PIC16F874-20L [ETC]

8-Bit Microcontroller ; 8位微控制器\n
PIC16F874-20L
型号: PIC16F874-20L
厂家: ETC    ETC
描述:

8-Bit Microcontroller
8位微控制器\n

微控制器
文件: 总200页 (文件大小:3338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F87X  
28/40-pin 8-Bit CMOS FLASH Microcontrollers  
Devices Included in this Data Sheet:  
Pin Diagram  
PDIP  
• PIC16F873  
• PIC16F874  
• PIC16F876  
• PIC16F877  
MCLR/VPP/THV  
RA0/AN0  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7/PGD  
RB6/PGC  
2
Microcontroller Core Features:  
RA1/AN1  
3
RB5  
• High-performance RISC CPU  
RA2/AN2/VREF-  
4
RB4  
RA3/AN3/VREF+  
RA4/T0CKI  
RB3/PGM  
RB2  
5
• Only 35 single word instructions to learn  
6
• All single cycle instructions except for program  
branches which are two cycle  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
7
RB1  
8
RB0/INT  
VDD  
9
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
VSS  
• Up to 8K x 14 words of FLASH Program Memory,  
Up to 368 x 8 bytes of Data Memory (RAM)  
Up to 256 x 8 bytes of EEPROM data memory  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
• Pinout compatible to the PIC16C73B/74B/76/77  
• Interrupt capability (up to 14 sources)  
• Eight level deep hardware stack  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD1/PSP1  
RD2/PSP2  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
Peripheral Features:  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Low-power, high-speed CMOS FLASH/EEPROM  
technology  
Two Capture, Compare, PWM modules  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
• Fully static design  
• In-Circuit Serial Programming (ICSP) via two  
pins  
• Single 5V In-Circuit Serial Programming capability  
• In-Circuit Debugging via two pins  
• 10-bit multi-channel Analog-to-Digital converter  
• Synchronous Serial Port (SSP) with SPI (Master  
Mode) and I2C (Master/Slave)  
• Processor read/write access to program memory  
• Wide operating voltage range: 2.0V to 5.5V  
• High Sink/Source Current: 25 mA  
• Commercial and Industrial temperature ranges  
• Low-power consumption:  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI) with 9-bit address  
detection  
• Parallel Slave Port (PSP) 8-bits wide, with  
external RD, WR and CS controls (40/44-pin only)  
- < 2 mA typical @ 5V, 4 MHz  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
- 20 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
1999 Microchip Technology Inc.  
DS30292B-page 1  
PIC16F87X  
Pin Diagrams  
DIP, SOIC  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
MCLR/VPP/THV  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RB1  
RB0/INT  
VDD  
RA5/AN4/SS  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VSS  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
RC3/SCK/SCL  
PLCC  
RA4/T0CKI  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
39  
38  
37  
RB3/PGM  
RB2  
7
8
RB1  
9
RB0/INT  
VDD  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
13  
14  
15  
16  
17  
PIC16F877  
PIC16F874  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CK1  
NC  
QFP  
NC  
33  
1
2
3
4
5
6
7
8
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
RB2  
RB3/PGM  
RC0/T1OSO/T1CKI  
32  
31  
30  
29  
28  
27  
26  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
PIC16F877  
PIC16F874  
VDD  
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS  
RA4/T0CKI  
9
10  
11  
25  
24  
23  
DS30292B-page 2  
1999 Microchip Technology Inc.  
PIC16F87X  
Key Features  
PICmicro™ Mid-Range Reference  
Manual (DS33023)  
PIC16F873  
PIC16F874  
PIC16F876  
PIC16F877  
Operating Frequency  
Resets (and Delays)  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR  
POR, BOR  
POR, BOR  
POR, BOR  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
FLASH Program Memory  
(14-bit words)  
4K  
4K  
8K  
8K  
Data Memory (bytes)  
EEPROM Data Memory  
Interrupts  
192  
192  
368  
368  
128  
128  
256  
256  
13  
14  
13  
14  
I/O Ports  
Ports A,B,C  
Ports A,B,C,D,E  
Ports A,B,C  
Ports A,B,C,D,E  
Timers  
3
3
3
3
Capture/Compare/PWM modules  
Serial Communications  
Parallel Communications  
10-bit Analog-to-Digital Module  
Instruction Set  
2
MSSP, USART  
2
2
MSSP, USART  
2
MSSP, USART  
PSP  
MSSP, USART  
PSP  
5 input channels 8 input channels 5 input channels 8 input channels  
35 Instructions  
35 Instructions  
35 Instructions  
35 Instructions  
1999 Microchip Technology Inc.  
DS30292B-page 3  
PIC16F87X  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................... 5  
2.0 Memory Organization.................................................................................................................................................................. 11  
3.0 I/O Ports...................................................................................................................................................................................... 29  
4.0 Data EEPROM and FLASH Program Memory ........................................................................................................................... 41  
5.0 Timer0 Module ............................................................................................................................................................................ 47  
6.0 Timer1 Module ............................................................................................................................................................................ 51  
7.0 Timer2 Module ........................................................................................................................................................................... 55  
8.0 Capture/Compare/PWM (CCP) Module(s).................................................................................................................................. 57  
9.0 Master Synchronous Serial Port (MSSP) Module....................................................................................................................... 63  
10.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) ..................................................................................... 95  
11.0 Analog-to-Digital Converter (A/D) Module................................................................................................................................. 111  
12.0 Special Features of the CPU..................................................................................................................................................... 121  
13.0 Instruction Set Summary........................................................................................................................................................... 137  
14.0 Development Support ............................................................................................................................................................... 145  
15.0 Electrical Characteristics........................................................................................................................................................... 151  
16.0 DC and AC Characteristics Graphs and Tables........................................................................................................................ 173  
17.0 Packaging Information .............................................................................................................................................................. 175  
Appendix A: Revision History......................................................................................................................................................... 183  
Appendix B: Device Differences..................................................................................................................................................... 183  
Appendix C: Conversion Considerations........................................................................................................................................ 183  
Index  
................................................................................................................................................................................... 185  
On-Line Support................................................................................................................................................................................. 191  
Product Identification System............................................................................................................................................................. 193  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS30292B-page 4  
1999 Microchip Technology Inc.  
PIC16F87X  
There are four devices (PIC16F873, PIC16F874,  
PIC16F876 and PIC16F877) covered by this data  
sheet. The PIC16F876/873 devices come in 28-pin  
packages and the PIC16F877/874 devices come in 40-  
pin packages. The 28-pin devices do not have a Paral-  
lel Slave Port implemented.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicro™  
Mid-Range Reference Manual, (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a comple-  
mentary document to this data sheet, and is highly rec-  
ommended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
The following two figures are device block diagrams  
sorted by pin number; 28-pin for Figure 1-1 and 40-pin  
for Figure 1-2. The 28-pin and 40-pin pinouts are listed  
in Table 1-1 and Table 1-2, respectively.  
FIGURE 1-1: PIC16F873 AND PIC16F876 BLOCK DIAGRAM  
Device  
Program  
FLASH  
Data Memory  
Data  
EEPROM  
PIC16F873  
PIC16F876  
4K  
8K  
192 Bytes  
368 Bytes  
128 Bytes  
256 Bytes  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
FLASH  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
RA5/AN4/SS  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
RB0/INT  
RB1  
RB2  
RB3/PGM  
RB4  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
FSR reg  
RB6/PGC  
RB7/PGD  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
In-Circuit  
Debugger  
Low-Voltage  
Programming  
MCLR VDD, VSS  
Timer2  
Timer0  
Timer1  
10-bit A/D  
Data EEPROM  
Synchronous  
Serial Port  
USART  
CCP1,2  
Note 1: Higher order bits are from the STATUS register.  
1999 Microchip Technology Inc.  
DS30292B-page 5  
PIC16F87X  
FIGURE 1-2: PIC16F874 AND PIC16F877 BLOCK DIAGRAM  
Device  
Program  
FLASH  
Data Memory  
Data  
EEPROM  
PIC16F874  
PIC16F877  
4K  
8K  
192 Bytes  
368 Bytes  
128 Bytes  
256 Bytes  
13  
8
PORTA  
Data Bus  
RAM  
Program Counter  
FLASH  
RA0/AN0  
RA1/AN1  
Program  
Memory  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
8 Level Stack  
(13-bit)  
File  
Registers  
RA5/AN4/SS  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
RB0/INT  
RB1  
RB2  
RB3/PGM  
RB4  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
FSR reg  
RB6/PGC  
RB7/PGD  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
3
MUX  
Power-up  
Timer  
Oscillator  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
PORTD  
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
RD7/PSP7:RD0/PSP0  
In-Circuit  
Debugger  
Low-Voltage  
Programming  
PORTE  
Parallel Slave Port  
RE0/AN5/RD  
RE1/AN6/WR  
RE2/AN7/CS  
MCLR VDD, VSS  
Timer0  
Timer1  
Timer2  
10-bit A/D  
USART  
Data EEPROM  
Synchronous  
Serial Port  
CCP1,2  
Note 1: Higher order bits are from the STATUS register.  
DS30292B-page 6  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 1-1:  
PIC16F873 AND PIC16F876 PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in crystal  
oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT  
which has 1/4 the frequency of OSC1, and denotes the instruction  
cycle rate.  
MCLR/VPP/THV  
1
1
I/P  
ST  
Master clear (reset) input or programming voltage input or high  
voltage test mode control. This pin is an active low reset to the  
device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA1 can also be analog input1  
RA0/AN0  
2
3
4
2
3
4
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2/VREF-  
RA2 can also be analog input2 or negative analog reference  
voltage  
RA3/AN3/VREF+  
RA4/T0CKI  
5
6
7
5
6
7
I/O  
I/O  
I/O  
TTL  
ST  
RA3 can also be analog input3 or positive analog reference  
voltage  
RA4 can also be the clock input to the Timer0 module. Output  
is open drain type.  
RA5/SS/AN4  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
21  
21  
I/O  
RB0 can also be the external interrupt pin.  
TTL/ST  
TTL  
RB1  
22  
23  
24  
25  
26  
27  
22  
23  
24  
25  
26  
27  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RB2  
TTL  
RB3/PGM  
RB4  
TTL  
RB3 can also be the low voltage programming input  
Interrupt on change pin.  
TTL  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6/PGC  
Interrupt on change pin or In-Circuit Debugger pin. Serial  
programming clock.  
TTL/ST  
(2)  
RB7/PGD  
28  
28  
I/O  
Interrupt on change pin or In-Circuit Debugger pin. Serial  
programming data.  
TTL/ST  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or Timer1 clock  
input.  
RC1 can also be the Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/PWM1  
output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/output for  
2
both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
16  
17  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
18  
18  
I/O  
ST  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
VSS  
8, 19  
20  
8, 19  
20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1999 Microchip Technology Inc.  
DS30292B-page 7  
PIC16F87X  
TABLE 1-2:  
PIC16F874 AND PIC16F877 PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs CLK-  
OUT which has 1/4 the frequency of OSC1, and denotes the  
instruction cycle rate.  
MCLR/VPP/THV  
1
2
18  
I/P  
ST  
Master clear (reset) input or programming voltage input or high  
voltage test mode control. This pin is an active low reset to the  
device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA1 can also be analog input1  
RA0/AN0  
2
3
4
3
4
5
19  
20  
21  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2/VREF-  
RA2 can also be analog input2 or negative analog  
reference voltage  
RA3/AN3/VREF+  
RA4/T0CKI  
5
6
7
6
7
8
22  
23  
24  
I/O  
I/O  
I/O  
TTL  
ST  
RA3 can also be analog input3 or positive analog  
reference voltage  
RA4 can also be the clock input to the Timer0 timer/  
counter. Output is open drain type.  
RA5/SS/AN4  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
33  
36  
8
I/O  
RB0 can also be the external interrupt pin.  
TTL/ST  
TTL  
RB1  
34  
35  
36  
37  
38  
39  
37  
38  
39  
41  
42  
43  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RB2  
10  
11  
14  
15  
16  
TTL  
RB3/PGM  
RB4  
TTL  
RB3 can also be the low voltage programming input  
Interrupt on change pin.  
TTL  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6/PGC  
Interrupt on change pin or In-Circuit Debugger pin. Serial  
programming clock.  
TTL/ST  
(2)  
RB7/PGD  
40  
44  
17  
I/O  
Interrupt on change pin or In-Circuit Debugger pin. Serial  
programming data.  
TTL/ST  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
15  
16  
17  
18  
23  
24  
25  
26  
16  
18  
19  
20  
25  
26  
27  
29  
32  
35  
36  
37  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or a Timer1  
clock input.  
RC1 can also be the Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3 can also be the synchronous serial clock input/output  
2
for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5 can also be the SPI Data Out  
(SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave  
Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30292B-page 8  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 1-2:  
PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bi-directional I/O port or parallel slave port when  
interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
RE0 can also be read control for the parallel slave port, or  
analog input5.  
ST/TTL  
ST/TTL  
ST/TTL  
10  
11  
RE1 can also be write control for the parallel slave port, or  
analog input6.  
10  
RE2 can also be select control for the parallel slave port,  
or analog input7.  
VSS  
VDD  
NC  
12,31  
11,32  
13,34  
6,29  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
12,35  
7,28  
P
1,17,28, 12,13,  
40 33,34  
These pins are not internally connected. These pins should be  
left unconnected.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave  
Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1999 Microchip Technology Inc.  
DS30292B-page 9  
PIC16F87X  
NOTES:  
DS30292B-page 10  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 2-2: PIC16F874/873 PROGRAM  
MEMORY MAP AND STACK  
2.0  
MEMORY ORGANIZATION  
There are three memory blocks in each of these  
PICmicro MCUs. The Program Memory and Data  
Memory have separate buses so that concurrent  
access can occur and is detailed in this section. The  
EEPROM data memory block is detailed in  
Section 4.0.  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Additional information on device memory may be found  
Stack Level 1  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
Stack Level 2  
2.1  
Program Memory Organization  
Stack Level 8  
Reset Vector  
The PIC16F87X devices have a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space. The PIC16F877/876 devices have 8K x 14  
words of FLASH program memory and the PIC16F873/  
874 devices have 4K x 14. Accessing a location above  
the physically implemented address will cause a wrap-  
around.  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
On-Chip  
Program  
Memory  
07FFh  
0800h  
FIGURE 2-1: PIC16F877/876 PROGRAM  
MEMORY MAP AND STACK  
Page 1  
0FFFh  
1000h  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
1FFFh  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
07FFh  
0800h  
Page 1  
On-Chip  
Program  
Memory  
0FFFh  
1000h  
Page 2  
Page 3  
17FFh  
1800h  
1FFFh  
1999 Microchip Technology Inc.  
DS30292B-page 11  
PIC16F87X  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1(STATUS<6>) and  
RP0 (STATUS<5>) are the bank select bits.  
RP1:RP0  
Bank  
00  
01  
10  
11  
0
1
2
3
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain Special  
Function Registers. Some “high use” Special Function  
Registers from one bank may be mirrored in another  
bank for code reduction and quicker access.  
Note: EEPROM Data Memory description can be  
found in Section 4.0 of this Data Sheet  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR.  
DS30292B-page 12  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 2-3: PIC16F877/876 REGISTER FILE MAP  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
Indirect addr.(*)  
TMR0  
Indirect addr.(*)  
OPTION_REG 81h  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
80h  
OPTION_REG  
181h  
TMR0  
PCL  
PCL  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
PCL  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD (1)  
PORTE (1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD (1)  
TRISE (1)  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
EECON1  
EECON2  
Reserved(2)  
Reserved(2)  
PCLATH  
INTCON  
PIE1  
EEDATA  
EEADR  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
EEDATH  
EEADRH  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
General  
Purpose  
Register  
General  
Purpose  
Register  
RCSTA  
TXREG  
TXSTA  
16 Bytes  
16 Bytes  
SPBRG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
80 Bytes  
1EFh  
1F0h  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as ’0’.  
* Not a physical register.  
Note 1: These registers are not implemented on 28-pin devices.  
2: These registers are reserved, maintain these registers clear.  
1999 Microchip Technology Inc.  
DS30292B-page 13  
PIC16F87X  
FIGURE 2-4: PIC16F874/873 REGISTER FILE MAP  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
Indirect addr.(*)  
TMR0  
Indirect addr.(*)  
OPTION_REG 81h  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
80h  
TMR0  
PCL  
PCL  
PCL  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
STATUS  
FSR  
FSR  
PORTA  
PORTB  
PORTC  
PORTD (1)  
PORTE (1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD (1)  
TRISE (1)  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
EECON1  
EECON2  
Reserved(2)  
Reserved(2)  
PCLATH  
INTCON  
PIE1  
EEDATA  
EEADR  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
EEDATH  
EEADRH  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
RCSTA  
TXREG  
TXSTA  
SPBRG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
1A0h  
120h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
accesses  
20h-7Fh  
accesses  
A0h - FFh  
1EFh  
1F0h  
96 Bytes  
96 Bytes  
16Fh  
170h  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as ’0’.  
* Not a physical register.  
Note 1: These registers are not implemented on 28-pin devices.  
2: These registers are reserved, maintain these registers clear.  
DS30292B-page 14  
1999 Microchip Technology Inc.  
PIC16F87X  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers can be classified into  
two sets; core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral feature section.  
The Special Function Registers are registers used by  
the CPU and peripheral modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Value on:  
Addres  
all other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
s
resets  
(2)  
Bank 0  
00h(4)  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
01h  
02h(4)  
03h(4)  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
04h(4)  
05h  
PORTA  
PORTB  
PORTC  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
07h  
08h(5)  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
09h(5)  
0Ah(1,4)  
0Bh(4)  
0Ch  
RE2  
RE1  
RE0  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF  
(6)  
T0IE  
RCIF  
INTE  
TXIF  
EEIF  
RBIE  
SSPIF  
BCLIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(3)  
TMR1IF 0000 0000 0000 0000  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
PIR2  
CCP2IF -r-0 0--0 -r-0 0--0  
xxxx xxxx uuuu uuuu  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
TMR1H  
T1CON  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
TMR2  
Timer2 module’s register  
0000 0000 0000 0000  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
xxxx xxxx uuuu uuuu  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
USART Transmit Data Register  
USART Receive Data Register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
A/D Result Register High Byte  
xxxx xxxx uuuu uuuu  
GO/  
DONE  
1Fh  
ADCON0  
ADCS1  
ADCS0  
CHS2  
CHS1  
CHS0  
ADON  
0000 00-0 0000 00-0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as ’0’, r = reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as ‘0’.  
6: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.  
1999 Microchip Technology Inc.  
DS30292B-page 15  
PIC16F87X  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
all other  
resets  
(2)  
Value on:  
POR,  
BOR  
Addres  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
s
Bank 1  
80h(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
OPTION_R  
EG  
81h  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(4)  
83h(4)  
PCL  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
STATUS  
PD  
Z
DC  
C
84h(4)  
85h  
FSR  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
TRISA  
TRISB  
TRISC  
TRISD  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
87h  
88h(5)  
89h(5)  
TRISE  
PCLATH  
INTCON  
PIE1  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
8Ah(1,4)  
Write Buffer for the upper 5 bits of the Program Counter  
8Bh(4)  
8Ch  
GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
T0IF  
INTF  
RBIF  
PSPIE(3)  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE 0000 0000 0000 0000  
CCP2IE -r-0 0--0 -r-0 0--0  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
PIE2  
(6)  
EEIE  
BCLIE  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
SSPCON2  
PR2  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
SEN  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
SSPADD  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
BF  
Unimplemented  
Unimplemented  
Unimplemented  
CSRC  
TXSTA  
SPBRG  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Baud Rate Generator Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESL  
ADCON1  
A/D Result Register Low Byte  
xxxx xxxx uuuu uuuu  
PCFG0 0---0000 0---0000  
ADFM  
PCFG3  
PCFG2  
PCFG1  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as ’0’, r = reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as ‘0’.  
6: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.  
DS30292B-page 16  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
Value on:  
Addres  
all other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
s
resets  
(2)  
Bank 2  
100h(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000  
0000 0000  
101h  
TMR0  
PCL  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
102h(4)  
103h(4)  
Program Counter's (PC) Least Significant Byte  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
104h(4)  
105h  
106h  
107h  
108h  
109h  
FSR  
Indirect data memory address pointer  
Unimplemented  
xxxx xxxx uuuu uuuu  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx uuuu uuuu  
Unimplemented  
Unimplemented  
Unimplemented  
10Ah(1,4)  
PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
10Bh(4)  
10Ch  
10Dh  
10Eh  
10Fh  
INTCON  
GIE  
PEIE  
T0IE  
EEDATA  
EEADR  
EEPROM data register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
EEPROM address register  
EEDATH  
EEADRH  
EEPROM data register high byte  
EEPROM address register high byte  
Bank 3  
180h(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
OPTION_R  
EG  
181h  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
182h(4)  
183h(4)  
PCL  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
STATUS  
PD  
Z
DC  
C
184h(4)  
185h  
186h  
187h  
188h  
189h  
FSR  
Indirect data memory address pointer  
Unimplemented  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111 1111 1111  
Unimplemented  
Unimplemented  
18Ah(1,4)  
Write Buffer for the upper 5 bits of the Program Counter  
PCLATH  
---0 0000 ---0 0000  
18Bh(4)  
18Ch  
18Dh  
18Eh  
18Fh  
INTCON  
EECON1  
EECON2  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
WR  
RBIF  
RD  
0000 000x 0000 000u  
x--- x000 x--- u000  
---- ---- ---- ----  
0000 0000 0000 0000  
0000 0000 0000 0000  
EEPGD  
WRERR  
WREN  
EEPROM control register2 (not a physical register)  
Reserved maintain clear  
Reserved maintain clear  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as ’0’, r = reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as ‘0’.  
6: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.  
1999 Microchip Technology Inc.  
DS30292B-page 17  
PIC16F87X  
2.2.2.1  
STATUS REGISTER  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
The STATUS register contains the arithmetic status of  
the ALU, the RESET status and the bank select bits for  
data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable, therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n= Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
(for borrow the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0:  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of  
the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order  
bit of the source register.  
DS30292B-page 18  
1999 Microchip Technology Inc.  
PIC16F87X  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG Register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)  
R/W-1 R/W-1  
RBPU INTEDG  
bit7  
R/W-1 R/W-1 R/W-1 R/W-1  
T0CS T0SE PSA PS2  
R/W-1 R/W-1  
PS1  
PS0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n= Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the  
TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.  
1999 Microchip Technology Inc.  
DS30292B-page 19  
PIC16F87X  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
- n= Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
DS30292B-page 20  
1999 Microchip Technology Inc.  
PIC16F87X  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
The PIE1 register contains the individual enable bits for  
the peripheral interrupts.  
enable any peripheral interrupt.  
REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
PSPIE(1) ADIE  
R/W-0  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE TMR2IE TMR1IE  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n= Value at POR reset  
bit 7:  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.  
1999 Microchip Technology Inc.  
DS30292B-page 21  
PIC16F87X  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt bits are clear prior to enabling an  
interrupt.  
The PIR1 register contains the individual flag bits for  
the peripheral interrupts.  
REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
PSPIF(1) ADIF  
R/W-0  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
bit0  
R = Readable bit  
W = Writable bit  
- n= Value at POR reset  
bit7  
(1)  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 7:  
PSPIF : Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag  
1= The SSP interrupt condition has occurred, and must be cleared in software before returning from the interrupt ser-  
vice routine. The conditions that will set this bit are:  
SPI  
A transmission/reception has taken place.  
2
I C Slave  
A transmission/reception has taken place.  
2
I C Master  
A transmission/reception has taken place.  
The initiated start condition was completed by the SSP module.  
The initiated stop condition was completed by the SSP module.  
The initiated restart condition was completed by the SSP module.  
The initiated acknowledge condition was completed by the SSP module.  
A start condition occurred while the SSP module was idle (Multimaster system).  
A stop condition occurred while the SSP module was idle (Multimaster system).  
0= No SSP interrupt condition has occurred.  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: PSPIF is reserved on 28-pin devices; always maintain this bit clear.  
DS30292B-page 22  
1999 Microchip Technology Inc.  
PIC16F87X  
2.2.2.6  
PIE2 REGISTER  
The PIE2 register contains the individual enable bits for  
the CCP2 peripheral interrupt, the SSP bus collision  
interrupt, and the EEPROM write operation interrupt.  
REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
CCP2IE  
bit0  
EEIE  
BCLIE  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
- n= Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Unimplemented: Read as '0'  
EEIE: EEPROM Write Operation Interrupt Enable  
1= Enable EE Write Interrupt  
0= Disable EE Write Interrupt  
bit 3:  
BCLIE: Bus Collision Interrupt Enable  
1= Enable Bus Collision Interrupt  
0= Disable Bus Collision Interrupt  
bit 2-1: Unimplemented: Read as '0'  
bit 0:  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
1999 Microchip Technology Inc.  
DS30292B-page 23  
PIC16F87X  
.
2.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The PIR2 register contains the flag bits for the CCP2  
interrupt, the SSP bus collision interrupt and the  
EEPROM write operation interrupt.  
REGISTER 2-7: PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
CCP2IF  
bit0  
EEIF  
BCLIF  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
- n= Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Unimplemented: Read as '0'  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3:  
BCLIF: Bus Collision Interrupt Flag  
1= A bus collision has occurred in the SSP, when configured for I2C master mode  
0= No bus collision has occurred  
bit 2-1: Unimplemented: Read as '0'  
bit 0:  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused  
DS30292B-page 24  
1999 Microchip Technology Inc.  
PIC16F87X  
2.2.2.8  
PCON REGISTER  
Note: BOR is unknown on POR. It must be set by  
the user and checked on subsequent rests  
to see if BOR is clear, indicating a brown-  
out has occurred. The BOR status bit is a  
don’t care and is not predictable if the  
brown-out circuit is disabled (by clearing  
the BODEN bit in the configuration word).  
The Power Control (PCON) Register contains flag bits  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset (BOR), a Watch-dog Reset  
(WDT) and an external MCLR Reset.  
REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-1  
BOR  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n= Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
1999 Microchip Technology Inc.  
DS30292B-page 25  
PIC16F87X  
2.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any reset, the upper bits of the PC  
will be cleared. Figure 2-5 shows the two situations for  
the loading of the PC. The upper example in the figure  
shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
2: There are no instructions/mnemonics  
called PUSHor POP. These are actions that  
occur from the execution of the CALL,  
RETURN, RETLW and RETFIE instruc-  
tions or the vectoring to an interrupt  
address.  
2.4  
Program Memory Paging  
PIC16CXX devices are capable of addressing a contin-  
uous 8K word block of program memory. The CALLand  
GOTO instructions provide only 11 bits of address to  
allow branching within any 2K program memory page.  
When doing a CALL or GOTO instruction, the upper 2  
bits of the address are provided by PCLATH<4:3>.  
When doing a CALLor GOTOinstruction, the user must  
ensure that the page select bits are programmed so  
that the desired program memory page is addressed. If  
a return from a CALL instruction (or interrupt) is exe-  
cuted, the entire 13-bit PC is popped off the stack.  
Therefore, manipulation of the PCLATH<4:3> bits are  
not required for the return instructions (which POPs the  
address from the stack)  
FIGURE 2-5: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
PC  
Destination  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PCL  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the interrupt ser-  
vice routine (if interrupts are used).  
8
7
0
GOTO,CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
EXAMPLE 2-1: CALL OF A SUBROUTINE IN  
PAGE 1 FROM PAGE 0  
ORG 0x500  
BCF PCLATH,4  
BSF PCLATH,3  
CALLSUB1_P1  
;Select page 1 (800h-FFFh)  
;Call subroutine in  
2.3.1  
COMPUTED GOTO  
:
:
;page 1 (800h-FFFh)  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
ORG 0x900  
;page 1 (800h-FFFh)  
SUB1_P1  
:
:
:
;called subroutine  
;page 1 (800h-FFFh)  
application note, “Implementing  
a
Table Read"  
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
(AN556).  
2.3.2  
STACK  
The PIC16CXX family has an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN,RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSHor POPoperation.  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS30292B-page 26  
1999 Microchip Technology Inc.  
PIC16F87X  
2.5  
Indirect Addressing, INDF and FSR  
Registers  
EXAMPLE 2-2: INDIRECT ADDRESSING  
movlw  
movwf  
clrf  
incf  
btfss  
goto  
0x20  
FSR  
INDF  
FSR,F  
FSR,4  
NEXT  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = ’0’) will read 00h. Writing to the INDF register  
indirectly results in a no-operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 2-6.  
CONTINUE  
:
;yes continue  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
FIGURE 2-6: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail see Figure 2-3.  
1999 Microchip Technology Inc.  
DS30292B-page 27  
PIC16F87X  
NOTES:  
DS30292B-page 28  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 3-1: BLOCK DIAGRAM OF  
3.0  
I/O PORTS  
RA3:RA0 AND RA5 PINS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
Bus  
D
Q
VDD  
WR  
Port  
Additional information on I/O ports may be found in the  
PICmicro™  
(DS33023).  
Q
CK  
Mid-Range  
Reference  
Manual,  
P
Data Latch  
D
3.1  
PORTA and the TRISA Register  
I/O pin(1)  
N
Q
PORTA is a 6-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
WR  
TRIS  
VSS  
Analog  
Input  
Q
CK  
TRIS Latch  
Mode  
TTL  
RD TRIS  
Input  
Buffer  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified and then written to the port  
data latch.  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
RD PORT  
To A/D Converter  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 3-2: BLOCK DIAGRAM OF RA4/  
T0CKI PIN  
Note: On a Power-on Reset, these pins are con-  
Data  
Bus  
figured as analog inputs and read as '0'.  
D
Q
Q
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
WR  
PORT  
CK  
I/O pin(1)  
N
Data Latch  
D
Q
VSS  
EXAMPLE 3-1: INITIALIZING PORTA  
WR  
TRIS  
BCF  
BCF  
CLRF  
STATUS, RP0  
STATUS, RP1  
PORTA  
;
Schmitt  
Trigger  
Input  
Q
CK  
; Bank0  
; Initialize PORTA by  
; clearing output  
; data latches  
TRIS Latch  
Buffer  
BSF  
STATUS, RP0  
0x06  
ADCON1  
0xCF  
; Select Bank 1  
; Configure all pins  
; as digital inputs  
; Value used to  
; initialize data  
; direction  
RD TRIS  
MOVLW  
MOVWF  
MOVLW  
Q
D
EN  
RD PORT  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as ’0’.  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1999 Microchip Technology Inc.  
DS30292B-page 29  
PIC16F87X  
TABLE 3-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Input/output or analog input or VREF  
Input/output or external clock input for Timer0  
Output is open drain type  
RA5/SS/AN4  
bit5  
TTL  
Input/output or slave select input for synchronous serial port or analog input  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on: Value on all  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
resets  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
--0- 0000 --0- 0000  
05h  
85h  
9Fh  
PORTA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
TRISA  
PORTA Data Direction Register  
PCFG3 PCFG2 PCFG1 PCFG0  
ADCON1 ADFM  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note: When using the SSP module in SPI slave mode and SS enabled, the A/D converter must be set to one of  
the following modes where PCFG3:PCFG0 = 0100,0101, 011x, 1101, 1110, 1111.  
DS30292B-page 30  
1999 Microchip Technology Inc.  
PIC16F87X  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Three pins of PORTB are multiplexed with the Low Volt-  
age Programming function; RB3/PGM, RB6/PGC and  
RB7/PGD. The alternate functions of these pins are  
described in the Special Features Section.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
This interrupt on mismatch feature, together with soft-  
ware configureable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key-depression. Refer to the Embedded  
Control Handbook, “Implementing Wake-Up on Key  
Stroke” (AN552).  
FIGURE 3-3: BLOCK DIAGRAM OF  
RB3:RB0 PINS  
RB0/INT is an external interrupt input pin and is config-  
ured using the INTEDG bit (OPTION_REG<6>).  
VDD  
RBPU(2)  
weak  
pull-up  
RB0/INT is discussed in detail in Section 12.10.1.  
P
Data Latch  
Data Bus  
WR Port  
D
Q
FIGURE 3-4: BLOCK DIAGRAM OF  
I/O  
pin(1)  
RB7:RB4 PINS  
CK  
TRIS Latch  
VDD  
RBPU(2)  
weak  
P
D
Q
pull-up  
TTL  
Data Latch  
Data Bus  
Input  
Buffer  
WR TRIS  
CK  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
RD TRIS  
RD Port  
D
Q
Q
D
WR TRIS  
TTL  
Input  
Buffer  
CK  
EN  
ST  
Buffer  
RB0/INT  
RB3/PGM  
RD TRIS  
RD Port  
Latch  
Schmitt Trigger  
Buffer  
RD Port  
Q
Q
D
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
EN  
Q1  
Set RBIF  
D
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
Note: When using Low Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the  
TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.  
1999 Microchip Technology Inc.  
DS30292B-page 31  
PIC16F87X  
TABLE 3-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
bit1  
bit2  
bit3  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
RB2  
RB3/PGM  
Input/output pin or programming pin in LVP mode. Internal software  
programmable weak pull-up.  
RB4  
bit4  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
TTL  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB6/PGC  
RB7/PGD  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt on change) or In-Circuit Debugger pin.  
Internal software programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change) or In-Circuit Debugger pin.  
Internal software programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 3-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on: Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
POR,  
BOR  
other  
resets  
06h, 106h  
86h, 186h  
81h, 181h  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
PS2  
RB1  
PS1  
RB0 xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
TRISB  
PORTB Data Direction Register  
RBPU INTEDG T0CS T0SE PSA  
OPTION_REG  
PS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30292B-page 32  
1999 Microchip Technology Inc.  
PIC16F87X  
3.3  
PORTC and the TRISC Register  
FIGURE 3-6: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
OVERRIDE) RC<3:4>  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data Bus  
D
Q
Q
P
WR  
1
PORT  
CK  
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
When the I2C module is enabled, the PORTC (3:4) pins  
can be configured with normal I2C levels or with  
SMBUS levels by using the CKE bit (SSPSTAT <6>).  
Data Latch  
I/O  
pin(1)  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
Vss  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided. The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
Schmitt  
Trigger  
with  
SMBus  
levels  
EN  
RD  
PORT  
0
SSPl Input  
1
CKE  
SSPSTAT<6>  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
FIGURE 3-5: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<0:2>  
RC<5:7>  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data Bus  
D
Q
Q
P
WR  
1
PORT  
CK  
Data Latch  
I/O  
pin(1)  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EN  
RD  
PORT  
Peripheral Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
1999 Microchip Technology Inc.  
DS30292B-page 33  
PIC16F87X  
TABLE 3-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI bit0  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
RC1/T1OSI/CCP2  
bit1  
bit2  
bit3  
Input/output port pin or Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output  
RC2/CCP1  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
RC3 can also be the synchronous serial clock for both SPI and I2C  
RC3/SCK/SCL  
modes.  
RC4/SDI/SDA  
RC5/SDO  
bit4  
bit5  
bit6  
ST  
ST  
ST  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output  
RC6/TX/CK  
Input/output port pin or USART Asynchronous Transmit or Synchro-  
nous Clock  
RC7/RX/DT  
bit7  
ST  
Input/output port pin or USART Asynchronous Receive or Synchro-  
nous Data  
Legend: ST = Schmitt Trigger input  
TABLE 3-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all  
other  
resets  
Value on:  
POR,  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
07h  
87h  
PORTC RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
TRISC PORTC Data Direction Register  
Legend: x= unknown, u= unchanged.  
DS30292B-page 34  
1999 Microchip Technology Inc.  
PIC16F87X  
3.4  
PORTD and TRISD Registers  
FIGURE 3-7: PORTD BLOCK DIAGRAM (IN  
I/O PORT MODE)  
This section is not applicable to the PIC16F873 or  
PIC16F876.  
Data  
Bus  
D
Q
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
WR  
PORT  
I/O pin(1)  
CK  
Data Latch  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
RD TRIS  
Q
D
EN  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 3-7:  
Name  
PORTD FUNCTIONS  
Bit#  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Buffer Type  
Function  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
TABLE 3-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
RD3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD  
TRISD  
TRISE  
RD7  
RD6  
RD5  
RD4  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
PORTD Data Direction Register  
IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by PORTD.  
1999 Microchip Technology Inc.  
DS30292B-page 35  
PIC16F87X  
3.5  
PORTE and TRISE Register  
FIGURE 3-8: PORTE BLOCK DIAGRAM (IN  
I/O PORT MODE)  
This section is not applicable to the PIC16F873 or  
PIC16F876.  
Data  
Bus  
D
Q
PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
WR  
PORT  
I/O pin(1)  
CK  
Data Latch  
D
Q
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs). Ensure ADCON1 is configured for digital I/O. In  
this mode, the input buffers are TTL.  
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
RD TRIS  
Register 3-1 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
Q
D
PORTE pins are multiplexed with analog inputs. When  
selected as an analog input, these pins will read as ’0’s.  
EN  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs.  
REGISTER 3-1: TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
bit7  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
bit0  
OBF  
PSPMODE  
bit2  
bit1  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n= Value at POR reset  
Parallel Slave Port Status/Control Bits  
bit 7 :  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
bit 6:  
bit 5:  
bit 4:  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared in software)  
0= No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel slave port mode  
0= General purpose I/O mode  
bit 3:  
bit 2:  
Unimplemented: Read as ’0’  
PORTE Data Direction Bits  
Bit2: Direction Control bit for pin RE2/CS/AN7  
1= Input  
0= Output  
bit 1:  
bit 0:  
Bit1: Direction Control bit for pin RE1/WR/AN6  
1= Input  
0= Output  
Bit0: Direction Control bit for pin RE0/RD/AN5  
1= Input  
0= Output  
DS30292B-page 36  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 3-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
ST/TTL(1)  
Input/output port pin or read control input in parallel slave port mode or  
analog input:  
RE0/RD/AN5  
bit0  
RD  
1= Not a read operation  
0= Read operation. Reads PORTD register (if chip selected)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or write control input in parallel slave port mode or  
analog input:  
WR  
1= Not a write operation  
0= Write operation. Writes PORTD register (if chip selected)  
RE1/WR/AN6  
RE2/CS/AN7  
bit1  
bit2  
Input/output port pin or chip select control input in parallel slave port  
mode or analog input:  
CS  
1= Device is not selected  
0= Device is selected  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.  
TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Addr  
Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
89h  
9Fh  
PORTE  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
TRISE  
IBF  
OBF IBOV PSPMODE  
PORTE Data Direction Bits  
ADCON1 ADFM  
PCFG3 PCFG2 PCFG1 PCFG0 --0- 0000 --0- 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTE.  
1999 Microchip Technology Inc.  
DS30292B-page 37  
PIC16F87X  
3.6  
Parallel Slave Port  
FIGURE 3-9: PORTD AND PORTE BLOCK  
DIAGRAM (PARALLEL SLAVE  
PORT)  
The Parallel Slave Port is not implemented on the  
PIC16F873 or PIC16F876.  
PORTD operates as an 8-bit wide Parallel Slave Port or  
microprocessor port when control bit PSPMODE  
(TRISE<4>) is set. In slave mode, it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD and WR control input pin  
RE1/WR.  
Data Bus  
D
Q
WR  
PORT  
RDx  
pin  
CK  
TTL  
Q
D
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD to be the RD input, RE1/WR  
to be the WR input and RE2/CS to be the CS (chip  
select) input. For this functionality, the corresponding  
data direction bits of the TRISE register (TRISE<2:0>)  
must be configured as inputs (set). The A/D port con-  
figuration bits PCFG3:PCFG0 (ADCON1<3:0>) must  
be set to configure pins RE2:RE0 as digital I/O.  
RD  
PORT  
EN  
One bit of PORTD  
Set interrupt flag  
PSPIF (PIR1<7>)  
There are actually two 8-bit latches. One for data-out  
and one for data input. The user writes 8-bit data to the  
PORTD data latch and reads data from the port pin  
latch (note that they have the same address). In this  
mode, the TRISD register is ignored, since the micro-  
processor is controlling the direction of data flow.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. When either the CS or WR  
lines become high (level triggered), the Input Buffer Full  
(IBF) status flag bit (TRISE<7>) is set on the Q4 clock  
cycle, following the next Q2 cycle, to signal the write is  
complete (Figure 3-10). The interrupt flag bit PSPIF  
(PIR1<7>) is also set on the same Q4 clock cycle. IBF  
can only be cleared by reading the PORTD input latch.  
The Input Buffer Overflow (IBOV) status flag bit  
(TRISE<5>) is set if a second write to the PSP is  
attempted when the previous byte has not been read  
out of the buffer.  
Note: I/O pin has protection diodes to VDD and VSS.  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The Output Buffer Full  
(OBF) status flag bit (TRISE<6>) is cleared immedi-  
ately (Figure 3-11) indicating that the PORTD latch is  
waiting to be read by the external bus. When either the  
CS or RD pin becomes high (level triggered), the inter-  
rupt flag bit PSPIF is set on the Q4 clock cycle, follow-  
ing the next Q2 cycle, indicating that the read is  
complete. OBF remains low until data is written to  
PORTD by the user firmware.  
When not in PSP mode, the IBF and OBF bits are held  
clear. However, if flag bit IBOV was previously set, it  
must be cleared in firmware.  
An interrupt is generated and latched into flag bit  
PSPIF when a read or write operation is completed.  
PSPIF must be cleared by the user in firmware and the  
interrupt can be disabled by clearing the interrupt  
enable bit PSPIE (PIE1<7>).  
DS30292B-page 38  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 3-10: PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 3-11: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
09h  
89h  
0Ch  
8Ch  
9Fh  
PORTD Port data latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
PORTE  
TRISE  
PIR1  
RE2  
RE1  
RE0  
IBF  
OBF IBOV PSPMODE  
PORTE Data Direction Bits  
PSPIF ADIF RCIF  
PSPIE ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PCFG3 PCFG2 PCFG1 PCFG0 --0- 0000 --0- 0000  
PIE1  
ADCON1 ADFM  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.  
1999 Microchip Technology Inc.  
DS30292B-page 39  
PIC16F87X  
NOTES:  
DS30292B-page 40  
1999 Microchip Technology Inc.  
PIC16F87X  
The value written to program memory does not need to  
be a valid instruction. Therefore, up to 14-bit numbers  
can be stored in memory for use as calibration param-  
eters, serial numbers, packed 7-bit ASCII, etc. Execut-  
ing a program memory location containing data that  
forms an invalid instruction results in a NOP.  
4.0  
DATA EEPROM AND FLASH  
PROGRAM MEMORY  
The Data EEPROM and FLASH Program Memory are  
readable and writable during normal operation over the  
entire VDD range. A bulk erase operation may not be  
issued from user code (which includes removing code  
protection). The data memory is not directly mapped in  
the register file space. Instead it is indirectly addressed  
through the Special Function Registers (SFR).  
4.1  
EEADR  
The address registers can address up to a maximum of  
256 bytes of data EEPROM or up to a maximum of 8K  
words of program FLASH.  
There are six SFRs used to read and write the program  
and data EEPROM memory. These registers are:  
• EECON1  
• EECON2  
• EEDATA  
• EEDATH  
• EEADR  
When selecting a program address value, the MSByte  
of the address is written to the EEADRH register and  
the LSByte is written to the EEADR register. When  
selecting a data address value, only the LSByte of the  
address is written to the EEADR register.  
• EEADRH  
On the PIC16F873/874 devices with 128 bytes of  
EEPROM, the MSbit of the EEADR must always be  
cleared to prevent inadvertent access to the wrong  
location. This also applies to the program memory. The  
upper MSbits of EEADRH must always be clear.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed. The  
registers EEDATH and EEADRH are not used for data  
EEPROM access. These devices have up to 256 bytes  
of data EEPROM with an address range from 0h to  
FFh.  
4.2  
EECON1 and EECON2 Registers  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all '0's. The EECON2 register is used  
exclusively in the memory write sequence.  
The EEPROM data memory is rated for high erase/  
write cycles. The write time is controlled by an on-chip  
timer. The write time will vary with voltage and temper-  
ature, as well as from chip-to-chip. Please refer to the  
specifications for exact limits.  
Control bit EEPGD determines if the access will be a  
program or a data memory access. When clear, any  
subsequent operations will operate on the data mem-  
ory. When set, any subsequent operations will operate  
on the program memory.  
The program memory allows word reads and writes.  
Program memory access allows for checksum calcula-  
tion and calibration table storage. A byte or word write  
automatically erases the location and writes the new  
data (erase before write). Writing to program memory  
will cease operation until the write is complete. The pro-  
gram memory cannot be accessed during the write,  
therefore code cannot execute. During the write opera-  
tion, the oscillator continues to clock the peripherals,  
and therefore they continue to operate. Interrupt events  
will be detected and essentially “queued” until the write  
is completed. When the write completes, the next  
instruction in the pipeline is executed and the branch to  
the interrupt vector address will occur.  
Control bits RD and WR initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
reset or a WDT time-out reset during normal operation.  
In these situations, following reset, the user can check  
the WRERR bit and rewrite the location. The value of  
the data and address registers and the EEPGD bit  
remains unchanged.  
When interfacing to the program memory block, the  
EEDATH:EEDATA registers form a two byte word,  
which holds the 14-bit data for read/write. The  
EEADRH:EEADR registers form a two byte word,  
which holds the 13-bit address of the EEPROM loca-  
tion being accessed. These devices can have up to 8K  
words of program EEPROM with an address range  
from 0h to 3FFFh. The unused upper bits in both the  
EEDATH and EEDATA registers all read as “0’s”.  
Interrupt flag bit EEIF, in the PIR2 register, is set when  
write is complete. It must be cleared in software.  
1999 Microchip Technology Inc.  
DS30292B-page 41  
PIC16F87X  
REGISTER 4-1: EECON1 REGISTER (ADDRESS 18Ch)  
R/W-x  
EEPGD  
bit7  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
R/S-0  
R/S-0  
RD  
WRERR WREN  
WR  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n= Value at POR reset  
bit 7:  
EEPGD: Program / Data EEPROM Select bit  
1= Accesses Program memory  
0= Accesses data memory  
(This bit cannot be changed while a read or write operation is in progress)  
bit 6:4: Unimplemented: Read as '0'  
bit 3:  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR reset or any WDT reset during normal operation)  
0= The write operation completed  
bit 2:  
bit 1:  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
WR: Write Control bit  
1= initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit can only be  
set (not cleared) in software.  
0= Write cycle to the EEPROM is complete  
bit 0:  
RD: Read Control bit  
1= Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in  
software.  
0= Does not initiate an EEPROM read  
DS30292B-page 42  
1999 Microchip Technology Inc.  
PIC16F87X  
4.3  
Reading the Data EEPROM Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit (EECON1<7>) and then set control bit RD  
(EECON1<0>). The data is available in the very next  
instruction cycle of the EEDATA register, therefore it  
can be read by the next instruction. EEDATA will hold  
this value until another read operation or until it is writ-  
ten to by the user (during a write operation).  
EXAMPLE 4-1: DATA EEPROM READ  
BSF  
BCF  
STATUS, RP1  
;
STATUS, RP0 ;Bank 2  
MOVLW DATA_EE_ADDR  
MOVWF EEADR  
;
;Data Memory Address to read  
BSF  
BCF  
BSF  
BCF  
STATUS, RP0 ;Bank 3  
EECON1, EEPGD;Point to DATA memory  
EECON1, RD  
STATUS, RP0 ;Bank 2  
;W = EEDATA  
;EEPROM Read  
MOVF EEDATA, W  
4.4  
Writing to the Data EEPROM Memory  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data writ-  
ten to the EEDATA register. Then the sequence in  
Example 4-2 must be followed to initiate the write cycle.  
EXAMPLE 4-2: DATA EEPROM WRITE  
BSF  
STATUS, RP1  
STATUS, RP0  
DATA_EE_ADDR  
EEADR  
;
BCF  
; Bank 2  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; Data Memory Address to write  
DATA_EE_DATA  
EEDATA  
;
; Data Memory Value to write  
; Bank 3  
STATUS, RP0  
BCF  
EECON1, EEPGD ; Point to DATA memory  
EECON1, WREN ; Enable writes  
BSF  
BCF  
INTCON, GIE  
55h  
; Disable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
Required  
Sequence  
EECON2  
; Write 55h  
AAh  
;
EECON2  
; Write AAh  
EECON1, WR  
INTCON, GIE  
; Set WR bit to begin write  
; Enable Interrupts  
BSF  
SLEEP  
BCF  
; Wait for interrupt to signal write complete  
EECON1, WREN ; Disable writes  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
is set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Write Complete  
Interrupt Flag bit (EEIF) is set. EEIF must be cleared by  
software.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware  
After a write sequence has been initiated, clearing the  
WREN bit will not affect the current write cycle. The WR  
bit will be inhibited from being set unless the WREN bit  
1999 Microchip Technology Inc.  
DS30292B-page 43  
PIC16F87X  
data is available in the EEDATA and EEDATH registers  
after the second NOP instruction. Therefore, it can be  
read as two bytes in the following instructions. The  
EEDATA and EEDATH registers will hold this value until  
another read operation or until it is written to by the user  
(during a write operation).  
4.5  
Reading the FLASH Program Memory  
A program memory location may be read by writing two  
bytes of the address to the EEADR and EEADRH reg-  
isters, setting the EEPGD control bit (EECON1<7>)  
and then setting control bit RD (EECON1<0>). Once  
the read control bit is set, the microcontroller will use  
the next two instruction cycles to read the data. The  
EXAMPLE 4-3: FLASH PROGRAM READ  
BSF  
STATUS, RP1  
STATUS, RP0  
ADDRH  
;
BCF  
; Bank 2  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EEADRH  
; MSByte of Program Address to read  
ADDRL  
;
EEADR  
; LSByte of Program Address to read  
; Bank 3  
STATUS, RP0  
EECON1, EEPGD  
EECON1, RD  
BSF  
; Point to PROGRAM memory  
; EEPROM Read  
Required  
Sequence  
BSF  
NOP  
NOP  
; memory is read in the next two cycles after BSF EECON1,RD  
;
BCF  
STATUS, RP0  
; Bank 2  
MOVF  
MOVF  
EEDATA, W  
EEDATH, W  
; W = LSByte of Program EEDATA  
; W = MSByte of Program EEDATA  
DS30292B-page 44  
1999 Microchip Technology Inc.  
PIC16F87X  
trol bit (EECON1<7>), and then set control bit WR  
(EECON1<1>). The sequence in Example 4-4 must be  
followed to initiate a write to program memory.  
4.6  
Writing to the FLASH Program  
Memory  
A word of the FLASH program memory may only be  
written to if the word is in a non-code protected seg-  
ment of memory and the WRT configuration bit is set.  
To write a FLASH program location, the first two bytes  
of the address must be written to the EEADR and  
EEADRH registers and two bytes of the data to the  
EEDATA and EEDATH registers, set the EEPGD con-  
The microcontroller will then halt internal operations  
during the next two instruction cycles for the TPEW  
(parameter D133) in which the write takes place. This  
is not SLEEP mode, as the clocks and peripherals will  
continue to run. Therefore, the two instructions follow-  
ing the “BSF EECON, WR” should be NOPinstructions.  
After the write cycle, the microcontroller will resume  
operation with the 3rd instruction after the EECON1  
write instruction.  
EXAMPLE 4-4: FLASH PROGRAM WRITE  
BSF  
STATUS, RP1  
STATUS, RP0  
ADDRH  
;
BCF  
; Bank 2  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EEADRH  
; MSByte of Program Address to read  
ADDRL  
;
EEADR  
; LSByte of Program Address to read  
DATAH  
;
EEDATH  
; MS Program Memory Value to write  
;
DATAL  
EEDATA  
; LS Program Memory Value to write  
; Bank 3  
STATUS, RP0  
EECON1, EEPGD  
EECON1, WREN  
BSF  
; Point to PROGRAM memory  
; Enable writes  
BSF  
BCF  
INTCON, GIE  
55h  
; Disable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
Required  
Sequence  
EECON2  
AAh  
; Write 55h  
;
EECON2  
EECON1, WR  
; Write AAh  
; Set WR bit to begin write  
NOP  
NOP  
; Instructions here are ignored by the microcontroller  
; Microcontroller will halt operation and wait for  
; a write complete. After the write  
; the microcontroller continues with 3rd instruction  
; Enable Interrupts  
BSF  
BCF  
INTCON, GIE  
EECON1, WREN  
; Disable writes  
4.7  
Write Verify  
Depending on the application, good programming prac-  
tice may dictate that the value written to the memory  
should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
Generally a write failure will be a bit which was written  
as a '1', but reads back as a '0' (due to leakage off the  
bit).  
1999 Microchip Technology Inc.  
DS30292B-page 45  
PIC16F87X  
4.8  
Protection Against Spurious Write  
4.9  
Operation during Code Protect  
4.8.1  
EEPROM DATA MEMORY  
Each reprogrammable memory block has its own code  
protect mechanism. External Read and Write opera-  
tions are disabled if either of these mechanisms are  
enabled.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
4.9.1  
DATA EEPROM MEMORY  
The microcontroller itself can both read and write to the  
internal Data EEPROM, regardless of the state of the  
code protect configuration bit.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
4.9.2  
PROGRAM FLASH MEMORY  
4.8.2  
PROGRAM FLASH MEMORY  
The microcontroller can read and execute instructions  
out of the internal FLASH program memory, regardless  
of the state of the code protect configuration bits. How-  
ever the WRT configuration bit and the code protect bits  
have different effects on writing to program memory.  
Table 4-1 shows the various configurations and status  
of reads and writes. To erase the WRT or code protec-  
tion bits in the configuration word requires that the  
device be fully erased.  
To protect against spurious writes to FLASH program  
memory, the WRT bit in the configuration word may be  
programmed to ‘0’ to prevent writes. The write initiate  
sequence must also be followed. WRT and the config-  
uration word cannot be programmed by user code, only  
through the use of an external programmer.  
TABLE 4-1:  
READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY  
Configuration Bits  
Internal  
Read  
Internal  
Write  
Memory Location  
ICSP Read ICSP Write  
CP1  
CP0  
WRT  
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
x
0
0
1
1
0
0
1
1
0
1
All program memory  
Unprotected areas  
Protected areas  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
No  
No  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Unprotected areas  
Protected areas  
Yes  
No  
Unprotected areas  
Protected areas  
Yes  
No  
Unprotected areas  
Protected areas  
Yes  
No  
All program memory  
All program memory  
Yes  
Yes  
TABLE 4-2:  
REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 000u  
10Bh, 18Bh  
10Dh  
10Fh  
10Ch  
10Eh  
18Ch  
18Dh  
8Dh  
EEADR  
EEPROM address register  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
x--- x000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
x--- u000  
EEADRH  
EEPROM address high  
EEDATA EEPROM data resister  
EEDATH  
EECON1  
EEPROM data resister high  
WRERR  
EEPGD  
WREN  
WR  
RD  
EECON2 EEPROM control resister2 (not a physical resister)  
PIE2  
PIR2  
(1)  
(1)  
EEIE  
EEIF  
BCLIE  
BCLIF  
CCP2IE  
CCP2IF  
-r-0 0--0  
-r-0 0--0  
-r-0 0--0  
-r-0 0--0  
0Dh  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented read as ’0’. Shaded cells are not used during FLASH/  
EEPROM access.  
Note 1: These bits are reserved; always maintain these bits clear.  
DS30292B-page 46  
1999 Microchip Technology Inc.  
PIC16F87X  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 5.2.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the watchdog timer. The pres-  
caler is not readable or writable. Section 5.3 details the  
operation of the prescaler.  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
5.1  
Timer0 Interrupt  
Additional information on the Timer0 module is available  
in the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (= FOSC/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
Pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set Flag Bit T0IF  
on Overflow  
PSA  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
1999 Microchip Technology Inc.  
DS30292B-page 47  
PIC16F87X  
module means that there is no prescaler for the watch-  
dog timer, and vice-versa. This prescaler is not readable  
or writable (see Figure 5-1).  
5.2  
Using Timer0 with an External Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>) deter-  
mine the prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF1, MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer. The prescaler is not  
readable or writable.  
5.3  
Prescaler  
Note: Writing to TMR0, when the prescaler is  
assigned to Timer0, will clear the prescaler  
count, but will not change the prescaler  
assignment.  
There is only one prescaler available, which is mutually  
exclusively shared between the Timer0 module and the  
watchdog timer. A prescaler assignment for the Timer0  
REGISTER 5-1: OPTION_REG REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1 R/W-1 R/W-1  
PSA PS2 PS1  
R/W-1  
PS0  
R
= Readable bit  
INTEDG  
W = Writable bit  
U
bit 7  
bit 0  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
RBPU  
INTEDG  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4:  
bit 3:  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note: To avoid an unintended device RESET, the instruction sequence shown in the PICmicro™ Mid-Range MCU  
Family Reference Manual (DS33023) must be executed when changing the prescaler assignment from  
Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.  
DS30292B-page 48  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
INTCON  
OPTION_REG RBPU INTEDG T0CS  
Timer0 module’s register  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
PS0 1111 1111 1111 1111  
0Bh,8Bh,  
10Bh,18Bh  
GIE PEIE T0IE  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
81h,181h  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
1999 Microchip Technology Inc.  
DS30292B-page 49  
PIC16F87X  
NOTES:  
DS30292B-page 50  
1999 Microchip Technology Inc.  
PIC16F87X  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
6.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L), which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal “reset input”. This reset can  
be generated by either of the two CCP modules  
(Section 8.0). Register 6-1 shows the Timer1 control  
register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored.  
Timer1 can operate in one of two modes:  
• As a timer  
• As a counter  
Additional information on timer modules is available in  
the PICmicro™ Mid-range MCU Family Reference  
Manual (DS33023).  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut off (The oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
1999 Microchip Technology Inc.  
DS30292B-page 51  
PIC16F87X  
6.1  
Timer1 Operation in Timer Mode  
6.2  
Timer1 Counter Operation  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
Timer1 may operate in asynchronous or usynchronous  
mode depnding on the setting of the TMR1CS bit.  
When Timer1 is being incremented via an external  
source, increments occur on a rising edge. After  
Timer1 is enabled in counter mode, the module must  
first have a falling edge before the counter begins to  
increment.  
FIGURE 6-1: TIMER1 INCREMENTING EDGE  
T1CKI  
(Default high)  
T1CKI  
(Default low)  
Note: Arrows indicate counter increments.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple-counter.  
6.3  
Timer1 Operation in Synchronized  
Counter Mode  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2, when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when  
bit T1OSCEN is cleared.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut off. The pres-  
caler however will continue to increment.  
FIGURE 6-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
clock input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
(2)  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
(2)  
RC1/T1OSI/CCP2  
2
Q Clock  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
2: For the PIC16F873/876, the Schmitt Trigger is not implemented in external clock mode.  
DS30292B-page 52  
1999 Microchip Technology Inc.  
PIC16F87X  
6.4  
Timer1 Operation in Asynchronous  
Counter Mode  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 6.4.1).  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In asynchronous counter mode, Timer1 can not be used  
as a time-base for capture or compare operations.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
6.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
Note 1: Higher capacitance increases the stability of  
oscillator but also increases the start-up time.  
2: Since each resonator/crystal has its own charac-  
teristics, the user should consult the resonator/  
crystal manufacturer for appropriate values of  
external components.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems, since  
the timer may overflow between the reads.  
6.6  
Resetting Timer1 using a CCP Trigger  
Output  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers, while  
the register is incrementing. This may produce an  
unpredictable value in the timer register.  
If the CCP1 or CCP2 module is configured in compare  
mode to generate “special event trigger”  
a
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1.  
Reading the 16-bit value requires some care. Examples  
12-2 and 12-3 in the PICmicro™ Mid-Range MCU Fam-  
ily Reference Manual (DS33023) show how to read and  
write Timer1 when it is running in asynchronous mode.  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
6.5  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for use with a 32 kHz crystal. Table 6-1 shows the  
capacitor selection for the Timer1 oscillator.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
6.7  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
TMR1H and TMR1L registers are not reset to 00h on a  
POR or any other reset except by the CCP1 and CCP2  
special event triggers.  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other resets, the register is  
unaffected.  
6.8  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
1999 Microchip Technology Inc.  
DS30292B-page 53  
PIC16F87X  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,  
18Bh  
(1)  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/874; always maintain these bits clear.  
DS30292B-page 54  
1999 Microchip Technology Inc.  
PIC16F87X  
7.1  
Timer2 Prescaler and Postscaler  
7.0  
TIMER2 MODULE  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module(s). The TMR2 reg-  
ister is readable and writable, and is cleared on any  
device reset.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (POR, MCLR reset, WDT reset  
or BOR)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
TMR2 is not cleared when T2CON is written.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
7.2  
Output of TMR2  
The output of TMR2 (before the postscaler) is fed to the  
SSPort module, which optionally uses it to generate  
shift clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
FIGURE 7-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
output (1)  
bit TMR2IF  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
Register 7-1 shows the Timer2 control register.  
Postscaler  
2
Comparator  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023).  
1:1 to 1:16  
EQ  
T2CKPS1:  
T2CKPS0  
4
PR2 reg  
T2OUTPS3:  
T2OUTPS0  
Note 1: TMR2 register output can be software selected  
by the SSP module as a baud clock.  
REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1999 Microchip Technology Inc.  
DS30292B-page 55  
PIC16F87X  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/874; always maintain these bits clear.  
DS30292B-page 56  
1999 Microchip Technology Inc.  
PIC16F87X  
CCP2 Module:  
8.0  
CAPTURE/COMPARE/PWM  
MODULES  
Capture/Compare/PWM Register1 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. The special event trigger is gen-  
erated by a compare match and will reset Timer1 and  
start an A/D conversion (if the A/D module is enabled).  
Each Capture/Compare/PWM (CCP) module contains  
a 16-bit register which can operate as a:  
• 16-bit Capture register  
• 16-bit Compare register  
• PWM master/slave Duty Cycle register  
Additional information on CCP modules is available in  
the PICmicro™ Mid-Range MCU Family Reference  
Manual (DS33023) and in Application Note 594, “Using  
the CCP Modules” (DS00594).  
Both the CCP1 and CCP2 modules are identical in  
operation, with the exception being the operation of the  
special event trigger. Table 8-1 and Table 8-2 show the  
resources and interactions of the CCP module(s). In  
the following sections, the operation of a CCP module  
is described with respect to CCP1. CCP2 operates the  
same as CCP1, except where noted.  
TABLE 8-1:  
CCP MODE - TIMER  
RESOURCES REQUIRED  
CCP Mode  
Timer Resource  
CCP1 Module:  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is gen-  
erated by a compare match and will reset Timer1.  
TABLE 8-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None.  
None.  
PWM  
1999 Microchip Technology Inc.  
DS30292B-page 57  
PIC16F87X  
REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit, read as  
‘0’  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCPxX:CCPxY: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits  
0000 = Capture/Compare/PWM off (resets CCPx module)  
0100 = Capture mode, every falling edge  
0101 = Capture mode, every rising edge  
0110 = Capture mode, every 4th rising edge  
0111 = Capture mode, every 16th rising edge  
1000 = Compare mode, set output on match (CCPxIF bit is set)  
1001 = Compare mode, clear output on match (CCPxIF bit is set)  
1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)  
1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets  
TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)  
11xx = PWM mode  
DS30292B-page 58  
1999 Microchip Technology Inc.  
PIC16F87X  
8.1.2  
TIMER1 MODE SELECTION  
8.1  
Capture Mode  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
• Every falling edge  
• Every rising edge  
8.1.3  
SOFTWARE INTERRUPT  
• Every 4th rising edge  
• Every 16th rising edge  
When the capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. The  
interrupt flag must be cleared in software. If another  
capture occurs before the value in register CCPR1 is  
read, the old captured value will be lost.  
8.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. Any reset will clear the  
prescaler counter.  
8.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a cap-  
ture condition.  
FIGURE 8-1: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
EXAMPLE 8-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW  
NEW_CAPT_PS ;Load the W reg with  
; the new precscaler  
Capture  
Enable  
and  
edge detect  
; move value and CCP ON  
TMR1H  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
CCP1CON<3:0>  
Q’s  
1999 Microchip Technology Inc.  
DS30292B-page 59  
PIC16F87X  
The special event trigger output of CCP2 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled).  
8.2  
Compare Mode  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: The special event trigger from the  
CCP1and CCP2 modules will not set inter-  
rupt flag bit TMR1IF (PIR1<0>).  
• Driven high  
• Driven low  
• Remains unchanged  
8.3  
PWM Mode (PWM)  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
In pulse width modulation mode, the CCPx pin pro-  
duces up to a 10-bit resolution PWM output. Since the  
CCP1 pin is multiplexed with the PORTC data latch, the  
TRISC<2> bit must be cleared to make the CCP1 pin  
an output.  
FIGURE 8-2: COMPARE MODE OPERATION  
BLOCK DIAGRAM  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>).  
Special Event Trigger  
Figure 8-3 shows a simplified block diagram of the CCP  
module in PWM mode.  
Set flag bit CCP1IF  
(PIR1<2>)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.3.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
FIGURE 8-3: SIMPLIFIED PWM BLOCK  
DIAGRAM  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
8.2.1  
CCP PIN CONFIGURATION  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
CCPR1H (Slave)  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
Q
R
S
Comparator  
8.2.2  
TIMER1 MODE SELECTION  
RC2/CCP1  
(Note 1)  
TMR2  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
8.2.3  
SOFTWARE INTERRUPT MODE  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCPIF bit is set causing  
a CCP interrupt (if enabled).  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
8.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
DS30292B-page 60  
1999 Microchip Technology Inc.  
PIC16F87X  
A PWM output (Figure 8-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 8-4: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period  
FOSC  
log( )  
FPWM  
Resolution  
bits  
=
Duty Cycle  
TMR2 = PR2  
log(2)  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
8.3.3  
SET-UP FOR PWM OPERATION  
8.3.1  
PWM PERIOD  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
1. Set the PWM period by writing to the PR2 register.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 8.1) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
8.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
Tosc • (TMR2 prescale value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
1999 Microchip Technology Inc.  
DS30292B-page 61  
PIC16F87X  
TABLE 8-3:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON  
CCPR2L  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
CCP2CON CCP2X CCP2Y  
xxxx xxxx uuuu uuuu  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSP is not implemented on the PIC16F873/876; always maintain these bits clear.  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
CCP1IF TMR2IF TMR1IF  
0000 0000 0000 0000  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
PIR2  
CCP2IF ---- ---0 ---- ---0  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE  
0000 0000 0000 0000  
---- ---0 ---- ---0  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
PIE2  
CCP2IE  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 module’s register  
Timer2 module’s period register  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM register1 (LSB)  
CCPR1H Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CCPR2L Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
DS30292B-page 62  
1999 Microchip Technology Inc.  
PIC16F87X  
9.0  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
2
• Inter-Integrated Circuit (I C)  
Figure 9-1 shows a block diagram for the SPI mode,  
while Figure 9-5 and Figure 9-9 show the block dia-  
2
grams for the two different I C modes of operation.  
1999 Microchip Technology Inc.  
DS30292B-page 63  
PIC16F87X  
REGISTER 9-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)  
R/W-0 R/W-0  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ‘0’  
SMP  
bit7  
CKE  
R/W  
bit0  
- n = Value at POR reset  
bit 7:  
SMP: Sample bit  
SPI Master Mode  
1 = Input data sampled at end of data output time  
0 = Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
In I2C master or slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high speed mode (400 kHz)  
bit 6:  
CKE: SPI Clock Edge Select (Figure 9-4, Figure 9-5 and Figure 9-6)  
SPI Mode:  
CKP = 0  
1 = Transmit happens on transistion from active clock state to idle clock state  
0 = Transmit happens on transistion from idle clock state to active clock state  
CKP = 1  
1 = Data transmitted on falling edge of SCK  
0 = Data transmitted on rising edge of SCK  
In I2C Master or Slave Mode:  
1 = Input levels conform to SMBUS spec  
0 = Input levels conform to I2C specs  
bit 5:  
bit 4:  
D/A: Data/Address bit (I2C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
P: Stop bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
bit 3:  
bit 2:  
S: Start bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to  
the next start bit, stop bit or not ACK bit.  
In I2C slave mode:  
1 = Read  
0 = Write  
In I2C master mode:  
1 = Transmit is in progress  
0 = Transmit is not in progress.  
Or’ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in IDLE mode.  
bit 1:  
bit 0:  
UA: Update Address (10-bit I2C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
Transmit (I2C mode only)  
1 = Data Transmit in progress (does not include the ACK and stop bits), SSPBUF is full  
0 = Data Transmit complete (does not include the ACK and stop bits), SSPBUF is empty  
DS30292B-page 64  
1999 Microchip Technology Inc.  
PIC16F87X  
REGISTER 9-2:  
SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
SSPOV  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ‘0’  
WCOL  
bit7  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit0  
- n = Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
Master Mode:  
2
1 = A write to SSPBUF was attempted while the I C conditions were not valid  
0 = No collision  
Slave Mode:  
1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. . In  
slave mode the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In master  
mode the overflow bit is not set since each operation is initiated by writing to the SSPBUF register. (Must  
be cleared in software).  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don’t care" in trans-  
mit mode. (Must be cleared in software).  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode, when enabled, these pins must be properly configured as input or output.  
1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode, when enabled, these pins must be properly configured as input or output.  
1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level  
0 = Idle state for clock is a low level  
2
In I C slave mode, SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
2
In I C master mode  
Unused in this mode  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000 = SPI master mode, clock = FOSC/4  
0001 = SPI master mode, clock = FOSC/16  
0010 = SPI master mode, clock = FOSC/64  
0011 = SPI master mode, clock = TMR2 output/2  
0100 = SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101 = SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110 = I C slave mode, 7-bit address  
2
0111 = I C slave mode, 10-bit address  
2
1000 = I C master mode, clock = FOSC / (4 * (SSPADD+1) )  
2
1011 = I C firmware controlled master mode (slave idle)  
2
1110 = I C firmware controlled master mode, 7-bit address with start and stop bit interrupts enabled  
2
1111 = I C firmware controlled master mode, 10-bit address with start and stop bit interrupts enabled.  
1001, 1010, 1100, 1101 = reserved  
1999 Microchip Technology Inc.  
DS30292B-page 65  
PIC16F87X  
REGISTER 9-3: SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS 91h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
R =Readable bit  
W = Writable bit  
U = Unimplemented bit,  
Read as ‘0’  
GCEN  
bit7  
ACKSTAT  
ACKDT  
ACKEN  
SEN  
bit0  
- n =Value at POR reset  
2
bit 7:  
bit 6:  
GCEN: General Call Enable bit (In I C slave mode only)  
1 = Enable interrupt when a general call address (0000h) is received in the SSPSR.  
0 = General call address disabled.  
2
ACKSTAT: Acknowledge Status bit (In I C master mode only)  
In master transmit mode:  
1 = Acknowledge was not received from slave  
0 = Acknowledge was received from slave  
2
bit 5:  
bit 4:  
ACKDT: Acknowledge Data bit (In I C master mode only)  
In master receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
1 = Not Acknowledge  
0 = Acknowledge  
2
ACKEN: Acknowledge Sequence Enable bit (In I C master mode only).  
In master receive mode:  
1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically  
cleared by hardware.  
0 = Acknowledge sequence idle  
2
bit 3:  
RCEN: Receive Enable bit (In I C master mode only).  
2
1 = Enables Receive mode for I C  
0 = Receive idle  
2
bit 2:  
PEN: Stop Condition Enable bit (In I C master mode only).  
SCK release control  
1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0 = Stop condition idle  
2
bit 1: RSEN: Repeated Start Condition Enabled bit (In I C master mode only)  
1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0 = Repeated Start condition idle.  
2
bit 0: SEN: Start Condition Enabled bit (In I C master mode only)  
1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0 = Start condition idle.  
2
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I C module is not in the idle mode, this bit may not  
be set (no spooling), and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  
DS30292B-page 66  
1999 Microchip Technology Inc.  
PIC16F87X  
9.1  
SPI Mode  
FIGURE 9-1: MSSP BLOCK DIAGRAM  
(SPI MODE)  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
SSPBUF reg  
SSPSR reg  
Additionally, a fourth pin may be used when in a slave  
mode of operation:  
Shift  
Clock  
SDI  
bit0  
• Slave Select (SS)  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
SDO  
Control  
Enable  
SS  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
SS  
Edge  
Select  
• Data input sample phase  
(middle or end of data output time)  
2
Clock Select  
• Clock edge  
(output data on rising/falling edge of SCK)  
SSPM3:SSPM0  
SMP:CKE  
• Clock Rate (Master mode only)  
4
TMR2 output  
2
2
• Slave Select Mode (Slave mode only)  
Edge  
Select  
Figure 9-4 shows the block diagram of the MSSP mod-  
ule when in SPI mode.  
TOSC  
Prescaler  
4, 16, 64  
SCK  
Data to TX/RX in SSPSR  
Data direction bit  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
isters, and then set bit SSPEN. This configures the  
SDI, SDO, SCK and SS pins as serial port pins. For the  
pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed. That is:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
1999 Microchip Technology Inc.  
DS30292B-page 67  
PIC16F87X  
9.1.1  
MASTER MODE  
Figure 9-6, Figure 9-8 and Figure 9-9 where the MSb is  
transmitted first. In master mode, the SPI clock rate (bit  
rate) is user programmable to be one of the following:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 9-5) is to broad-  
cast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI  
module is only going to receive, the SDO output could  
be disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “line activity monitor”.  
This allows a maximum bit clock frequency (at 20 MHz)  
of 5.0 MHz.  
Figure 9-6 shows the waveforms for Master mode.  
When CKE = 1, the SDO data is valid before there is a  
clock edge on SCK. The change of the input sample is  
shown based on the state of the SMP bit. The time  
when the SSPBUF is loaded with the received data is  
shown.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
FIGURE 9-2: SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
DS30292B-page 68  
1999 Microchip Technology Inc.  
PIC16F87X  
9.1.2  
SLAVE MODE  
While in sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from sleep.  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Note: When the SPI module is in Slave Mode  
with SS pin control enabled, (SSP-  
CON<3:0> = 0100) the SPI module will  
reset if the SS pin is set to VDD.  
While in slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
Note: If the SPI is used in Slave Mode with  
CKE = '1', then SS pin control must be  
enabled.  
FIGURE 9-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
FIGURE 9-4: SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
1999 Microchip Technology Inc.  
DS30292B-page 69  
PIC16F87X  
TABLE 9-1  
Address  
REGISTERS ASSOCIATED WITH SPI OPERATION  
POR,  
BOR  
MCLR,  
WDT  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
13h  
14h  
94h  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
PIE1  
SSPBUF  
SSPCON  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
0000 0000 0000 0000  
0000 0000 0000 0000  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: These bits are reserved on the 28-pin devices; always maintain these bits clear.  
DS30292B-page 70  
1999 Microchip Technology Inc.  
PIC16F87X  
2
Two pins are used for data transfer. These are the SCL  
pin, which is the clock, and the SDA pin, which is the  
data. The SDA and SCL pins are automatically config-  
ured when the I C mode is enabled. The SSP module  
functions are enabled by setting SSP Enable bit  
SSPEN (SSPCON<5>).  
9.2  
MSSP I C Operation  
2
The MSSP module in I C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts-on-start and stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
2
2
The MSSP module has six registers for I C operation.  
They are the:  
• SSP Control Register (SSPCON)  
• SSP Control Register2 (SSPCON2)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
Refer to Application Note AN578, "Use of the SSP  
Module in the I C Multi-Master Environment."  
2
A "glitch" filter is on the SCL and SDA pins when the pin  
is an input. This filter operates in both the 100 kHz and  
400 kHz modes. In the 100 kHz mode, when these pins  
are an output, there is a slew rate control of the pin that  
is independant of device frequency.  
• SSP Address Register (SSPADD)  
2
The SSPCON register allows control of the I C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I C modes to be selected:  
2
FIGURE 9-5: I C SLAVE MODE BLOCK  
2
DIAGRAM  
2
• I C Slave mode (7-bit address)  
Internal  
Data Bus  
2
• I C Slave mode (10-bit address)  
2
• I C Master mode, clock = OSC/4 (SSPADD +1)  
Read  
Write  
2
Before selecting any I C mode, the SCL and SDA pins  
must be programmed to inputs by setting the appropri-  
ate TRIS bits. Selecting an I C mode, by setting the  
SSPBUF reg  
SSPSR reg  
2
SCL  
SDA  
SSPEN bit, enables the SCL and SDA pins to be used  
Shift  
Clock  
2
as the clock and data lines in I C mode.  
The CKE bit (SSPSTAT<6:7>) sets the levels of the  
SDA and SCL pins in either master or slave mode.  
When CKE = 1, the levels will conform to the SMBUS  
specification. When CKE = 0, the levels will conform to  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
2
the I C specification.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
1999 Microchip Technology Inc.  
DS30292B-page 71  
PIC16F87X  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START (S) or STOP (P) bit, specifies if the received  
byte was data or address, if the next byte is the comple-  
tion of 10-bit address, and if this will be a read or write  
data transfer.  
9.2.1.1  
ADDRESSING  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
SSPBUF is the register to which the transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
a) The SSPSR register value is loaded into the  
SSPBUF register on the falling edge of the 8th  
SCL pulse.  
b) The buffer full bit, BF, is set on the falling edge of  
the 8th SCL pulse.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set  
(interrupt is generated if enabled) on the falling  
edge of the 9th SCL pulse.  
The SSPADD register holds the slave address. In 10-bit  
mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address the first byte would equal  
1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for a 10-bit  
address is as follows, with steps 7- 9 for slave-transmit-  
ter:  
9.2.1  
SLAVE MODE  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs. The MSSP module will override the  
input state with the output data when required (slave-  
transmitter).  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF and UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with the second  
(low) byte of Address (clears bit UA and  
releases the SCL line).  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF and UA are set).  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
5. Update the SSPADD register with the first (high)  
byte of Address. This will clear bit UA and  
release the SCL line.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
If the BF bit is set, the SSPSR register value is not  
loaded into the SSPBUF, but bit SSPIF and SSPOV are  
set. Table 9-2 shows what happens when a data trans-  
fer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister, while bit SSPOV is cleared through software.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I C specification, as well as the requirement of  
the MSSP module, is shown in timing parameter #100  
and parameter #101 of the electrical specifications.  
Note: Following the Repeated Start condition  
(step 7) in 10-bit mode, the user only  
needs to match the first 7-bit address. The  
user does not update the SSPADD for the  
second half of the address.  
2
DS30292B-page 72  
1999 Microchip Technology Inc.  
PIC16F87X  
9.2.1.2  
SLAVE RECEPTION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the received byte.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
Note: The SSPBUF will be loaded if the SSPOV  
bit is set and the BF flag is cleared. If a  
read of the SSPBUF was performed, but  
the user did not clear the state of the  
SSPOV bit before the next receive  
occurred, the ACK is not sent and the SSP-  
BUF is updated.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
TABLE 9-2  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Ye s  
No  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
9.2.1.3  
SLAVE TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. The SSPIF flag bit must be cleared in software  
and the SSPSTAT register is used to determine the sta-  
tus of the byte transfer. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and the SCL pin is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register. Then the  
SCL pin should be enabled by setting bit CKP (SSP-  
CON<4>). The master must monitor the SCL pin prior  
to asserting another clock pulse. The slave devices  
may be holding off the master by stretching the clock.  
The eight data bits are shifted out on the falling edge of  
the SCL input. This ensures that the SDA signal is valid  
during the SCL high time (Figure 9-7).  
As a slave-transmitter, the ACK pulse from the master  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line is high (not ACK), then the  
data transfer is complete. When the not ACK is latched  
by the slave, the slave logic is reset and the slave then  
monitors for another occurrence of the START bit. If the  
SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Then the SCL pin should be enabled  
by setting the CKP bit.  
2
FIGURE 9-6: I C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W=0  
ACK  
Not  
Receiving Address  
A7 A6 A5 A4  
Receiving Data  
Receiving Data  
ACK  
ACK  
D5  
D2  
6
D0  
8
D5  
D2  
D0  
8
SDA  
A3 A2 A1  
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
9
5
4
7
1
2
4
9
3
6
9
5
1
2
3
6
1
2
4
8
5
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1999 Microchip Technology Inc.  
DS30292B-page 73  
PIC16F87X  
2
FIGURE 9-7: I C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Not ACK  
R/W = 1  
Receiving Address  
Transmitting Data  
ACK  
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
CKP (SSPCON<4>)  
cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
9.2.2  
GENERAL CALL ADDRESS SUPPORT  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit), the  
SSPIF flag is set.  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF to determine if the address was device spe-  
cific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when GCEN is set while the slave is config-  
ured in 10-bit address mode, then the second half of  
the address is not necessary, the UA bit will not be set,  
and the slave will begin receiving data after the  
acknowledge (Figure 9-8).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a start-bit detect, 8-bits are shifted  
into SSPSR and the address is compared against  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 9-8: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)  
Address is compared to General Call Address  
after ACK, set interrupt flag  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
9
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPIF  
BF  
(SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV  
(SSPCON<6>)  
'0'  
'1'  
GCEN  
(SSPCON2<7>)  
DS30292B-page 74  
1999 Microchip Technology Inc.  
PIC16F87X  
9.2.3  
SLEEP OPERATION  
9.2.4  
EFFECTS OF A RESET  
2
While in sleep mode, the I C module can receive  
addresses or data. When an address match or com-  
plete byte transfer occurs, wake the processor from  
sleep (if the SSP interrupt is enabled).  
A reset disables the SSP module and terminates the  
current transfer.  
2
TABLE 9-3  
Address  
REGISTERS ASSOCIATED WITH I C OPERATION  
POR,  
BOR  
MCLR,  
WDT  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
0Dh  
8Dh  
13h  
14h  
91h  
94h  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
(2)  
RCIF  
RCIE  
TXIF  
TXIE  
EEIF  
EEIE  
SSPIF  
SSPIE  
BCLIF  
BCLIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIE1  
PIR2  
CCP2IF -r-0 0--0 -r-0 0--0  
CCP2IE -r-0 0--0 -r-0 0--0  
xxxx xxxx uuuu uuuu  
PIE2  
(2)  
SSPBUF  
SSPCON  
SSPCON2  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
GCEN  
SMP  
SSPOV  
ACKSTAT  
CKE  
SSPEN  
ACKDT  
D/A  
CKP  
ACKEN  
P
SSPM3 SSPM2  
SSPM1  
RSEN  
UA  
SSPM0 0000 0000 0000 0000  
RCEN  
S
PEN  
R/W  
SEN  
0000 0000 0000 0000  
0000 0000 0000 0000  
BF  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in I2C mode.  
Note 1: These bits are reserved on the 28-pin devices; always maintain these bits clear.  
2: These bits are reserved on these devices; always maintain these bits clear.  
1999 Microchip Technology Inc.  
DS30292B-page 75  
PIC16F87X  
9.2.5  
MASTER MODE  
In master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a reset or when the MSSP module is dis-  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt if enabled):  
• START condition  
2
abled. Control of the I C bus may be TACKEN when the  
• STOP condition  
P bit is set, or the bus is idle with both the S and P bits  
clear.  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
2
FIGURE 9-9: SSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0,  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
Shift  
Clock  
SDA  
SDA in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit detect,  
Stop bit detect  
Write collision detect  
Clock Arbitration  
State counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
DS30292B-page 76  
1999 Microchip Technology Inc.  
PIC16F87X  
2
9.2.6  
MULTI-MASTER MODE  
9.2.7.1  
I C MASTER MODE OPERATION  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a reset or  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
Start condition. Since the Repeated Start condition is  
2
2
when the MSSP module is disabled. Control of the I C  
also the beginning of the next serial transfer, the I C  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
bus will not be released.  
In Master Transmitter mode serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic '0'. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
In multi-master operation, the SDA line must be moni-  
tored for abitration to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
• Address Transfer  
In Master receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic '1'. Thus the first byte transmitted is a 7-bit slave  
address followed by a '1' to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
• Data Transfer  
• A Start Condition  
• A Repeated Start Condition  
• An Acknowledge Condition  
2
9.2.7  
I C MASTER MODE SUPPORT  
Master Mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once master mode is enabled, the user  
has six options.  
The baud rate generator used for SPI mode operation  
is now used to set the SCL clock frequency for either  
-
-
Assert a start condition on SDA and SCL.  
Assert a Repeated Start condition on SDA and  
SCL.  
2
100 kHz, 400 kHz or 1 MHz I C operation. The baud  
rate generator reload value is contained in the lower 7  
bits of the SSPADD register. The baud rate generator  
will automatically begin counting on a write to the SSP-  
BUF. Once the given operation is complete (i.e. trans-  
mission of the last data bit is followed by ACK) the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state  
-
Write to the SSPBUF register initiating trans-  
mission of data/address.  
-
-
-
Generate a stop condition on SDA and SCL.  
Configure the I C port to receive data.  
Generate an Acknowledge condition at the end  
of a received byte of data.  
2
A typical transmit sequence would go as follows:  
2
Note: The MSSP Module, when configured in I C  
Master Mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a start condition and  
immediately write the SSPBUF register to  
initiate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
a) The user generates a Start Condition by setting  
the START enable bit (SEN) in SSPCON2.  
b) SSPIF is set. The module will wait the required  
start time before any other operation takes  
place.  
c) The user loads the SSPBUF with address to  
transmit.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
e) The MSSP Module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register ( SSPCON2<6>).  
f) The module generates an interrupt at the end of  
the ninth clock cycle by setting SSPIF.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) DATA is shifted out the SDA pin until all 8 bits  
are transmitted.  
1999 Microchip Technology Inc.  
DS30292B-page 77  
PIC16F87X  
i) The MSSP module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register ( SSPCON2<6>).  
In I2C master mode, the BRG is reloaded automatically.  
If Clock Arbitration is taking place for instance, the BRG  
will be reloaded when the SCL pin is sampled high  
(Figure 9-11).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
FIGURE 9-10: BAUD RATE GENERATOR  
BLOCK DIAGRAM  
k) The user generates a STOP condition by setting  
the STOP enable bit PEN in SSPCON2.  
SSPM3:SSPM0  
SSPADD<6:0>  
l) Interrupt is generated once the STOP condition  
is complete.  
9.2.8  
BAUD RATE GENERATOR  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
2
In I C master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 9-10). When the BRG is loaded with this value,  
the BRG counts down to 0 and stops until another  
reload has taken place. The BRG count is decremented  
twice per instruction cycle (TCY), on the Q2 and Q4  
clock.  
FOSC/4  
BRG Down Counter  
CLKOUT  
FIGURE 9-11: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements  
(on Q2 and Q4 cycles)  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place, and BRG starts its count.  
BRG  
reload  
DS30292B-page 78  
1999 Microchip Technology Inc.  
PIC16F87X  
2
9.2.9  
I C MASTER MODE START CONDITION  
TIMING  
Note: If at the beginning of START condition the  
SDA and SCL pins are already sampled  
low, or if during the START condition the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag (BCLIF) is set,  
the START condition is aborted, and the  
To initiate a START condition, the user sets the start  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is re-loaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the baud rate generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the START condition,  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware. The baud rate generator is suspended  
leaving the SDA line held low, and the START condition  
is complete.  
2
I C module is reset into its IDLE state.  
9.2.9.1  
WCOL STATUS FLAG  
If the user writes the SSPBUF when an START  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
FIGURE 9-12: FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here.  
SDA = 1,  
At completion of start bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st Bit 2nd Bit  
SDA  
TBRG  
SCL  
TBRG  
S
1999 Microchip Technology Inc.  
DS30292B-page 79  
PIC16F87X  
2
9.2.10 I C MASTER MODE REPEATED START  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
CONDITION TIMING  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I C mod-  
2
ule is in the idle state. When the RSEN bit is set, the  
SCL pin is asserted low. When the SCL pin is sampled  
low, the baud rate generator is loaded with the contents  
of SSPADD<6:0> and begins counting. The SDA pin is  
released (brought high) for one baud rate generator  
count (TBRG). When the baud rate generator times out  
if SDA is sampled high, the SCL pin will be deasserted  
(brought high). When SCL is sampled high the baud  
rate generator is reloaded with the contents of  
SSPADD<6:0> and begins counting. SDA and SCL  
must be sampled high for one TBRG. This action is then  
followed by assertion of the SDA pin (SDA is low) for  
one TBRG, while SCL is high. Following this, the RSEN  
bit in the SSPCON2 register will be automatically  
cleared and the baud rate generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
not beset until the baud rate generator hastimed-out.  
9.2.10.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
Note 2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is asserted  
low. This may indicate that another  
master is attempting to transmit a  
data "1".  
FIGURE 9-13: REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
SDA = 1,  
SCL = 1  
occurs here.  
At completion of start bit,  
hardware clear RSEN bit  
and set SSPIF  
SDA = 1,  
SCL(no change)  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS30292B-page 80  
1999 Microchip Technology Inc.  
PIC16F87X  
2
9.2.11 I C MASTER MODE TRANSMISSION  
9.2.11.3 ACKSTAT STATUS FLAG  
Transmission of a data byte, a 7-bit address or either  
half of a 10-bit address is accomplished by simply writ-  
ing a value to SSPBUF register. This action will set the  
buffer full flag (BF) and allow the baud rate generator to  
begin counting and start the next transmission. Each  
bit of address/data will be shifted out onto the SDA pin  
after the falling edge of SCL is asserted (see data hold  
time spec). SCL is held low for one baud rate gener-  
ator rollover count (TBRG). Data should be valid before  
SCL is released high (see data setup time spec).  
When the SCL pin is released high, it is held that way  
for TBRG. The data on the SDA pin must remain stable  
for that duration and some hold time after the next fall-  
ing edge of SCL. After the eighth bit is shifted out (the  
falling edge of the eighth clock), the BF flag is cleared  
and the master releases SDA allowing the slave device  
being addressed to respond with an ACK bit during the  
ninth bit time, if an address match occurs or if data was  
received properly. The status of ACK is read into the  
ACKDT on the falling edge of the ninth clock. If the  
master receives an acknowledge, the acknowledge  
status bit (ACKSTAT) is cleared. If not, the bit is set.  
After the ninth clock, the SSPIF is set and the master  
clock (baud rate generator) is suspended until the next  
data byte is loaded into the SSPBUF, leaving SCL low  
and SDA unchanged (Figure 9-14).  
In transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an acknowledge  
(ACK = 0), and is set when the slave does not acknowl-  
edge (ACK = 1). A slave sends an acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin allowing the slave to respond with an  
acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared, and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
9.2.11.1 BF STATUS FLAG  
In transmit mode, the BF bit (SSPSTAT<0>) is set when  
the CPU writes to SSPBUF and is cleared when all 8  
bits are shifted out.  
9.2.11.2 WCOL STATUS FLAG  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e. SSPSR is still shifting out a  
data byte), then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
1999 Microchip Technology Inc.  
DS30292B-page 81  
PIC16F87X  
2
FIGURE 9-14: I C MASTER MODE TIMING (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS30292B-page 82  
1999 Microchip Technology Inc.  
PIC16F87X  
2
9.2.12 I C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note: The SSP module must be in an IDLE  
STATE before the RCEN bit is set or the  
RCEN bit will be disregarded.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to  
low/low to high), and data is shifted into the SSPSR.  
After the falling edge of the eighth clock, the receive  
enable flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag is set,  
the SSPIF is set, and the baud rate generator is sus-  
pended from counting, holding SCL low. The SSP is  
now in IDLE state, awaiting the next command. When  
the buffer is read by the CPU, the BF flag is automati-  
cally cleared. The user can then send an acknowledge  
bit at the end of reception, by setting the acknowledge  
sequence enable bit, ACKEN (SSPCON2<4>).  
9.2.12.1 BF STATUS FLAG  
In receive operation, BF is set when an address or data  
byte is loaded into SSPBUF from SSPSR. It is cleared  
when SSPBUF is read.  
9.2.12.2 SSPOV STATUS FLAG  
In receive operation, SSPOV is set when 8 bits are  
received into the SSPSR, and the BF flag is already set  
from a previous reception.  
9.2.12.3 WCOL STATUS FLAG  
If the user writes the SSPBUF when a receive is  
already in progress (i.e. SSPSR is still shifting in a data  
byte), then WCOL is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
1999 Microchip Technology Inc.  
DS30292B-page 83  
PIC16F87X  
2
FIGURE 9-15: I C MASTER MODE TIMING (RECEPTION 7-BIT ADDRESS)  
DS30292B-page 84  
1999 Microchip Technology Inc.  
PIC16F87X  
9.2.13 ACKNOWLEDGE SEQUENCE TIMING  
the baud rate generator counts for TBRG. The SCL pin  
is then pulled low. Following this, the ACKEN bit is auto-  
matically cleared, the baud rate generator is turned off,  
and the SSP module then goes into IDLE mode.  
(Figure 9-16)  
An acknowledge sequence is enabled by setting the  
acknowledge  
sequence  
enable  
bit,  
ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the acknowledge data  
bit is presented on the SDA pin. If the user wishes to  
generate an acknowledge, the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit  
before starting an acknowledge sequence. The baud  
rate generator then counts for one rollover period  
9.2.13.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when an acknowledege  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
(T  
), and the SCL pin is deasserted (pulled high).  
BRG  
When the SCL pin is sampled high (clock arbitration),  
FIGURE 9-16: ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of acknowledge sequence  
Note: TBRG = one baud rate generator period.  
1999 Microchip Technology Inc.  
DS30292B-page 85  
PIC16F87X  
9.2.14 STOP CONDITION TIMING  
while SCL is high, the P bit (SSPSTAT<4>) is set. A  
TBRG later, the PEN bit is cleared and the SSPIF bit is  
set (Figure 9-17).  
A stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit PEN (SSPCON2<2>). At the end of a receive/trans-  
mit, the SCL line is held low after the falling edge of the  
ninth clock. When the PEN bit is set, the master will  
assert the SDA line low . When the SDA line is sam-  
pled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high, and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be deasserted. When the SDA pin is sampled high  
Whenever the firmware decides to take control of the  
bus, it will first determine if the bus is busy by checking  
the S and P bits in the SSPSTAT register. If the bus is  
busy, then the CPU can be interrupted (notified) when  
a Stop bit is detected (i.e. bus is free).  
9.2.14.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
FIGURE 9-17: STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup stop condition.  
Note: TBRG = one baud rate generator period.  
DS30292B-page 86  
1999 Microchip Technology Inc.  
PIC16F87X  
9.2.15 CLOCK ARBITRATION  
9.2.16 SLEEP OPERATION  
2
Clock arbitration occurs when the master, during any  
receive, transmit, or repeated start/stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count in the event that the clock  
is held low by an external device (Figure 9-18).  
While in sleep mode, the I C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor from  
sleep (if the SSP interrupt is enabled).  
9.2.17 EFFECTS OF A RESET  
A reset disables the SSP module and terminates the  
current transfer.  
FIGURE 9-18: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1 Load BRG with  
SSPADD<6:0>, and start count  
to measure high time interval  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SDA  
SCL line sampled once every machine cycle (TOSC 4).  
Hold off BRG until SCL is sampled high.  
TBRG  
TBRG  
TBRG  
1999 Microchip Technology Inc.  
DS30292B-page 87  
PIC16F87X  
9.2.18 MULTI -MASTER COMMUNICATION, BUS  
COLLISION, AND BUS ARBITRATION  
If a START, Repeated Start, STOP or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are deasserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user  
services the bus collision interrupt service routine, and  
if the I2C bus is free, the user can resume communica-  
tion by asserting a START condition.  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a '1' and the data sampled on the SDA pin = '0',  
a bus collision has TACKEN place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
The Master will continue to monitor the SDA and SCL  
pins, and if a STOP condition occurs, the SSPIF bit will  
be set.  
2
I C port to its IDLE state. (Figure 9-19).  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted, and  
the SSPBUF can be written to. When the user services  
In multi-master mode, the interrupt generation on the  
detection of start and stop conditions allows the deter-  
2
2
the bus collision interrupt service routine, and if the I C  
mination of when the bus is free. Control of the I C bus  
bus is free, the user can resume communication by  
asserting a START condition.  
can be TACKEN when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
FIGURE 9-19: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt.  
BCLIF  
DS30292B-page 88  
1999 Microchip Technology Inc.  
PIC16F87X  
9.2.18.1 BUS COLLISION DURING A START  
CONDITION  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data '1' during the START condition.  
During a START condition, a bus collision occurs if:  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 9-22). If however a '1' is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0. During this time, if the SCL pins are  
sampled as '0', a bus collision does not occur. At the  
end of the BRG count ,the SCL pin is asserted low.  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 9-20).  
b) SCL is sampled low before SDA is asserted low.  
(Figure 9-21).  
During a START condition both the SDA and the SCL  
pins are monitored.  
If:  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, REPEATED  
START or STOP conditions.  
the SDA pin is already low  
or the SCL pin is already low,  
then:  
the START condition is aborted,  
and the BCLIF flag is set,  
and the SSP module is reset to its IDLE state  
(Figure 9-20).  
The START condition begins with the SDA and SCL  
pins deasserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
FIGURE 9-20: BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
SDA  
SCL  
Set SEN, enable start  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into idle state.  
SEN  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
1999 Microchip Technology Inc.  
DS30292B-page 89  
PIC16F87X  
FIGURE 9-21: BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, Set BCLIF.  
SCL = 0 before BRG time out,  
Bus collision occurs, Set BCLIF.  
BCLIF  
Interrupts cleared  
in software.  
S
'0'  
'0'  
'0'  
'0'  
SSPIF  
FIGURE 9-22: BRG RESET DUE TO SDA COLLISION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA  
SDA  
SCL  
s
SCL pulled low after BRG  
Timeout  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
'0'  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software.  
SDA = 0, SCL = 1  
Set SSPIF  
DS30292B-page 90  
1999 Microchip Technology Inc.  
PIC16F87X  
9.2.18.2 BUS COLLISION DURING A REPEATED  
START CONDITION  
sampled high, the BRG is reloaded and begins count-  
ing. If SDA goes from high to low before the BRG times  
out, no bus collision occurs, because no two masters  
can assert SDA at exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
If, however, SCL goes from high to low before the BRG  
times out and SDA has not already been asserted, a  
bus collision occurs. In this case, another master is  
attempting to transmit a data ’1’ during the Repeated  
Start condition.  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
If at the end of the BRG time out both SCL and SDA are  
still high, the SDA pin is driven low, the BRG is reloaded  
and begins counting. At the end of the count, regard-  
less of the status of the SCL pin, the SCL pin is driven  
low and the Repeated Start condition is complete  
(Figure 9-23).  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to 0. The SCL pin is then deasserted, and  
when sampled high, the SDA pin is sampled. If SDA is  
low, a bus collision has occurred (i.e. another master is  
attempting to transmit a data ’0’). If however SDA is  
FIGURE 9-23: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL  
RSEN  
BCLIF  
Cleared in software  
'0'  
'0'  
'0'  
S
'0'  
SSPIF  
FIGURE 9-24: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
Set BCLIF. Release SDA and SCL  
BCLIF  
RSEN  
Interrupt cleared  
in software  
'0'  
'0'  
'0'  
'0'  
S
SSPIF  
1999 Microchip Technology Inc.  
DS30292B-page 91  
PIC16F87X  
9.2.18.3 BUS COLLISION DURING A STOP  
CONDITION  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allow to float.  
When the pin is sampled high (clock arbitration), the  
baud rate generator is loaded with SSPADD<6:0> and  
counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data '0'. If the SCL pin is sampled low before  
SDA is allowed to float high, a bus collision occurs.  
This is a case of another master attempting to drive a  
data '0' (Figure 9-25).  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 9-25: BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
Set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
'0'  
'0'  
'0'  
'0'  
SSPIF  
FIGURE 9-26: BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
'0'  
'0'  
SSPIF  
DS30292B-page 92  
1999 Microchip Technology Inc.  
PIC16F87X  
2
example, with a supply voltage of VDD = 5V+10% and  
9.3  
Connection Considerations for I C  
Bus  
VOL max = 0.4V at 3 mA, R  
= (5.5-0.4)/0.003 =  
p min  
1.7 kΩ. VDD as a function of R is shown in Figure 9-27.  
p
2
For standard-mode I C bus devices, the values of  
The desired noise margin of 0.1VDD for the low level  
resistors R and R in Figure 9-27 depend on the fol-  
limits the maximum value of R . Series resistors are  
p
s
s
lowing parameters:  
optional and used to improve ESD susceptibility.  
• Supply voltage  
• Bus capacitance  
The bus capacitance is the total capacitance of wire,  
connections, and pins. This capacitance limits the max-  
• Number of connected devices  
(input current + leakage current).  
imum value of R due to the specified rise time  
(Figure 9-27).  
p
The supply voltage limits the minimum value of resistor  
The SMP bit is the slew rate control enabled bit. This bit  
is in the SSPSTAT register, and controls the slew rate  
of the I/O pins when in I C mode (master or slave).  
R
due to the specified minimum sink current of 3 mA  
p
2
at VOL max = 0.4V for the specified output stages. For  
2
FIGURE 9-27: SAMPLE DEVICE CONFIGURATION FOR I C BUS  
VDD + 10%  
DEVICE  
Rp  
Rp  
Rs  
Rs  
SDA  
SCL  
Cb=10 - 400 pF  
Note:  
I2C devices with input levels related to VDD must have one common supply  
line to which the pull-up resistor is also connected.  
1999 Microchip Technology Inc.  
DS30292B-page 93  
PIC16F87X  
NOTES:  
DS30292B-page 94  
1999 Microchip Technology Inc.  
PIC16F87X  
The USART can be configured in the following modes:  
10.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to  
be set in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the Universal Synchronous Asynchro-  
nous Receiver Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI). The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, serial EEPROMs etc.  
The USART module also has a multi-processor com-  
munication capability using 9-bit address detection.  
REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
bit7  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
bit0  
TRMT  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6:  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
bit 5:  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1= High speed  
0= Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
1999 Microchip Technology Inc.  
DS30292B-page 95  
PIC16F87X  
REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
bit7  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
R/W-0  
R-0  
R-0  
R-x  
RX9D  
bit0  
CREN ADDEN  
FERR  
OERR  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
SPEN: Serial Port Enable bit  
1= Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0= Serial port disabled  
bit 6:  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
bit 5:  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3:  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1)  
1= Enables address detection, enable interrupt and load of the receive burffer when RSR<8> is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2:  
bit 1:  
bit 0:  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
DS30292B-page 96  
1999 Microchip Technology Inc.  
PIC16F87X  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
10.1  
USART Baud Rate Generator (BRG)  
The BRG supports both the asynchronous and syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode, bit BRGH is ignored.  
Table 10-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
10.1.1 SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 10-1. From this, the error in  
baud rate can be determined.  
TABLE 10-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1 Bit 0  
POR,  
BOR  
other  
resets  
0000 -010 0000 -010  
0000 000x 0000 000x  
0000 0000 0000 0000  
98h  
18h  
99h  
TXSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
1999 Microchip Technology Inc.  
DS30292B-page 97  
PIC16F87X  
TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG  
SPBRG  
SPBRG  
%
%
%
value  
value  
value  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
255  
129  
31  
15  
9
-
-
-
207  
103  
25  
12  
8
-
-
-
129  
64  
15  
7
1.221  
2.404  
9.766  
19.531  
31.250  
34.722  
62.500  
1.221  
1.75  
0.17  
1.73  
1.72  
8.51  
3.34  
8.51  
-
1.202  
0.17  
0.17  
0.16  
0.16  
3.55  
6.29  
8.51  
-
1.202  
0.17  
0.17  
1.73  
1.72  
8.51  
6.99  
9.58  
-
2.4  
2.404  
2.404  
9.6  
9.615  
9.766  
19.2  
28.8  
33.6  
57.6  
HIGH  
19.231  
27.778  
35.714  
62.500  
0.977  
19.531  
31.250  
31.250  
52.083  
0.610  
4
8
6
4
4
3
2
255  
0
255  
0
255  
0
LOW 312.500  
-
250.000  
-
156.250  
-
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
%
%
ERROR  
ERROR  
KBAUD  
(decimal) KBAUD  
(decimal)  
0.3  
1.2  
0.300  
1.202  
2.404  
8.929  
20.833  
31.250  
-
0
207  
51  
25  
6
0.301  
1.216  
2.432  
9.322  
18.643  
-
0.33  
1.33  
1.33  
2.90  
2.90  
-
185  
46  
22  
5
0.17  
0.17  
6.99  
8.51  
8.51  
-
2.4  
9.6  
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
2
2
1
-
-
-
-
-
62.500  
0.244  
62.500  
8.51  
-
0
55.930  
0.218  
55.930  
2.90  
-
0
255  
0
255  
0
-
-
-
TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.4  
-
-
-
-
-
-
2.441  
9.615  
19.531  
28.409  
32.895  
56.818  
2.441  
625.000  
1.71  
0.16  
1.72  
1.36  
2.10  
1.36  
-
255  
64  
31  
21  
18  
10  
255  
0
9.6  
9.615  
19.231  
29.070  
33.784  
59.524  
4.883  
0.16  
0.16  
0.94  
0.55  
3.34  
-
129  
64  
42  
36  
20  
255  
0
9.615  
19.231  
29.412  
33.333  
58.824  
3.906  
1000.000  
0.16  
0.16  
2.13  
0.79  
2.13  
-
103  
51  
33  
29  
16  
255  
0
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW 1250.000  
-
-
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
%
%
ERROR  
ERROR  
KBAUD  
(decimal) KBAUD  
(decimal)  
0.3  
1.2  
-
-
-
207  
103  
25  
12  
8
-
-
-
185  
92  
22  
11  
7
1.202  
0.17  
0.17  
0.16  
0.16  
3.55  
6.29  
8.51  
-
1.203  
0.25  
0.25  
1.32  
2.90  
2.90  
4.88  
2.90  
-
2.4  
2.404  
2.406  
9.6  
9.615  
9.727  
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
19.231  
27.798  
35.714  
62.500  
0.977  
18.643  
27.965  
31.960  
55.930  
0.874  
6
6
3
3
255  
0
255  
0
250.000  
-
273.722  
-
DS30292B-page 98  
1999 Microchip Technology Inc.  
PIC16F87X  
( PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. Status bit TRMT  
is a read only bit, which is set when the TSR register is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty.  
10.2  
USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one start bit, eight or nine data bits,  
and one stop bit). The most common data format is 8  
bits. An on-chip, dedicated, 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The baud rate generator produces a  
clock either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set. TXIF is cleared by loading TXREG.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 10-2). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally, when transmission  
is first started, the TSR register is empty. At that point,  
transfer to the TXREG register will result in an immedi-  
ate transfer to TSR, resulting in an empty TXREG. A  
back-to-back transfer is thus possible (Figure 10-3).  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. As a result, the RC6/TX/CK pin will revert  
to hi-impedance.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
10.2.1 USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 10-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit may be loaded in the TSR  
register.  
FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
SPBRG  
TRMT  
SPEN  
TX9  
TX9D  
Baud Rate Generator  
1999 Microchip Technology Inc.  
DS30292B-page 99  
PIC16F87X  
Steps to follow when setting up an Asynchronous  
Transmission:  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 10.1)  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. Load data to the TXREG register (starts trans-  
mission).  
3. If interrupts are desired, then set enable bit  
TXIE.  
FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
TXIF bit  
(interrupt reg. flag)  
Start Bit  
Start Bit  
Word 2  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Bit 0  
Stop Bit  
TRMT bit  
(Transmit shift  
reg. empty flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
RCSTA  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
DS30292B-page 100  
1999 Microchip Technology Inc.  
PIC16F87X  
10.2.2 USART ASYNCHRONOUS RECEIVER  
for two bytes of data to be received and transferred to  
the RCREG FIFO and a third byte to begin shifting to  
the RSR register. On the detection of the STOP bit of  
the third byte, if the RCREG register is still full, the over-  
run error bit OERR (RCSTA<1>) will be set. The word  
in the RSR will be lost. The RCREG register can be  
read twice to retrieve the two bytes in the FIFO. Over-  
run bit OERR has to be cleared in software. This is  
done by resetting the receive logic (CREN is cleared  
and then set). If bit OERR is set, transfers from the  
RSR register to the RCREG register are inhibited, so it  
is essential to clear error bit OERR if it is set. Framing  
error bit FERR (RCSTA<2>) is set if a stop bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG will load bits RX9D and FERR with new  
values, therefore it is essential for the user to read the  
RCSTA register before reading RCREG register in  
order not to lose the old FERR and RX9D information.  
The receiver block diagram is shown in Figure 10-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC.  
Once asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit which is cleared by the  
hardware. It is cleared when the RCREG register has  
been read and is empty. The RCREG is a double buff-  
ered register (i.e. it is a two deep FIFO). It is possible  
FIGURE 10-4: USART RECEVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
CREN  
FERR  
OERR  
SPBRG  
÷64  
RSR register  
MSb  
LSb  
or  
÷16  
0
Baud Rate Generator  
7
1
Stop (8)  
Start  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
FIGURE 10-5: ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit0  
bit1  
Stop  
bit  
Stop  
bit  
bit7/8 Stop  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 2  
RCREG  
WORD 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
1999 Microchip Technology Inc.  
DS30292B-page 101  
PIC16F87X  
Steps to follow when setting up an Asynchronous  
Reception:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE is set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 10.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, then set enable bit  
RCIE.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
DS30292B-page 102  
1999 Microchip Technology Inc.  
PIC16F87X  
10.2.3 SETTING UP 9-BIT MODE WITH ADDRESS  
DETECT  
• Flag bit RCIF will be set when reception is com-  
plete, and an interrupt will be generated if enable  
bit RCIE was set.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enabled:  
• Read the RCSTA register to get the ninth bit and  
determine if any error occurred during reception.  
• Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired, set  
bit BRGH.  
• Read the 8-bit received data by reading the  
RCREG register, to determine if the device is  
being addressed.  
• Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• If any error occurred, clear the error by clearing  
enable bit CREN.  
• If interrupts are desired, then set enable bit RCIE.  
• Set bit RX9 to enable 9-bit reception.  
• If the device has been addressed, clear the  
ADDEN bit to allow data bytes and address bytes  
to be read into the receive buffer, and interrupt the  
CPU.  
• Set ADDEN to enable address detect.  
• Enable the reception by setting enable bit CREN.  
FIGURE 10-6: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR register  
MSb  
LSb  
or  
÷ 16  
0
Baud Rate Generator  
7
1
Stop (8)  
Start  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
8
SPEN  
RX9  
Enable  
Load of  
ADDEN  
Receive  
Buffer  
RX9  
ADDEN  
RSR<8>  
8
RX9D  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
1999 Microchip Technology Inc.  
DS30292B-page 103  
PIC16F87X  
FIGURE 10-7: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Load RSR  
Read  
WORD 1  
RCREG  
Bit8 = 0, Data Byte  
Bit8 = 1, Address Byte  
RCIF  
Note:  
This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG  
(receive buffer) because ADDEN = 1.  
FIGURE 10-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Load RSR  
Read  
WORD 1  
RCREG  
Bit8 = 1, Address Byte  
Bit8 = 0, Data Byte  
RCIF  
Note:  
This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG  
(receive buffer) because ADDEN was not updated and still = 0.  
TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
RCREG USART Receive Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
DS30292B-page 104  
1999 Microchip Technology Inc.  
PIC16F87X  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic, however, is not  
reset, although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting, since bit TXEN is still  
set. The DT line will immediately switch from hi-imped-  
ance receive mode to transmit and start driving. To  
avoid this, bit TXEN should be cleared.  
10.3  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manne (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
10.3.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
The USART transmitter block diagram is shown in  
Figure 10-6. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure 10-9). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 10-10). This is advantageous when slow  
baud rates are selected, since the BRG is kept in reset  
when bits TXEN, CREN and SREN are clear. Setting  
enable bit TXEN will start the BRG, creating a shift  
clock immediately. Normally, when transmission is first  
started, the TSR register is empty, so a transfer to the  
TXREG register will result in an immediate transfer to  
TSR resulting in an empty TXREG. Back-to-back trans-  
fers are possible.  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-imped-  
ance. If either bit CREN or bit SREN is set during a  
transmission, the transmission is aborted and the DT  
1999 Microchip Technology Inc.  
DS30292B-page 105  
PIC16F87X  
TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
FIGURE 10-9: SYNCHRONOUS TRANSMISSION  
Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2Q3Q4 Q1Q2Q3Q4Q1Q2Q3 Q4Q1Q2Q3Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
WORD 2  
bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
T  
TRMT bit  
’1’  
’1’  
TXEN bit  
Note: Sync master mode; SPBRG = '0'. Continuous transmission of two 8-bit words  
FIGURE 10-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS30292B-page 106  
1999 Microchip Technology Inc.  
PIC16F87X  
10.3.2 USART SYNCHRONOUS MASTER  
RECEPTION  
OERR if it is set. The ninth receive bit is buffered the  
same way as the receive data. Reading the RCREG  
register will load bit RX9D with a new value, therefore it  
is essential for the user to read the RCSTA register  
before reading RCREG in order not to lose the old  
RX9D information.  
Once synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>)  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RC7/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, then only a single word is  
received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
CREN takes precedence. After clocking the last bit, the  
received data in the Receive Shift Register (RSR) is  
transferred to the RCREG register (if it is empty). When  
the transfer is complete, interrupt flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit, which is reset by the  
hardware. In this case, it is reset when the RCREG reg-  
ister has been read and is empty. The RCREG is a dou-  
ble buffered register (i.e., it is a two deep FIFO). It is  
possible for two bytes of data to be received and trans-  
ferred to the RCREG FIFO and a third byte to begin  
shifting into the RSR register. On the clocking of the last  
bit of the third byte, if the RCREG register is still full,  
then overrun error bit OERR (RCSTA<1>) is set. The  
word in the RSR will be lost. The RCREG register can  
be read twice to retrieve the two bytes in the FIFO. Bit  
OERR has to be cleared in software (by clearing bit  
CREN). If bit OERR is set, transfers from the RSR to  
the RCREG are inhibited, so it is essential to clear bit  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 10.1)  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
RCSTA  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for synchronous master reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
FIGURE 10-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3Q4 Q1Q2Q3Q4 Q1 Q2Q3Q4 Q1Q2Q3 Q4Q1 Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1 Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
’0’  
’0’  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = '1' and bit BRG = '0'.  
1999 Microchip Technology Inc.  
DS30292B-page 107  
PIC16F87X  
10.4.2 USART SYNCHRONOUS SLAVE  
RECEPTION  
10.4  
USART Synchronous Slave Mode  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous master and slave  
modes is identical, except in the case of the SLEEP  
mode. Bit SREN is a “don't care” in slave mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
10.4.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
8. If any error occurred, clear the error by clearing  
bit CREN.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
DS30292B-page 108  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
RCRE  
G
USART Receive Register  
0000 0000 0000 0000  
(1)  
8Ch  
98h  
99h  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.  
1999 Microchip Technology Inc.  
DS30292B-page 109  
PIC16F87X  
NOTES:  
DS30292B-page 110  
1999 Microchip Technology Inc.  
PIC16F87X  
The A/D module has four registers. These registers  
are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) Converter module has five  
inputs for the 28-pin devices and eight for the other  
devices.  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register0 (ADCON0)  
• A/D Control Register1 (ADCON1)  
The analog input charges a sample and hold capacitor.  
The output of the sample and hold capacitor is the  
input into the converter. The converter then generates  
a digital result of this analog level via successive  
approximation. The A/D conversion of the analog input  
signal results in a corresponding 10-bit digital number.  
The A/D module has high and low voltage reference  
input that is software selectable to some combination  
of VDD, VSS, RA2 or RA3.  
The ADCON0 register, shown in Register 11-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 11-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be the voltage refer-  
ence) or as digital I/O.  
Additional information on using the A/D module can be  
found in the PICmicro™ Mid-Range MCU Family Ref-  
erence Manual (DS33023).  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D clock must be derived from the A/D’s  
internal RC oscillator.  
REGISTER 11-1: ADCON0 REGISTER (ADDRESS: 1Fh)  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
bit0  
ADCS1 ADCS0  
GO/DONE  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an RC oscillation)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
101= channel 5, (RE0/AN5)  
110= channel 6, (RE1/AN6)  
111= channel 7, (RE2/AN7)  
(1)  
(1)  
(1)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shutoff and consumes no operating current  
Note 1: These channels are not available on the 28-pin devices.  
1999 Microchip Technology Inc.  
DS30292B-page 111  
PIC16F87X  
REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
ADFM  
bit7  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG0  
bit0  
PCFG3  
PCFG2  
PCFG1  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
ADFM: A/D Result format select  
1= Right Justified. 6 most significant bits of ADRESH are read as ‘0’.  
0= Left Justified. 6 least significant bits of ADRESL are read as ‘0’.  
bit 6-4: Unimplemented: Read as ’0’  
bit 3-0: PCFG3:PCFG0: A/D Port Configuration Control bits  
(1)  
(1)  
(1)  
PCFG3: AN7  
PCFG0  
AN6  
AN5  
AN4  
RA5  
AN3  
RA3  
AN2  
RA2  
AN1  
RA1  
AN0  
RA0  
CHAN /  
Refs  
VREF+  
VREF-  
(2)  
RE2  
RE1  
RE0  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
RA3  
RA3  
RA3  
VDD  
RA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RA2  
VSS  
VSS  
RA2  
RA2  
RA2  
VSS  
RA2  
8/0  
7/1  
5/0  
4/1  
3/0  
2/1  
0/0  
6/2  
6/0  
5/1  
4/2  
3/2  
2/2  
1/0  
1/2  
VREF+  
A
A
VREF+  
A
A
D
VREF+  
D
D
D
VREF+  
A
VREF-  
A
VREF+  
VREF+  
VREF+  
VREF+  
D
A
VREF-  
VREF-  
VREF-  
D
VREF+  
VREF-  
A = Analog input  
D = Digital I/O  
Note 1: These channels are not available on the 28-pin devices.  
2: This column indicates the number of analog channels available as A/D inputs and the numer of analog channels  
used as voltage reference inputs.  
DS30292B-page 112  
1999 Microchip Technology Inc.  
PIC16F87X  
The ADRESH:ADRESL registers contain the 10-bit  
result of the A/D conversion. When the A/D conversion  
is complete, the result is loaded into this A/D result reg-  
ister pair, the GO/DONE bit (ADCON0<2>) is cleared  
and the A/D interrupt flag bit ADIF is set. The block dia-  
gram of the A/D module is shown in Figure 11-1.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
To determine sample time, see Section 11.1. After this  
acquisition time has elapsed, the A/D conversion can  
be started. The following steps should be followed for  
doing an A/D conversion:  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read  
A/D  
Result  
register  
pair  
(ADRESH:ADRESL), clear bit ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
1999 Microchip Technology Inc.  
DS30292B-page 113  
PIC16F87X  
FIGURE 11-1: A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
110  
101  
100  
011  
010  
001  
000  
(1)  
(1)  
RE2/AN7  
RE1/AN6  
RE0/AN5  
RA5/AN4  
(1)  
VAIN  
(Input voltage)  
RA3/AN3/VREF+  
RA2/AN2/VREF-  
RA1/AN1  
A/D  
Converter  
VDD  
RA0/AN0  
VREF+  
(Reference  
voltage)  
PCFG3:PCFG0  
VREF-  
(Reference  
voltage)  
VSS  
PCFG3:PCFG0  
Note 1: Not available on 28-pin devices.  
To calculate the minimum acquisition time,  
Equation 11-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
11.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), Figure 11-2. The maximum recommended  
impedance for analog sources is 10 k. As the  
impedance is decreased, the acquisition time may be  
decreased. After the analog input channel is selected  
(changed), this acquisition must be done before the  
conversion can be started.  
To calculate the minimum acquisition time, TACQ, see  
the PICmicro™ Mid-Range Reference Manual  
(DS33023).  
DS30292B-page 114  
1999 Microchip Technology Inc.  
PIC16F87X  
EQUATION 11-1: ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
=
=
=
=
=
=
=
TAMP + TC + TCOFF  
2µS + TC + [(Temperature -25°C)(0.05µS/°C)]  
CHOLD (RIC + RSS + RS) In(1/2047)  
- 120pF (1k+ 7k+ 10k) In(0.0004885)  
16.47µS  
2µS + 16.47µS + [(50°C -25×C)(0.05µS/×C)  
19.72µS  
TC  
TACQ  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leak-  
age specification.  
4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again.  
During this time, the holding capacitor is not connected to the selected A/D input channel.  
FIGURE 11-2: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CHOLD  
CPIN  
5 pF  
= DAC capacitance  
= 120 pF  
VA  
I LEAKAGE  
VT = 0.6V  
± 500 nA  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I LEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 1011  
Sampling Switch  
( k)  
1999 Microchip Technology Inc.  
DS30292B-page 115  
PIC16F87X  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
11.2  
Selecting the A/D Conversion Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires a minimum 12TAD per 10-bit  
conversion. The source of the A/D conversion clock is  
software selected. The four possible options for TAD  
are:  
Table 11-1shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
• 2TOSC  
• 8TOSC  
• 32TOSC  
• Internal RC oscillator  
TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))  
AD Clock Source (TAD)  
ADCS1:ADCS0  
Maximum Device Frequency  
Max.  
Operation  
2TOSC  
8TOSC  
00  
01  
10  
11  
1.25 MHz  
5 MHz  
32TOSC  
RC(1, 2, 3)  
20 MHz  
Note 1  
Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for sleep  
operation.  
3: For extended voltage devices (LC), please refer to the Electrical Specifications section.  
11.3  
Configuring Analog Port Pins  
The ADCON1, and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
Note 1: When reading the port register, any pin  
configured as an analog input channel will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the device  
specifications.  
DS30292B-page 116  
1999 Microchip Technology Inc.  
PIC16F87X  
required before the next acquisition is started. After  
this 2TAD wait, acquisition on the selected channel is  
automatically started.  
11.4  
A/D Conversions  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D result register  
pair will NOT be updated with the partially completed  
In Figure 11-3, after the GO bit is set, the first time seg-  
mant has a minimum of TCY and a maximum of TAD.  
A/D  
conversion  
sample.  
That  
is,  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
After the A/D conversion is aborted, a 2TAD wait is  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 11-3: A/D CONVERSION TAD CYCLES  
TCY to TAD  
TAD1  
TAD3  
b8  
TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b6 b5 b4 b3 b2 b1 b0  
TAD2  
b9  
TAD4  
b7  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
ADRES is loaded,  
GO bit is cleared,  
ADIF bit is set,  
holding capacitor is connected to analog input.  
1999 Microchip Technology Inc.  
DS30292B-page 117  
PIC16F87X  
11.4.1 A/D RESULT REGISTERS  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16-bits  
wide. The A/D module gives the flexibility to left or right  
justify the 10-bit result in the 16-bit result register. The  
A/D Format Select bit (ADFM) controls this justifica-  
tion. Figure 11-4 shows the operation of the A/D result  
justification. The extra bits are loaded with ’0’s’. When  
an A/D result will not overwrite these locations (A/D  
disable), these registers may be used as two general  
purpose 8-bit registers.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To allow the con-  
version to occur during SLEEP, ensure the  
SLEEPinstruction immediately follows the  
instruction that sets the GO/DONE bit.  
11.5  
A/D Operation During Sleep  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed the GO/DONE bit will be cleared and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
11.6  
Effects of a Reset  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The value that is in the ADRESH:ADRESL registers is  
not modified for  
a
Power-on Reset. The  
ADRESH:ADRESL registers will contain unknown data  
after a Power-on Reset.  
FIGURE 11-4: A/D RESULT JUSTIFICATION  
10-Bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-bit Result  
10-bit Result  
Left Justified  
Right Justified  
DS30292B-page 118  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D  
POR,  
BOR  
MCLR,  
WDT  
Addr  
Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 000u  
0000 0000  
PSPIF(1)  
PSPIE(1)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR1IF  
8Ch  
1Eh  
9Eh  
1Fh  
9Fh  
85h  
05h  
PIE1  
TMR2IE TMR1IE  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
--0- 0000  
--11 1111  
--0x 0000  
0000 -111  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
--0- 0000  
--11 1111  
--0u 0000  
0000 -111  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
TRISA  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCS1  
ADFM  
ADCS0  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
PORTA Data Direction Register  
PORTA Data Latch when written: PORTA pins when read  
PORTA  
TRISE  
89h(1)  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
RE2 RE1  
09h(1)  
PORTE  
RE0  
---- -xxx  
---- -uuu  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: These registers/bits are not available on the 28-pin devices.  
1999 Microchip Technology Inc.  
DS30292B-page 119  
PIC16F87X  
NOTES:  
DS30292B-page 120  
1999 Microchip Technology Inc.  
PIC16F87X  
12.1  
Configuration Bits  
12.0 SPECIAL FEATURES OF THE  
CPU  
These devices have a host of features intended to max-  
imize system reliability, minimize cost through elimina-  
tion of external components, provide power saving  
operating modes and offer code protection. These are:  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
• OSC Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
• ID locations  
• In-Circuit Serial Programming  
• Low Voltage In-Circuit Serial Programming  
• In-Circuit Debugger  
These devices have a watchdog timer, which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only. It is  
designed to keep the part in reset while the power sup-  
ply stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
Additional information on special features is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
1999 Microchip Technology Inc.  
DS30292B-page 121  
PIC16F87X  
REGISTER 12-1: CONFIGURATION WORD  
CP1 CP0 DEBUG  
bit13  
WRT CPD LVP BODEN CP1 CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
Register: CONFIG  
Address 2007h  
bit 13-12:  
(2)  
bit 5-4: CP1:CP0: Flash Program Memory Code Protection bits  
11= Code protection off  
10= 1F00h to 1FFFh code protected (PIC16F877, 876)  
10= 0F00h to 0FFFh code protected (PIC16F874, 873)  
01= 1000h to 1FFFh code protected (PIC16F877, 876)  
01= 0800h to 0FFFh code protected (PIC16F874, 873)  
00= 0000h to 1FFFh code protected (PIC16F877, 876)  
00= 0000h to 0FFFh code protected (PIC16F874, 873)  
bit 11:  
DEBUG: In-Circuit Debugger Mode  
1= In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins.  
0= In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger.  
bit 10:  
bit 9:  
Unimplemented: Read as ‘1’  
WRT: Flash Program Memory Write Enable  
1= Unprotected program memory may be written to by EECON control  
0= Unprotected program memory may not be written to by EECON control  
bit 8:  
bit 7:  
bit 6:  
bit 3:  
bit 2:  
CPD: Data EE Memory Code Protection  
1= Code protection off  
0= Data EEPROM memory code protected  
LVP: Low Voltage In-Circuit Serial Programming Enable bit  
1= RB3/PGM pin has PGM function, low voltage programming enabled  
0= RB3 is digital I/O, HV on MCLR must be used for programming  
(1)  
BODEN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
(1)  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the  
Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
DS30292B-page 122  
1999 Microchip Technology Inc.  
PIC16F87X  
12.2  
Oscillator Configurations  
TABLE 12-1: CERAMIC RESONATORS  
Ranges Tested:  
12.2.1  
OSCILLATOR TYPES  
Mode  
Freq  
OSC1  
OSC2  
The PIC16F87X can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF 68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
Resonators Used:  
12.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
455 kHz Panasonic EFO-A455K04B  
± 0.3%  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-1). The  
PIC16F87X oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 12-2).  
16.0 MHz Murata Erie CSA16.00MX  
All resonators used did not have built-in capacitors.  
FIGURE 12-1: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
OSC CONFIGURATION)  
(1)  
C1  
OSC1  
To  
internal  
logic  
XTAL  
(3)  
RF  
OSC2  
SLEEP  
PIC16F87X  
(2)  
RS  
(1)  
C2  
Note 1: See Table 12-1 and Table 12-2 for rec-  
ommended values of C1 and C2.  
2: A series resistor (RS) may be required  
for AT strip cut crystals.  
3: RF varies with the crystal chosen.  
FIGURE 12-2: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16F87X  
Open  
1999 Microchip Technology Inc.  
DS30292B-page 123  
PIC16F87X  
12.2.3 RC OSCILLATOR  
TABLE 12-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
For timing insensitive applications, the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 12-3 shows how the R/C combina-  
tion is connected to the PIC16F87X.  
Cap.  
Range  
C2  
Crystal  
Freq  
Cap. Range  
C1  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
HS  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
FIGURE 12-3: RC OSCILLATOR MODE  
These values are for design guidance only.  
See notes at bottom of page.  
VDD  
Crystals Used  
32 kHz  
Epson C-001R32.768K-A  
± 20 PPM  
Rext  
Internal  
OSC1  
200 kHz STD XTL 200.000KHz  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
Clock  
1 MHz  
4 MHz  
8 MHz  
20 MHz  
ECS ECS-10-13-1  
Cext  
VSS  
PIC16F87X  
ECS ECS-40-20-1  
EPSON CA-301 8.000M-C  
OSC2/CLKOUT  
FOSC/4  
Recommended values:  
EPSON CA-301 20.000M-C ± 30 PPM  
3 kΩ ≤ Rext 100 kΩ  
Cext > 20pF  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents.  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
4: When migrating from other PICmicro  
devices, oscillator performance should be  
verified.  
DS30292B-page 124  
1999 Microchip Technology Inc.  
PIC16F87X  
WDT Reset, on MCLR reset during SLEEP, and Brown-  
out Reset (BOR). They are not affected by a WDT  
Wake-up, which is viewed as the resumption of normal  
operation. The TO and PD bits are set or cleared differ-  
ently in different reset situations as indicated in  
Table 12-4. These bits are used in software to deter-  
mine the nature of the reset. See Table 12-6 for a full  
description of reset states of all registers.  
12.3  
Reset  
The PIC16F87X differentiates between various kinds of  
reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (during normal operation)  
• WDT Wake-up (during SLEEP)  
• Brown-out Reset (BOR)  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 12-4.  
These devices have a MCLR noise filter in the MCLR  
reset path. The filter will detect and ignore small pulses.  
Some registers are not affected in any reset condition.  
Their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 12-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
Chip_Reset  
Q
10-bit Ripple counter  
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
1999 Microchip Technology Inc.  
DS30292B-page 125  
PIC16F87X  
12.4  
Power-On Reset (POR)  
12.8  
Time-out Sequence  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V - 1.7V). To  
take advantage of the POR, tie the MCLR pin directly  
(or through a resistor) to VDD. This will eliminate exter-  
nal RC components usually needed to create a Power-  
on Reset. A maximum rise time for VDD is specified.  
See Electrical Specifications for details.  
On power-up, the time-out sequence is as follows: The  
PWRT delay starts (if enabled) when a POR reset  
occurs. Then OST starts counting 1024 oscillator  
cycles when PWRT ends (LP, XT, HS). When the OST  
ends, the device comes out of RESET.  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution imme-  
diately. This is useful for testing purposes or to synchro-  
nize more than one PIC16CXX device operating in  
parallel.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the start-up con-  
ditions. For additional information, refer to Application  
Note, AN007, “Power-up Trouble Shooting”,  
(DS00007).  
Table 12-5 shows the reset conditions for the STATUS,  
PCON and PC registers, while Table 12-6 shows the  
reset conditions for all the registers.  
12.9  
Power Control/Status Register  
(PCON)  
12.5  
Power-up Timer (PWRT)  
The Power Control/Status Register, PCON, has up to  
two bits depending upon the device.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active. The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable/disable  
the PWRT.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent resets to see if bit  
BOR cleared, indicating a BOR occurred. The BOR bit  
is a "don’t care" bit and is not necessarily predictable if  
the Brown-out Reset circuitry is disabled (by clearing  
bit BODEN in the Configuration Word).  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
12.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
12.7  
Brown-Out Reset (BOR)  
The configuration bit, BODEN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100µS), the brown-out situa-  
tion will reset the device. If VDD falls below VBOR for  
less than TBOR, a reset may not occur.  
Once the brown-out occurs, the device will remain in  
brown-out reset until VDD rises above VBOR. The  
power-up timer then keeps the device in reset for  
TPWRT (parameter #33, about 72mS). If VDD should  
fall below VBOR during TPWRT, the brown-out reset  
process will restart when VDD rises above VBOR with  
the power-up timer reset. The power-up timer is  
always enabled when the brown-out reset circuit is  
enabled regardless of the state of the PWRT configu-  
ration bit.  
DS30292B-page 126  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS  
Oscillator Configuration  
Power-up  
PWRTE = 0  
Brown-out  
Wake-up from  
SLEEP  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
72 ms + 1024TOSC  
1024TOSC  
72 ms  
TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
1999 Microchip Technology Inc.  
DS30292B-page 127  
PIC16F87X  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
uuuu uuuu(1)  
ruuu uuuu(1)  
uuuu uuuu(1)  
-r-u u--u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
ruuu uuuu  
uuuu uuuu  
-r-u u--u  
PCL  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
r000 0000  
0000 0000  
-r-0 0--0  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
-r-0 0--0  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
0000 000u  
r000 0000  
0000 0000  
-r-0 0--0  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
-r-0 0--0  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PIE2  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as ’0’, q= value depends on condition,  
r= reserved maintain clear.  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 12-5 for reset value for specific condition.  
DS30292B-page 128  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Register  
Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
PCON  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
---- --qq  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
xxxx xxxx  
0--- 0000  
0--- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
x--- x000  
---- ----  
---- --uu  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
uuuu uuuu  
0--- 0000  
0--- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- u000  
---- ----  
---- --uu  
1111 1111  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
u--- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
---- ----  
PR2  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
ADRESL  
ADCON1  
EEDATA  
EEADR  
EEDATH  
EEADRH  
EECON1  
EECON2  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as ’0’, q= value depends on condition,  
r= reserved maintain clear.  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 12-5 for reset value for specific condition.  
FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1999 Microchip Technology Inc.  
DS30292B-page 129  
PIC16F87X  
FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 12-8: SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
VDD  
0V  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30292B-page 130  
1999 Microchip Technology Inc.  
PIC16F87X  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
12.10 Interrupts  
The PIC16F87X family has up to 14 sources of inter-  
rupt. The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has indi-  
vidual and global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers, PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers, PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set regardless of the status of  
their corresponding mask bit or the GIE bit  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 12-9: INTERRUPT LOGIC  
EEIF  
EEIE  
PSPIF  
PSPIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
RCIF  
RCIE  
INTF  
INTE  
Interrupt to CPU  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
BCLIF  
BCLIE  
The following table shows which devices have which interrupts.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF EEIF BCLIF CCP2IF  
PIC16F876/873 Yes Yes Yes  
PIC16F877/874 Yes Yes Yes  
-
Yes  
Yes  
Yes Yes  
Yes Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1999 Microchip Technology Inc.  
DS30292B-page 131  
PIC16F87X  
12.10.1 INT INTERRUPT  
12.11 Context Saving During Interrupts  
External interrupt on the RB0/INT pin is edge triggered,  
either rising, if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 12.13 for details on SLEEP mode.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, (i.e., W register and STATUS  
register). This will have to be implemented in software.  
For the PIC16F873/874 devices, the register W_TEMP  
must be defined in both banks 0 and 1 and must be  
defined at the same offset from the bank base address  
(i.e., If W_TEMP is defined at 0x20 in bank 0, it must  
also be defined at 0xA0 in bank 1.). The registers,  
PCLATH_TEMP and STATUS_TEMP, are only defined  
in bank 0.  
Since the upper 16 bytes of each bank are common in  
the PIC16F876/877 devices, temporary holding regis-  
ters W_TEMP, STATUS_TEMP and PCLATH_TEMP  
should be placed in here. These 16 locations don’t  
require banking and therefore, make it easier for con-  
text save and restore. The same basic code in  
Example 12-1 can be used.  
12.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 5.0)  
12.10.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 3.2)  
EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
:
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
:(ISR)  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30292B-page 132  
1999 Microchip Technology Inc.  
PIC16F87X  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION_REG register.  
12.12 Watchdog Timer (WDT)  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
.
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 12.1).  
FIGURE 12-10: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-1)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 5-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
FIGURE 12-11: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
2007h  
Config. bits  
(1)  
BODEN  
CP1  
CP0  
PWRTE  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
81h,181h  
OPTION_REG  
RBPU  
INTEDG  
T0CS  
T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for operation of these bits.  
1999 Microchip Technology Inc.  
DS30292B-page 133  
PIC16F87X  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
12.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
12.13.2 WAKE-UP USING INTERRUPTS  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
12.13.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
3. Interrupt from INT pin, RB port change or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred and caused  
wake-up.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
3. CCP capture mode interrupt.  
4. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
5. SSP (Start/Stop) bit detect interrupt.  
6. SSP transmit or receive in slave mode (SPI/I2C).  
7. USART RX or TX (synchronous slave mode).  
8. A/D conversion (when A/D clock source is RC).  
9. EEPROM write operation completion  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
DS30292B-page 134  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 12-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
CLKOUT(4)  
INT pin  
INTF flag  
Interrupt Latency  
(Note 2)  
(INTCON<1>)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine.  
If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
12.14 In-Circuit Debugger  
12.16 ID Locations  
When the DEBUG bit in the configuration word is pro-  
grammed to a ’0’, the In-Circuit Debugger functionality  
is enabled. This function allows simple debugging func-  
tions when used with MPLAB. When the microcontrol-  
ler has this feature enabled, some of the resources are  
not available for general use. Table 12-7 shows which  
features are consumed by the background debugger.  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
TABLE 12-7: DEBUGGER RESOURCES  
I/O pins  
RB6, RB7  
Stack  
1 level  
Program Memory  
Address 0000h must be NOP  
Last 100h words  
Data Memory  
0x070(0x0F0, 0x170, 0x1F0)  
0x1EB - 0x1EF  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies.  
12.15 Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
1999 Microchip Technology Inc.  
DS30292B-page 135  
PIC16F87X  
12.17 In-Circuit Serial Programming  
12.18 Low Voltage ICSP Programming  
PIC16F87X microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
The LVP bit of the configuration word enables low volt-  
age ICSP programming. This mode allows the micro-  
controller to be programmed via ICSP using a VDD  
source in the operating voltage range. This only means  
that VPP does not have to be brought to VIHH, but can  
instead be left at the normal operating voltage. In this  
mode, the RB3/PGM pin is dedicated to the program-  
ming function and ceases to be a general purpose I/O  
pin. During programming, VDD is applied to the MCLR  
pin. To enter programming mode, VDD must be applied  
to the RB3/PGM provided the LVP bit is set. The LVP  
bit defaults to on (‘1’) from the factory.  
When using ICSP, the part must be supplied 4.5V to  
5.5V if a bulk erase will be executed. This includes  
reprogramming of the code protect both from an on-  
state to off-state. For all other cases of ICSP, the part  
may be programmed at the normal operating voltages.  
This means calibration values, unique user IDs or user  
code can be reprogrammed or added.  
Note 1: The high voltage programming mode is  
always available, regardless of the state of  
the LVP bit, by applying VIHH to the MCLR  
pin.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, (DS30277B).  
2: While in low voltage ICSP mode, the RB3  
pin can no longer be used as a general  
purpose I/O pin.  
3: When using low voltage ICSP program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 3 in the TRISB register  
must be cleared to disable the pull-up on  
RB3 and ensure the proper operation of  
the device.  
If low-voltage programming mode is not used, the LVP  
bit can be programmed to a '0' and RB3/PGM becomes  
a digital I/O pin. However, the LVP bit may only be pro-  
grammed when programming is entered with VIHH on  
MCLR. The LVP bit can only be charged when using  
high voltage on MCLR.  
It should be noted, that once the LVP bit is programmed  
to 0, only the high voltage programming mode is avail-  
able and only high voltage programming mode can be  
used to program the device.  
When using low voltage ICSP, the part must be sup-  
plied 4.5V to 5.5V if a bulk erase will be executed. This  
includes reprogramming of the code protect bits from  
an on-state to off-state. For all other cases of low volt-  
age ICSP, the part may be programmed at the normal  
operating voltage. This means calibration values,  
unique user IDs or user code can be reprogrammed or  
added.  
DS30292B-page 136  
1999 Microchip Technology Inc.  
PIC16F87X  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
13.0 INSTRUCTION SET SUMMARY  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 13-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 13-1  
shows the opcode field descriptions.  
Table 13-2 lists the instructions recognized by the  
MPASM assembler.  
Figure 13-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
All examples use the following format to represent a  
hexadecimal number:  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
FIGURE 13-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
TABLE 13-1: OPCODE FIELD  
DESCRIPTIONS  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
Field  
Description  
7
6
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Literal and control operations  
General  
Don't care location (= 0or 1)  
The assembler will generate code with x = 0. It  
is the recommended form of use for compati-  
bility with all Microchip software tools.  
13  
8
7
0
0
OPCODE  
k (literal)  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
k = 8-bit immediate value  
PC  
TO  
PD  
Program Counter  
Time-out bit  
CALL and GOTO instructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
Byte-oriented operations  
Bit-oriented operations  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
1999 Microchip Technology Inc.  
DS30292B-page 137  
PIC16F87X  
TABLE 13-2: PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles 14-Bit Opcode  
MSb  
Status  
Affected  
Notes  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff  
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
0010 dfff ffff  
1110 dfff ffff  
0110 dfff ffff  
C,DC,Z  
1,2  
1,2  
2
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
Z
Z
Z
Move W to f  
No Operation  
-
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
C,DC,Z  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PICmicroMid-Range MCU Family  
Reference Manual (DS33023).  
DS30292B-page 138  
1999 Microchip Technology Inc.  
PIC16F87X  
13.1  
Instruction Descriptions  
Add Literal and W  
ADDLW  
ANDWF  
Syntax:  
AND W with f  
Syntax:  
[label] ADDLW  
0 k 255  
k
[label] ANDWF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d
[0,1]  
(W) + k (W)  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The contents of the W register  
are added to the eight bit literal ’k’  
and the result is placed in the W  
register.  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
BCF  
Bit Clear f  
ADDWF  
Syntax:  
Add W and f  
Syntax:  
Operands:  
[label] BCF f,b  
[label] ADDWF f,d  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d
[0,1]  
Operation:  
0 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected: None  
Status Affected: C, DC, Z  
Description:  
Bit 'b' in register 'f' is cleared.  
Description:  
Add the contents of the W register  
with register ’f’. If ’d’ is 0, the result  
is stored in the W register. If ’d’ is  
1, the result is stored back in reg-  
ister ’f’.  
BSF  
Bit Set f  
Syntax:  
Operands:  
[label] BSF f,b  
ANDLW  
AND Literal with W  
0 f 127  
0 b 7  
Syntax:  
[label] ANDLW  
k
Operands:  
Operation:  
Status Affected:  
Description:  
0 k 255  
Operation:  
1 (f<b>)  
(W) .AND. (k) (W)  
Status Affected: None  
Description: Bit 'b' in register 'f' is set.  
Z
The contents of W register are  
AND’ed with the eight bit literal  
'k'. The result is placed in the W  
register.  
1999 Microchip Technology Inc.  
DS30292B-page 139  
PIC16F87X  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit ’b’ in register ’f’ is ’0’, the next  
The contents of register ’f’ are  
cleared and the Z bit is set.  
instruction is executed.  
If bit ’b’ is ’1’, then the next instruc-  
tion is discarded and a NOPis exe-  
cuted instead making this a 2TCY  
instruction.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
None  
BTFSC  
Bit Test, Skip if Clear  
Operands:  
Operation:  
Syntax:  
[label] BTFSC f,b  
00h (W)  
1 Z  
Operands:  
0 f 127  
0 b 7  
Status Affected:  
Description:  
Z
Operation:  
skip if (f<b>) = 0  
W register is cleared. Zero bit (Z)  
is set.  
Status Affected: None  
Description:  
If bit ’b’ in register ’f’ is ’1’, the next  
instruction is executed.  
If bit ’b’, in register ’f’, is ’0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
Operands:  
Operation:  
Syntax:  
00h WDT  
0 WDT prescaler,  
1 TO  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
1 PD  
(PCLATH<4:3>) PC<12:11>  
Status Affected: TO, PD  
Status Affected: None  
Description: CLRWDTinstruction resets the  
Watchdog Timer. It also resets  
the prescaler of the WDT. Status  
bits TO and PD are set.  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto  
the stack. The eleven bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two cycle instruction.  
DS30292B-page 140  
1999 Microchip Technology Inc.  
PIC16F87X  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
GOTO  
Unconditional Branch  
Syntax:  
Operands:  
Syntax:  
[ label ] GOTO k  
Operands:  
Operation:  
0 k 2047  
d
[0,1]  
k PC<10:0>  
Operation:  
(f) (destination)  
PCLATH<4:3> PC<12:11>  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ’f’ are  
complemented. If ’d’ is 0, the  
result is stored in W. If ’d’ is 1, the  
result is stored back in register ’f’.  
Description:  
GOTOis an unconditional branch.  
The eleven bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two  
cycle instruction.  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
INCF  
Increment f  
Syntax:  
Operands:  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ’f’. If ’d’ is 0,  
the result is stored in the W regis-  
ter. If ’d’ is 1, the result is stored  
back in register ’f’.  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
Operands:  
d
[0,1]  
Operands:  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
d
[0,1]  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Description: The contents of register ’f’ are  
Status Affected: None  
decremented. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead  
making it a 2TCY instruction.  
Description: The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1,  
the result is placed back in regis-  
ter ’f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0, a  
NOPis executed instead making it  
a 2TCY instruction.  
1999 Microchip Technology Inc.  
DS30292B-page 141  
PIC16F87X  
IORLW  
Inclusive OR Literal with W  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .OR. k (W)  
Z
k (W)  
Status Affected: None  
The contents of the W register are  
OR’ed with the eight bit literal 'k'.  
The result is placed in the W reg-  
ister.  
Description:  
The eight bit literal 'k' is loaded  
into W register. The don’t cares  
will assemble as 0’s.  
MOVWF  
Syntax:  
Move W to f  
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 127  
[ label ] MOVWF  
0 f 127  
f
Syntax:  
Operands:  
Operation:  
Operands:  
(W) (f)  
d
[0,1]  
Status Affected: None  
Operation:  
(W) .OR. (f) (destination)  
Description:  
Move data from W register to reg-  
ister 'f'.  
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in regis-  
ter 'f'.  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
MOVF  
Move f  
Operands:  
Operation:  
Syntax:  
Operands:  
[ label ] MOVF f,d  
No operation  
0 f 127  
Status Affected: None  
Description: No operation.  
d
[0,1]  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0, des-  
tination is W register. If d = 1, the  
destination is file register f itself. d  
= 1 is useful to test a file register  
since status flag Z is affected.  
DS30292B-page 142  
1999 Microchip Technology Inc.  
PIC16F87X  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
[ label ] RLF f,d  
0 f 127  
Syntax:  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The contents of register ’f’ are  
rotated one bit to the left through  
the Carry Flag. If ’d’ is 0, the  
result is placed in the W register.  
If ’d’ is 1, the result is stored back  
in register ’f’.  
C
Register f  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] RETLW k  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Operands:  
Operation:  
0 k 255  
Syntax:  
Operands:  
k (W);  
TOS PC  
d
[0,1]  
Status Affected: None  
Operation:  
See description below  
C
Description:  
The W register is loaded with the  
Status Affected:  
Description:  
eight bit literal ’k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two cycle instruction.  
The contents of register ’f’ are  
rotated one bit to the right through  
the Carry Flag. If ’d’ is 0, the result  
is placed in the W register. If ’d’ is  
1, the result is placed back in reg-  
ister ’f’.  
C
Register f  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
SLEEP  
Operands:  
Operation:  
Syntax:  
[ label  
]
TOS PC  
SLEEP  
Status Affected: None  
Operands:  
Operation:  
None  
Description: Return from subroutine. The stack  
00h WDT,  
0 WDT prescaler,  
1 TO,  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two cycle  
instruction.  
0 PD  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
1999 Microchip Technology Inc.  
DS30292B-page 143  
PIC16F87X  
SUBLW  
Subtract W from Literal  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ]  
Syntax:  
[label]  
SUBLW k  
XORLW k  
Operands:  
Operation:  
0 k 255  
Operands:  
0 k 255  
k - (W) → (W)  
Operation:  
(W) .XOR. k → (W)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The W register is subtracted (2’s  
The contents of the W register  
are XOR’ed with the eight bit lit-  
eral 'k'. The result is placed in  
the W register.  
complement method) from the  
eight bit literal 'k'. The result is  
placed in the W register.  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
SUBWF  
Subtract W from f  
Syntax:  
[ label ]  
SUBWF f,d  
Operands:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: C, DC, Z  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
Subtract (2’s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W regis-  
ter. If 'd' is 1, the result is stored  
back in register 'f'.  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 127  
Operands:  
d
[0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is  
0, the result is placed in W regis-  
ter. If 'd' is 1, the result is placed in  
register 'f'.  
DS30292B-page 144  
1999 Microchip Technology Inc.  
PIC16F87X  
MPLAB allows you to:  
14.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
14.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
14.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a Windows -based applica-  
tion which contains:  
14.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
DS30292B-page 145  
PIC16F87X  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
14.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
14.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
14.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of  
interchangeable personality modules or daughter  
boards. The emulator is capable of emulating without  
target application circuitry being present.  
14.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
14.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchip’s In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
14.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS30292B-page 146  
1999 Microchip Technology Inc.  
PIC16F87X  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
14.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
14.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
14.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
14.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
14.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
14.13 PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
DS30292B-page 147  
PIC16F87X  
14.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
14.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
14.18 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS30292B-page 148  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP  
5 1 2 0 P M C  
X X X C R M F  
X X  
H C S X  
X X C 9 3  
C 5 X 2 X /  
C 4 X 2 X /  
X X C 8 2 C 1 P I  
X X 7 C 7 C 1 P I  
X 4 C 7 C 1 P I  
X X 9 C 6 C 1 P I  
X 8 X 1 6 C I F P  
X 8 C 6 C 1 P I  
X X 7 C 6 C 1 P I  
X 7 C 6 C 1 P I  
X 6 2 6 1 F C I P  
X X C 6 X C 1 P I  
X 6 C 6 C 1 P I  
X 5 C 6 C 1 P I  
0 0 4 1 0 C I P  
X X C 2 X C 1 P I  
s l o o e T a r f t o w S s o r a t u l E m e r g g b e u D s r e m a m r g o P r  
t i s K v a l E d a n d s a r o B o m e D  
1999 Microchip Technology Inc.  
DS30292B-page 149  
PIC16F87X  
NOTES:  
DS30292B-page 150  
1999 Microchip Technology Inc.  
PIC16F87X  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4).......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2)..................................................................................................0 to +14V  
Voltage on RA4 with respect to Vss..................................................................................................................0 to +8.5V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... ± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. ± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3) ..............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3).............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin, rather than pulling  
this pin directly to VSS.  
3: PORTD and PORTE are not implemented on the 28-pin devices.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1999 Microchip Technology Inc.  
DS30292B-page 151  
PIC16F87X  
FIGURE 15-1: PIC16FXXX-20 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
16 MHz  
20 MHz  
Frequency  
FIGURE 15-2: PIC16LFXXX-04 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
10 MHz  
Frequency  
FMAX = (6.0 MHz/V) (VDDAPPMIN - 2.0 V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10MHz.  
DS30292B-page 152  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-3: PIC16FXXX-04 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
PIC16CXXX-04  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
Frequency  
1999 Microchip Technology Inc.  
DS30292B-page 153  
PIC16F87X  
15.1  
DC Characteristics:  
PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°CTA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Sym  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
VDD  
4.0  
4.5  
VBOR*  
-
-
-
5.5  
5.5  
5.5  
V
V
V
XT, RC and LP osc configuration  
HS osc configuration  
BOR enabled, Fmax = 14MHz (Note 7)  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D005 Brown-out Reset Voltage VBOR  
3.7  
-
4.0 4.35  
V
BODEN bit in configuration word enabled  
D010  
D013  
Supply Current (Note 2,5) IDD  
1.6  
4
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
-
-
7
15  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
D015* Brown-out Reset Current IBOR  
85 200 µA BOR enabled VDD = 5.0V  
(Note 6)  
D020 Power-down Current  
D021 (Note 3,5)  
D021A  
IPD  
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
16  
19  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
D023* Brown-out Reset Current IBOR  
-
85 200 µA BOR enabled VDD = 5.0V  
(Note 6)  
Legend: * These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30292B-page 154  
1999 Microchip Technology Inc.  
PIC16F87X  
15.2  
DC Characteristics: PIC16LF873/874/876/877-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial and  
0°C  
TA +70°C for commercial  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
Supply Voltage  
VDD  
VDR  
2.0  
-
-
5.5  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
See section on Power-on Reset for details  
D002* RAM Data Retention  
Voltage (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
-
-
V
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD 0.05  
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage VBOR  
3.7  
4.0 4.35  
V
BODEN bit in configuration word enabled  
Supply Current (Note 2,5) IDD  
-
0.6  
2.0  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
-
-
20  
85  
35  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D015* Brown-out Reset Current IBOR  
200  
µA BOR enabled VDD = 5.0V  
(Note 6)  
D020  
D021  
D021A  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D023* Brown-out Reset Current IBOR  
-
85  
200  
µA BOR enabled VDD = 5.0V  
(Note 6)  
Legend: * These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1999 Microchip Technology Inc.  
DS30292B-page 155  
PIC16F87X  
15.3  
DC Characteristics:  
PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
PIC16LF873/874/876/877-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1 and  
Section 15.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ† Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Ports RC3 and RC4  
with Schmitt Trigger buffer  
with SMBus  
Note1  
D034  
D034A  
VSS  
-0.5  
-
-
0.3VDD  
0.6  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
Input High Voltage  
I/O ports  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D041  
D042  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
D042A OSC1 (XT, HS and LP)  
D043  
OSC1 (in RC mode)  
Ports RC3 and RC4  
with Schmitt Trigger buffer  
with SMBus  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
D044  
D044A  
D070  
0.7VDD  
1.4  
50  
-
-
VDD  
5.5  
400  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
IPURB  
IIL  
250  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Output Low Voltage  
D080  
D083  
I/O ports  
VOL  
-
-
-
-
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Legend: * These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30292B-page 156  
1999 Microchip Technology Inc.  
PIC16F87X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1 and  
Section 15.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ† Max Units  
Conditions  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VOH VDD - 0.7  
VDD - 0.7  
-
-
-
-
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
D150* Open-Drain High Voltage  
VOD  
-
-
-
-
8.5  
RA4 pin  
Capacitive Loading Specs on  
Output Pins  
D100  
OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
mode) SCL, SDA in I2C mode  
Data EEPROM Memory  
Endurance  
D120  
D121  
ED  
100K  
-
-
-
E/W 25°C at 5V  
V
VDD for read/write  
VDRW Vmin  
5.5  
Using EECON to read/write  
Vmin = min operating voltage  
D122  
Erase/write cycle time  
Program FLASH Memory  
Endurance  
TDEW  
-
4
8
ms  
D130  
D131  
EP  
VPR  
1000  
Vmin  
Vmin  
-
-
-
-
E/W 25°C at 5V  
V
V
VDD for read  
5.5  
5.5  
Vmin = min operating voltage  
using EECON to read/write,  
Vmin = min operating voltage  
D132a VDD for erase/write  
D133 Erase/Write cycle time  
TPEW  
-
4
8
ms  
Legend: * These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1999 Microchip Technology Inc.  
DS30292B-page 157  
PIC16F87X  
15.4  
Timing Parameter Symbology  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
(I2C specifications only)  
(I2C specifications only)  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 15-4: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF  
15 pF  
for all pins except OSC2, but including PORTD and PORTE outputs as ports  
for OSC2 output  
Note: PORTD and PORTE are not implemented on the 28-pin devices.  
DS30292B-page 158  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-5: EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min Typ†  
Max  
Units Conditions  
FOSC External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
TOSC External CLKIN Period  
250  
250  
50  
ns XT and RC osc mode  
ns HS osc mode (-04)  
ns HS osc mode (-20)  
µs LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
ns RC osc mode  
10,000  
250  
250  
ns XT osc mode  
ns HS osc mode (-04)  
ns HS osc mode (-20)  
µs LP osc mode  
5
2
3
TCY Instruction Cycle Time  
200  
TCY  
DC  
ns TCY = 4/FOSC  
(Note 1)  
TosL, External Clock in (OSC1) High 100  
TosH or Low Time  
25  
50  
15  
ns XT oscillator  
µs LP oscillator  
ns HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
2.5  
15  
4
TosR, External Clock in (OSC1) Rise  
TosF or Fall Time  
Legend: † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at "min." values with an external  
clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is  
"DC" (no clock) for all devices.  
1999 Microchip Technology Inc.  
DS30292B-page 159  
PIC16F87X  
FIGURE 15-6: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
0.5TCY + 20  
TOSC + 200  
0
TosH2ioV OSC1(Q1 cycle) to  
100  
255  
Port out valid  
18*  
TosH2ioI OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
Standard (F)  
Extended (LF)  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
TioF  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard (F)  
Extended (LF)  
Standard (F)  
Extended (LF)  
145  
40  
21*  
145  
22††* Tinp  
23††* Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
Legend:  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30292B-page 160  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-4 for load conditions.  
FIGURE 15-8: BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
TABLE 15-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL  
MCLR Pulse Width (low)  
2
µs  
VDD = 5V, -40°C to +85°C  
31*  
Twdt  
Watchdog Timer Time-out Period  
(No Prescaler)  
7
18  
33  
ms VDD = 5V, -40°C to +85°C  
32  
Tost  
Oscillation Start-up Timer Period  
Power up Timer Period  
28  
1024 TOSC  
132  
2.1  
TOSC = OSC1 period  
33*  
34  
Tpwrt  
TIOZ  
72  
ms VDD = 5V, -40°C to +85°C  
µs  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD VBOR (D005)  
Legend:  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
1999 Microchip Technology Inc.  
DS30292B-page 161  
PIC16F87X  
FIGURE 15-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-4: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
ns  
ns  
TCY + 40  
With Prescaler Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, Standard(F)  
ns  
ns  
Prescaler =  
2,4,8  
Extended(LF)  
25  
Asynchronous Standard(F)  
Extended(LF)  
30  
ns  
ns  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
Synchronous, Standard(F)  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
Extended(LF)  
Asynchronous Standard(F)  
Extended(LF)  
30  
50  
ns  
ns  
T1CKI input period Synchronous  
Standard(F)  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Extended(LF) Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
N
Asynchronous Standard(F)  
Extended(LF)  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
60  
ns  
ns  
100  
DC  
Ft1  
200  
kHz  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30292B-page 162  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-10: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 15-4 for load conditions.  
54  
TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
Standard(F)  
10  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
Extended(LF)  
20  
51*  
TccH  
No Prescaler  
0.5TCY + 20  
CCP1 and CCP2  
input high time  
Standard(F)  
10  
20  
With Prescaler  
Extended(LF)  
52*  
53*  
TccP  
3TCY + 40  
ns N = prescale  
value (1,4 or 16)  
CCP1 and CCP2 input period  
N
TccR CCP1 and CCP2 output rise time Standard(F)  
Extended(LF)  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54*  
TccF CCP1 and CCP2 output fall time  
Standard(F)  
Extended(LF)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated.  
These parameters are for design guidance only and are not tested.  
1999 Microchip Technology Inc.  
DS30292B-page 163  
PIC16F87X  
FIGURE 15-11: PARALLEL SLAVE PORT TIMING (40-PIN DEVICES ONLY)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (40-PIN DEVICES ONLY)  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62  
TdtV2wrH Data in valid before WRor CS(setup time)  
20  
25  
ns  
ns  
Extended  
Range Only  
63*  
64  
TwrH2dtI WRor CSto data–in invalid (hold time) Standard(F)  
Extended(LF)  
20  
35  
ns  
ns  
TrdL2dtV RDand CSto data–out valid  
80  
90  
ns  
ns  
Extended  
Range Only  
65  
TrdH2dtI RDor CSto data–out invalid  
10  
30  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30292B-page 164  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-12: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-4 for load conditions.  
FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-4 for load conditions.  
1999 Microchip Technology Inc.  
DS30292B-page 165  
PIC16F87X  
FIGURE 15-14: SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-4 for load conditions.  
FIGURE 15-15: SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-4 for load conditions.  
DS30292B-page 166  
1999 Microchip Technology Inc.  
PIC16F87X  
TABLE 15-7: SPI MODE REQUIREMENTS  
Sym  
Characteristic  
Min  
Typ†  
Max Units Conditions  
Param  
No.  
70*  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71*  
72*  
73*  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK edge  
74*  
75*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
100  
ns  
TdoR  
SDO data output rise time  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
76*  
77*  
78*  
TdoF  
SDO data output fall time  
10  
25  
50  
ns  
ns  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
10  
SCK output rise time (master mode) Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
79*  
80*  
TscF  
SCK output fall time (master mode)  
10  
25  
ns  
ns  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Standard(F)  
Extended(LF)  
50  
145  
81*  
TdoV2scH,  
TdoV2scL  
SDO data output setup to SCK edge  
TCY  
ns  
82*  
83*  
TssL2doV  
SDO data output valid after SSedge  
SS after SCK edge  
50  
ns  
ns  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-16: I2C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-8: I2C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
1999 Microchip Technology Inc.  
DS30292B-page 167  
PIC16F87X  
FIGURE 15-17: I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-9: I2C BUS DATA REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
4.0  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
101  
TLOW  
Clock low time  
100 kHz mode  
4.7  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
setup time  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz) I C-bus system, but the requirement tsu;  
DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu; DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
DS30292B-page 168  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-18: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
Pin  
121  
121  
RC7/RX/DT  
Pin  
120  
122  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
Standard(F)  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high to data out valid  
Extended(LF)  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time Standard(F)  
(Master Mode)  
Extended(LF)  
50  
Data out rise time and fall time Standard(F)  
Extended(LF)  
45  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-19: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckL  
TckL2dtl  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
ns  
ns  
126  
Data hold after CK (DT hold time)  
15  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
DS30292B-page 169  
PIC16F87X  
TABLE 15-12: PIC16F873/874/876/877-04 (COMMERCIAL, INDUSTRIAL)  
PIC16F873/874/876/877-20 (COMMERCIAL, INDUSTRIAL)  
PIC16LF873/874/876/877-04 (COMMERCIAL, INDUSTRIAL)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
A03  
A04  
A06  
A07  
NR  
Resolution  
10-bits  
bit  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
EIL  
Integral linearity error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
< ± 1  
< ± 1  
< ± 2  
< ± 1  
LSb  
LSb  
LSb  
LSb  
EDL Differential linearity error  
EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
EGN Gain error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
(3)  
A10  
A20  
guaranteed  
V
VSS VAIN VREF  
Monotonicity  
VREF Reference voltage (VREF+ - VREF-)  
2.0V  
VDD + 0.3  
Absolute minimum electrical  
spec. To ensure 10-bit  
accuracy.  
A21 VREF+ Reference voltage High  
AVDD - 2.5V  
AVSS - 0.3V  
VSS - 0.3  
AVDD + 0.3V  
VREF+ - 2.0V  
VREF + 0.3  
10.0  
V
V
A22  
A25  
A30  
VREF- Reference voltage low  
VAIN Analog input voltage  
V
ZAIN Recommended impedance of  
kΩ  
analog voltage source  
A40  
A50  
IAD  
A/D conversion cur-  
rent (VDD)  
Standard  
Extended  
220  
90  
µA Average current consumption  
when A/D is on.  
(Note 1)  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of VHOLD  
to VAIN to charge CHOLD, see  
Section 11.1.  
10  
µA During A/D Conversion cycle  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.  
DS30292B-page 170  
1999 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-20: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 15-13: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
130  
TAD A/D clock period  
1.6  
3.0  
2.0  
3.0  
µs  
µs  
TOSC based, VREF 3.0V  
TOSC based, VREF 2.0V  
4.0  
6.0  
6.0  
9.0  
12  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
10*  
40  
µs  
µs The minimum time is the ampli-  
fier settling time. This may be  
used if the "new" input voltage  
has not changed by more than 1  
LSb (i.e., 20.0 mV @ 5.12V)  
from the last sampled voltage  
(as stated on CHOLD).  
134  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is  
selected as RC, a time of TCY is  
added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.1 for min conditions.  
1999 Microchip Technology Inc.  
DS30292B-page 171  
PIC16F87X  
NOTES:  
DS30292B-page 172  
1999 Microchip Technology Inc.  
PIC16F87X  
16.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
The graphs and tables provided in this section are for  
design guidance and are not tested.  
In some graphs or tables, the data presented are out-  
side specified operating range (i.e., outside specified  
VDD range). This is for information only and devices  
are ensured to operate properly only within the speci-  
fied range.  
The data presented in this section is a statistical sum-  
mary of data collected on units from different lots over  
a period of time and matrix samples. ’Typical’ repre-  
sents the mean of the distribution at 25°C. ’Max’ or ’min’  
represents (mean + 3σ) or (mean - 3σ) respectively,  
where σ is standard deviation, over the whole temper-  
ature range.  
Graphs and Tables not available at this time.  
1999 Microchip Technology Inc.  
DS30292B-page 173  
PIC16F87X  
NOTES:  
DS30292B-page 174  
1999 Microchip Technology Inc.  
PIC16F87X  
17.0 PACKAGING INFORMATION  
17.1  
Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
PIC16F876-20/SP  
XXXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXXX  
9917HAT  
AABBCDE  
28-Lead SOIC  
Example  
PIC16F876-04/SO  
9910SAA  
XXXXXXXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXXXXXXX  
AABBCDE  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
DS30292B-page 175  
PIC16F87X  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
PIC16F877-04/P  
9912SAA  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
AABBCDE  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16F877  
-04/PT  
9911HAT  
AABBCDE  
44-Lead MQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16F877  
-20/PQ  
9904SAT  
AABBCDE  
44-Lead PLCC  
Example  
PIC16F877  
-20/L  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
9903SAT  
AABBCDE  
DS30292B-page 176  
1999 Microchip Technology Inc.  
PIC16F87X  
17.2  
K04-070 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
B1  
β
A2  
p
eB  
B
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
MAX  
n
p
B
B1  
R
c
28  
2.54  
0.48  
1.33  
0.13  
0.25  
3.81  
2.29  
0.51  
3.30  
34.67  
7.30  
7.18  
8.89  
10  
0.100  
0.019  
0.053  
0.005  
0.010  
0.150  
0.090  
0.020  
0.130  
1.365  
0.288  
0.283  
0.350  
10  
0.016  
0.022  
0.41  
0.56  
0.040  
0.000  
0.008  
0.140  
0.070  
0.015  
0.125  
1.345  
0.280  
0.270  
0.320  
5
0.065  
0.010  
0.012  
0.160  
0.110  
0.025  
0.135  
1.385  
0.295  
0.295  
0.380  
15  
1.02  
0.00  
0.20  
3.56  
1.78  
0.38  
3.18  
34.16  
7.11  
6.86  
8.13  
5
1.65  
0.25  
0.30  
4.06  
2.79  
0.64  
3.43  
35.18  
7.49  
7.49  
9.65  
15  
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1999 Microchip Technology Inc.  
DS30292B-page 177  
PIC16F87X  
17.3  
K04-052 28-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
B
2
1
n
X
α
45°  
L
R2  
c
A
A1  
φ
R1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
28  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
28  
MAX  
p
n
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
A
A1  
A2  
0.093  
0.099  
0.058  
0.008  
0.706  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
17.93  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
0.048  
0.004  
0.700  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.712  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
1.73  
0.28  
18.08  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.10  
17.78  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30292B-page 178  
1999 Microchip Technology Inc.  
PIC16F87X  
17.4  
K04-016 40-Lead Plastic Dual In-line (P) – 600 mil  
E
D
α
2
n
1
A1  
L
E1  
A
R
c
B1  
B
β
A2  
p
eB  
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
15.24  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
40  
2.54  
0.46  
1.27  
0.13  
0.25  
4.06  
2.36  
0.51  
3.30  
51.26  
13.59  
14.35  
15.49  
10  
0.100  
0.018  
0.050  
0.005  
0.010  
0.160  
0.093  
0.020  
0.130  
2.018  
0.535  
0.565  
0.610  
10  
0.016  
0.020  
0.41  
0.51  
0.045  
0.000  
0.009  
0.110  
0.073  
0.020  
0.125  
2.013  
0.530  
0.545  
0.630  
5
0.055  
0.010  
0.011  
0.160  
0.113  
0.040  
0.135  
2.023  
0.540  
0.585  
0.670  
15  
1.14  
0.00  
0.23  
2.79  
1.85  
0.51  
3.18  
51.13  
13.46  
13.84  
16.00  
5
1.40  
0.25  
0.28  
4.06  
2.87  
1.02  
3.43  
51.38  
13.72  
14.86  
17.02  
15  
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1999 Microchip Technology Inc.  
DS30292B-page 179  
PIC16F87X  
17.5  
K04-076 44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.1 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
L
α
A
R2  
c
φ
R1  
A1  
β
A2  
L1  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
44  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
44  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
11  
11  
0.039  
0.015  
0.002  
0.003  
0.003  
0.005  
0
0.043  
0.025  
0.004  
0.003  
0.006  
0.010  
3.5  
0.047  
1.00  
0.38  
1.10  
0.64  
0.10  
0.08  
0.14  
0.25  
3.5  
1.20  
0.035  
0.006  
0.010  
0.008  
0.015  
7
0.89  
0.15  
0.25  
0.20  
0.38  
7
0.05  
0.08  
0.08  
0.13  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
c
B
0.003  
0.004  
0.012  
0.463  
0.463  
0.390  
0.390  
0.025  
5
0.008  
0.006  
0.015  
0.472  
0.472  
0.394  
0.394  
0.035  
10  
0.013  
0.008  
0.018  
0.482  
0.482  
0.398  
0.398  
0.045  
15  
0.08  
0.09  
0.30  
11.75  
11.75  
9.90  
9.90  
0.64  
5
0.20  
0.15  
0.38  
12.00  
12.00  
10.00  
10.00  
0.89  
10  
0.33  
0.20  
0.45  
12.25  
12.25  
10.10  
10.10  
1.14  
15  
D1  
E1  
D
E
X
α
β
5
12  
15  
5
12  
15  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent:MS-026 ACB  
DS30292B-page 180  
1999 Microchip Technology Inc.  
PIC16F87X  
17.6  
K04-071 44-Lead Plastic Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
α
L
R2  
c
A
R1  
φ
A1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
44  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
44  
11  
11  
0.079  
0.086  
0.044  
0.006  
0.005  
0.012  
0.020  
3.5  
0.093  
2.00  
0.81  
2.18  
1.11  
0.15  
0.13  
0.30  
0.51  
3.5  
2.35  
0.032  
0.002  
0.005  
0.005  
0.015  
0.056  
0.010  
0.010  
0.015  
0.025  
1.41  
0.25  
0.25  
0.38  
0.64  
7
0.05  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
0
7
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
c
B
0.011  
0.005  
0.012  
0.510  
0.510  
0.390  
0.390  
0.025  
0.016  
0.007  
0.015  
0.520  
0.520  
0.394  
0.394  
0.035  
10  
0.021  
0.009  
0.018  
0.530  
0.530  
0.398  
0.398  
0.045  
15  
0.28  
0.13  
0.30  
12.95  
12.95  
9.90  
9.90  
0.635  
5
0.41  
0.18  
0.37  
13.20  
13.20  
10.00  
10.00  
0.89  
10  
0.53  
0.23  
0.45  
13.45  
13.45  
10.10  
10.10  
1.143  
15  
D1  
E1  
D
E
X
α
β
5
5
12  
15  
5
12  
15  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent:MS-022 AB  
1999 Microchip Technology Inc.  
DS30292B-page 181  
PIC16F87X  
17.7  
K04-048 44-Lead Plastic Leaded Chip Carrier (L) – Square  
E1  
E
# leads = n1  
D1  
D
n 1 2  
α
A3  
CH2 x 45°  
CH1 x 45°  
R1  
c
L
A
35°  
A1  
B1  
B
R2  
β
A2  
p
E2  
D2  
Units  
Dimension Limits  
Number of Pins  
INCHES*  
NOM  
44  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
Pitch  
p
A
0.050  
0.173  
0.103  
0.023  
0.029  
0.045  
0.005  
0.690  
0.690  
0.653  
0.653  
0.620  
0.620  
11  
0.010  
0.029  
0.018  
0.058  
0.005  
0.025  
5
1.27  
Overall Pack. Height  
Shoulder Height  
Standoff  
0.165  
0.180  
4.19  
2.41  
0.38  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
15.49  
15.49  
4.38  
2.60  
0.57  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
11  
0.25  
0.74  
0.46  
1.46  
0.13  
0.64  
5
4.57  
2.79  
0.76  
0.86  
1.27  
A1  
A2  
A3  
CH1  
CH2  
E1  
D1  
E
D
E2  
D2  
n1  
c
B1  
B
0.095  
0.015  
0.024  
0.040  
0.000  
0.685  
0.685  
0.650  
0.650  
0.610  
0.610  
0.110  
0.030  
0.034  
0.050  
0.010  
0.695  
0.695  
0.656  
0.656  
0.630  
0.630  
Side 1 Chamfer Dim.  
Corner Chamfer (1)  
Corner Chamfer (other)  
Overall Pack. Width  
Overall Pack. Length  
Molded Pack. Width  
Molded Pack. Length  
Footprint Width  
Footprint Length  
Pins along Width  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Upper Lead Length  
Shoulder Inside Radius  
J-Bend Inside Radius  
Mold Draft Angle Top  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.008  
0.026  
0.015  
0.050  
0.003  
0.015  
0
0.012  
0.032  
0.021  
0.065  
0.010  
0.035  
10  
0.20  
0.66  
0.38  
1.27  
0.08  
0.38  
0
0.30  
0.81  
0.53  
1.65  
0.25  
0.89  
10  
L
R1  
R2  
α
Mold Draft Angle Bottom  
β
0
5
10  
0
5
10  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent:MO-047 AC  
DS30292B-page 182  
1999 Microchip Technology Inc.  
PIC16F87X  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
1998  
This is a new data sheet. However, these devices are similar to the PIC16C7X  
devices found in the PIC16C7X Data Sheet (DS30390). Data Memory Map for  
PIC16F873/874, moved ADFM bit from ADCON1<5> to ADCON1<7>  
B
1999  
FLASH EEPROM access information.  
APPENDIX B: DEVICE DIFFERENCES  
The differences between the devices in this data sheet  
are listed in Table B-1.  
TABLE B-1:  
DEVICE DIFFERENCES  
PIC16F876/873  
5 channels, 10bits  
no  
Difference  
PIC16F877/874  
8 channels, 10bits  
A/D  
Parallel Slave Port  
Packages  
yes  
28-pin PDIP, 28-pin windowed CERDIP,  
28-pin SOIC  
40-pin PDIP, 44-pin TQFP,  
44-pin MQFP, 44-pin PLCC  
APPENDIX C: CONVERSION CONSIDERATIONS  
Considerations for converting from previous versions of  
devices to the ones listed in this data sheet are listed in  
Table C-1.  
TABLE C-1:  
CONVERSION CONSIDERATIONS  
PIC16C7X  
Characteristic  
PIC16F87X  
Pins  
28/40  
3
28/40  
3
Timers  
Interrupts  
Communication  
Frequency  
A/D  
11 or 12  
13 or 14  
PSP, USART, SSP (SPI, I2C Slave)  
PSP, USART, SSP (SPI, I2C Master/Slave)  
20 MHz  
8-bit  
20 MHz  
10-bit  
CCP  
2
2
Program Memory  
RAM  
4K, 8K EPROM  
192, 368 bytes  
None  
4K, 8K FLASH  
192, 368 bytes  
128, 256 bytes  
EEPROM data  
Other  
In-Circuit Debugger, Low Voltage  
Programming  
1999 Microchip Technology Inc.  
DS30292B-page 183  
PIC16F87X  
NOTES:  
DS30292B-page 184  
1999 Microchip Technology Inc.  
PIC16F87X  
Buffer Full bit, BF ............................................................... 72  
Buffer Full Status bit, BF .................................................... 64  
Bus Arbitration ................................................................... 88  
Bus Collision Section ......................................................... 88  
Bus Collision During a RESTART Condition ..................... 91  
Bus Collision During a Start Condition ............................... 89  
Bus Collision During a Stop Condition ............................... 92  
Bus Collision Interrupt Flag bit, BCLIF ............................... 24  
INDEX  
A
A/D ................................................................................... 111  
ADCON0 Register .................................................... 111  
ADCON1 Register .................................................... 112  
ADIF bit .................................................................... 113  
Analog Input Model Block Diagram .......................... 115  
Analog Port Pins ...................................... 7, 8, 9, 37, 38  
Block Diagram .......................................................... 114  
Configuring Analog Port Pins ................................... 116  
Configuring the Interrupt .......................................... 113  
Configuring the Module ............................................ 113  
Conversion Clock ..................................................... 116  
Conversions ............................................................. 117  
Delays ...................................................................... 115  
Effects of a Reset ..................................................... 118  
GO/DONE bit ........................................................... 113  
Internal Sampling Switch (Rss) Impedence ............. 114  
Operation During Sleep ........................................... 118  
Sampling Requirements ........................................... 114  
Source Impedence ................................................... 114  
Time Delays ............................................................. 115  
Absolute Maximum Ratings ............................................. 151  
ACK .................................................................................... 72  
Acknowledge Data bit ........................................................ 66  
Acknowledge Pulse ............................................................ 72  
Acknowledge Sequence Enable bit ................................... 66  
Acknowledge Status bit ...................................................... 66  
ADRES Register ........................................................ 15, 111  
Application Note AN578, "Use of the SSP Module  
in the I2C Multi-Master Environment." ............................... 71  
Application Notes  
C
Capture/Compare/PWM  
Capture  
Block Diagram ................................................... 59  
CCP1CON Register ........................................... 58  
CCP1IF .............................................................. 59  
Mode ................................................................. 59  
Prescaler ........................................................... 59  
CCP Timer Resources ............................................... 57  
Compare  
Block Diagram ................................................... 60  
Mode ................................................................. 60  
Software Interrupt Mode .................................... 60  
Special Event Trigger ........................................ 60  
Special Trigger Output of CCP1 ........................ 60  
Special Trigger Output of CCP2 ........................ 60  
Interaction of Two CCP Modules ............................... 57  
Section ....................................................................... 57  
Special Event Trigger and A/D Conversions ............. 60  
Capture/Compare/PWM (CCP)  
CCP1  
RC2/CCP1 Pin ................................................. 7, 8  
CCP2  
RC1/T1OSI/CCP2 Pin ..................................... 7, 8  
PWM Block Diagram ................................................. 60  
PWM Mode ................................................................ 60  
CCP1CON ......................................................................... 17  
CCP2CON ......................................................................... 17  
CCPR1H Register .................................................. 15, 17, 57  
CCPR1L Register ........................................................ 17, 57  
CCPR2H Register ........................................................ 15, 17  
CCPR2L Register ........................................................ 15, 17  
CCPxM0 bit ........................................................................ 58  
CCPxM1 bit ........................................................................ 58  
CCPxM2 bit ........................................................................ 58  
CCPxM3 bit ........................................................................ 58  
CCPxX bit .......................................................................... 58  
CCPxY bit .......................................................................... 58  
CKE ................................................................................... 64  
CKP ................................................................................... 65  
Clock Polarity Select bit, CKP ............................................ 65  
Code Examples  
AN552 (Implementing Wake-up on Key  
Strokes Using PIC16CXXX) ....................................... 31  
AN556 (Table Reading Using PIC16CXX) ................. 26  
Architecture  
PIC16F873/PIC16F876 Block Diagram ....................... 5  
PIC16F874/PIC16F877 Block Diagram ....................... 6  
Assembler  
MPASM Assembler .................................................. 145  
B
Banking, Data Memory ................................................ 12, 18  
Baud Rate Generator ......................................................... 78  
BCLIF ................................................................................. 24  
BF .................................................................... 64, 72, 81, 83  
Block Diagrams  
A/D ........................................................................... 114  
Analog Input Model .................................................. 115  
Baud Rate Generator ................................................. 78  
Capture ...................................................................... 59  
Compare .................................................................... 60  
Call of a Subroutine in Page 1 from Page 0 .............. 26  
Indirect Addressing .................................................... 27  
Code Protection ....................................................... 121, 135  
Computed GOTO ............................................................... 26  
Configuration Bits ............................................................ 121  
Conversion Considerations .............................................. 183  
2
I C Master Mode ........................................................ 76  
2
I C Module ................................................................. 71  
PWM .......................................................................... 60  
SSP (I C Mode) ......................................................... 71  
2
SSP (SPI Mode) ......................................................... 67  
Timer0/WDT Prescaler .............................................. 47  
Timer2 ........................................................................ 55  
USART Receive ....................................................... 101  
USART Transmit ........................................................ 99  
BRG ................................................................................... 78  
BRGH bit ............................................................................ 97  
Brown-out Reset (BOR) ........................... 121, 125, 127, 128  
BOR Status (BOR Bit) ................................................ 25  
D
D/A ..................................................................................... 64  
Data Memory ..................................................................... 12  
Bank Select (RP1:RP0 Bits) ................................ 12, 18  
General Purpose Registers ....................................... 12  
Register File Map ................................................ 13, 14  
Special Function Registers ........................................ 15  
Data/Address bit, D/A ........................................................ 64  
DC Characteristics ........................................................... 154  
1999 Microchip Technology Inc.  
DS30292B-page 185  
PIC16F87X  
2
Development Support ......................................................145  
Device Differences ...........................................................183  
Device Overview ..................................................................5  
Direct Addressing ......................................................... 27, 28  
I C Module Address Register, SSPADD ........................... 72  
I C Slave Mode .................................................................. 72  
2
ID Locations ............................................................. 121, 135  
In-Circuit Serial Programming (ICSP) ...................... 121, 136  
INDF .................................................................................. 17  
INDF Register ........................................................ 15, 16, 27  
Indirect Addressing ...................................................... 27, 28  
FSR Register ............................................................. 12  
Instruction Format ............................................................ 137  
Instruction Set .................................................................. 137  
ADDLW .................................................................... 139  
ADDWF .................................................................... 139  
ANDLW .................................................................... 139  
ANDWF .................................................................... 139  
BCF ......................................................................... 139  
BSF .......................................................................... 139  
BTFSC ..................................................................... 140  
BTFSS ..................................................................... 140  
CALL ........................................................................ 140  
CLRF ....................................................................... 140  
CLRW ...................................................................... 140  
CLRWDT ................................................................. 140  
COMF ...................................................................... 141  
DECF ....................................................................... 141  
DECFSZ .................................................................. 141  
GOTO ...................................................................... 141  
INCF ........................................................................ 141  
INCFSZ .................................................................... 141  
IORLW ..................................................................... 142  
IORWF ..................................................................... 142  
MOVF ...................................................................... 142  
MOVLW ................................................................... 142  
MOVWF ................................................................... 142  
NOP ......................................................................... 142  
RETFIE .................................................................... 143  
RETLW .................................................................... 143  
RETURN .................................................................. 143  
RLF .......................................................................... 143  
RRF ......................................................................... 143  
SLEEP ..................................................................... 143  
SUBLW .................................................................... 144  
SUBWF .................................................................... 144  
SWAPF .................................................................... 144  
XORLW ................................................................... 144  
XORWF ................................................................... 144  
Summary Table ....................................................... 138  
INTCON ............................................................................. 17  
INTCON Register ............................................................... 20  
GIE Bit ....................................................................... 20  
INTE Bit ..................................................................... 20  
INTF Bit ..................................................................... 20  
PEIE Bit ..................................................................... 20  
RBIE Bit ..................................................................... 20  
RBIF Bit ............................................................... 20, 31  
T0IE Bit ...................................................................... 20  
T0IF Bit ...................................................................... 20  
E
Electrical Characteristics ..................................................151  
Errata ...................................................................................4  
F
Firmware Instructions .......................................................137  
FSR Register ....................................................15, 16, 17, 27  
G
General Call Address Sequence ........................................74  
General Call Address Support ...........................................74  
General Call Enable bit ......................................................66  
I
I/O Ports .............................................................................29  
2
I C ......................................................................................71  
2
I C Master Mode Reception ...............................................83  
2
I C Master Mode Restart Condition ...................................80  
2
I C Mode Selection ............................................................71  
2
I C Module  
Acknowledge Sequence timing ..................................85  
Addressing .................................................................72  
Baud Rate Generator .................................................78  
Block Diagram ............................................................76  
BRG Block Diagram ...................................................78  
BRG Reset due to SDA Collision ...............................90  
BRG Timing ...............................................................78  
Bus Arbitration ...........................................................88  
Bus Collision ..............................................................88  
Acknowledge ......................................................88  
Restart Condition ...............................................91  
Restart Condition Timing (Case1) ......................91  
Restart Condition Timing (Case2) ......................91  
Start Condition ...................................................89  
Start Condition Timing ................................. 89, 90  
Stop Condition ...................................................92  
Stop Condition Timing (Case1) ..........................92  
Stop Condition Timing (Case2) ..........................92  
Transmit Timing .................................................88  
Bus Collision timing ....................................................88  
Clock Arbitration .........................................................87  
Clock Arbitration Timing (Master Transmit) ................87  
Conditions to not give ACK Pulse ..............................72  
General Call Address Support ...................................74  
Master Mode ..............................................................76  
Master Mode 7-bit Reception timing ..........................84  
Master Mode Operation .............................................77  
Master Mode Start Condition .....................................79  
Master Mode Transmission ........................................81  
Master Mode Transmit Sequence ..............................77  
Multi-Master Communication .....................................88  
Multi-master Mode .....................................................77  
Operation ...................................................................71  
Repeat Start Condition timing ....................................80  
Slave Mode ................................................................72  
Slave Reception .........................................................73  
Slave Transmission ....................................................73  
SSPBUF .....................................................................72  
Stop Condition Receive or Transmit timing ................86  
Stop Condition timing .................................................86  
Waveforms for 7-bit Reception ..................................73  
Waveforms for 7-bit Transmission .............................74  
2
Inter-Integrated Circuit (I C) .............................................. 63  
Internal Sampling Switch (Rss) Impedence ..................... 114  
Interrupt Sources ..................................................... 121, 131  
Block Diagram ......................................................... 131  
Interrupt on Change (RB7:RB4 ) ............................... 31  
RB0/INT Pin, External ...................................... 7, 8, 132  
TMR0 Overflow ........................................................ 132  
USART Receive/Transmit Complete ......................... 95  
DS30292B-page 186  
1999 Microchip Technology Inc.  
PIC16F87X  
Interrupts  
Bus Collision Interrupt ................................................ 24  
Synchronous Serial Port Interrupt .............................. 22  
Interrupts, Context Saving During .................................... 132  
Interrupts, Enable Bits  
PCLATH Register ............................................ 15, 16, 17, 26  
PCON Register .................................................... 17, 25, 126  
BOR Bit ...................................................................... 25  
POR Bit ...................................................................... 25  
PIC16F876 Pinout Description ............................................ 7  
PICDEM-1 Low-Cost PICmicro Demo Board .................. 147  
PICDEM-2 Low-Cost PIC16CXX Demo Board ................ 147  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............. 147  
PICSTART Plus Entry Level Development System ...... 147  
PIE1 Register .............................................................. 17, 21  
PIE2 Register .............................................................. 17, 23  
Pinout Descriptions  
Global Interrupt Enable (GIE Bit) ....................... 20, 131  
Interrupt on Change (RB7:RB4) Enable  
(RBIE Bit) .......................................................... 20, 132  
Peripheral Interrupt Enable (PEIE Bit) ....................... 20  
RB0/INT Enable (INTE Bit) ........................................ 20  
TMR0 Overflow Enable (T0IE Bit) .............................. 20  
Interrupts, Flag Bits  
Interrupt on Change (RB7:RB4) Flag  
PIC16F873/PIC16F876 ............................................... 7  
PIC16F874/PIC16F877 ............................................... 8  
PIR1 Register .................................................................... 22  
PIR2 Register .................................................................... 24  
POP ................................................................................... 26  
PORTA ...................................................................... 7, 8, 17  
Analog Port Pins ...................................................... 7, 8  
Initialization ................................................................ 29  
PORTA Register ........................................................ 29  
RA3, RA0 and RA5 Port Pins .................................... 29  
RA4/T0CKI Pin .................................................. 7, 8, 29  
RA5/SS/AN4 Pin ...................................................... 7, 8  
TRISA Register .......................................................... 29  
PORTA Register ................................................................ 15  
PORTB ...................................................................... 7, 8, 17  
PORTB Register ........................................................ 31  
Pull-up Enable (RBPU Bit) ......................................... 19  
RB0/INT Edge Select (INTEDG Bit) .......................... 19  
RB0/INT Pin, External ..................................... 7, 8, 132  
RB3:RB0 Port Pins .................................................... 31  
RB7:RB4 Interrupt on Change ................................. 132  
RB7:RB4 Interrupt on Change Enable  
(RBIF Bit) ..................................................... 20, 31, 132  
RB0/INT Flag (INTF Bit) ............................................. 20  
TMR0 Overflow Flag (T0IF Bit) .......................... 20, 132  
K
KeeLoq Evaluation and Programming Tools ................. 148  
L
Loading of PC .................................................................... 26  
M
Master Clear (MCLR) ....................................................... 7, 8  
MCLR Reset, Normal Operation .............. 125, 127, 128  
MCLR Reset, SLEEP ............................... 125, 127, 128  
Memory Organization  
Data Memory ............................................................. 12  
Program Memory ....................................................... 11  
MPLAB Integrated Development Environment Software . 145  
Multi-Master Communication ............................................. 88  
Multi-Master Mode ............................................................. 77  
O
(RBIE Bit) ........................................................... 20, 132  
RB7:RB4 Interrupt on Change Flag  
OPCODE Field Descriptions ............................................ 137  
OPTION ............................................................................. 17  
OPTION_REG Register ..................................................... 19  
INTEDG Bit ................................................................ 19  
PS2:PS0 Bits ............................................................. 19  
PSA Bit ....................................................................... 19  
RBPU Bit .................................................................... 19  
T0CS Bit ..................................................................... 19  
T0SE Bit ..................................................................... 19  
OSC1/CLKIN Pin ............................................................. 7, 8  
OSC2/CLKOUT Pin ......................................................... 7, 8  
Oscillator Configuration ............................................ 121, 123  
HS .................................................................... 123, 127  
LP ..................................................................... 123, 127  
RC ............................................................ 123, 124, 127  
XT .................................................................... 123, 127  
Oscillator, WDT ................................................................ 133  
Output of TMR2 ................................................................. 55  
(RBIF Bit) ..................................................... 20, 31, 132  
RB7:RB4 Port Pins .................................................... 31  
TRISB Register .......................................................... 31  
PORTB Register ................................................................ 15  
PORTC ...................................................................... 7, 8, 17  
Block Diagram ........................................................... 33  
PORTC Register ........................................................ 33  
RC0/T1OSO/T1CKI Pin ........................................... 7, 8  
RC1/T1OSI/CCP2 Pin ............................................. 7, 8  
RC2/CCP1 Pin ......................................................... 7, 8  
RC3/SCK/SCL Pin ................................................... 7, 8  
RC4/SDI/SDA Pin .................................................... 7, 8  
RC5/SDO Pin .......................................................... 7, 8  
RC6/TX/CK Pin .................................................. 7, 8, 96  
RC7/RX/DT Pin ........................................... 7, 8, 96, 97  
TRISC Register ................................................... 33, 95  
PORTC Register ................................................................ 15  
PORTD .................................................................... 9, 17, 38  
Block Diagram ........................................................... 35  
Parallel Slave Port (PSP) Function ............................ 35  
PORTD Register ........................................................ 35  
TRISD Register ......................................................... 35  
PORTD Register ................................................................ 15  
PORTE .......................................................................... 9, 17  
Analog Port Pins .............................................. 9, 37, 38  
Block Diagram ........................................................... 36  
Input Buffer Full Status (IBF Bit) ................................ 36  
Input Buffer Overflow (IBOV Bit) ................................ 36  
Output Buffer Full Status (OBF Bit) ........................... 36  
PORTE Register ........................................................ 36  
P
P ......................................................................................... 64  
Packaging ........................................................................ 175  
Paging, Program Memory ............................................ 11, 26  
Parallel Slave Port (PSP) ......................................... 9, 35, 38  
Block Diagram ............................................................ 38  
RE0/RD/AN5 Pin .............................................. 9, 37, 38  
RE1/WR/AN6 Pin ............................................. 9, 37, 38  
RE2/CS/AN7 Pin .............................................. 9, 37, 38  
Read Waveforms ....................................................... 39  
Select (PSPMODE Bit) .................................. 35, 36, 38  
Write Waveforms ....................................................... 39  
PCL Register .................................................... 15, 16, 17, 26  
1999 Microchip Technology Inc.  
DS30292B-page 187  
PIC16F87X  
PSP Mode Select (PSPMODE Bit) ................35, 36, 38  
RE0/RD/AN5 Pin .............................................. 9, 37, 38  
RE1/WR/AN6 Pin ............................................. 9, 37, 38  
RE2/CS/AN7 Pin .............................................. 9, 37, 38  
TRISE Register ..........................................................36  
PORTE Register ................................................................15  
Postscaler, WDT  
Assignment (PSA Bit) ................................................19  
Rate Select (PS2:PS0 Bits) .......................................19  
Power-on Reset (POR) ....................121, 125, 126, 127, 128  
Oscillator Start-up Timer (OST) ....................... 121, 126  
POR Status (POR Bit) ................................................25  
Power Control (PCON) Register ..............................126  
Power-down (PD Bit) .........................................18, 125  
Power-up Timer (PWRT) ................................. 121, 126  
Time-out (TO Bit) ............................................... 18, 125  
Time-out Sequence on Power-up ....................129, 130  
PR2 ....................................................................................17  
PR2 Register ................................................................16, 55  
Prescaler, Timer0  
Assignment (PSA Bit) ................................................19  
Rate Select (PS2:PS0 Bits) .......................................19  
PRO MATE II Universal Programmer ............................147  
Product Identification System ...........................................191  
Program Counter  
Reset Conditions ......................................................127  
Program Memory ...............................................................11  
Interrupt Vector ..........................................................11  
Paging ..................................................................11, 26  
Program Memory Map ...............................................11  
Reset Vector ..............................................................11  
Program Verification .........................................................135  
Programming Pin (VPP) ....................................................7, 8  
Programming, Device Instructions ...................................137  
PUSH .................................................................................26  
Reset ....................................................................... 121, 125  
Block Diagram ......................................................... 125  
Reset Conditions for All Registers ........................... 128  
Reset Conditions for PCON Register ...................... 127  
Reset Conditions for Program Counter .................... 127  
Reset Conditions for STATUS Register ................... 127  
Restart Condition Enabled bit ............................................ 66  
Revision History ............................................................... 183  
S
SCK ................................................................................... 67  
SCL .................................................................................... 72  
SDA ................................................................................... 72  
SDI ..................................................................................... 67  
SDO ................................................................................... 67  
SEEVAL Evaluation and Programming System ............ 148  
Serial Clock, SCK .............................................................. 67  
Serial Clock, SCL ............................................................... 72  
Serial Data Address, SDA ................................................. 72  
Serial Data In, SDI ............................................................. 67  
Serial Data Out, SDO ........................................................ 67  
Slave Select, SS ................................................................ 67  
SLEEP ............................................................. 121, 125, 134  
SMP ................................................................................... 64  
Software Simulator (MPLAB-SIM) ................................... 146  
SPBRG .............................................................................. 17  
SPBRG Register ................................................................ 16  
Special Features of the CPU ........................................... 121  
Special Function Registers ................................................ 15  
Speed, Operating ................................................................. 1  
SPI  
Master Mode .............................................................. 68  
Master Mode Timing .................................................. 68  
Serial Clock ................................................................ 67  
Serial Data In ............................................................. 67  
Serial Data Out .......................................................... 67  
Serial Peripheral Interface (SPI) ................................ 63  
Slave Mode Timing .................................................... 69  
Slave Mode Timing Diagram ..................................... 69  
Slave Select ............................................................... 67  
SPI clock .................................................................... 68  
SPI Mode ................................................................... 67  
SPI Clock Edge Select, CKE ............................................. 64  
SPI Data Input Sample Phase Select, SMP ...................... 64  
SPI Module  
R
R/W ....................................................................................64  
R/W bit ...............................................................................72  
R/W bit ...............................................................................73  
RCREG ..............................................................................17  
RCSTA Register ........................................................... 17, 96  
CREN Bit ....................................................................96  
FERR Bit ....................................................................96  
OERR Bit ...................................................................96  
RX9 Bit .......................................................................96  
RX9D Bit ....................................................................96  
SPEN Bit .............................................................. 95, 96  
SREN Bit ....................................................................96  
Read/Write bit, R/W ...........................................................64  
Receive Enable bit .............................................................66  
Receive Overflow Indicator bit, SSPOV .............................65  
Register File .......................................................................12  
Register File Map ......................................................... 13, 14  
Registers  
Slave Mode ................................................................ 69  
SS ...................................................................................... 67  
SSP .................................................................................... 63  
Block Diagram (SPI Mode) ........................................ 67  
RA5/SS/AN4 Pin ...................................................... 7, 8  
RC3/SCK/SCL Pin ................................................... 7, 8  
RC4/SDI/SDA Pin .................................................... 7, 8  
RC5/SDO Pin ........................................................... 7, 8  
SPI Mode ................................................................... 67  
SSPADD .................................................................... 72  
SSPBUF .............................................................. 68, 72  
SSPCON1 ................................................................. 65  
SSPCON2 ................................................................. 66  
SSPSR ................................................................ 68, 72  
SSPSTAT ............................................................ 64, 72  
FSR Summary ...........................................................17  
INDF Summary ..........................................................17  
INTCON Summary .....................................................17  
OPTION Summary .....................................................17  
PCL Summary ............................................................17  
PCLATH Summary ....................................................17  
PORTB Summary ......................................................17  
SSPSTAT ...................................................................64  
STATUS Summary ....................................................17  
TMR0 Summary .........................................................17  
TRISB Summary ........................................................17  
2
SSP I C  
2
SSP I C Operation .................................................... 71  
DS30292B-page 188  
1999 Microchip Technology Inc.  
PIC16F87X  
SSP Module  
SPI Master Mode ....................................................... 68  
Timers  
Timer0  
SPI Slave Mode ......................................................... 69  
SSPCON1 Register ................................................... 71  
SSP Overflow Detect bit, SSPOV ...................................... 72  
SSPADD Register ........................................................ 16, 17  
SSPBUF ....................................................................... 17, 72  
SSPBUF Register .............................................................. 15  
SSPCON Register ............................................................. 15  
SSPCON1 .................................................................... 65, 71  
SSPCON2 .......................................................................... 66  
SSPEN ............................................................................... 65  
SSPIF ........................................................................... 22, 73  
SSPM3:SSPM0 .................................................................. 65  
SSPOV ................................................................... 65, 72, 83  
SSPSTAT ..................................................................... 64, 72  
SSPSTAT Register ...................................................... 16, 17  
Stack .................................................................................. 26  
Overflows ................................................................... 26  
Underflow ................................................................... 26  
Start bit (S) ......................................................................... 64  
Start Condition Enabled bit ................................................ 66  
STATUS Register ........................................................ 17, 18  
C Bit ........................................................................... 18  
DC Bit ......................................................................... 18  
IRP Bit ........................................................................ 18  
PD Bit ................................................................. 18, 125  
RP1:RP0 Bits ............................................................. 18  
TO Bit ................................................................. 18, 125  
Z Bit ............................................................................ 18  
Stop bit (P) ......................................................................... 64  
Stop Condition Enable bit .................................................. 66  
Synchronous Serial Port .................................................... 63  
Synchronous Serial Port Enable bit, SSPEN ..................... 65  
Synchronous Serial Port Interrupt ...................................... 22  
Synchronous Serial Port Mode Select bits,  
External Clock ................................................... 48  
Interrupt ............................................................. 47  
Prescaler ........................................................... 48  
Prescaler Block Diagram ................................... 47  
Section .............................................................. 47  
T0CKI ................................................................ 48  
Timer1  
Asynchronous Counter Mode ............................ 53  
Capacitor Selection ........................................... 53  
Operation in Timer Mode ................................... 52  
Oscillator ............................................................ 53  
Prescaler ........................................................... 53  
Resetting of Timer1 Registers ........................... 53  
Resetting Timer1 using a CCP Trigger Output .. 53  
Synchronized Counter Mode ............................. 52  
T1CON .............................................................. 51  
TMR1H .............................................................. 53  
TMR1L ............................................................... 53  
Timer2  
Block Diagram ................................................... 55  
Postscaler .......................................................... 55  
Prescaler ........................................................... 55  
T2CON .............................................................. 55  
Timing Diagrams  
A/D Conversion ....................................................... 172  
Acknowledge Sequence Timing ................................ 85  
Baud Rate Generator with Clock Arbitration .............. 78  
BRG Reset Due to SDA Collision .............................. 90  
Brown-out Reset ...................................................... 162  
Bus Collision  
Start Condition Timing ....................................... 89  
Bus Collision During a Restart Condition (Case 1) .... 91  
Bus Collision During a Restart Condition (Case2) ..... 91  
Bus Collision During a Start Condition (SCL = 0) ...... 90  
Bus Collision During a Stop Condition ....................... 92  
Bus Collision for Transmit and Acknowledge ............ 88  
Capture/Compare/PWM .......................................... 164  
CLKOUT and I/O ..................................................... 161  
SSPM3:SSPM0 .................................................................. 65  
T
T1CKPS0 bit ...................................................................... 51  
T1CKPS1 bit ...................................................................... 51  
T1CON ............................................................................... 17  
T1CON Register .......................................................... 17, 51  
T1OSCEN bit ..................................................................... 51  
T1SYNC bit ........................................................................ 51  
T2CKPS0 bit ...................................................................... 55  
T2CKPS1 bit ...................................................................... 55  
T2CON Register .......................................................... 17, 55  
TAD ................................................................................... 116  
Timer0  
Clock Source Edge Select (T0SE Bit) ........................ 19  
Clock Source Select (T0CS Bit) ................................. 19  
Overflow Enable (T0IE Bit) ........................................ 20  
Overflow Flag (T0IF Bit) ..................................... 20, 132  
Overflow Interrupt .................................................... 132  
RA4/T0CKI Pin, External Clock ............................... 7, 8  
Timer1 ................................................................................ 51  
RC0/T1OSO/T1CKI Pin ........................................... 7, 8  
RC1/T1OSI/CCP2 Pin .............................................. 7, 8  
2
I C Bus Data ............................................................ 169  
I C Bus Start/Stop bits ............................................. 168  
I C Master Mode First Start bit timing ....................... 79  
I C Master Mode Reception timing ............................ 84  
2
2
2
2
I C Master Mode Transmission timing ...................... 82  
Master Mode Transmit Clock Arbitration ................... 87  
Power-up Timer ....................................................... 162  
Repeat Start Condition .............................................. 80  
Reset ....................................................................... 162  
SPI Master Mode ....................................................... 68  
SPI Slave Mode (CKE = 1) ........................................ 69  
SPI Slave Mode Timing (CKE = 0) ............................ 69  
Start-up Timer .......................................................... 162  
Stop Condition Receive or Transmit .......................... 86  
Time-out Sequence on Power-up .................... 129, 130  
Timer0 ..................................................................... 163  
Timer1 ..................................................................... 163  
USART Asynchronous Master Transmission .......... 100  
USART Asynchronous Reception ........................... 101  
USART Synchronous Receive ................................ 170  
USART Synchronous Reception ............................. 107  
USART Synchronous Transmission ................ 106, 170  
USART, Asynchronous Reception .......................... 104  
Wake-up from SLEEP via Interrupt ......................... 135  
Watchdog Timer ...................................................... 162  
1999 Microchip Technology Inc.  
DS30292B-page 189  
PIC16F87X  
TMR0 .................................................................................17  
TMR0 Register ...................................................................15  
TMR1CS bit ........................................................................51  
TMR1H ...............................................................................17  
TMR1H Register ................................................................15  
TMR1L ...............................................................................17  
TMR1L Register .................................................................15  
TMR1ON bit .......................................................................51  
TMR2 .................................................................................17  
TMR2 Register ...................................................................15  
TMR2ON bit .......................................................................55  
TOUTPS0 bit ......................................................................55  
TOUTPS1 bit ......................................................................55  
TOUTPS2 bit ......................................................................55  
TOUTPS3 bit ......................................................................55  
TRISA .................................................................................17  
TRISA Register ..................................................................16  
TRISB .................................................................................17  
TRISB Register ..................................................................16  
TRISC ................................................................................17  
TRISC Register ..................................................................16  
TRISD ................................................................................17  
TRISD Register ..................................................................16  
TRISE .................................................................................17  
TRISE Register ............................................................ 16, 36  
IBF Bit ........................................................................36  
IBOV Bit .....................................................................36  
OBF Bit ......................................................................36  
PSPMODE Bit ................................................ 35, 36, 38  
TXREG ...............................................................................17  
TXSTA ................................................................................17  
TXSTA Register .................................................................95  
BRGH Bit ...................................................................95  
CSRC Bit ....................................................................95  
SYNC Bit ....................................................................95  
TRMT Bit ....................................................................95  
TX9 Bit .......................................................................95  
TX9D Bit .....................................................................95  
TXEN Bit ....................................................................95  
RCSTA Register ........................................................ 96  
Receive Block Diagram ........................................... 101  
Receive Data, 9th bit (RX9D Bit) ............................... 96  
Receive Enable, 9-bit (RX9 Bit) ................................. 96  
Serial Port Enable (SPEN Bit) ............................. 95, 96  
Single Receive Enable (SREN Bit) ............................ 96  
Synchronous Master Mode ...................................... 105  
Synchronous Master Reception ............................... 107  
Synchronous Master Transmission ......................... 105  
Synchronous Slave Mode ........................................ 108  
Transmit Block Diagram ............................................ 99  
Transmit Data, 9th Bit (TX9D) ................................... 95  
Transmit Enable (TXEN Bit) ...................................... 95  
Transmit Enable, Nine-bit (TX9 Bit) ........................... 95  
Transmit Shift Register Status (TRMT Bit) ................ 95  
TXSTA Register ......................................................... 95  
W
Wake-up from SLEEP .............................................. 121, 134  
Interrupts ......................................................... 127, 128  
MCLR Reset ............................................................ 128  
Timing Diagram ....................................................... 135  
WDT Reset .............................................................. 128  
Watchdog Timer (WDT) ........................................... 121, 133  
Block Diagram ......................................................... 133  
Enable (WDTE Bit) .................................................. 133  
Programming Considerations .................................. 133  
RC Oscillator ............................................................ 133  
Time-out Period ....................................................... 133  
WDT Reset, Normal Operation ................ 125, 127, 128  
WDT Reset, SLEEP ................................. 125, 127, 128  
Waveform for General Call Address Sequence ................. 74  
WCOL .................................................. 65, 79, 81, 83, 85, 86  
WCOL Status Flag ............................................................. 79  
Write Collision Detect bit, WCOL ....................................... 65  
WWW, On-Line Support ...................................................... 4  
U
UA ......................................................................................64  
Universal Synchronous Asynchronous Receiver  
Transmitter (USART)  
Asynchronous Receiver  
Setting Up Reception .......................................103  
Timing Diagram ................................................104  
Update Address, UA ..........................................................64  
USART ...............................................................................95  
Asynchronous Mode ..................................................99  
Receive Block Diagram ....................................103  
Asynchronous Receiver ...........................................101  
Asynchronous Reception .........................................102  
Asynchronous Transmitter .........................................99  
Baud Rate Generator (BRG) ......................................97  
Baud Rate Formula ............................................97  
Baud Rates, Asynchronous Mode (BRGH=0) ...98  
High Baud Rate Select (BRGH Bit) ....................95  
Sampling ............................................................97  
Clock Source Select (CSRC Bit) ................................95  
Continuous Receive Enable (CREN Bit) ....................96  
Framing Error (FERR Bit) ..........................................96  
Mode Select (SYNC Bit) ............................................95  
Overrun Error (OERR Bit) ..........................................96  
RC6/TX/CK Pin ........................................................7, 8  
RC7/RX/DT Pin ........................................................7, 8  
DS30292B-page 190  
1999 Microchip Technology Inc.  
PIC16F87X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
981103  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER, PRO MATE and MPLAB are regis-  
tered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries. FlexROM and fuzzyLAB are  
trademarks and SQTP is a service mark of Microchip in the  
U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
DS30292B-page 191  
PIC16F87X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30292B  
Device:  
PIC16F87X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30292B-page 192  
1999 Microchip Technology Inc.  
PIC16F87X  
PIC16F87X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
f)  
PIC16F877 -20/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
g)  
h)  
PIC16F876 - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
Device  
PIC16F87X(1), PIC16F87XT(2) ;VDD range 4.0V to 5.5V  
PIC16LF87X(1), PIC16LF87XT(2 );VDD range 2.0V to 5.5V  
PIC16F877 - 04I/P = Industrial temp., PDIP  
package, 10MHz, normal VDD limits.  
Frequency Range  
04  
20  
= 4 MHz  
= 20 MHz  
Note 1:  
F
= CMOS FLASH  
LF = Low Power CMOS FLASH  
Temperature Range  
b(3)  
I
=
=
0°C to  
70°C (Commercial)  
T
= in tape and reel - SOIC, PLCC,  
MQFP, TQFP packages only.  
-40°C to +85°C (Industrial)  
Package  
PQ  
PT  
SO  
SP  
P
=
=
=
=
=
=
MQFP (Metric PQFP)  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic dip  
PDIP  
PLCC  
L
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
DS30292B-page 193  
PIC16F87X  
NOTES:  
DS30292B-page 194  
1999 Microchip Technology Inc.  
PIC16F87X  
NOTES:  
1999 Microchip Technology Inc.  
DS30292B-page 195  
PIC16F87X  
NOTES:  
DS30292B-page 196  
1999 Microchip Technology Inc.  
PIC16F87X  
NOTES:  
1999 Microchip Technology Inc.  
DS30292B-page 197  
PIC16F87X  
NOTES:  
DS30292B-page 198  
1999 Microchip Technology Inc.  
PIC16F87X  
NOTES:  
1999 Microchip Technology Inc.  
DS30292B-page 199  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore 188980  
Microchip Technology Inc.  
Microchip Technology Inc.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
Tel: 65-334-8870 Fax: 65-334-8850  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Tel: 972-818-7423 Fax: 972-818-2924  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Italy  
Los Angeles  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
New York  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchip’s quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS30292B-page 200  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY