Q68000-A8483 [ETC]

EINFACHKOPPLER MIT 2 DIODEN AUSGAENGEN ; EINFACHKOPPLER麻省理工学院2 DIODEN AUSGAENGEN\n
Q68000-A8483
型号: Q68000-A8483
厂家: ETC    ETC
描述:

EINFACHKOPPLER MIT 2 DIODEN AUSGAENGEN
EINFACHKOPPLER麻省理工学院2 DIODEN AUSGAENGEN\n

文件: 总8页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IL300  
LINEAR OPTOCOUPLER  
FEATURES  
Dimensions in inches (mm)  
• Couples AC and DC signals  
• 0.01% Servo Linearity  
Pin One I.D.  
4
3
2
7
1
8
• Wide Bandwidth, >200 KHz  
• High Gain Stability, ±0.005%/C  
• Low Input-Output Capacitance  
• Low Power Consumption, < 15mw  
• Isolation Test Voltage, 5300 VAC  
8
7
6
5
1
2
3
4
.268 (6.81)  
.255 (6.48)  
K1  
K2  
,
5
6
RMS  
1 sec.  
.390 (9.91)  
.379 (9.63)  
• Internal Insulation Distance, >0.4  
mm  
for VDE  
.305 Typ.  
(7.75) Typ.  
.045 (1.14)  
.030 (.76)  
.150 (3.81)  
.130 (3.30)  
• Underwriters Lab File #E52744  
• VDE Approval #0884 (Optional with  
Option 1, Add -X001 Suffix)  
• IL300G Replaced by IL300-X006  
.135 (3.43)  
.115 (2.92)  
4° Typ.  
10 ° Typ.  
3°–9°  
APPLICATIONS  
• Power Supply Feedback Voltage/  
Current  
• Medical Sensor Isolation  
• Audio Signal Interfacing  
.040 (1.02)  
.030 (.76 )  
.022 (.56)  
.018 (.46)  
.012 (.30)  
.008 (.20)  
.100 (2.54) Typ.  
• Isolate Process Control Transducers  
• Digital Telephone Isolation  
DESCRIPTION (continued)  
The magnitude of this current is directly proportional to the feedback transfer gain  
(K1) times the LED drive current (V /R1=K1 • I ). The op-amp will supply LED cur-  
IN  
F
DESCRIPTION  
rent to force sufcient photocurrent to keep the node voltage (Vb) equal to Va  
The IL300 Linear Optocoupler consists of  
an AlGaAs IRLED irradiating an isolated  
feedback and an output PIN photodiode  
in a bifurcated arrangement. The feed-  
back photodiode captures a percentage  
of the LED's flux and generates a control  
The output photodiode is connected to a non-inverting voltage follower amplifier. The  
photodiode load resistor, R2, performs the current to voltage conversion. The output  
amplifier voltage is the product of the output forward gain (K2) times the LED current  
and photodiode load, R2 (V =I • K2 • R2).  
O
F
Therefore, the overall transfer gain (V /V ) becomes the ratio of the product of the  
O
IN  
output forward gain (K2) times the photodiode load resistor (R2) to the product of the  
feedback transfer gain (K1) times the input resistor (R1). This reduces to V /V =  
signal (IP ) that can be used to servo the  
1
O
IN  
LED drive current. This technique com-  
pensates for the LED's non-linear, time,  
and temperature characteristics. The out-  
put PIN photodiode produces an output  
(K2 • R2)/(K1 • R1). The overall transfer gain is completely independent of the LED  
forward current. The IL300 transfer gain (K3) is expressed as the ratio of the ouput  
gain (K2) to the feedback gain (K1). This shows that the circuit gain becomes the  
product of the IL300 transfer gain times the ratio of the output to input resistors [V /  
O
signal (IP ) that is linearly related to the  
2
V =K3 (R2/R1)].  
IN  
servo optical ux created by the LED.  
The time and temperature stability of the  
input-output coupler gain (K3) is insured  
by using matched PIN photodiodes that  
accurately track the output ux of the  
LED.  
Figure 1.Typical application circuit  
IL300  
K2  
1
8
7
6
Va  
V
+
CC  
+
Vin  
2
3
4
U1  
A typical application circuit (Figure 1)  
uses an operational amplifier at the circuit  
input to drive the LED. The feedback  
photodiode sources current to R1 con-  
nected to the inverting input of U1. The  
photocurrent, IP1, will be of a magnitude  
Vb  
K1  
I
V
-
F
CC  
-
V
V
CC  
CC  
V
U2  
out  
V
c
+
5
lp 1  
R2  
lp 2  
R1  
to satisfy the relationship of (IP1=V /R1).  
IN  
5–1  
IL300 Terms  
Absolute Maximum Ratings  
KI—Servo Gain  
Symbol  
Min.  
Max.  
Unit  
The ratio of the input photodiode current (I ) to the LED cur-  
P1  
Emitter  
rent(I ). i.e., K1 = I / I .  
F
P1  
F
Power Dissipation  
P
160  
mW  
LED  
K2—Forward Gain  
The ratio of the output photodiode current ( I ) to the LED  
(T =25°C)  
A
P2  
Derate Linearly from 25°C  
2.13  
60  
mW/°C  
mA  
current (I ), i.e., K2 = I / I .  
F
P2  
F
Forward Current  
lf  
K3—Transfer Gain  
The Transfer Gain is the ratio of the Forward Gain to the Servo  
gain, i.e., K3 = K2/K1.  
Surge Current  
(Pulse width <10µs)  
lpk  
250  
mA  
K3—Transfer Gain Linearity  
Reverse Voltage  
V
5
V
R
The percent deviation of the Transfer Gain, as a function of  
LED or temperature from a specific Transfer Gain at a xed  
LED current and temperature.  
Thermal Resistance  
Junction Temperature  
Detector  
Rth  
470  
100  
°C/W  
°C  
T
J
Photodiode  
A silicon diode operating as a current source. The output cur-  
rent is proportional to the incident optical ux supplied by the  
LED emitter. The diode is operated in the photovoltaic or pho-  
toconductive mode. In the photovoltaic mode the diode func-  
tions as a current source in parallel with a forward biased  
silicon diode.  
Power Dissipation  
Derate linearly from 25°C  
P
50  
mA  
DET  
0.65  
50  
mW/°C  
V
Reverse Voltage  
Junction Temperature  
Thermal Resistance  
Coupler  
V
R
The magnitude of the output current and voltage is depen-  
dant upon the load resistor and the incident LED optical ux.  
When operated in the photoconductive mode the diode is  
connected to a bias supply which reverse biases the silicon  
diode. The magnitude of the output current is directly propor-  
tional to the LED incident optical ux.  
T
100  
1500  
°C  
J
Rth  
°C/W  
Total Package  
Dissipation at 25°C  
P
210  
mW  
T
LED (Light Emitting Diode)  
Derate linearly from 25°C  
Storage Temperature  
Operating Temperature  
Isolation Test Voltage  
Isolation Resistance  
2.8  
mW/°C  
°C  
An infrared emitter constructed of AlGaAs that emits at 890  
nm operates efciently with drive current from 500 µA to 40  
mA. Best linearity can be obtained at drive currents between  
5 mA to 20 mA. Its output ux typically changes by 0.5%/°C  
over the above operational current range.  
T
–55  
150  
100  
S
T
–55  
°C  
OP  
5300  
VAC  
RMS  
12  
11  
V
=500 V, T =25°C  
10  
10  
IO  
A
V
=500 V, T =100°C  
IO  
A
IL300  
5–2  
Characteristics (T =25°C)  
A
Symbol  
Min.  
Typ.  
Max.  
1.50  
10  
Unit  
Test Condition  
LED Emitter  
Forward Voltage  
V
1.25  
-2.2  
1
V
I =10 mA  
F
F
V Temperature Coefficient  
V /∆°C  
mV/°C  
µA  
pF  
F
F
Reverse Current  
I
V =5 V  
R
R
Junction Capacitance  
Dynamic Resistance  
Switching Time  
C
15  
6
V =0 V, f=1 MHz  
F
J
V /I  
I =10 mA  
F
F
F
t
t
1
1
µs  
µs  
I =2 mA, I =10 mA  
F Fq  
R
F
I =2 mA, I =10 mA  
F
Fq  
Detector  
Dark Current  
I
1
25  
nA  
V
=-15 V, I =0 µA  
D
det F  
Open Circuit Voltage  
Short Circuit Current  
Junction Capacitance  
Noise Equivalent Power  
Coupled Characteristics  
V
500  
70  
mV  
µA  
I =10 mA  
F
D
I
I =10 mA  
F
SC  
C
12  
pF  
V =0 V, f=1 MHz  
F
J
14  
NEP  
4 x 10  
W/Hz  
V
=15 V  
det  
K1, Servo Gain (I /I )  
K1  
0.0050  
0.0036  
0.56  
0.007  
70  
0.011  
0.011  
1.65  
I =10 mA, V =-15 V  
F det  
P1  
F
Servo Current, see Note 1, 2  
K2, Forward Gain (I /I )  
I 1  
µA  
I =10 mA, V =-15 V  
F det  
P
K2  
0.007  
70  
I =10 mA, V =-15 V  
F det  
P2  
F
Forward Current  
I 2  
µA  
I =10 mA, V =-15 V  
F det  
P
K3, Transfer Gain (K2/K1)  
See Note 1, 2  
K3  
1.00  
K2/K1  
I =10 mA, V =-15 V  
F det  
Transfer Gain Linearity  
Transfer Gain Linearity  
Photoconductive Operation  
Frequency Response  
Phase Response at 200 KHz  
Rise Time  
K3  
K3  
±0.25  
±0.5  
%
%
I =1 to 10 mA  
F
I =1 to 10 mA, T =0°C to 75°C  
F
A
BW (-3 db)  
200  
-45  
KHz  
Deg.  
µs  
I =10 mA, MOD=±4 mA, R =50 Ω,  
Fq L  
V
=-15 V  
det  
t
t
1.75  
1.75  
R
Fall Time  
µs  
F
Package  
Input-Output Capacitance  
Common Mode Capacitance  
Common Mode Rejection Ratio  
C
C
1
pF  
pF  
dB  
V =0 V, f=1 MHz  
F
IO  
0.5  
130  
V =0 V, f=1 MHz  
F
cm  
CMRR  
f=60 Hz, R =2.2 KΩ  
L
2. Bin Categories: All IL300s are sorted into a K3 bin, indicated by an  
alpha character that is marked on the part. The bins range from A”  
through J.  
Notes  
1. Bin Sorting:  
K3 (transfer gain) is sorted into bins that are ±5%, as follows:  
The IL300 is shipped in tubes of 50 each. Each tube contains only  
one category of K3. The category of the parts in the tube is marked  
on the tube label as well as on each individual part.  
Bin A=0.557–0.626  
Bin B=0.620–0.696  
Bin C=0.690–0.773  
Bin D=0.765–0.859  
Bin E=0.851–0.955  
Bin F=0.945–1.061  
Bin G=1.051–1.181  
Bin H=1.169–1.311  
Bin I=1.297–1.456  
Bin J=1.442–1.618  
3. Category Options: Standard IL300 orders will be shipped from the  
categories that are available at the time of the order. Any of the ten  
categories may be shipped. For customers requiring a narrower  
selection of bins, four different bin option parts are offered.  
IL300-DEFG: Order this part number to receive categories D,E,F,G  
only.  
IL300-EF: Order this part number to receive categories E, F only.  
IL300-E: Order this part number to receive category E only.  
IL300-F: Order this part number to receive category F only  
K3=K2/K1. K3 is tested at I =10 mA, V =15 V.  
F
det  
IL300  
5–3  
Figure 6. Normalized servo photocurrent vs. LED  
Figure 2. LED forward current vs. forward voltage  
current and temperature  
35  
30  
25  
20  
15  
10  
5
3.0  
Normalized to:IP1 @ I =10 mA,  
F
T =25°C,  
V =15 V  
A
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0°C  
D
25°C  
50°C  
75°C  
0
1.0  
0
5
10  
15  
20  
25  
1.1  
1.2  
1.3  
1.4  
IF - LED Current - mA  
VF - LED Forward Voltage - V  
Figure 3. LED forward current vs. forward voltage  
Figure 7. Normalized servo photocurrent vs. LED  
current and temperature  
100  
10  
Normalized to IP1 @ I =10 mA,  
F
T =25°C,  
A
V =15 V  
D
10  
1
1
.1  
0°C  
25°C  
50°C  
75°C  
.01  
.1  
.1  
1.0  
1
10  
100  
1.1  
1.2  
1.3  
1.4  
IF - LED Current - mA  
VF - LED Forward Voltage - V  
Figure 8. Servo gain vs. LED current and temperature  
Figure 4. Servo photocurrent vs. LED current and  
temperature  
1.2  
300  
0°  
25°  
V =15 V  
D
0°C  
1.0  
250  
200  
150  
100  
50  
25°C  
50°C  
75°C  
50°  
75°  
0.8  
0.6  
0.4  
0.2  
0.0  
85°  
0
.1  
.1  
1
10  
100  
1
10  
100  
IF - LED Current - mA  
IF - LED Current - mA  
Figure 9. Normalized servo gain vs. LED current  
and temperature  
Figure 5. Servo photocurrent vs. LED current  
and temperatureFigure  
1.2  
1000  
0°  
V =15 V  
25°  
D
1.0  
0°C  
50°  
75°  
25°C  
50°C  
75°C  
0.8  
100  
10  
1
100°  
0.6  
0.4  
Normalized to:  
0.2  
I =10 mA, T =25°C  
F
A
0.0  
.1  
1
10  
100  
.1  
1
10  
100  
IF - LED Current - mA  
IF - LED Current - mA  
IL300  
5–4  
Figure 14. Common mode rejection  
Figure 10.Transfer gain vs. LED current and temperature  
-60  
1.010  
0°C  
-70  
1.005  
-80  
-90  
25°C  
1.000  
50°C  
-100  
-110  
75°C  
0.995  
-120  
-130  
0.990  
10  
100  
1000  
10000  
100000 1000000  
0
5
10  
15  
20  
25  
F - Frequency - Hz  
IF - LED Current - mA  
Figure 15. Photodiode junction capacitance vs. reverse  
voltage  
Figure 11. Normalized transfer gain vs. LED current  
and temperature  
1.010  
14  
12  
10  
8
Normalized to I =10 mA, T =25°C  
F
A
0°C  
1.005  
25°C  
1.000  
0.995  
0.990  
50°C  
75°C  
6
4
2
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
Voltage - V  
det  
IF - LED Current - mA  
Application Considerations  
Figure 12. Amplitude response vs. frequency  
In applications such as monitoring the output voltage from a  
line powered switch mode power supply, measuring bioelectric  
signals, interfacing to industrial transducers, or making oating  
current measurements, a galvanically isolated, DC coupled  
interface is often essential. The IL300 can be used to construct  
an amplifier that will meet these needs.  
5
I =10 mA, Mod=±2 mA (peak)  
F
0
R =1 KΩ  
L
-5  
The IL300 eliminates the problems of gain nonlinearity and drift  
induced by time and temperature, by monitoring LED output  
ux.  
-10  
R =10 KΩ  
L
-15  
-20  
A PIN photodiode on the input side is optically coupled to the  
LED and produces a current directly proportional to ux falling  
on it . This photocurrent, when coupled to an amplifier, provides  
the servo signal that controls the LED drive current.  
4
5
6
10  
10  
10  
F - Frequency - Hz  
The LED flux is also coupled to an output PIN photodiode. The  
output photodiode current can be directly or amplified to sat-  
isfy the needs of succeeding circuits.  
Figure 13. Amplitude and phase response vs. frequency  
5
45  
dB  
Isolated Feedback Amplifier  
PHASE  
0
0
The IL300 was designed to be the central element of DC cou-  
pled isolation amplifiers. Designing the IL300 into an amplifier  
that provides a feedback control signal for a line powered  
switch mode power is quite simple, as the following example  
will illustrate.  
-5  
-45  
-90  
-135  
-10  
-15  
-20  
I
=10 mA  
See Figure 17 for the basic structure of the switch mode supply  
using the Siemens TDA4918 Push-Pull Switched Power Supply  
Control Chip. Line isolation and insulation is provided by the  
high frequency transformer. The voltage monitor isolation will  
be provided by the IL300.  
Fq  
Mod=±4 mA  
T =25°C  
RL=50 Ω  
A
-180  
7
3
4
5
6
10  
10  
10  
10  
10  
F - Frequency - Hz  
IL300  
5–5  
Figure 16. Isolated control amplifier  
The isolated amplifier provides the PWM control signal which  
is derived from the output supply voltage. Figure 16 more  
closely shows the basic function of the amplifier.  
R1  
ISO  
AMP  
+1  
To Control  
Input  
Voltage  
Monitor  
The control amplifier consists of a voltage divider and a non-  
inverting unity gain stage. The TDA4918 data sheet indicates  
that an input to the control amplifier is a high quality operational  
amplifier that typically requires a +3V signal. Given this infor-  
mation, the amplifier circuit topology shown in Figure 18 is  
selected.  
R2  
For best input offset compensation at U1, R2 will equal R3. The  
value of R1 can easily be calculated from the following.  
The power supply voltage is scaled by R1 and R2 so that  
there is +3 V at the non-inverting input (Va) of U1. This voltage  
is offset by the voltage developed by photocurrent owing  
through R3. This photocurrent is developed by the optical ux  
created by current owing through the LED. Thus as the  
scaled monitor voltage (Va) varies it will cause a change in the  
LED current necessary to satisfy the differential voltage  
needed across R3 at the inverting input.  
VMONITOR  
R1= R2 --------------------------- 1  
Va  
5V  
20K= 30K------ 1  
3V  
The rst step in the design procedure is to select the value of  
The value of R5 depends upon the IL300 Transfer Gain (K3). K3  
is targeted to be a unit gain device, however to minimize the  
part to part Transfer Gain variation, Siemens offers K3 graded  
R3 given the LED quiescent current (I ) and the servo gain  
Fq  
(K1). For this design, I =12 mA. Figure 4 shows the servo pho-  
Fq  
tocurrent at I is found to be 100 µA. With this data R3 can be  
Fq  
±5  
into  
% bins. R5 can determined using the following equa-  
calculated.  
Vb  
tion,  
3V  
100µA  
VOUT  
R3 (R1 + R2)  
R3=  
=
= 30KΩ  
-----------------  
------  
R5=  
IPl  
--------------------------- ------------------------------------  
VMONITOR  
R2K3  
Or if a unity gain amplifer is being designed (VMONI-  
TOR=VOUT, R1=0), the euation simplifies to:  
R3  
R5= -------  
K3  
Figure 17. Switch mode power supply  
DC OUTPUT  
AC/DC  
RECTIFIER  
110/  
220  
MAIN  
AC/DC  
RECTIFIER  
SWITCH  
XFORMER  
SWITCH  
MODE  
REGULATOR  
TDA4918  
CONTROL  
ISOLATED  
FEEDBACK  
Figure 18. DC coupled power supply feedback amplifier  
R1  
20 KΩ  
IL300  
1
2
3
4
8
7
6
5
7
3
R4  
100 Ω  
V
V
+
monitor  
CC  
6
Va  
Vb  
U1  
LM201  
K2  
R2  
30 KΩ  
2
1
K1  
-
4
8
V
V
CC  
CC  
100 pF  
V
To  
out  
control  
input  
R3  
30 KΩ  
R5  
30 KΩ  
IL300  
5–6  
Table 1 gives the value of R5 given the production K3 bins.  
Figure 20. Linearity error vs. input voltage  
0.025  
Table 1. R5 selection  
0.020  
LM201  
Bins  
Min.  
Max.  
K3  
R5  
Resistor  
KΩ  
1%  
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
Typ.  
0.59  
0.66  
0.73  
0.81  
0.93  
1.00  
1.11  
1.24  
1.37  
1.53  
KΩ  
A
B
C
D
E
F
G
H
I
0.560  
0.623  
0.693  
0.769  
0.855  
0.950  
1.056  
1.175  
1.304  
1.449  
0.623  
0.693  
0.769  
0.855  
0.950  
1.056  
1.175  
1.304  
1.449  
1.610  
50.85  
45.45  
41.1  
51.1  
45.3  
41.2  
37.4  
32.4  
30.0  
27.0  
24.0  
22.0  
19.4  
37.04  
32.26  
30.00  
27.03  
24.19  
21.90  
19.61  
4.0  
4.5  
5.0  
5.5  
6.0  
Vin - Input Voltage - V  
The AC characteristics are also quite impressive offering a -3  
dB bandwidth of 100 KHz, with a -45° phase shift at 80 KHz as  
shown in Figure 21.  
Figure 21. Amplitude and phase power supply control  
2
45  
J
0
0
The last step in the design is selecting the LED current limiting  
resistor (R4). The output of the operational amplifier is targeted  
to be 50% of the Vcc, or 2.5 V. With an LED quiescent current of  
dB  
-2  
-4  
-45  
-90  
-135  
PHASE  
12 mA the typical LED (V ) is 1.3 V. Given this and the opera-  
F
tional output voltage, R4 can be calculated.  
.
Vop a mp VF  
2.5V 1.3V  
-6  
-8  
R4= -------------------------------- = ------------------------------ = 1 0 0 Ω  
IFq  
12mA  
The circuit was constructed with an LM201 differential opera-  
tional amplifier using the resistors selected. The amplifier was  
compensated with a 100 pF capacitor connected between pins  
1 and 8.  
-180  
6
3
4
5
10  
10  
10  
10  
F - Frequency - Hz  
The same procedure can be used to design isolation amplifiers  
that accept biploar signals referenced to ground. These amplifi-  
ers circuit congurations are shown in Figure 22. In order for the  
amplifier to respond to a signal that swings above and below  
ground, the LED must be prebiased from a separate source by  
using a voltage reference source (Vref1). In these designs, R3  
can be determined by the following equation.  
The DC transfer charateristics are shown in Figure 19. The  
amplifier was designed to have a gain of 0.6 and was mea-  
sured to be 0.6036. Greater accurracy can be achieved by  
adding a balancing circuit, and potentiometer in the input  
divider, or at R5. The circuit shows exceptionally good gain lin-  
earity with an RMS error of only 0.0133% over the input voltage  
range of 4 V6 V in a servo mode; see Figure 20.  
Vre f1  
V re f1  
R3= ------------ = ---------------  
IP1 K1IFq  
Figure 19.Transfer gain  
3.75  
Vout = 14.4 mV + 0.6036 x Vin  
3.50  
LM 201 Ta = 25°C  
3.25  
3.00  
2.75  
2.50  
2.25  
4.0  
4.5  
5.0  
5.5  
6.0  
Vin - Input Voltage - V  
IL300  
5–7  
Figure 22. Non-inverting and inverting amplifiers  
Non-Inverting Input Non-Inverting Output  
+Vref2  
R5  
Vcc  
Vin  
R1  
7
IL300  
3
+
1
2
3
4
8
7
6
5
Vcc  
R6  
100Ω  
6
2
7
+
R2  
2
Vcc  
6
Vcc  
Vcc  
+Vcc  
Vo  
4
20pF  
3
Vcc  
4
R3  
Vref1  
R4  
Inverting Output  
Inverting Input  
Vin  
R1  
7
3
+
Vcc  
+Vref2  
8
100Ω  
6
IL300  
1
2
3
4
R2  
2
+Vcc  
Vcc  
7
3
+
7
6
5
Vcc  
4
6
Vcc  
20pF  
Vout  
2
Vcc  
4
R3  
+Vref1  
Vcc  
R4  
Table 2. Optolinear amplifiers  
Amp[ifier  
Input  
Output  
Gain  
Offset  
Inverting  
Inverting  
VOUT K3 R4 R2  
=
Vref1 R4 K3  
R3  
Non-Inverting  
Vref2=  
VIN R3 (R1+R2)  
Non-Inverting  
Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
VOUT K3 R4 R2 (R5+R6)  
VIN R3 R5 (R1 +R2)  
–Vref1 R4 (R5+R6) K3  
R3 R6  
=
Vref2  
=
VOUT –K3 R4 R2 (R5+R6)  
Vref1 R4 (R5+R6) K3  
R3 R6  
Inverting  
=
Vref2  
=
VIN R3 R5 (R1 +R2)  
Non-Inverting  
VOUT –K3 R4 R2  
=
–Vref1 R4 K3  
R3  
Vref2  
=
VIN R3 (R1 +R2)  
These amplifiers provide either an inverting or non-inverting  
transfer gain based upon the type of input and output amplifier.  
Table 2 shows the various congurations along with the spe-  
cific transfer gain equations. The offset column refers to the  
calculation of the output offset or Vref2 necessary to provide a  
zero voltage output for a zero voltage input. The non-inverting  
input amplifier requires the use of a bipolar supply, while the  
inverting input stage can be implemented with single supply  
operational amplifiers that permit operation close to ground.  
For best results, place a buffer transistor between the LED and  
output of the operational amplifier when a CMOS opamp is  
used or the LED I drive is targeted to operate beyond 15 mA.  
Fq  
Finally the bandwidth is inuenced by the magnitude of the  
closed loop gain of the input and output amplifiers. Best band-  
widths result when the amplifier gain is designed for unity.  
IL300  
5–8  

相关型号:

Q68000-A8487

Silicon Switching Diode Array
INFINEON

Q68000-A8547

Silicon Switching Diode Array
INFINEON

Q68000-A8549

PNP Silicon Switching Transistor
INFINEON

Q68000-A8615

GaAs MMIC (Two stages monolithic microwave IC MMICAmplifier All gold metallisation)
INFINEON

Q68000-A8640

LED DISPLAY ALPHANUMERIC
ETC

Q68000-A8649

THYRISTOR KOPPLER
ETC

Q68000-A8650

NPN Silicon High Voltage Transistors
INFINEON

Q68000-A8651

PNP Silicon High Voltage Transistors
INFINEON

Q68000-A8721-T

ZWEIFACHKOPPLER SMD 100PROZENT BEI 10MA
ETC

Q68000-A8787

GaAs MMIC (Two-stage microwave broadband amplifier IC 50 ヘ input / output)
INFINEON

Q68000-A8804T

EINFACHKOPPLER SMD 100PROZENT BEI 10MA
ETC

Q68000-A8882

GaAs MMIC (Power amplifier for DECT and PCS application Fully integrated 3 stage amplifier Operating voltage range: 2.7 to 6 V)
INFINEON