h  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
RCIF  
RCIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(2)  
PSPIF  
PSPIE  
ADIF  
ADIE  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
(2)  
PIE1  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit register  
2
93h  
SSPADD Synchronous Serial Port (I C mode) Address register  
14h  
SSPCON  
SSPSTAT  
TRISC  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
(3)  
(3)  
94h  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
87h  
PORTC Data Direction register  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as 0.  
2
Shaded cells are not used by SSP module in I C mode.  
Note 1: PSPIF and PSPIE are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: ADIF and ADIE are reserved on the PIC16C63A/65B; always maintain these bits clear.  
2
3: Maintain these bits clear in I C mode.  
DS30605C-page 64  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
11.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The USART can be configured in the following modes:  
Asynchronous (full duplex)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI.) The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
Synchronous - Master (half duplex)  
Synchronous - Slave (half duplex)  
Bits SPEN (RCSTA<7>) and TRISC<7:6> have to be  
set in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the universal synchronous asynchro-  
nous receiver transmitter.  
REGISTER 11-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Dont care  
Synchronous mode:  
1= Master mode (Clock generated internally from BRG)  
0 = Slave mode (Clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data. Can be parity bit.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 65  
PIC16C63A/65B/73B/74B  
REGISTER 11-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
U-0  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Dont care  
Synchronous mode - Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - Slave:  
Dont care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
bit 2  
Unimplemented: Read as '0'  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
bit 1  
bit 0  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data. (Can be parity bit. Calculated by firmware.)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30605C-page 66  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
11.1 USART Baud Rate Generator  
(BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 11-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
11.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
near the center of each bit time by a majority detect cir-  
cuit to determine if a high or a low level is present at the  
RX pin.  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 11-1. From this, the error in  
baud rate can be determined.  
TABLE 11-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(SPBRG+1))  
(Synchronous) Baud Rate = FOSC/(4(SPBRG+1))  
Baud Rate = FOSC/(16(SPBRG+1))  
N/A  
TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
98h  
18h  
99h  
TXSTA  
RCSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
SREN CREN  
BRGH  
FERR  
TRMT TX9D 0000 -010  
OERR RX9D 0000 -00x  
0000 0000  
0000 -010  
0000 -00x  
0000 0000  
SPBRG Baud Rate Generator register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.  
2000 Microchip Technology Inc.  
DS30605C-page 67  
PIC16C63A/65B/73B/74B  
This interrupt can be enabled/disabled by setting/clear-  
ing the USART Transmit Enable bit TXIE (PIE1<4>).  
The flag bit TXIF will be set, regardless of the state of  
enable bit TXIE and cannot be cleared in software. It  
will reset only when new data is loaded into the TXREG  
register. While flag bit TXIF indicates the status of the  
TXREG register, another bit TRMT (TXSTA<1>) shows  
the status of the TSR register. Status bit TRMT is a read  
only bit, which is set when the TSR register is empty. No  
interrupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
11.2 USART Asynchronous Mode  
In this mode, the USART uses standard non-  
return-to-zero (NRZ) format (one START bit, eight or  
nine data bits, and one STOP bit). The most common  
data format is 8 bits. An on-chip, dedicated, 8-bit baud  
rate generator can be used to derive standard baud  
rate frequencies from the oscillator. The USART trans-  
mits and receives the LSb first. The USARTs transmit-  
ter and receiver are functionally independent, but use  
the same data format and baud rate. The baud rate  
generator produces a clock, either x16 or x64 of the bit  
shift rate, depending on bit BRGH (TXSTA<2>). Parity  
is not supported by the hardware, but can be imple-  
mented in software (and stored as the ninth data bit).  
Asynchronous mode is stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set. TXIF is cleared by loading TXREG.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 11-2). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally, when transmission  
is first started, the TSR register is empty. At that point,  
transfer to the TXREG register will result in an immedi-  
ate transfer to TSR, resulting in an empty TXREG. A  
back-to-back transfer is thus possible (Figure 11-3).  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. As a result, the RC6/TX/CK pin will revert  
to hi-impedance.  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
Baud Rate Generator  
Sampling Circuit  
Asynchronous Transmitter  
Asynchronous Receiver  
11.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 11-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
the USART Transmit Flag bit TXIF (PIR1<4>) is set.  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit may be loaded in the TSR  
register.  
FIGURE 11-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
DS30605C-page 68  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Steps to follow when setting up an Asynchronous  
Transmission:  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set flag bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 11.1)  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. Load data to the TXREG register (starts trans-  
mission).  
3. If interrupts are desired, set interrupt enable bits  
TXIE (PIE1<4>), PEIE (INTCON<6>), and GIE  
(INTCON<7>), as required.  
FIGURE 11-2:  
ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 11-3:  
ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
START Bit  
START Bit  
Word 2  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Bit 0  
STOP Bit  
TXIF bit  
(interrupt reg. flag)  
TRMT bit  
(Transmit shift  
reg. empty flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 11-3: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(2)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
(2)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: u= unchanged, x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for asynchronous transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
2000 Microchip Technology Inc.  
DS30605C-page 69  
PIC16C63A/65B/73B/74B  
ered register, i.e., it is a two-deep FIFO. It is possible  
for two bytes of data to be received and transferred to  
the RCREG FIFO and a third byte to begin shifting to  
the RSR register. On the detection of the STOP bit of  
the third byte, if the RCREG register is still full, then  
overrun error bit OERR (RCSTA<1>) will be set. The  
word in the RSR will be lost. The RCREG register can  
be read twice to retrieve the two bytes in the FIFO.  
Overrun bit OERR has to be cleared in software. This  
is done by resetting the receive logic (CREN is cleared  
and then set). If bit OERR is set, transfers from the  
RSR register to the RCREG register are inhibited, and  
no further data will be received; therefore, it is essential  
to clear error bit OERR if it is set. Framing error bit  
FERR (RCSTA<2>) is set if a STOP bit is detected as  
clear. Bit FERR and the 9th receive bit are buffered the  
same way as the receive data. Reading the RCREG  
will load bits RX9D and FERR with new values, there-  
fore, it is essential for the user to read the RCSTA reg-  
ister before reading the RCREG register, in order not to  
lose the old FERR and RX9D information.  
11.2.2  
USART ASYNCHRONOUS  
RECEIVER  
The receiver block diagram is shown in Figure 11-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, USART Receive  
Flag bit RCIF (PIR1<5>) is set. This interrupt can be  
enabled/disabled by setting/clearing the USART  
Receive Enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit, which is cleared by the  
hardware. It is cleared when the RCREG register has  
been read and is empty. The RCREG is a double buff-  
FIGURE 11-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
FOSC  
SPBRG  
RSR Register  
MSb  
LSb  
÷ 64  
or  
÷ 16  
Baud Rate Generator  
1
0
START  
STOP (8)  
• • •  
7
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
DS30605C-page 70  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Steps to follow when setting up an Asynchronous  
Reception:  
5. Enable the reception by setting bit CREN.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 11.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, set interrupt enable bits  
RCIE (PIE1<5>), PEIE (INTCON<6>), and GIE  
(INTCON<7>), as required.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
FIGURE 11-5:  
ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the  
third word, causing the OERR (overrun) bit to be set. An overrun error indicates an error in users firmware.  
TABLE 11-4: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(2)  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
1Ah  
RCREG USART Receive register  
(1)  
(2)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator register  
Legend: u= unchanged, x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
2000 Microchip Technology Inc.  
DS30605C-page 71  
PIC16C63A/65B/73B/74B  
Clearing enable bit TXEN, during a transmission, will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to  
hi-impedance. If either bit CREN, or bit SREN is set  
during a transmission, the transmission is aborted and  
the DT pin reverts to a hi-impedance state (for a recep-  
tion). The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic, however, is not  
reset, although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting, since bit TXEN is still  
set. The DT line will immediately switch from  
Hi-impedance Receive mode to transmit and start driv-  
ing. To avoid this, bit TXEN should be cleared.  
11.2.3  
USART SYNCHRONOUS MASTER  
MODE  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, i.e., transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
11.2.4  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
The USART transmitter block diagram is shown in  
Figure 11-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCYCLE), the TXREG is empty and inter-  
rupt flag bit TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the newTX9D,  
the presentvalue of bit TX9D is loaded.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 11.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set interrupt enable bits  
TXIE (PIE1<4>), PEIE (INTCON<6>), and GIE  
(INTCON<7>), as required.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure 11-6). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 11-7). This is advantageous when slow  
baud rates are selected, since the BRG is kept in  
RESET when bits TXEN, CREN and SREN are clear.  
Setting enable bit TXEN will start the BRG, creating a  
shift clock immediately. Normally, when transmission is  
first started, the TSR register is empty, so a transfer to  
the TXREG register will result in an immediate transfer  
to TSR resulting in an empty TXREG. Back-to-back  
transfers are possible.  
DS30605C-page 72  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 11-5: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
(1)  
(2)  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
19h  
TXREG USART Transmit Register  
(1)  
(2)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
99h  
SPBRG Baud Rate Generator Register  
Legend: u= unchanged, x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for synchronous master transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
FIGURE 11-6:  
SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode; SPBRG = 0. Continuous transmission of two 8-bit words.  
FIGURE 11-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit0  
bit2  
bit1  
bit6  
bit7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
2000 Microchip Technology Inc.  
DS30605C-page 73  
PIC16C63A/65B/73B/74B  
Steps to follow when setting up a Synchronous Master  
Reception:  
11.2.5  
USART SYNCHRONOUS MASTER  
RECEPTION  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 11.1)  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, then only a single  
word is received. If enable bit CREN is set, the recep-  
tion is continuous until CREN is cleared. If both bits are  
set, CREN takes precedence. After clocking the last bit,  
the received data in the Receive Shift Register (RSR)  
is transferred to the RCREG register (if it is empty).  
When the transfer is complete, interrupt flag bit RCIF  
(PIR1<5>) is set. The interrupt from the USART can be  
enabled/disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit, which is  
reset by the hardware. In this case, it is reset when the  
RCREG register has been read and is empty. The  
RCREG is a double buffered register, i.e., it is a  
two-deep FIFO. It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full, then overrun error bit OERR  
(RCSTA<1>) is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited,  
and no further data will be received; therefore, it is  
essential to clear bit OERR if it is set. The ninth receive  
bit is buffered the same way as the receive data. Read-  
ing the RCREG register will load bit RX9D with a new  
value, therefore it is essential for the user to read the  
RCSTA register before reading RCREG in order not to  
lose the old RX9D information.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set interrupt enable bits  
RCIE (PIE1<5>), PEIE (INTCON<6>), and GIE  
(INTCON<7>), as required.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
DS30605C-page 74  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 11-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(2)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
RCREG USART Receive register  
0000 0000 0000 0000  
(1)  
(2)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator register  
Legend: u= unchanged, x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for synchronous master reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
FIGURE 11-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3Q4 Q1Q2Q3Q4 Q1 Q2Q3Q4 Q1Q2Q3 Q4Q1 Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1 Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC Master mode with bit SREN = '1' and bit BRG = '0'.  
2000 Microchip Technology Inc.  
DS30605C-page 75  
PIC16C63A/65B/73B/74B  
11.3.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
11.3 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode. Also, bit SREN is a don't carein Slave mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEP instruction, a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register. If  
interrupt enable bits RCIE and PEIE are set, the inter-  
rupt generated will wake the chip from SLEEP. If the  
global interrupt is enabled, the program will branch to  
the interrupt vector (0004h), otherwise execution will  
resume from the instruction following the SLEEP  
instruction.  
11.3.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the SLEEP  
mode.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
Steps to follow when setting up a Synchronous Slave  
Reception:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
2. If interrupts are desired, set interrupt enable bits  
RCIE (PIE1<5>), PEIE (INTCON<6>), and GIE  
(INTCON<7>), as required.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
e) If interrupt enable bits TXIE and PEIE are set,  
the interrupt will wake the chip from SLEEP. If  
GIE is set, the program will branch to the inter-  
rupt vector (0004h), otherwise execution will  
resume from the instruction following the SLEEP  
instruction.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set interrupt enable bits  
TXIE (PIE1<4>), PEIE (INTCON<6>), and GIE  
(INTCON<7>), as required.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
DS30605C-page 76  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 11-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 000u  
0000 0000  
(1)  
(2)  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
18h  
RCSTA  
SREN CREN  
19h  
TXREG USART Transmit register  
(1)  
(2)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TXEN SYNC BRGH TRMT TX9D  
98h  
TXSTA  
99h  
SPBRG Baud Rate Generator register  
Legend: u= unchanged, x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for synchronous slave transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
TABLE 11-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
(2)  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
1Ah  
RCREG USART Receive register  
0000 0000 0000 0000  
(1)  
(2)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator register  
Legend: u= unchanged, x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for synchronous slave reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C63A/73B; always maintain these bits clear.  
2: Bits ADIE and ADIF are reserved on the PIC16C63A/65B; always maintain these bits clear.  
2000 Microchip Technology Inc.  
DS30605C-page 77  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 78  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/Ds internal RC oscillator.  
12.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
Note: The PIC16C63A and PIC16C65B do not  
include A/D modules. ADCON0, ADCON1  
and ADRES registers are not imple-  
mented. ADIF and ADIE bits are reserved  
and should be maintained clear.  
The A/D module has three registers. These registers  
are:  
A/D Result Register (ADRES)  
A/D Control Register 0 (ADCON0)  
A/D Control Register 1 (ADCON1)  
The 8-bit Analog-to-Digital (A/D) converter module has  
five inputs for the PIC16C73B and eight for the  
PIC16C74B.  
The ADCON0 register, shown in Register 12-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 12-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be a voltage reference),  
or as digital I/O.  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number. The output of the  
sample and hold is the input into the converter, which  
generates the result via successive approximation. The  
analog reference voltage is software selectable to  
either the devices positive supply voltage (VDD), or the  
voltage level on the RA3/AN3/VREF pin.  
Additional information on using the A/D module can be  
found in the PICmicroMid-Range MCU Family Ref-  
erence Manual (DS33023) and in Application Note,  
AN546.  
REGISTER 12-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6  
bit 5-3  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal A/D module RC oscillator)  
CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
101= channel 5, (RE0/AN5)(1)  
110= channel 6, (RE1/AN6)(1)  
111= channel 7, (RE2/AN7)(1)  
bit 2  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D  
conversion is complete)  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Note 1: A/D channels 5, 6 and 7 are implemented on the PIC16C74B only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2000 Microchip Technology Inc.  
DS30605C-page 79  
PIC16C63A/65B/73B/74B  
REGISTER 12-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7-3  
bit 2-0  
Unimplemented: Read as '0'  
PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0 RA0  
RA1  
RA2  
RA5  
RA3 RE0(1) RE1(1) RE2(1) VREF  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
D
A
A
A
A
A
A
D
A
A
A
A
D
D
D
A
A
A
A
D
D
D
A
VREF  
A
A
A
D
D
D
D
D
A
A
D
D
D
D
D
A
A
D
D
D
D
D
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
Note 1: RE0, RE1 and RE2 are implemented on the PIC16C74B only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30605C-page 80  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The following steps should be followed for doing an A/D  
conversion:  
3. Wait the required acquisition time.  
4. Set GO/DONE bit (ADCON0) to start conversion.  
1. Configure the A/D module:  
5. Wait for A/D conversion to complete, by either:  
Polling for the GO/DONE bit to be cleared (if  
interrupts are disabled);  
Configure analog pins, voltage reference,  
and digital I/O (ADCON1)  
Select A/D input channel (ADCON0)  
Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
Clear ADIF bit (PIR1<6>)  
OR  
Waiting for the A/D interrupt.  
6. Read A/D result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
Set ADIE bit (PIE1<6>)  
Set PEIE bit (INTCON<6>)  
Set GIE bit (INTCON<7>)  
FIGURE 12-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
(1)  
RE2/AN7  
110  
(1)  
RE1/AN6  
101  
(1)  
RE0/AN5  
100  
RA5/AN4  
VIN  
011  
(Input Voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
100or  
11x  
VREF  
(Reference  
Voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
Note 1: Not available on PIC16C73B.  
2000 Microchip Technology Inc.  
DS30605C-page 81  
PIC16C63A/65B/73B/74B  
The maximum recommended impedance for ana-  
log sources is 10 k. After the analog input channel is  
selected (changed), the acquisition time (TACQ) must  
pass before the conversion can be started.  
12.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 12-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), Figure 12-2. The source impedance affects the  
offset voltage at the analog input (due to pin leakage  
current).  
To calculate the minimum acquisition time,  
Equation 12-1 may be used. This equation assumes  
that 1/2 LSb error is used (512 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
For more information, see the PICmicroMid-Range  
MCU Family Reference Manual (DS33023). In general,  
however, given a maximum source impedance of  
10 kand a worst case temperature of 100°C, TACQ  
will be no more than 16 µsec.  
FIGURE 12-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6 V  
ANx  
SS  
RIC £ 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6 V  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
I leakage = leakage current at the pin due to  
various junctions  
2V  
RIC  
= interconnect resistance  
= sampling switch  
SS  
5 6 7 8 9 10 11  
Sampling Switch  
CHOLD  
= sample/hold capacitance (from DAC)  
(k)  
EQUATION 12-1: ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
=
TAMP + TC + TCOFF  
TAMP = 5 µS  
TC = - (51.2 pF)(1 k+ RSS + RS) In(1/511)  
TCOFF = (Temp -25°C)(0.05 µS/°C)  
DS30605C-page 82  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
12.2 Selecting the A/D Conversion  
Clock  
12.5 A/D Operation During SLEEP  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared,  
and the result loaded into the ADRES register. If the  
A/D interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5 TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
2 TOSC  
8 TOSC  
32 TOSC  
Internal RC oscillator (2 - 6 µS)  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
(parameter #130).  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
12.3 Configuring Analog Port Pins  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the instruc-  
tion that sets the GO/DONE bit.  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
12.6 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. The A/D module is disabled and any conversion  
in progress is aborted. All pins with analog functions  
are configured as analog inputs.  
2: Analog levels on any pin that is defined as  
a digital input, but not as an analog input,  
may cause the input buffer to consume  
current that is out of the devices specifi-  
cation.  
The ADRES register will contain unknown data after a  
Power-on Reset.  
12.7 Use of the CCP Trigger  
3: The TRISE register is not provided on the  
An A/D conversion can be started by the special event  
triggerof the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
done before the special event triggersets the  
GO/DONE bit (starts a conversion).  
PIC16C73B.  
12.4 A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2 TAD wait  
is required before the next acquisition is started. After  
this 2 TAD wait, an acquisition is automatically started  
on the selected channel. The GO/DONE bit can then  
be set to start another conversion.  
If the A/D module is not enabled (ADON is cleared),  
then the special event triggerwill be ignored by the  
A/D module, but will still reset the Timer1 counter.  
2000 Microchip Technology Inc.  
DS30605C-page 83  
PIC16C63A/65B/73B/74B  
TABLE 12-1: SUMMARY OF A/D REGISTERS (PIC16C73B/74B ONLY)  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PSPIF(1)  
PSPIE(1)  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
CCP1IF  
CCP1IE  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
---- ---0  
---- ---0  
xxxx xxxx  
0000 00-0  
---- -000  
--0x 0000  
--11 1111  
---- -xxx  
0000 -111  
0000 000u  
0000 0000  
0000 0000  
---- ---0  
---- ---0  
uuuu uuuu  
0000 00-0  
---- -000  
--0u 0000  
--11 1111  
---- -uuu  
0000 -111  
0Bh,8Bh  
0Ch  
8Ch  
0Dh  
8Dh  
1Eh  
1Fh  
TMR2IF  
TMR1IF  
PIE1  
TMR2IE TMR1IE  
PIR2  
CCP1IF  
CCP1IE  
PIE2  
ADRES  
A/D Result register  
ADCON0 ADCS1  
ADCS0  
CHS2  
CHS1  
CHS0  
GO/DONE  
PCFG2  
ADON  
ADCON1  
PCFG1  
PCFG0  
9Fh  
05h  
PORTA  
TRISA  
PORTE  
TRISE  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
85h  
PORTA Data Direction register  
09h  
RE2  
RE1  
RE0  
89h  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction bits  
Legend: x= unknown, u= unchanged, - = unimplemented, read as 0. Shaded cells are not used for A/D conversion.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C63A/73B; always maintain these bits clear.  
DS30605C-page 84  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep the  
chip in RESET until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only and is  
designed to keep the part in RESET, while the power  
supply stabilizes. With these two timers on-chip, most  
applications need no external RESET circuitry.  
13.0 SPECIAL FEATURES OF THE  
CPU  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of real-  
time applications. The PIC16CXX family has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external RESET, WDT wake-up or through an  
interrupt.  
Oscillator selection  
RESET  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost, while the LP crystal option  
saves power. A set of configuration bits are used to  
select various options.  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
Interrupts  
13.1 Configuration Bits  
Watchdog Timer (WDT)  
SLEEP  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
Code protection  
ID locations  
In-Circuit Serial Programming (ICSP)  
The user will note that address 2007h is beyond the  
user program memory space, and can be accessed  
only during programming.  
The PIC16CXX has a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
REGISTER 13-1: CONFIGURATION WORD (CONFIG 2007h)  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0  
BODEN CP1  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit 0  
bit 13  
(2)  
bits 13-8, CP1:CP0: Code Protection bits  
5-4 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7  
bit 6  
Unimplemented: Read as '1'  
(1)  
BODEN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
(1)  
bit 3  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 2  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of  
PWRTE.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
2000 Microchip Technology Inc.  
DS30605C-page 85  
PIC16C63A/65B/73B/74B  
FIGURE 13-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
13.2 Oscillator Configurations  
13.2.1 OSCILLATOR TYPES  
OSC CONFIGURATION)  
The PIC16CXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
To internal  
logic  
C1  
C2  
LP  
XT  
HS  
RC  
Low Power Crystal  
XTAL  
OSC2  
SLEEP  
PIC16CXX  
RF  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
RS  
(Note 1)  
13.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
See Table 13-1 and Table 13-2 for recommended values of C1  
and C2.  
Note 1: A series resistor may be required for AT strip cut crystals.  
In XT, LP, or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 13-1). The  
PIC16CXX oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 13-2). See the PICmicroMid-  
Range MCU Reference Manual (DS33023) for details  
on building an external oscillator.  
FIGURE 13-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC CONFIGURATION)  
OSC1  
Clock from  
ext. system  
PIC16CXX  
OSC2  
Open  
DS30605C-page 86  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 13-1: CERAMIC RESONATORS  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
Ranges Tested:  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents.  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Note: These values are for design guidance only.  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
See notes following Table 13-1 and Table 13-2.  
Resonators Used:  
455 kHz Panasonic EFO-A455K04B  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.3%  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
4: Oscillator performance should be verified  
at the expected voltage and temperature  
extremes in which the application is  
expected to operate.  
13.2.3  
RC OSCILLATOR  
Note: Resonators used did not have built-in capacitors.  
For timing insensitive applications, the RCdevice  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. The oscillator frequency will vary from  
unit to unit due to normal process variation. The differ-  
ence in lead frame capacitance between package  
types will also affect the oscillation frequency, espe-  
cially for low CEXT values. The user also needs to take  
into account variation due to tolerance of external R  
and C components used. Figure 13-3 shows how the  
R/C combination is connected to the PIC16CXX.  
TABLE 13-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Osc Type  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic (see Figure 3-2 for  
waveform).  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
FIGURE 13-3:  
RC OSCILLATOR MODE  
20 MHz  
VDD  
Note: These values are for design guidance only.  
See notes following Table 13-1 and Table 13-2.  
REXT  
Crystals Used:  
Internal  
OSC1  
Clock  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
CEXT  
VSS  
PIC16CXX  
OSC2/CLKOUT  
4 MHz  
ECS ECS-40-20-1  
FOSC/4  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
Recommended Values: REXT = 3 kW to 100 kW  
CEXT = 20 pf to 30 pF  
20 MHz  
2000 Microchip Technology Inc.  
DS30605C-page 87  
PIC16C63A/65B/73B/74B  
on MCLR Reset during SLEEP, and on BOR. The TO  
and PD bits are set or cleared differently in different  
RESET situations, as indicated in Table 13-4. These  
bits are used in software to determine the nature of the  
RESET. See Table 13-6 for a full description of RESET  
states of all registers.  
13.3 RESET  
The PIC16CXX differentiates between various kinds of  
RESET:  
Power-on Reset (POR)  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset (normal operation)  
Brown-out Reset (BOR)  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 13-4.  
The PICmicro devices have a MCLR noise filter in the  
MCLR Reset path. The filter will detect and ignore  
small pulses.  
Some registers are not affected in any RESET condi-  
tion; their status is unknown on POR and unchanged in  
any other RESET. Most other registers are reset to a  
RESET stateon POR, on the MCLR and WDT Reset,  
It should be noted that internal RESET sources do not  
drive MCLR pin low.  
FIGURE 13-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BODEN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip Reset  
R
Q
OSC1  
(Note 1)  
PWRT  
10-bit Ripple Counter  
On-chip  
RC OSC  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
DS30605C-page 88  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
13.4.4  
BROWN-OUT RESET (BOR)  
13.4 RESETS  
The configuration bit, BODEN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100µS), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a RESET may not occur.  
13.4.1  
POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (parameters D003 and D004, in  
the range of 1.5V - 2.1V). To take advantage of the  
POR, just tie the MCLR pin directly (or through a resis-  
tor) to VDD. This will eliminate external RC components  
usually needed to create a POR.  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer then keeps the device in RESET for  
TPWRT (parameter #33, about 72mS). If VDD should fall  
below VBOR during TPWRT, the Brown-out Reset pro-  
cess will restart when VDD rises above VBOR with the  
Power-up Timer Reset. The Power-up Timer is always  
enabled when the Brown-out Reset circuit is enabled,  
regardless of the state of the PWRT configuration bit.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. The device may be held in RESET by keeping  
MCLR at Vss.  
For additional information, refer to Application Note  
AN607, Power-up Trouble Shooting.”  
13.4.5  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows: the  
PWRT delay starts (if enabled) when a POR occurs.  
Then, OST starts counting 1024 oscillator cycles when  
PWRT ends (LP, XT, HS). When the OST ends, the  
device comes out of RESET.  
13.4.2  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up from the POR. The PWRT oper-  
ates on an internal RC oscillator. The device is kept in  
RESET as long as the PWRT is active. The PWRTs  
time delay allows VDD to rise to an acceptable level. A  
configuration bit is provided to enable/disable the  
PWRT.  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution imme-  
diately. This is useful for testing purposes or to synchro-  
nize more than one PIC16CXX device operating in  
parallel.  
The power-up time delay will vary from chip to chip, due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
Table 13-5 shows the RESET conditions for the  
STATUS, PCON and PC registers, while Table 13-6  
shows the RESET conditions for all the registers.  
13.4.3  
OSCILLATOR START-UP TIMER  
(OST)  
13.4.6  
POWER CONTROL/STATUS  
REGISTER (PCON)  
The Oscillator Start-up Timer provides a delay of 1024  
oscillator cycles (from OSC1 input) after the PWRT  
delay, if enabled. This helps to ensure that the crystal  
oscillator or resonator has started and stabilized.  
The Brown-out Reset Status bit, BOR, is unknown on a  
POR. It must be set by the user and checked on sub-  
sequent RESETS to see if bit BOR was cleared, indi-  
cating a BOR occurred. The BOR bit is not predictable  
if the Brown-out Reset circuitry is disabled.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
The Power-on Reset Status bit, POR, is cleared on a  
POR and unaffected otherwise. The user must set this  
bit following a POR and check it on subsequent  
RESETS to see if it has been cleared.  
2000 Microchip Technology Inc.  
DS30605C-page 89  
PIC16C63A/65B/73B/74B  
TABLE 13-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Oscillator Configuration  
Brown-out  
Wake-up from SLEEP  
PWRTE = 0  
72 ms + 1024TOSC  
72 ms  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
TABLE 13-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
0
BOR  
TO  
1
PD  
1
x
x
x
0
1
1
1
1
Power-on Reset  
0
0
x
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
0
x
0
1
1
1
1
0
1
WDT Reset  
1
0
0
WDT Wake-up  
1
u
u
MCLR Reset during normal operation  
1
1
0
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
Legend: x= dont care, u= unchanged  
TABLE 13-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
000x xuuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
Interrupt wake-up from SLEEP  
PC + 1(1)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as '0'  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
REGISTER 13-2: STATUS REGISTER  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
REGISTER 13-3: PCON REGISTER  
POR  
BOR  
DS30605C-page 90  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 13-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
Applicable Devices  
W
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
0000 000u  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
STATUS  
63A 65B 73B 74B  
0001 1xxx  
FSR  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
uuuu uuuu(1)  
-u-- uuuu(1)  
-uuu uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
-0-- 0000  
-000 0000  
0000 0000  
0000 0000  
---- ---0  
-0-- 0000  
-000 0000  
0000 0000  
0000 0000  
---- ---0  
PIR1  
PIR2  
---- ---u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TMR1L  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 13-5 for RESET value for specific condition.  
2000 Microchip Technology Inc.  
DS30605C-page 91  
PIC16C63A/65B/73B/74B  
TABLE 13-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Power-on Reset  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
Applicable Devices  
ADCON0  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
--00 0000  
0-00 0000  
-000 0000  
0000 0000  
---- ---0  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
--00 0000  
0-00 0000  
-000 0000  
0000 0000  
---- ---0  
---- --uu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
--uu uuuu  
u-uu uuuu  
-uuu uuuu  
uuuu uuuu  
---- ---u  
---- --uu  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PIE2  
---- --0q(3)  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
---- -000  
PCON  
PR2  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
63A 65B 73B 74B  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
---- -000  
1111 1111  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
---- -uuu  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
ADCON1  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 13-5 for RESET value for specific condition.  
DS30605C-page 92  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
13.5 Interrupts  
Note: If an interrupt occurs while the Global Inter-  
rupt Enable (GIE) bit is being cleared, the  
GIE bit may unintentionally be re-enabled  
by the users Interrupt Service Routine (the  
RETFIE instruction). The events that  
would cause this to occur are:  
The Interrupt Control register (INTCON) records indi-  
vidual interrupt requests in flag bits. It also has individ-  
ual and global interrupt enable bits.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit, or the GIE bit.  
1. An instruction clears the GIE bit while an  
interrupt is acknowledged.  
A global interrupt enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupts flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
2. The program branches to the interrupt  
vector and executes the Interrupt  
Service Routine.  
3. The Interrupt Service Routine completes  
the execution of the RETFIEinstruction.  
This causes the GIE bit to be set  
(enables interrupts), and the program  
returns to the instruction after the one  
which was meant to disable interrupts.  
The return from interruptinstruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
Perform the following to ensure that inter-  
rupts are globally disabled:  
LOOP BCF  
INTCON, GIE ; Disable global  
; interrupt bit  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
BTFSC INTCON, GIE ; Global interrupt  
; disabled?  
GOTO LOOP  
:
; NO, try again  
; Yes, continue  
; with program  
; flow  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2 and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack, and the PC is loaded  
with 0004h. Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set, regardless of the status of  
their corresponding mask bit, PEIE bit, or the GIE bit.  
2000 Microchip Technology Inc.  
DS30605C-page 93  
PIC16C63A/65B/73B/74B  
FIGURE 13-5:  
INTERRUPT LOGIC  
PSPIF  
PSPIE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
ADIF  
ADIE  
T0IF  
T0IE  
RCIF  
RCIE  
INTF  
INTE  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
The following table shows which devices have which interrupts.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF CCP2IF  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
13.5.1  
INT INTERRUPT  
13.5.3  
PORTB INTERRUPT-ON-CHANGE  
The external interrupt on RB0/INT pin is edge trig-  
gered: either rising if bit INTEDG (OPTION_REG<6>)  
is set, or falling if the INTEDG bit is clear. When a valid  
edge appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT inter-  
rupt can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit GIE decides whether or not the pro-  
cessor branches to the interrupt vector following wake-  
up. See Section 13.8 for details on SLEEP mode.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 5.2)  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
13.5.2  
TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>) (see Section 6.0).  
DS30605C-page 94  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The example:  
13.6 Context Saving During Interrupts  
a) Stores the W register.  
During an interrupt, only the return PC value is saved  
on the stack. Users may wish to save key registers dur-  
ing an interrupt i.e., W register and STATUS register.  
This will have to be implemented in software.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
d) Executes the ISR code.  
Example 13-1 stores and restores the STATUS, W, and  
PCLATH registers. The register W_TEMP must be  
defined in each bank and must be defined at the same  
offset from the bank base address (i.e., if W_TEMP is  
defined at 0x20 in bank 0, it must also be defined at  
0xA0 in bank 1).  
e) Restores the STATUS register  
(and bank select bit).  
f) Restores the W and PCLATH registers.  
EXAMPLE 13-1:  
SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
(ISR)  
:
;User ISR code goes here  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP, W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
13.7.1  
WDT PERIOD  
13.7 Watchdog Timer (WDT)  
The WDT has a nominal time-out period of 18 ms  
(parameter #31, TWDT). The time-out periods vary with  
temperature, VDD, and process variations. If longer  
time-out periods are desired, a prescaler with a division  
ratio of up to 1:128 can be assigned to the WDT under  
software control, by writing to the OPTION register.  
Time-out periods up to 128 TWDT can be realized.  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKIN pin. The WDT will run, even if the  
clock on the OSC1/CLKIN and OSC2/CLKOUT pins of  
the device has been stopped, for example, by execu-  
tion of a SLEEPinstruction.  
The CLRWDT and SLEEP instructions clear the WDT  
and the postscaler, if assigned to the WDT. In addition,  
the SLEEPinstruction prevents the WDT from generat-  
ing a RESET, but will allow the WDT to wake the device  
from SLEEP mode.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and resume normal operation (Watchdog  
Timer Wake-up).  
The TO bit in the STATUS register will be cleared upon  
a WDT time-out.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 13.1).  
2000 Microchip Technology Inc.  
DS30605C-page 95  
PIC16C63A/65B/73B/74B  
13.7.2  
WDT PROGRAMMING  
CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
max. WDT prescaler), it may take several seconds  
before a WDT time-out occurs.  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
FIGURE 13-6:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-1)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 MUX (Figure 6-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
TABLE 13-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
81h  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
BODEN(1)  
INTEDG  
PWRTE(1)  
PSA  
Config. bits  
CP1  
CP0  
OPTION_REG RBPU  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 13-1 for operation of these bits.  
DS30605C-page 96  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip Q clocks are present.  
13.8 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the WDT will be cleared but keeps running,  
the PD bit (STATUS<3>) is cleared, the TO (STA-  
TUS<4>) bit is set, and the oscillator driver is turned off.  
The I/O ports maintain the status they had, before the  
SLEEP instruction was executed (driving high, low, or  
hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should also be considered.  
13.8.2  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bit will not be cleared.  
13.8.1  
WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
1. External RESET input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
Peripheral Interrupt.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a wake-up. The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
2. SSP (START/STOP) bit detect interrupt.  
3. SSP transmit or receive in Slave mode  
(SPI/I2C).  
4. CCP Capture mode interrupt.  
5. Parallel Slave port read or write  
(PIC16C65B/74B only).  
6. A/D conversion (when A/D clock source is RC).  
7. USART TX or RX (Synchronous Slave mode).  
2000 Microchip Technology Inc.  
DS30605C-page 97  
PIC16C63A/65B/73B/74B  
FIGURE 13-7:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
(4)  
CLKOUT  
INT pin  
INTF Flag  
(INTCON<1>)  
(2)  
Interrupt Latency  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note  
1:  
2:  
3:  
4:  
XT, HS or LP oscillator mode assumed.  
TOST = 1024Tosc (drawing not to scale). This delay is not present in RC osc mode.  
GIE = 1assumed. After wake- up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
CLKOUT is not available in these osc modes, but shown here for timing reference.  
The device is placed into a Program/Verify mode by  
holding the RB6 and RB7 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
13.9 Program Verification/Code  
Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
After RESET, to place the device into Programming/  
Verify mode, the program counter (PC) is at location  
00h. A 6-bit command is then supplied to the device.  
Depending on the command, 14 bits of program data are  
then supplied to or from the device, depending if the  
command was a load or a read. For complete details of  
serial programming, please refer to the PIC16C6X/7X  
Programming Specifications (Literature #DS30228).  
Note: Microchip does not recommend code pro-  
tecting windowed devices. Devices that  
are code protected may be erased, but not  
programmed again.  
13.10 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the four least significant bits of the ID  
location are used.  
FIGURE 13-8:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
13.11 In-Circuit Serial Programming  
PIC16CXX  
PIC16CXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS30605C-page 98  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
14.0 INSTRUCTION SET SUMMARY  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 14-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 14-1  
shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
For byte-oriented instructions, frepresents a file reg-  
ister designator and drepresents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The destination designator specifies where the result of  
the operation is to be placed. If dis zero, the result is  
placed in the W register. If dis one, the result is placed  
in the file register specified in the instruction.  
Table 14-2 lists the instructions recognized by the  
MPASMTM assembler.  
For bit-oriented instructions, brepresents a bit field  
designator which selects the number of the bit affected  
by the operation, while frepresents the address of the  
file in which the bit is located.  
Figure 14-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For literal and control operations, krepresents an  
eight or eleven bit constant or literal value.  
All examples use the following format to represent a  
hexadecimal number:  
TABLE 14-1: OPCODE FIELD  
DESCRIPTIONS  
0xhh  
Field  
Description  
where h signifies a hexadecimal digit.  
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
FIGURE 14-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Byte-oriented file register operations  
13  
8
7
6
0
0
Dont care location (= 0 or 1)  
OPCODE  
d
f (FILE #)  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
x
d
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
label Label name  
OPCODE  
f (FILE #)  
TOS Top-of-Stack  
PC Program Counter  
PCLATH Program Counter High Latch  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
General  
13  
8
7
0
0
PD Power-down bit  
OPCODE  
k (literal)  
Destination either the W register or the specified  
register file location  
dest  
k = 8-bit immediate value  
[ ] Options  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
( ) Contents  
Assigned to  
< > Register bit field  
In the set of  
k (literal)  
italics User defined term (font is courier)  
2000 Microchip Technology Inc.  
DS30605C-page 99  
PIC16C63A/65B/73B/74B  
TABLE 14-2: PIC16CXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVFPORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an external  
device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PICmicroTM Mid-Range MCU  
Family Reference Manual (DS33023).  
DS30605C-page 100  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
14.1 Instruction Descriptions  
ADDLW  
Add Literal and W  
ANDWF  
Syntax:  
AND W with f  
Syntax:  
[label] ADDLW  
0 k 255  
k
[label] ANDWF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d ∈ [0,1]  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the eight bit literal kand the  
result is placed in the W register.  
AND the W register with register 'f'. If  
'd' is 0, the result is stored in the W  
register. If 'd' is 1, the result is stored  
back in register 'f'.  
ADDWF  
Syntax:  
Add W and f  
BCF  
Bit Clear f  
[label] ADDWF f,d  
Syntax:  
Operands:  
[label] BCF f,b  
Operands:  
0 f 127  
d ∈ [0,1]  
0 f 127  
0 b 7  
Operation:  
(W) + (f) (destination)  
Operation:  
0 (f<b>)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
None  
Add the contents of the W register  
Description:  
Bit 'b' in register 'f' is cleared.  
with register f. If dis 0, the result is  
stored in the W register. If dis 1, the  
result is stored back in register f.  
ANDLW  
AND Literal with W  
BSF  
Bit Set f  
Syntax:  
[label] ANDLW  
0 k 255  
k
Syntax:  
Operands:  
[label] BSF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
0 b 7  
(W) .AND. (k) (W)  
Operation:  
1 (f<b>)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
ANDed with the eight bit literal 'k'.  
The result is placed in the W register.  
Bit 'b' in register 'f' is set.  
2000 Microchip Technology Inc.  
DS30605C-page 101  
PIC16C63A/65B/73B/74B  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
If bit bin register fis 0, the next  
The contents of register fare cleared  
and the Z bit is set.  
Description:  
instruction is executed.  
If bit bis 1, then the next instruction  
is discarded and a NOPis executed  
instead making this a 2TCY instruction.  
CLRW  
Clear W  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
[label] BTFSC f,b  
Operands:  
Operation:  
Operands:  
0 f 127  
0 b 7  
00h (W)  
1 Z  
Operation:  
skip if (f<b>) = 0  
Status Affected:  
Description:  
Z
Status Affected: None  
W register is cleared. Zero bit (Z) is  
set.  
If bit bin register fis 1, the next  
Description:  
instruction is executed.  
If bit b, in register f, is 0, the next  
instruction is discarded, and a NOPis  
executed instead, making this a 2 TCY  
instruction.  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Call Subroutine. First, return address  
Description:  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is  
loaded into PC bits <10:0>. The upper  
bits of the PC are loaded from  
PCLATH. CALLis a two-cycle  
instruction.  
CLRWDTinstruction resets the Watch-  
Description:  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD  
are set.  
DS30605C-page 102  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
COMF  
Complement f  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
Syntax:  
Operands:  
[ label ] COMF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register fare comple-  
mented. If dis 0, the result is stored  
in W. If dis 1, the result is stored  
back in register f.  
GOTOis an unconditional branch. The  
Description:  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
DECF  
Decrement f  
INCF  
Increment f  
Syntax:  
Operands:  
[label] DECF f,d  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
d [0,1]  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register f. If dis 0, the  
result is stored in the W register. If d’  
is 1, the result is stored back in  
register f.  
The contents of register fare incre-  
mented. If dis 0, the result is placed  
in the W register. If dis 1, the result is  
placed back in register f.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] DECFSZ f,d  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
The contents of register fare decre-  
The contents of register fare incre-  
Description:  
Description:  
mented. If dis 0, the result is placed  
in the W register. If dis 1, the result is  
placed back in register f.  
mented. If dis 0, the result is placed  
in the W register. If dis 1, the result is  
placed back in register f.  
If the result is 1, the next instruction is  
executed. If the result is 0, then a NOP  
is executed instead making it a 2 TCY  
instruction.  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOPis  
executed instead making it a 2 TCY  
instruction.  
2000 Microchip Technology Inc.  
DS30605C-page 103  
PIC16C63A/65B/73B/74B  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .OR. k (W)  
Z
k (W)  
None  
The contents of the W register are  
ORed with the eight bit literal 'k'. The  
result is placed in the W register.  
The eight bit literal 'k' is loaded into  
W register. The dont cares will  
assemble as 0s.  
IORWF  
Inclusive OR W with f  
MOVWF  
Move W to f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
(W) .OR. (f) (destination)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register 'f'.  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
NOP  
No Operation  
[ label ] NOP  
None  
MOVF  
Move f  
Syntax:  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
No operation.  
Description:  
The contents of register f are moved  
to a destination dependant upon the  
status of d. If d = 0, destination is W  
register. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
DS30605C-page 104  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Syntax:  
Operands:  
[ label ] RLF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
None  
Status Affected:  
Status Affected:  
Description:  
The contents of register fare rotated  
one bit to the left through the Carry  
Flag. If dis 0, the result is placed in  
the W register. If dis 1, the result is  
stored back in register f.  
C
Register f  
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
RRF  
Rotate Right f through Carry  
Syntax:  
Syntax:  
Operands:  
[ label ] RRF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The W register is loaded with the eight  
The contents of register fare rotated  
one bit to the right through the Carry  
Flag. If dis 0, the result is placed in  
the W register. If dis 1, the result is  
placed back in register f.  
Description:  
bit literal k. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
C
Register f  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
SLEEP  
Syntax:  
[ label ] SLEEP  
None  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Status Affected: None  
Return from subroutine. The stack is  
Description:  
0 PD  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two-cycle instruction.  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped. See  
Section 13.8 for more details.  
2000 Microchip Technology Inc.  
DS30605C-page 105  
PIC16C63A/65B/73B/74B  
SUBLW  
Subtract W from Literal  
[ label ] SUBLW k  
0 k 255  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k - (W) → (W)  
(W) .XOR. k → (W)  
Z
Status Affected: C, DC, Z  
The W register is subtracted (2s com-  
The contents of the W register are  
XORed with the eight bit literal 'k'.  
The result is placed in the W  
register.  
Description:  
plement method) from the eight bit lit-  
eral 'k'. The result is placed in the W  
register.  
XORWF  
Syntax:  
Exclusive OR W with f  
SUBWF  
Syntax:  
Subtract W from f  
[label] XORWF f,d  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: C, DC, Z  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0, the  
result is stored in the W register. If 'd'  
is 1, the result is stored back in  
register 'f'.  
Subtract (2s complement method) W  
Description:  
register from register 'f'. If 'd' is 0, the  
result is stored in the W register. If 'd' is  
1, the result is stored back in register 'f'.  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
The upper and lower nibbles of regis-  
Description:  
ter 'f' are exchanged. If 'd' is 0, the  
result is placed in W register. If 'd' is 1,  
the result is placed in register 'f'.  
DS30605C-page 106  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The MPLAB IDE allows you to:  
15.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
15.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD for PIC16F87X  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
15.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
15.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2000 Microchip Technology Inc.  
DS30605C-page 107  
PIC16C63A/65B/73B/74B  
15.4 MPLINK Object Linker/  
MPLIB Object Librarian  
15.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
15.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
15.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS30605C-page 108  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
15.8 MPLAB ICD In-Circuit Debugger  
15.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PIC16F87X and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. The MPLAB ICD utilizes  
the in-circuit debugging capability built into the  
PIC16F87X. This feature, along with Microchips  
In-Circuit Serial ProgrammingTM protocol, offers cost-  
effective in-circuit FLASH debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by watching variables, single-  
stepping and setting break points. Running at full  
speed enables testing hardware in real-time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
15.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
15.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
15.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2000 Microchip Technology Inc.  
DS30605C-page 109  
PIC16C63A/65B/73B/74B  
15.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
15.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
15.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS30605C-page 110  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 15-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2000 Microchip Technology Inc.  
DS30605C-page 111  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 112  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings()  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to VSS............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ...................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (Note 3) (combined)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (Note 3) (combined).............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50 - 100should be used when applying a lowlevel to the MCLR/VPP pin rather  
than pulling this pin directly to VSS.  
3: PORTD and PORTE not available on the PIC16C63A/73B.  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2000 Microchip Technology Inc.  
DS30605C-page 113  
PIC16C63A/65B/73B/74B  
FIGURE 16-1:  
PIC16C63A/65B/73B/74B VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC16CXXX-20  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
20 MHz  
Frequency  
FIGURE 16-2:  
PIC16LC63A/65B/73B/74B VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
PIC16LCXXX-04  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
10 MHz  
Frequency  
FMAX = (12.0 MHz/V) (VDDAPPMIN - 2.5 V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10MHz.  
DS30605C-page 114  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 16-3:  
PIC16C63A/65B/73B/74B VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC16CXXX-04  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
Frequency  
2000 Microchip Technology Inc.  
DS30605C-page 115  
PIC16C63A/65B/73B/74B  
16.1 DC Characteristics  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC63A/65B/73B/74B-04  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C63A/65B/73B/74B-04  
PIC16C6A/65B/73B/74B-20  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
TypMax  
Units  
Conditions  
VDD Supply Voltage  
PIC16LCXXX  
D001  
2.5  
VBOR*  
5.5  
5.5  
V
V
LP, XT, RC osc modes (DC - 4 MHz)  
BOR enabled (Note 7)  
PIC16CXXX  
D001  
D001A  
4.0  
4.5  
VBOR*  
5.5  
5.5  
5.5  
V
V
V
XT, RC and LP osc mode  
HS osc mode  
BOR enabled (Note 7)  
D002*  
D003  
VDR RAM Data Retention  
1.5  
V
Voltage (Note 1)  
VPOR VDD Start Voltage to  
ensure internal  
VSS  
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004*  
D004A*  
SVDD VDD Rise Rate to  
ensure internal  
0.05  
TBD  
V/mS PWRT enabled (PWRTE bit clear)  
V/mS PWRT disabled (PWRTE bit set)  
See section on Power-on Reset for details  
Power-on Reset signal  
D005  
VBOR Brown-out Reset  
3.65  
4.35  
V
BODEN bit set  
voltage trip point  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
When specification values of standard devices differ from those of extended voltage devices, they are shown in gray.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption. The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through REXT is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
8: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with external clock in RC mode.  
9: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
10:Negative current is defined as current sourced by the pin.  
DS30605C-page 116  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC63A/65B/73B/74B-04  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C63A/65B/73B/74B-04  
PIC16C6A/65B/73B/74B-20  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
TypMax  
Units  
Conditions  
IDD Supply Current (Notes 2, 5)  
PIC16LCXXX  
PIC16CXXX  
D010  
0.6  
2.0  
48  
mA XT, RC osc modes:  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
µA LP osc mode:  
D010A  
22.5  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D010  
D013  
2.7  
7
5
mA XT, RC osc modes:  
FOSC = 4 MHz, VDD = 5.5 V (Note 4)  
mA HS osc mode:  
10  
FOSC = 20 MHz, VDD = 5.5 V  
IPD Power-down Current (Notes 3, 5)  
PIC16LCXXX  
D020  
D021  
D021A  
7.5  
0.9  
0.9  
20  
3
3
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
PIC16CXXX  
D020  
D021  
D021A  
D021B  
10.5  
1.5  
1.5  
42  
16  
19  
19  
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, 0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
2.5  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
When specification values of standard devices differ from those of extended voltage devices, they are shown in gray.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption. The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through REXT is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
8: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with external clock in RC mode.  
9: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
10:Negative current is defined as current sourced by the pin.  
2000 Microchip Technology Inc.  
DS30605C-page 117  
PIC16C63A/65B/73B/74B  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC63A/65B/73B/74B-04  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C63A/65B/73B/74B-04  
PIC16C6A/65B/73B/74B-20  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
TypMax  
Units  
Conditions  
Module Differential  
Current (Note 6)  
D022* IWDT Watchdog Timer  
D022A* IBOR Brown-out Reset  
Input Low Voltage  
6.0  
20  
µA WDTE bit set, VDD = 4.0V  
µA BODEN bit set, VDD = 5.0  
100  
150  
VIL  
I/O ports  
with TTL buffer  
D030  
D030A  
VSS  
VSS  
0.15 VDD  
0.8V  
V
V
For entire VDD range  
4.5V VDD 5.5V  
D031  
D032  
D033  
with Schmitt  
Trigger buffer  
VSS  
Vss  
Vss  
0.2 VDD  
0.2 VDD  
0.3 VDD  
V
V
V
MCLR, OSC1  
(in RC mode)  
OSC1 (in XT, HS, and  
LP modes)  
(Note 8)  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
When specification values of standard devices differ from those of extended voltage devices, they are shown in gray.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption. The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through REXT is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
8: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with external clock in RC mode.  
9: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
10:Negative current is defined as current sourced by the pin.  
DS30605C-page 118  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC63A/65B/73B/74B-04  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C63A/65B/73B/74B-04  
PIC16C6A/65B/73B/74B-20  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
TypMax  
Units  
Conditions  
Input High Voltage  
VIH I/O ports  
with TTL buffer  
2.0  
D040  
VDD  
VDD  
V
V
4.5 V VDD 5.5V  
D040A  
0.25 VDD +  
0.8V  
For entire VDD range  
D041  
with Schmitt  
0.8 VDD  
VDD  
V
For entire VDD range  
Trigger buffer  
D042  
MCLR  
0.8 VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS, and 0.7 VDD  
LP modes)  
(Note 8)  
D043  
D060  
OSC1 (in RC mode)  
0.9 VDD  
VDD  
V
Input Leakage  
Current (Notes 9, 10)  
IIL  
I/O ports  
±1  
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD,  
XT, HS and LP osc modes  
D070  
IPURB PORTB Weak Pull-up  
50  
250  
400  
µA VDD = 5V, VPIN = VSS  
Current  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
When specification values of standard devices differ from those of extended voltage devices, they are shown in gray.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption. The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through REXT is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
8: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with external clock in RC mode.  
9: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
10:Negative current is defined as current sourced by the pin.  
2000 Microchip Technology Inc.  
DS30605C-page 119  
PIC16C63A/65B/73B/74B  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC63A/65B/73B/74B-04  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C63A/65B/73B/74B-04  
PIC16C6A/65B/73B/74B-20  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
TypMax  
Units  
Conditions  
Output Low Voltage  
VOL I/O ports  
D080  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D083  
OSC2/CLKOUT  
(RC osc mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
Output High Voltage  
D090  
D092  
D150*  
VOH I/O ports (Note 10)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT  
(RC osc mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
VOD Open-Drain  
8.5  
RA4 pin  
High Voltage  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
When specification values of standard devices differ from those of extended voltage devices, they are shown in gray.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption. The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through REXT is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
8: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with external clock in RC mode.  
9: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
10:Negative current is defined as current sourced by the pin.  
DS30605C-page 120  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC63A/65B/73B/74B-04  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C63A/65B/73B/74B-04  
PIC16C6A/65B/73B/74B-20  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
TypMax  
Units  
Conditions  
Capacitive Loading  
Specs on  
Output Pins  
D100  
D101  
D102  
COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when external  
clock is used to drive OSC1  
CIO All I/O pins and OSC2  
(in RC mode)  
pF  
Cb SCL, SDA  
(in I2C mode)  
400  
pF  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
When specification values of standard devices differ from those of extended voltage devices, they are shown in gray.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption. The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through REXT is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
8: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with external clock in RC mode.  
9: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
10:Negative current is defined as current sourced by the pin.  
2000 Microchip Technology Inc.  
DS30605C-page 121  
PIC16C63A/65B/73B/74B  
16.2 AC (Timing) Characteristics  
16.2.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
rw  
sc  
ss  
t0  
OSC1  
RD  
RD or WR  
SCK  
ck  
cs  
di  
SDI  
do  
dt  
io  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
t1  
wr  
mc  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
High  
P
R
V
Z
Period  
Rise  
Valid  
Hi-impedance  
Invalid (Hi-impedance)  
Low  
L
I2C only  
AA  
BUF  
output access  
Bus free  
High  
Low  
High  
Low  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
DS30605C-page 122  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
16.2.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 16-1  
apply to all timing specifications unless otherwise  
noted. Figure 16-4 specifies the load conditions for the  
timing specifications.  
TABLE 16-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 16.1.  
LC parts operate for commercial/industrial temperatures only.  
FIGURE 16-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
but including D and E outputs as ports  
VSS  
CL = 15 pF for OSC2 output  
Note 1: PORTD and PORTE are not implemented on the PIC16C63A/73B.  
2000 Microchip Technology Inc.  
DS30605C-page 123  
PIC16C63A/65B/73B/74B  
16.2.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 16-5:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
4
Q4  
Q1  
OSC1  
3
3
1
4
2
CLKOUT  
TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
1A  
FOSC External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz RC and XT osc modes  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
20  
200  
MHz HS osc mode  
5
kHz LP osc mode  
1
TOSC External CLKIN Period  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
RC and XT osc modes  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
RC osc mode  
XT osc mode  
10,000  
250  
250  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
2
TCY Instruction Cycle Time (Note 1)  
200  
DC  
TCY = 4/FOSC  
3*  
TosL, External Clock in (OSC1) High or 100  
TosH Low Time  
XT oscillator  
2.5  
LP oscillator  
15  
HS oscillator  
4*  
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
XT oscillator  
50  
LP oscillator  
15  
HS oscillator  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at min.values with an external  
clock applied to the OSC1/CLKIN pin. When an external clock input is used, the Max.cycle time limit is  
DC(no clock) for all devices.  
DS30605C-page 124  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 16-6:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
10* TosH2ckL  
11* TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
OSC1to CLKOUT↓  
12* TckR  
13* TckF  
CLKOUT rise time  
CLKOUT fall time  
14* TckL2ioV CLKOUT to Port out valid  
15* TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20 ns  
TOSC + 200  
ns  
ns  
ns  
ns  
16* TckH2ioI  
Port in hold after CLKOUT ↑  
0
17* TosH2ioV OSC1(Q1 cycle) to Port out valid  
150  
18*  
OSC1(Q2 cycle) to Port PIC16CXX  
100  
TosH2ioI  
input invalid (I/O in hold  
18A*  
PIC16LCXX  
time)  
200  
0
ns  
ns  
Port input valid to OSC1(I/O in setup  
time)  
19* TioV2osH  
20*  
PIC16CXX  
Port output rise time  
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
20A*  
PIC16LCXX  
21*  
TioF  
21A*  
PIC16CXX  
Port output fall time  
PIC16LCXX  
22††* Tinp  
23††* Trbp  
INT pin high or low time  
TCY  
TCY  
RB7:RB4 change INT high or low time  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
††These parameters are asynchronous events not related to any internal clock edge.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2000 Microchip Technology Inc.  
DS30605C-page 125  
PIC16C63A/65B/73B/74B  
FIGURE 16-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note:  
Refer to Figure 16-4 for load conditions.  
FIGURE 16-8:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Param No. Sym Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
µs VDD = 5V, -40°C to +125°C  
ms VDD = 5V, -40°C to +125°C  
Watchdog Timer Time-out  
Period (No Prescaler)  
31*  
TWDT  
TOST  
7
18  
33  
Oscillation Start-up Timer  
Period  
32  
33*  
34  
28  
1024 TOSC  
132  
2.1  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
72  
ms VDD = 5V, -40°C to +125°C  
µs  
I/O Hi-impedance from MCLR  
Low or WDT Reset  
TIOZ  
35  
TBOR Brown-out Reset Pulse Width 100  
µs VDD BVDD (D005)  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
DS30605C-page 126  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 16-9:  
T0CKI  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 16-4 for load conditions.  
TABLE 16-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
T0CKI High Pulse Width  
Min  
TypMax Units  
Conditions  
40*  
Tt0H  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
TCY + 40  
ns  
With Prescaler Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
N
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
15  
ns  
25  
ns  
Asynchronous  
30  
ns  
50  
ns  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
15  
25  
30  
50  
ns  
ns  
ns  
ns  
Asynchronous  
Synchronous  
T1CKI input  
period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
PIC16LCXX  
Greater of:  
50 or TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
PIC16CXX  
60  
100  
DC  
ns  
ns  
PIC16LCXX  
Ft1  
Timer1 oscillator input frequency range  
200 kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
TCKEZtmr1 Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
2TOSC  
7TOSC  
*
2000 Microchip Technology Inc.  
DS30605C-page 127  
PIC16C63A/65B/73B/74B  
FIGURE 16-10:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM mode)  
53  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param  
Sym  
Characteristic  
Min  
TypMax Units Conditions  
No.  
50* TccL CCP1 and  
CCP2  
No Prescaler  
0.5TCY + 20  
ns  
With Prescaler PIC16CXX  
PIC16LCXX  
10  
ns  
input low time  
20  
0.5TCY + 20  
10  
ns  
51* TccH CCP1 and  
CCP2  
No Prescaler  
ns  
With Prescaler PIC16CXX  
PIC16LCXX  
ns  
input high time  
20  
ns  
52* TccP CCP1 and CCP2 input period  
3TCY + 40  
N
ns N = prescale  
value (1,4, or 16)  
53* TccR CCP1 and CCP2 output rise time PIC16CXX  
PIC16LCXX  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54* TccF CCP1 and CCP2 output fall time PIC16CXX  
PIC16LCXX  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
DS30605C-page 128  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 16-11:  
PARALLEL SLAVE PORT TIMING (PIC16C65B/74B)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C65B/74B)  
Param No.  
Sym  
Characteristic  
Min TypMax Units  
Conditions  
62*  
63*  
TdtV2wrH Data in valid before WRor CS(setup time) 20  
80  
30  
ns  
ns  
ns  
ns  
ns  
TwrH2dtI  
20  
35  
10  
WRor CSto data in  
PIC16CXX  
invalid (hold time)  
PIC16LCXX  
64  
TrdL2dtV  
TrdH2dtI  
RDand CSto data out valid  
RDor CSto data out invalid  
65*  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
2000 Microchip Technology Inc.  
DS30605C-page 129  
PIC16C63A/65B/73B/74B  
FIGURE 16-12:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
Symbol  
Characteristic  
Min  
Typ† Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
71A  
72  
TscH  
1.25TCY + 30  
ns  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
40  
1.25TCY + 30  
40  
ns (Note 1)  
TscL  
ns  
SCK input low time  
(Slave mode)  
72A  
73  
ns (Note 1)  
TdiV2scH,  
TdiV2scL  
100  
ns  
Setup time of SDI data input to SCK edge  
73A  
74  
TB2B  
1.5TCY + 40  
100  
ns (Note 1)  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
TscH2diL,  
TscL2diL  
ns  
Hold time of SDI data input to SCK edge  
75  
TdoR  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDO data output rise time PIC16CXX  
PIC16LCXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC16CXX  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV,  
TscL2doV  
SDO data output valid  
after SCK edge  
PIC16CXX  
PIC16LCXX  
† Data in “Typ” column is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
DS30605C-page 130  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 16-13:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-9: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param  
Symbol  
TscH  
TscL  
Characteristic  
Min  
TypMax Units Conditions  
No.  
71  
71A  
72  
SCK input high time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
(Slave mode)  
40  
1.25TCY + 30  
40  
ns (Note 1)  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns (Note 1)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO data output rise  
time  
PIC16CXX  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC16CXX  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16CXX  
PIC16LCXX  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
2000 Microchip Technology Inc.  
DS30605C-page 131  
PIC16C63A/65B/73B/74B  
FIGURE 16-14:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-10: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)  
Param  
Symbol  
Characteristic  
Min  
TypMax Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
71A  
72  
TscH  
TscL  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
40  
1.25TCY + 30  
40  
ns (Note 1)  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns (Note 1)  
74  
75  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
TdoR  
SDO data output rise time PIC16CXX  
PIC16LCXX  
10  
20  
10  
25  
45  
25  
50  
ns  
ns  
ns  
ns  
76  
77  
TdoF  
SDO data output fall time  
TssH2doZ  
10  
SSto SDO output hi-impedance  
78  
TscR  
SCK output rise time  
(Master mode)  
PIC16CXX  
10  
20  
10  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
25  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16CXX  
50  
PIC16LCXX  
100  
83  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
SS after SCK edge  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
DS30605C-page 132  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 16-15:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-11: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
Symbol  
Characteristic  
Min  
TypMax Units Conditions  
No.  
70  
TssL2scH,  
TssL2scL  
TCY  
ns  
SSto SCKor SCKinput  
Continuous  
1.25TCY + 30  
ns  
71  
71A  
72  
SCK input high time  
(Slave mode)  
TscH  
TscL  
TB2B  
Single Byte  
Continuous  
Single Byte  
40  
1.25TCY + 30  
40  
ns (Note 1)  
ns  
SCK input low time  
(Slave mode)  
ns (Note 1)  
72A  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns (Note 1)  
73A  
74  
TscH2diL,  
TscL2diL  
100  
ns  
Hold time of SDI data input to SCK edge  
PIC16CXX  
10  
20  
10  
25  
45  
25  
ns  
ns  
ns  
SDO data output rise  
time  
TdoR  
75  
PIC16LCXX  
TdoF  
76  
77  
SDO data output fall time  
TssH2doZ  
10  
10  
20  
10  
50  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SSto SDO output hi-impedance  
PIC16CXX  
SCK output rise time  
(Master mode)  
TscR  
78  
79  
80  
PIC16LCXX  
45  
TscF  
25  
SCK output fall time (Master mode)  
PIC16CXX  
50  
TscH2doV,  
TscL2doV  
SDO data output valid  
after SCK edge  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
100  
50  
SDO data output valid  
after SSedge  
TssL2doV  
82  
83  
100  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
ns  
SS after SCK edge  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
2000 Microchip Technology Inc.  
DS30605C-page 133  
PIC16C63A/65B/73B/74B  
FIGURE 16-16:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
STOP  
Condition  
START  
Condition  
Note:  
Refer to Figure 16-4 for load conditions.  
TABLE 16-12: I2C BUS START/STOP BITS REQUIREMENTS  
Param  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
No.  
90*  
TSU:STA START condition 100 kHz mode  
Setup time 400 kHz mode  
THD:STA START condition 100 kHz mode  
4700  
600  
ns Only relevant for Repeated  
START condition  
91*  
92*  
93  
4000  
600  
ns After this period the first clock  
pulse is generated  
Hold time  
TSU:STO STOP condition  
Setup time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
THD:STO STOP condition  
Hold time  
4000  
600  
ns  
* These parameters are characterized but not tested.  
FIGURE 16-17:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note:  
Refer to Figure 16-4 for load conditions.  
DS30605C-page 134  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 16-13: I2C BUS DATA REQUIREMENTS  
Param.  
No.  
Sym  
Characteristic  
100 kHz mode  
Min  
Max Units  
Conditions  
100*  
THIGH  
Clock high time  
4.0  
µs  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101*  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP Module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
102*  
103*  
TR  
TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
ns  
ns  
400 kHz mode 20 + 0.1Cb 300  
Cb is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
300  
ns  
ns  
400 kHz mode 20 + 0.1Cb 300  
Cb is specified to be from  
10-400 pF  
90*  
91*  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for Repeated  
START condition  
THD:STA START condition  
hold time  
After this period the first  
clock pulse is generated  
106*  
107*  
92*  
THD:DAT Data input hold time 100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data input setup  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO STOP condition  
setup time  
109*  
110*  
TAA  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
Cb  
Bus capacitive loading  
400  
pF  
* These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A fast mode (400 kHz) I2C bus device can be used in a standard mode (100 kHz) I2C bus system, but the  
requirement Tsu:DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it  
must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the stan-  
dard mode I2C bus specification) before the SCL line is released.  
2000 Microchip Technology Inc.  
DS30605C-page 135  
PIC16C63A/65B/73B/74B  
FIGURE 16-18:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 16-4 for load conditions.  
122  
TABLE 16-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Sym  
Characteristic  
Min TypMax  
Units Conditions  
No.  
120* TckH2dtV SYNC XMIT (MASTER &  
SLAVE)  
PIC16CXX  
80  
ns  
ns  
PIC16LCXX  
100  
Clock high to data out valid  
121* Tckrf  
122* Tdtrf  
Clock out rise time and fall  
time (Master mode)  
PIC16CXX  
45  
50  
45  
50  
ns  
ns  
ns  
ns  
PIC16LCXX  
Data out rise time and fall time PIC16CXX  
PIC16LCXX  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
FIGURE 16-19:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 16-4 for load conditions.  
TABLE 16-15: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
125*  
TdtV2ckL SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup  
time)  
15  
15  
ns  
ns  
126*  
TckL2dtl  
Data hold after CK (DT hold time)  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
DS30605C-page 136  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE 16-16: A/D CONVERTER CHARACTERISTICS:  
PIC16C73B/74B-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C73B/74B-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16LC73B/74B-04 (COMMERCIAL, INDUSTRIAL)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
PIC16CXX  
8 bits  
bit VREF = VDD = 5.12 V,  
VSS VAIN VREF  
VREF = VDD = 2.5 V  
PIC16LCXX  
8 bits  
< ± 1  
bit  
VREF = VDD = 5.12 V,  
Vss VAIN VREF  
VREF = VDD = 5.12 V,  
Vss VAIN VREF  
VREF = VDD = 5.12 V,  
Vss VAIN VREF  
VREF = VDD = 5.12 V,  
Vss VAIN VREF  
VREF = VDD = 5.12 V,  
Vss VAIN VREF  
Vss VAIN VREF  
A02  
A03  
A04  
A05  
A06  
EABS Total Absolute error  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
LSb  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
EOFF Offset error  
A10  
A20  
A25  
A30  
Monotonicity (Note 3)  
2.5V  
guaranteed  
V
VREF Reference voltage  
VAIN Analog input voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
Average current  
consumption when A/D  
is on (Note 1)  
During VAIN acquisition  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 12.1  
During A/D Conversion  
cycle  
A40  
A50  
IAD A/D conversion PIC16CXX  
180  
90  
µA  
µA  
current (VDD)  
PIC16LCXX  
IREF VREF input current (Note 2)  
10  
1000  
µA  
10  
µA  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2000 Microchip Technology Inc.  
DS30605C-page 137  
PIC16C63A/65B/73B/74B  
FIGURE 16-20:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
134  
1 TCY  
(TOSC/2)(1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 16-17: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
130  
TAD A/D clock period  
PIC16CXX  
1.6  
2.0  
µs TOSC based, VREF 3.0 V  
PIC16LCXX  
µs TOSC based,  
2.5V VREF 5.5 V  
PIC16CXX  
2.0  
3.0  
11  
4.0  
6.0  
6.0  
9.0  
11  
µs A/D RC mode  
µs A/D RC mode  
TAD  
PIC16LCXX  
131 TCNV Conversion time (not including S/H  
time) (Note 1)  
132 TACQ Acquisition time  
5*  
µs The minimum time is the  
amplifier settling time. This  
may be used if the “new”  
input voltage has not  
changed by more than 1 LSb  
(i.e., 20.0mV @ 5.12V) from  
the last sampled voltage (as  
stated on CHOLD).  
134  
TGO Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is  
selected as RC, a time of TCY  
is added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
135 TSWC Switching from convert sample time 1.5  
TAD  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 12.1 for minimum conditions.  
DS30605C-page 138  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
The data presented in this section is a statistical sum-  
mary of data collected on units from different lots over  
a period of time.  
17.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Note: Standard deviation is denoted by sigma (σ).  
The graphs and tables provided in this section are for  
design guidance and are not tested nor guaranteed. In  
some graphs or tables the data presented is outside  
specified operating range (e.g., outside specified VDD  
range). This is for information only and devices are  
ensured to operate properly only within the specified  
range.  
Typ or Typical represents the mean of the  
distribution at 25°C.  
Max or Maximum represents the mean + 3σ over  
the temperature range of -40°C to 85°C.  
Min or Minimum represents the mean - 3σ over  
the temperature range of -40°C to 85°C.  
2000 Microchip Technology Inc.  
DS30605C-page 139  
PIC16C63A/65B/73B/74B  
FIGURE 17-1:  
TYPICAL IDD vs. FOSC OVER VDD HS MODE  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
7
6
5
4
3
2
1
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (MHz)  
FIGURE 17-2:  
MAXIMUM IDD vs. FOSC OVER VDD HS MODE  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
7
6
5
4
3
2
1
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (MHz)  
DS30605C-page 140  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 17-3:  
TYPICAL IDD vs. FOSC OVER VDD LP MODE  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
0
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 17-4:  
MAXIMUM IDD vs. FOSC OVER VDD LP MODE  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
160  
140  
120  
100  
80  
5.5 V  
5.0 V  
4.5 V  
60  
4.0 V  
3.5 V  
40  
3.0 V  
2.5 V  
20  
0
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
2000 Microchip Technology Inc.  
DS30605C-page 141  
PIC16C63A/65B/73B/74B  
FIGURE 17-5:  
TYPICAL IDD vs. FOSC OVER VDD XT MODE  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 17-6:  
MAXIMUM IDD vs. FOSC OVER VDD XT MODE  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS30605C-page 142  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 17-7:  
AVERAGE FOSC vs. VDD FOR VARIOUS RESISTANCES RC MODE; C = 20 PF  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Not recommended for operation over 4 MHz  
3.3 k  
5.1 k  
10 k  
100 k  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-8:  
AVERAGE FOSC vs. VDD FOR VARIOUS RESISTANCES RC MODE; C = 100 PF  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
3.3 k  
5.1 k  
10 k  
100 k  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2000 Microchip Technology Inc.  
DS30605C-page 143  
PIC16C63A/65B/73B/74B  
FIGURE 17-9:  
AVERAGE FOSC vs. VDD FOR VARIOUS RESISTANCES RC MODE; C = 300 PF  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
3.3 k  
5.1 k  
10 k  
100 k  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-10:  
VTH vs. VDD OVER TEMPERATURE TTL INPUT  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Max (-40°C)  
Typ (25°C)  
Min (125°C)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30605C-page 144  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 17-11:  
VIL, VIH vs. VDD OVER TEMPERATURE SCHMITT TRIGGER INPUT (I2C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Typ (25°C)  
VIH Max (125°C)  
VIH Min (-40°C)  
VIL Max (125°C)  
VIL Min (-40°C)  
VIL Typ (25°C)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-12:  
VIL, VIH vs. VDD OVER TEMPERATURE SCHMITT TRIGGER INPUT  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max (125°C)  
VIH Typ (25°C)  
VIH Min (-40°C)  
VIL Max (125°C)  
VIL Typ (25°C)  
VIL Min (-40°C)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2000 Microchip Technology Inc.  
DS30605C-page 145  
PIC16C63A/65B/73B/74B  
FIGURE 17-13:  
VOH vs. IOH AT VDD = 3.0 V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-40°C)  
Typical (25°C)  
Min (125°C)  
0.0  
0
5
10  
15  
20  
25  
IOH (mA)  
FIGURE 17-14:  
VOH vs. IOH AT VDD = 5.0 V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-40°C)  
Typical (25°C)  
Min (125°C)  
0.0  
0
5
10  
15  
20  
25  
IOH (mA)  
DS30605C-page 146  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 17-15:  
VOL vs. IOL AT VDD = 3.0 V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Max (125°C)  
Typ (25°C)  
Min (-40°C)  
0.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
IOL (-mA)  
FIGURE 17-16:  
VOL vs. IOL AT VDD = 5.0 V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Max (125°C)  
Typ (25°C)  
Min (-40°C)  
0.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
IOL (-mA)  
2000 Microchip Technology Inc.  
DS30605C-page 147  
PIC16C63A/65B/73B/74B  
FIGURE 17-17:  
IPD vs. VDD (85°C) SLEEP MODE, ALL PERIPHERALS DISABLED  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
140  
120  
100  
80  
Max 85°C  
60  
Typ 85°C  
40  
20  
Max 25°CMax -40°C  
0
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
FIGURE 17-18:  
IPD vs. VDD (125°C) SLEEP MODE, ALL PERIPHERALS DISABLED  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1,400  
1,200  
1,000  
800  
Max (125°C)  
600  
Typ (125°C)  
400  
200  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30605C-page 148  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 17-19:  
IBOR vs. VDD OVER TEMPERATURE (-40°C TO +125°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
200  
180  
160  
140  
120  
100  
80  
Max (125°C)  
Typ (25°C)  
Device  
in  
SLEEP  
Indeterminant  
State  
Device  
in  
Max (125°C)  
Typ (25°C)  
RESET  
60  
RESET current depends on  
oscillator mode, frequency, and  
circuit.  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-20:  
ITIMER1 vs. VDD (-10°C TO +70°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
120  
100  
80  
Max (-10°C to 70°C)  
60  
Typical (25°C)  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2000 Microchip Technology Inc.  
DS30605C-page 149  
PIC16C63A/65B/73B/74B  
FIGURE 17-21:  
IWDT vs. VDD (-40°C TO +125°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
20  
18  
16  
14  
12  
10  
8
Max (-40°C to 125°C)  
Typical (25°C)  
6
4
2
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 17-22:  
WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO +125°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
40  
35  
30  
25  
20  
15  
10  
5
Maximum (125°C)  
Typical (25°C)  
Minimum (-40°C)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30605C-page 150  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
FIGURE 17-23:  
AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO +125°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
40  
35  
30  
25  
20  
15  
10  
5
125°C  
85°C  
25°C  
-40°C  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2000 Microchip Technology Inc.  
DS30605C-page 151  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 152  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
18.0 PACKAGING INFORMATION  
18.1 Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C73B-04/SP  
0017HAT  
28-Lead CERDIP Windowed  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
PIC16C73B/JW  
0017CAT  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16C73B-20/SO  
YYWWNNN  
0017SAA  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC16C73B-  
20I/SS025  
0017SBP  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
2000 Microchip Technology Inc.  
DS30605C-page 153  
PIC16C63A/65B/73B/74B  
Package Marking Information (Contd)  
40-Lead PDIP  
Example  
PIC16C74B-04/P  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
0017SAA  
40-Lead CERDIP Windowed  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C74B/JW  
YYWWNNN  
0017HAT  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16C74B  
-20/PT  
0017HAT  
44-Lead MQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16C74B  
-20/PQ  
0017SAT  
44-Lead PLCC  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16C74B  
-20/L  
0017SAT  
DS30605C-page 154  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
18.2 28-Lead Skinny Plastic Dual In-line (SP) 300 mil (PDIP)  
E1  
D
2
1
n
α
E
A2  
L
A
c
B1  
β
A1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
2000 Microchip Technology Inc.  
DS30605C-page 155  
PIC16C63A/65B/73B/74B  
18.3 28-Lead Ceramic Dual In-line with Window (JW) 300 mil (CERDIP)  
E1  
W2  
D
2
1
n
W1  
E
A2  
A
c
L
B1  
B
A1  
eB  
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.183  
.160  
.023  
.313  
.290  
1.458  
.140  
.010  
.058  
.019  
.385  
.140  
.300  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
37.02  
3.56  
0.25  
1.46  
0.47  
9.78  
3.56  
7.62  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
1.430  
.135  
.008  
.050  
.016  
.345  
.130  
.290  
.165  
.030  
.325  
.295  
1.485  
.145  
.012  
.065  
.021  
.425  
.150  
.310  
4.19  
0.76  
8.26  
7.49  
37.72  
3.68  
0.30  
1.65  
0.53  
10.80  
3.81  
7.87  
0.38  
7.62  
7.24  
36.32  
3.43  
0.20  
1.27  
0.41  
8.76  
3.30  
7.37  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
§
eB  
W1  
W2  
Window Length  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-058  
Drawing No. C04-080  
DS30605C-page 156  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
18.4 28-Lead Plastic Small Outline (SO) Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
1
n
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
2000 Microchip Technology Inc.  
DS30605C-page 157  
PIC16C63A/65B/73B/74B  
18.5 28-Lead Plastic Shrink Small Outline (SS) 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
DS30605C-page 158  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
18.6 40-Lead Plastic Dual In-line (P) 600 mil (PDIP)  
E1  
D
2
1
α
n
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
α
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
2000 Microchip Technology Inc.  
DS30605C-page 159  
PIC16C63A/65B/73B/74B  
18.7 40-Lead Ceramic Dual In-line with Window (JW) 600 mil (CERDIP)  
D
2
n
1
E
A2  
L
c
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.205  
.160  
.045  
.600  
.520  
2.050  
.140  
.011  
.053  
.020  
.660  
.350  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.185  
.225  
4.70  
3.94  
5.21  
4.06  
5.72  
A2  
A1  
.155  
.030  
.595  
.514  
2.040  
.135  
.008  
.050  
.016  
.610  
.340  
.165  
.060  
.625  
.526  
2.060  
.145  
.014  
.055  
.023  
.710  
.360  
4.19  
1.52  
0.76  
15.11  
13.06  
51.82  
3.43  
1.14  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
15.24  
13.21  
52.07  
3.56  
15.88  
13.36  
52.32  
3.68  
Tip to Seating Plane  
Lead Thickness  
c
0.20  
0.28  
0.36  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Diameter  
B
1.27  
1.33  
1.40  
B1  
eB  
W
0.41  
0.51  
0.58  
§
15.49  
8.64  
16.76  
8.89  
18.03  
9.14  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-103  
Drawing No. C04-014  
DS30605C-page 160  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
18.8 44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form  
(TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
φ
β
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
CH  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
2000 Microchip Technology Inc.  
DS30605C-page 161  
PIC16C63A/65B/73B/74B  
18.9 44-Lead Plastic Metric Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead  
Form (MQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
c
n
°
CH x 45  
α
A1  
A
φ
β
(F)  
L
A2  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.079  
.077  
.002  
.029  
.086  
.080  
.006  
.035  
.063  
3.5  
.093  
2.00  
1.95  
2.18  
2.03  
0.15  
0.88  
1.60  
3.5  
2.35  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.083  
.010  
.041  
2.10  
0.25  
1.03  
§
0.05  
0.73  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.510  
.510  
.390  
.390  
.005  
.012  
.025  
5
7
.530  
.530  
.398  
.398  
.009  
.018  
.045  
15  
0
12.95  
12.95  
9.90  
9.90  
0.13  
0.30  
0.64  
5
7
13.45  
13.45  
10.10  
10.10  
0.23  
0.45  
1.14  
15  
Overall Width  
E
D
.520  
.520  
.394  
.394  
.007  
.015  
.035  
10  
13.20  
13.20  
10.00  
10.00  
0.18  
0.38  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-022  
Drawing No. C04-071  
DS30605C-page 162  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
18.10 44-Lead Plastic Leaded Chip Carrier (L) Square (PLCC)  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
2000 Microchip Technology Inc.  
DS30605C-page 163  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 164  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
7/98  
This is a new data sheet. However, the devices described in this data sheet are  
the upgrades to the devices found in the PIC16C6X Data Sheet, DS30234, and  
the PIC16C7X Data Sheet, DS30390.  
B
1/99  
Corrections to Version A data sheet for technical accuracy.  
Added data:  
Operation of the SMP and CKE bits of the SSPSTAT register in I2C mode  
have been specified  
Frequency vs. VDD graphs for device operating area (in Electrical  
Specifications)  
Formula for calculating A/D acquisition time, TACQ (in the A/D section)  
Brief description of instructions  
Removed data (see PICmicroTM Mid-Range MCU Family Reference Manual,  
DS33023, for additional data):  
USART Baud Rate Tables (formulas for calculating baud rate remain)  
Minor changes to text to clarify content  
C
12/00  
Revised some DC specifications  
Included characteristic charts and graphs  
APPENDIX B: DEVICE DIFFERENCES  
The differences between the devices in this data sheet are listed in Table B-1.  
TABLE B-1:  
Difference  
DEVICE DIFFERENCES  
PIC16C63A  
PIC16C65B  
PIC16C73B  
PIC16C74B  
A/D  
no  
no  
5 channels, 8 bits  
no  
8 channels, 8 bits  
yes  
Parallel Slave Port  
Packages  
no  
yes  
28-pin PDIP, 28-pin  
windowed CERDIP,  
28-pin SOIC, 28-pin  
SSOP  
40-pin PDIP, 40-pin  
windowed CERDIP,  
44-pin TQFP, 44-pin  
28-pin PDIP, 28-pin  
windowed CERDIP,  
28-pin SOIC, 28-pin  
40-pin PDIP, 40-pin  
windowed CERDIP,  
44-pin TQFP, 44-pin  
MQFP, 44-pin PLCC  
MQFP, 44-pin PLCC SSOP  
2000 Microchip Technology Inc.  
DS30605C-page 165  
PIC16C63A/65B/73B/74B  
APPENDIX C: DEVICE MIGRATIONS -  
PIC16C63/65A/73A/74A PIC16C63A/65B/73B/74B  
This document is intended to describe the functional differences and the electrical specification differences that are  
present when migrating from one device to the next. Table C-1 shows functional differences, while Table C-2 shows  
electrical and timing differences.  
Note: Even though compatible devices are specified to be tested to the same electrical specification, the device  
characteristics may be different from each other (due to process differences). For systems that were  
designed to the device specifications, these process differences should not cause any issues in the appli-  
cation. For systems that did not tightly meet the electrical specifications, the process differences may cause  
the device to behave differently in the application.  
Note: While there are no functional or electrical changes to the device oscillator specifications, the user should  
verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values  
and/or the oscillator mode may be required.  
TABLE C-1:  
No. Module  
FUNCTIONAL DIFFERENCES  
Differences from PIC16C63/65A/73A/74A  
H/W S/W Prog.  
1
2
3
4
5
6
7
CCP  
CCP Special Event Trigger clears Timer1.  
Compare mode drives pin correctly.  
Timers Writing to TMR1L does not affect TMR1H.  
WDT/TMR0 prescaler assignment changes do not affect TMR0 count.  
SSP  
TMR2 SPI clock synchronized to start of SPI Transmission.  
Can now transmit multiple words in SPI mode.  
Supports all four SPI modes. (Now uses SSP vs. BSSP module.)  
See SSP module in the PICmicroMid-Range MCU Family Reference Man-  
ual (DS33023).  
8
9
I2C no longer generates ACK pulses when module is enabled.  
USART Async receive errors due to BRGH setting corrected.  
10  
A/D  
VREF = VDD when all inputs are configured as digital.  
This allows conversion of digital inputs. (A/D on PIC16C73X/74X only.)  
H/W - Issues may exist with regard to the application circuits.  
S/W - Issues may exist with regard to the user program.  
Prog. - Issues may exist when writing the program to the controller.  
DS30605C-page 166  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TABLE C-2:  
Param  
SPECIFICATION DIFFERENCES  
PIC16C63/65A/73A/74A  
PIC16C63A/65B/73B/74B  
Symbol  
Characteristic  
Unit  
No.  
Min  
Typ†  
Max  
Min  
Typ†  
Max  
Core  
D001  
D001A  
VDD  
Supply Voltage  
4.0  
6.0  
4.0  
5.5  
5.5  
V
V
(1)  
VBOR  
3.65  
-
D005  
BVDD  
VOD  
Brown-out Reset Voltage  
3.7  
4.0  
4.3  
4.35  
8.5  
V
V
D150*  
Open-Drain High Voltage on  
RA4  
14.0  
A/D Converter  
A20  
131  
VREF  
TCNV  
Reference voltage  
3.0  
VDD + 0.3  
2.5  
VDD + 0.3  
V
Conversion time (Note 2)  
9.5  
11  
11  
TAD  
(not including S/H time)  
(Note 3)  
(Note 4)  
(Note 4)  
SSP in SPI mode  
71  
TscH  
SCK input high  
time (Slave mode)  
Continuous TCY+20  
Single Byte  
1.25TCY + 30  
ns  
ns  
ns  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
TscL  
SCK input low  
time  
(Slave mode)  
Continuous TCY+20  
Single Byte  
72A  
73  
TdiV2scH Setup time of SDI data input to  
TdiV2scL SCK edge  
50  
50  
10  
25  
100  
1.5TCY + 40  
100  
ns  
ns  
ns  
73A  
(Note 5)  
TB2B  
Last clock edge of Byte1 to the  
1st clock edge of Byte2  
74  
TscH2diL Hold time of SDI data input to  
TscL2diL SCK edge  
75  
TdoR  
SDO data output PIC16CXX  
10  
20  
10  
20  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
rise time  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
78  
80  
83  
TscR  
SCK output rise  
time (Master  
mode)  
10  
25  
50  
50  
TscH2doV SDO data output PIC16CXX  
50  
ns  
ns  
TscL2doV valid after SCK  
edge  
PIC16LCXX  
100  
TscH2ssH SS after SCK edge  
1.5TCY + 40  
ns  
TscL2ssH  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When BOR is enabled, the device will operate until VDD drops below VBOR.  
2: ADRES register may be read on the following TCY cycle.  
3: This is the time that the actual conversion requires.  
4: This is the time from when the GO/DONE bit is set, to when the conversion result appears in ADRES.  
5: Specification 73A is only required if specifications 71A and 72A are used.  
2000 Microchip Technology Inc.  
DS30605C-page 167  
PIC16C63A/65B/73B/74B  
APPENDIX D: MIGRATION FROM BASELINE TO MID-RANGE DEVICES  
This section discusses how to migrate from a baseline  
device (i.e., PIC16C5X) to a mid-range device (i.e.,  
PIC16CXXX).  
To convert code written for PIC16C5X to PIC16CXX,  
the user should take the following steps:  
1. Remove any program memory page select  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes, both in program  
memory (2 K now as opposed to 512 before)  
and register file (128 bytes now versus 32 bytes  
before).  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION and FSR  
registers since these have changed.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1  
and PA0 are removed from STATUS register.  
5. Change RESET vector to 0000h.  
3. Data memory paging is redefined slightly.  
STATUS register is modified.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLWand SUBLW.  
Two instructions, TRISand OPTION,are being  
phased out, although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION and TRIS registers are made address-  
able.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8-deep.  
8. RESET vector is changed to 0000h.  
9. RESET of all registers is revisited. Five different  
RESET (and wake-up) types are recognized.  
Registers are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unneces-  
sary delays on power-up and wake-up.  
12. PORTB  
has  
weak  
pull-ups  
and  
interrupt-on-change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full 8-bit register.  
15. In-Circuit Serial Programming(ICSP) is made  
possible. The user can program PIC16CXX  
devices using only five pins: VDD, VSS,  
MCLR/VPP, RB6 (clock) and RB7 (data in/out).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
17. Code protection scheme is enhanced, such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
18. Brown-out protection circuitry has been added.  
Controlled by configuration word bit BODEN.  
Brown-out Reset ensures the device is placed in  
a RESET condition if VDD dips below a fixed  
setpoint.  
DS30605C-page 168  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
INDEX  
BOR bit......................................................................... 25, 89  
BRGH bit ............................................................................ 67  
Brown-out Reset (BOR)  
Timing Diagram ........................................................ 126  
Buffer Full Status bit, BF..................................................... 56  
A
A/D  
ADCON0 Register....................................................... 79  
ADCON1 Register....................................................... 80  
Analog Input Model Block Diagram............................. 82  
Analog-to-Digital Converter......................................... 79  
Block Diagram............................................................. 81  
Configuring Analog Port Pins...................................... 83  
Configuring the Interrupt ............................................. 81  
Configuring the Module............................................... 81  
Conversion Clock........................................................ 83  
Conversions................................................................ 83  
Converter Characteristics ......................................... 137  
Effects of a RESET ..................................................... 83  
Faster Conversion - Lower Resolution Trade-off ........ 83  
Internal Sampling Switch (Rss) Impedance................ 82  
Operation During SLEEP............................................ 83  
Sampling Requirements.............................................. 82  
Source Impedance...................................................... 82  
Timing Diagram......................................................... 138  
Using the CCP Trigger................................................ 83  
Absolute Maximum Ratings .............................................. 113  
ACK............................................................................... 60, 62  
ADRES Register ........................................................... 17, 79  
Application Notes  
C
C bit .................................................................................... 19  
Capture/Compare/PWM  
Capture  
Block Diagram.................................................... 51  
CCP1CON Register............................................ 50  
CCP1IF............................................................... 51  
Mode .................................................................. 51  
Prescaler ............................................................ 51  
CCP Timer Resources................................................ 49  
Compare  
Block Diagram.................................................... 52  
Mode .................................................................. 52  
Software Interrupt Mode..................................... 52  
Special Event Trigger......................................... 52  
Special Trigger Output of CCP1......................... 52  
Special Trigger Output of CCP2......................... 52  
Interaction of Two CCP Modules................................ 49  
Section........................................................................ 49  
Special Event Trigger and A/D Conversions............... 52  
Capture/Compare/PWM (CCP)  
PWM Block Diagram .................................................. 52  
PWM Mode................................................................. 52  
PWM, Example Frequencies/Resolutions .................. 53  
Timing Diagram ........................................................ 128  
CCP2IE bit.......................................................................... 24  
CCP2IF bit .......................................................................... 24  
CCPR1H Register......................................................... 17, 49  
CCPR1L Register ............................................................... 49  
CCPR2H Register............................................................... 17  
CCPR2L Register ............................................................... 17  
CCPxM0 bit......................................................................... 50  
CCPxM1 bit......................................................................... 50  
CCPxM2 bit......................................................................... 50  
CCPxM3 bit......................................................................... 50  
CCPxX bit........................................................................... 50  
CCPxY bit........................................................................... 50  
CKE .................................................................................... 56  
CKP .................................................................................... 57  
Clock Polarity Select bit, CKP............................................. 57  
Clocking Scheme................................................................ 14  
Code Examples  
AN552 (Implementing Wake-up on Key Strokes  
Using PIC16CXXX)..................................................... 31  
AN556 (Table Reading Using PIC16CXX).................. 26  
2
AN578 (Use of the SSP Module in the I C  
Multi-Master Environment).......................................... 55  
AN607, (Power-up Trouble Shooting)......................... 89  
Architecture  
Overview....................................................................... 9  
Assembler  
MPASM® Assembler ................................................. 107  
B
Baud Rate Formula............................................................. 67  
BF ................................................................................. 56, 60  
Block Diagrams  
A/D.............................................................................. 81  
Analog Input Model..................................................... 82  
Capture ....................................................................... 51  
Compare ..................................................................... 52  
2
I C Mode..................................................................... 60  
On-Chip Reset Circuit................................................. 88  
PIC16C74 ................................................................... 10  
PIC16C74A................................................................. 10  
PIC16C77 ................................................................... 10  
PORTC ....................................................................... 33  
PORTD (In I/O Port Mode).......................................... 34  
PORTD and PORTE as a Parallel Slave Port............. 37  
PORTE (In I/O Port Mode).......................................... 35  
PWM ........................................................................... 52  
RA4/T0CKI Pin............................................................ 29  
RB3:RB0 Port Pins ..................................................... 31  
RB7:RB4 Port Pins ..................................................... 31  
Call of a Subroutine in Page 1 from Page 0 ............... 26  
Indirect Addressing..................................................... 27  
Initializing PORTA....................................................... 29  
Code Protection............................................................ 85, 98  
Computed GOTO................................................................ 26  
Configuration Bits ............................................................... 85  
CREN bit............................................................................. 66  
CS pin................................................................................. 37  
2
SSP in I C Mode......................................................... 60  
SSP in SPI Mode ........................................................ 55  
Timer0/WDT Prescaler................................................ 39  
Timer2......................................................................... 47  
USART Receive.......................................................... 70  
USART Transmit......................................................... 68  
Watchdog Timer.......................................................... 96  
2000 Microchip Technology Inc.  
DS30605C-page 169  
PIC16C63A/65B/73B/74B  
COMF ....................................................................... 103  
DECF........................................................................ 103  
DECFSZ ................................................................... 103  
GOTO ....................................................................... 103  
INCF ......................................................................... 103  
INCFSZ..................................................................... 103  
IORLW ...................................................................... 104  
IORWF...................................................................... 104  
MOVF ....................................................................... 104  
MOVLW .................................................................... 104  
MOVWF.................................................................... 104  
NOP.......................................................................... 104  
RETFIE..................................................................... 105  
RETLW ..................................................................... 105  
RETURN................................................................... 105  
RLF........................................................................... 105  
RRF .......................................................................... 105  
SLEEP ...................................................................... 105  
SUBLW ..................................................................... 106  
SUBWF..................................................................... 106  
SWAPF..................................................................... 106  
XORLW..................................................................... 106  
XORWF .................................................................... 106  
Section........................................................................ 99  
Summary Table......................................................... 100  
INT Interrupt........................................................................ 94  
INTCON Register................................................................ 21  
INTEDG bit ................................................................... 20, 94  
Internal Sampling Switch (Rss) Impedance........................ 82  
Interrupts............................................................................. 85  
PORTB Change.......................................................... 94  
RB7:RB4 Port Change................................................ 31  
Section........................................................................ 93  
TMR0.......................................................................... 94  
IRP bit................................................................................. 19  
D
D/A ......................................................................................56  
Data Memory  
Register File Map........................................................16  
Data/Address bit, D/A..........................................................56  
DC bit ..................................................................................19  
Development Support ...........................................................5  
Device Differences............................................................165  
Direct Addressing................................................................27  
E
Electrical Characteristics...................................................113  
Errata ....................................................................................3  
F
FERR bit..............................................................................66  
FSR Register........................................................... 17, 18, 27  
G
General Description ..............................................................5  
GIE bit .................................................................................93  
I
I/O Ports  
PORTA........................................................................29  
PORTB........................................................................31  
PORTC........................................................................33  
PORTD..................................................................34, 37  
PORTE........................................................................35  
Section ........................................................................29  
2
I C  
Addressing ..................................................................61  
Block Diagram.............................................................60  
2
I C Operation ..............................................................60  
Master Mode...............................................................64  
Mode ...........................................................................60  
Mode Selection ...........................................................60  
Multi-Master Mode ......................................................64  
K
KEELOQ Evaluation and Programming Tools.................... 110  
Reception....................................................................62  
L
Reception Timing Diagram..........................................62  
SCL and SDA pins......................................................60  
Slave Mode.................................................................60  
Transmission...............................................................63  
Loading of PC..................................................................... 26  
M
MCLR............................................................................ 87, 90  
Memory  
2
I C (SSP Module)  
Timing Diagram, Data ...............................................134  
Timing Diagram, START/STOP Bits..........................134  
In-Circuit Serial Programming....................................... 85, 98  
INDF Register ......................................................... 17, 18, 27  
Indirect Addressing .............................................................27  
Instruction Cycle..................................................................14  
Instruction Flow/Pipelining ..................................................14  
Instruction Format ...............................................................99  
Instruction Set  
Data Memory .............................................................. 15  
Program Memory........................................................ 15  
Program Memory Maps  
PIC16C73........................................................... 15  
PIC16C73A......................................................... 15  
PIC16C74........................................................... 15  
PIC16C74A......................................................... 15  
Register File Maps  
PIC16C73........................................................... 16  
PIC16C73A......................................................... 16  
PIC16C74........................................................... 16  
PIC16C74A......................................................... 16  
PIC16C76........................................................... 16  
PIC16C77........................................................... 16  
MPLAB® Integrated Development  
ADDLW .....................................................................101  
ADDWF.....................................................................101  
ANDLW .....................................................................101  
ANDWF.....................................................................101  
BCF...........................................................................101  
BSF...........................................................................101  
BTFSC ......................................................................102  
BTFSS ......................................................................102  
CALL .........................................................................102  
CLRF.........................................................................102  
CLRW........................................................................102  
CLRWDT...................................................................102  
Environment Software ...................................................... 107  
DS30605C-page 170  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
RD1/PSP1 .................................................................. 13  
RD2/PSP2 .................................................................. 13  
RD3/PSP3 .................................................................. 13  
RD4/PSP4 .................................................................. 13  
RD5/PSP5 .................................................................. 13  
RD6/PSP6 .................................................................. 13  
RD7/PSP7 .................................................................. 13  
RE0/RD/AN5 .............................................................. 13  
RE1/WR/AN6.............................................................. 13  
RE2/CS/AN7............................................................... 13  
VDD ........................................................................11, 13  
VSS ........................................................................11, 13  
Pinout Descriptions  
O
OERR bit............................................................................. 66  
OPCODE ............................................................................ 99  
OPTION Register................................................................ 20  
OSC Selection .................................................................... 85  
Oscillator  
HS......................................................................... 86, 90  
LP.......................................................................... 86, 90  
RC............................................................................... 86  
XT ......................................................................... 86, 90  
Oscillator Configurations..................................................... 86  
Output of TMR2 .................................................................. 47  
PIC16C73................................................................... 11  
PIC16C73A................................................................. 11  
PIC16C74................................................................... 12  
PIC16C74A................................................................. 12  
PIC16C76................................................................... 11  
PIC16C77................................................................... 12  
PIR1 Register ..................................................................... 23  
PIR2 Register ..................................................................... 24  
POP .................................................................................... 26  
POR.................................................................................... 89  
Oscillator Start-up Timer (OST) ............................ 85, 89  
Power Control Register (PCON)................................. 89  
Power-on Reset (POR)................................... 85, 89, 91  
Power-up Timer (PWRT) ............................................ 85  
Power-Up-Timer (PWRT) ........................................... 89  
TO............................................................................... 87  
POR bit......................................................................... 25, 89  
Port RB Interrupt................................................................. 94  
PORTA ............................................................................... 91  
PORTA Register........................................................... 17, 29  
PORTB ............................................................................... 91  
PORTB Register........................................................... 17, 31  
PORTC ............................................................................... 91  
PORTC Register........................................................... 17, 33  
PORTD ............................................................................... 91  
PORTD Register........................................................... 17, 34  
PORTE ............................................................................... 91  
PORTE Register........................................................... 17, 35  
Power-down Mode (SLEEP)............................................... 97  
Power-on Reset (POR)  
P
P.......................................................................................... 56  
Packaging ......................................................................... 153  
Paging, Program Memory................................................... 26  
Parallel Slave Port ........................................................ 34, 37  
Parallel Slave Port (PSP)  
Timing Diagram......................................................... 129  
PCFG0 bit ........................................................................... 80  
PCFG1 bit ........................................................................... 80  
PCFG2 bit ........................................................................... 80  
PCL Register........................................................... 17, 18, 26  
PCLATH.............................................................................. 91  
PCLATH Register ................................................... 17, 18, 26  
PCON Register ............................................................. 25, 89  
PD bit ............................................................................ 19, 87  
PICDEMTM 1 Low Cost PICmicro  
Demonstration Board ........................................................ 109  
PICDEMTM 2 Low Cost PIC16CXX  
Demonstration Board ........................................................ 109  
PICDEMTM 3 Low Cost PIC16CXXX  
Demonstration Board ........................................................ 110  
PICSTART® Plus Entry Level  
Development System........................................................ 109  
PIE1 Register...................................................................... 22  
PIE2 Register...................................................................... 24  
Pin Functions  
MCLR/VPP............................................................. 11, 12  
OSC1/CLKIN......................................................... 11, 12  
OSC2/CLKOUT..................................................... 11, 12  
RA0/AN0............................................................... 11, 12  
RA1/AN1............................................................... 11, 12  
RA2/AN2............................................................... 11, 12  
RA3/AN3/VREF...................................................... 11, 12  
RA4/T0CKI............................................................ 11, 12  
RA5/AN4/SS ......................................................... 11, 12  
RB0/INT ................................................................ 11, 12  
RB1....................................................................... 11, 12  
RB2....................................................................... 11, 12  
RB3....................................................................... 11, 12  
RB4....................................................................... 11, 12  
RB5....................................................................... 11, 12  
RB6....................................................................... 11, 12  
RB7....................................................................... 11, 12  
RC0/T1OSO/T1CKI .............................................. 11, 13  
RC1/T1OSI/CCP2................................................. 11, 13  
RC2/CCP1 ............................................................ 11, 13  
RC3/SCK/SCL ...................................................... 11, 13  
RC4/SDI/SDA ....................................................... 11, 13  
RC5/SDO.............................................................. 11, 13  
RC6/TX/CK ............................................... 11, 13, 6576  
RC7/RX/DT............................................... 11, 13, 6576  
RD0/PSP0................................................................... 13  
Timing Diagram ........................................................ 126  
PR2 Register ................................................................ 18, 47  
PRO MATE® II Universal Programmer............................. 109  
Product Identification System ........................................... 177  
Program Memory  
Paging ........................................................................ 26  
Program Memory Maps  
PIC16C73................................................................... 15  
PIC16C73A................................................................. 15  
PIC16C74................................................................... 15  
PIC16C74A................................................................. 15  
Program Verification ........................................................... 98  
PS0 bit ................................................................................ 20  
PS1 bit ................................................................................ 20  
PS2 bit ................................................................................ 20  
PSA bit................................................................................ 20  
PSPMODE bit......................................................... 34, 35, 37  
PUSH.................................................................................. 26  
2000 Microchip Technology Inc.  
DS30605C-page 171  
PIC16C63A/65B/73B/74B  
SSPSTAT.................................................................... 56  
SPI Clock Edge Select bit, CKE ......................................... 56  
SPI Data Input Sample Phase Select bit, SMP .................. 56  
SREN bit............................................................................. 66  
SSP  
R
R/W .....................................................................................56  
R/W bit .................................................................... 61, 62, 63  
RBIF bit ......................................................................... 31, 94  
RBPU bit .............................................................................20  
RC Oscillator................................................................. 87, 90  
RCSTA Register..................................................................66  
RD pin .................................................................................37  
Read/Write bit Information, R/W .........................................56  
Receive Overflow Indicator bit, SSPOV..............................57  
Register File........................................................................15  
Register File Map................................................................16  
Registers  
Module Overview........................................................ 55  
Section........................................................................ 55  
SSPCON .................................................................... 57  
SSPSTAT.................................................................... 56  
SSPADD Register............................................................... 18  
SSPBUF Register............................................................... 17  
SSPCON............................................................................. 57  
SSPCON Register .............................................................. 17  
SSPEN................................................................................ 57  
SSPM3:SSPM0 .................................................................. 57  
SSPOV ......................................................................... 57, 60  
SSPSTAT Register....................................................... 18, 56  
Stack................................................................................... 26  
Overflows.................................................................... 26  
Underflow ................................................................... 26  
START bit, S....................................................................... 56  
STATUS Register ............................................................... 19  
STOP bit, P......................................................................... 56  
Synchronous Serial Port Enable bit, SSPEN...................... 57  
Synchronous Serial Port Mode Select bits,  
Maps  
PIC16C73 ...........................................................16  
PIC16C73A.........................................................16  
PIC16C74 ...........................................................16  
PIC16C74A.........................................................16  
RESET Conditions......................................................90  
SSPSTAT ....................................................................56  
Summary.....................................................................17  
RESET .......................................................................... 85, 87  
Timing Diagram.........................................................126  
RESET Conditions for Special Registers............................90  
Revision History ................................................................165  
RP0 bit .......................................................................... 15, 19  
RP1 bit ................................................................................19  
RX9 bit ................................................................................66  
SSPM3:SSPM0 .................................................................. 57  
Synchronous Serial Port Module ........................................ 55  
Synchronous Serial Port Status Register ........................... 56  
RX9D bit..............................................................................66  
T
T0CS bit.............................................................................. 20  
T1CKPS0 bit....................................................................... 43  
T1CKPS1 bit....................................................................... 43  
T1CON Register ................................................................. 43  
T1OSCEN bit...................................................................... 43  
T1SYNC bit......................................................................... 43  
T2CKPS0 bit....................................................................... 47  
T2CKPS1 bit....................................................................... 47  
T2CON Register ................................................................. 47  
TAD...................................................................................... 83  
Timer0  
RTCC.......................................................................... 91  
Timing Diagram ........................................................ 127  
Timer1  
Timing Diagram ........................................................ 127  
Timers  
S
S..........................................................................................56  
SCL .....................................................................................60  
Serial Communication Interface (SCI) Module,  
See USART  
Services  
One-Time-Programmable (OTP)...................................7  
Quick-Turnaround-Production (QTP)............................7  
Serialized Quick-Turnaround Production  
(SQTP)..........................................................................7  
Slave Mode  
SCL .............................................................................60  
SDA.............................................................................60  
SLEEP........................................................................... 85, 87  
SMP ....................................................................................56  
Software Simulator (MPLAB-SIM).....................................108  
SPBRG Register .................................................................18  
Special Features of the CPU...............................................85  
Special Function Registers  
PIC16C73 ...................................................................17  
PIC16C73A.................................................................17  
PIC16C74 ...................................................................17  
PIC16C74A.................................................................17  
Special Function Registers, Section ...................................16  
SPEN bit..............................................................................66  
SPI  
Timer0  
External Clock .................................................... 40  
Interrupt .............................................................. 39  
Prescaler ............................................................ 40  
Prescaler Block Diagram.................................... 39  
Section................................................................ 39  
T0CKI ................................................................. 40  
T0IF .................................................................... 94  
TMR0 Interrupt ................................................... 94  
Timer1  
Asynchronous Counter Mode............................. 45  
Capacitor Selection ............................................ 45  
Operation in Timer Mode.................................... 44  
Oscillator............................................................. 45  
Prescaler ............................................................ 45  
Resetting of Timer1 Registers............................ 45  
Resetting Timer1 using a CCP  
Trigger Output .................................................... 45  
Synchronized Counter Mode.............................. 44  
T1CON ............................................................... 43  
Block Diagram.............................................................55  
Master Mode Timing ...................................................58  
Serial Clock.................................................................55  
Serial Data In ..............................................................55  
Serial Data Out............................................................55  
Slave Mode Timing .....................................................59  
Slave Mode Timing Diagram.......................................58  
Slave Select................................................................55  
SSPCON.....................................................................57  
DS30605C-page 172  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
TMR1H ............................................................... 45  
TMR1L ................................................................ 45  
Timer2  
U
UA....................................................................................... 56  
Universal Synchronous Asynchronous Receiver  
Transmitter (USART).......................................................... 65  
Update Address bit, UA...................................................... 56  
USART  
Block Diagram .................................................... 47  
Module ................................................................ 47  
Postscaler ........................................................... 47  
Prescaler............................................................. 47  
T2CON................................................................ 47  
Asynchronous Mode................................................... 68  
Asynchronous Receiver.............................................. 70  
Asynchronous Reception............................................ 71  
Asynchronous Transmitter.......................................... 68  
Baud Rate Generator (BRG) ...................................... 67  
Receive Block Diagram .............................................. 70  
Sampling..................................................................... 67  
Synchronous Master Mode......................................... 72  
Timing Diagram, Synchronous Receive ........... 136  
Timing Diagram, Synchronous Transmission... 136  
Synchronous Master Reception ................................. 74  
Synchronous Master Transmission ............................ 72  
Synchronous Slave Mode........................................... 76  
Synchronous Slave Reception ................................... 76  
Synchronous Slave Transmit...................................... 76  
Transmit Block Diagram ............................................. 68  
UV Erasable Devices............................................................ 7  
Timing Diagrams  
2
I C Reception (7-bit Address)..................................... 62  
SPI Master Mode ........................................................ 58  
SPI Slave Mode (CKE = 1) ......................................... 59  
SPI Slave Mode Timing (CKE = 0).............................. 58  
USART Asynchronous Master Transmission.............. 69  
USART Asynchronous Reception............................... 71  
USART Synchronous Reception................................. 75  
USART Synchronous Transmission............................ 73  
Wake-up from SLEEP via Interrupt............................. 98  
Timing Diagrams and Specifications................................. 124  
A/D Conversion......................................................... 138  
Brown-out Reset (BOR)............................................ 126  
Capture/Compare/PWM (CCP)................................. 128  
CLKOUT and I/O....................................................... 125  
External Clock........................................................... 124  
2
I C Bus Data............................................................. 134  
I C Bus START/STOP Bits ....................................... 134  
W
2
Wake-up from SLEEP......................................................... 97  
Watchdog Timer (WDT).................................... 85, 87, 90, 95  
Timing Diagram ........................................................ 126  
WCOL................................................................................. 57  
WDT ................................................................................... 90  
Block Diagram ............................................................ 96  
Period ......................................................................... 95  
Programming Considerations..................................... 96  
Time-out...................................................................... 91  
WR pin................................................................................ 37  
Write Collision Detect bit, WCOL........................................ 57  
WWW, On-Line Support ....................................................... 3  
Oscillator Start-up Timer (OST)................................. 126  
Parallel Slave Port (PSP).......................................... 129  
Power-up Timer (PWRT)........................................... 126  
RESET...................................................................... 126  
Timer0 and Timer1.................................................... 127  
USART Synchronous Receive (Master/Slave) ......... 136  
USART SynchronousTransmission (Master/Slave) .. 136  
Watchdog Timer (WDT) ............................................ 126  
TMR0 Register.................................................................... 17  
TMR1CS bit ........................................................................ 43  
TMR1H Register ................................................................. 17  
TMR1L Register.................................................................. 17  
TMR1ON bit ........................................................................ 43  
TMR2 Register.................................................................... 17  
TMR2ON bit ........................................................................ 47  
TO bit .................................................................................. 19  
TOUTPS0 bit....................................................................... 47  
TOUTPS1 bit....................................................................... 47  
TOUTPS2 bit....................................................................... 47  
TOUTPS3 bit....................................................................... 47  
TRISA Register ............................................................. 18, 29  
TRISB Register ............................................................. 18, 31  
TRISC Register............................................................. 18, 33  
TRISD Register............................................................. 18, 34  
TRISE Register....................................................... 18, 35, 36  
TXSTA Register .................................................................. 65  
Z
Z bit..................................................................................... 19  
2000 Microchip Technology Inc.  
DS30605C-page 173  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 174  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
001024  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
Users Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL,  
MPLAB and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
Total Endurance, ICSP, In-Circuit Serial Programming,  
FilterLab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM,  
MPLINK, MPLIB, PICDEM, ICEPIC and Migratable  
Memory are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
Job Postings  
Microchip Consultant Program Member Listing  
All other trademarks mentioned herein are the property of  
their respective companies.  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Systems,  
technical information and more  
Listing of seminars and events  
2000 Microchip Technology Inc.  
DS30605C-page 175  
PIC16C63A/65B/73B/74B  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30605C  
Device:  
PIC16C63A/65B/73B/74B  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30605C-page 176  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
a) PIC16C74B -04/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
b)  
PIC16LC63A - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
Device  
PIC16C6X(1), PIC16C6XT(2); VDD range 4.0V to 5.5V  
PIC16LC6X(1), PIC16LC6XT(2); VDD range 2.5V to 5.5V  
PIC16C7X(1), PIC16C7XT(2); VDD range 4.0V to 5.5V  
PIC16LC7X(1), PIC16LC7XT(2); VDD range 2.5V to 5.5V  
c)  
PIC16C65B - 20I/P = Industrial temp., PDIP  
package, 20 MHz, normal VDD limits.  
Frequency Range  
04  
20  
= 4 MHz  
= 20 MHz  
Note 1:  
2:  
C
= CMOS  
LC = Low Power CMOS  
T
= in tape and reel - SOIC, SSOP,  
PLCC, QFP, TQ and FP  
packages only.  
Temperature Range  
blank  
I
E
=
=
=
0°C to  
70°C (Commercial)  
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package  
JW  
PQ  
PT  
SO  
SP  
P
=
=
=
=
=
=
=
=
Windowed CERDIP  
MQFP (Metric PQFP)  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic dip  
PDIP  
PLCC  
SSOP  
L
SS  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2000 Microchip Technology Inc.  
DS30605C-page 177  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 178  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
NOTES:  
2000 Microchip Technology Inc.  
DS30605C-page 179  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 180  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
NOTES:  
2000 Microchip Technology Inc.  
DS30605C-page 181  
PIC16C63A/65B/73B/74B  
NOTES:  
DS30605C-page 182  
2000 Microchip Technology Inc.  
PIC16C63A/65B/73B/74B  
NOTES:  
2000 Microchip Technology Inc.  
DS30605C-page 183  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC (continued)  
Corporate Office  
China - Beijing  
Microchip Technology Beijing Office  
Unit 915  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
New China Hong Kong Manhattan Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Rocky Mountain  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Shanghai  
Microchip Technology Shanghai Office  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
EUROPE  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Hong Kong  
Microchip Asia Pacific  
RM 2101, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
France  
India  
Arizona Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Microchip Technology Inc.  
India Liaison Office  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Divyasree Chambers  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Italy  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
1 Floor, Wing A (A3/A4)  
No. 11, OShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Tel: 949-263-1888 Fax: 949-263-1338  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
10/01/00  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Companys quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 12/00  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by  
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual  
property rights arising from such use or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with  
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-  
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS30605C-page 184  
2000 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY