RT54SX16-1CQ256B [ETC]

Field Programmable Gate Array (FPGA) ; 现场可编程门阵列(FPGA)的\n
RT54SX16-1CQ256B
型号: RT54SX16-1CQ256B
厂家: ETC    ETC
描述:

Field Programmable Gate Array (FPGA)
现场可编程门阵列(FPGA)的\n

现场可编程门阵列 可编程逻辑 栅 时钟
文件: 总36页 (文件大小:775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v2.0  
54SX Family FPGAs  
RadTolerant and HiRel  
High Density Devices  
Features  
• 16,000 and 32,000 Available Logic Gates  
RadTolerant 54SX Family  
• Up to 228 User I/Os  
• Tested Total Ionizing Dose (TID) Survivability Level  
• Up to 1,080 Dedicated Flip-Flops  
• Radiation Performance to 100Krads (Si) (ICC Standby  
Parametric)  
Easy Logic Integration  
• Devices Available from Tested Pedigreed Lots  
• Up to 160 MHz On-Chip Performance  
• Offered as Class B and E-Flow (Actel Space Level Flow)  
• QMl Certified Devices  
• Non-Volatile, User Programmable  
• Highly Predictable Performance with 100% Automatic  
Place and Route  
• 100% Resource Utilization with 100% Pin Locking  
• Mixed Voltage Support—3.3V Operation with 5.0V Input  
Tolerance for Low Power Operation  
HiRel 54SX Family  
• Fastest HiRel FPGA Family Available  
• JTAG Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1  
• Up to 240 MHz On-Chip Performance  
• Low Cost Prototyping Vehicle for RadTolerant Devices  
• Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
• Offered as Commercial or Military Temperature Tested  
and Class B  
• Permanently Programmed for Operation on Power-Up  
• Cost Effective QML MIL-Temp Plastic Packaging Options  
• Standard Hermetic Packaging Offerings  
• QML Certified Devices  
• Unique In-System Diagnostic and Debug Facility with  
Silicon Explorer  
• Supported by Actel’s Designer Series and DeskTOP Series  
Development Systems with Automatic Timing Driven  
Place and Route  
• Predictable, Reliable, and Permanent Antifuse Technology  
Performance  
SX Product Profile  
Device  
RT54SX16  
A54SX16  
RT54SX32  
A54SX32  
Capacity  
System Gates  
Logic Gates  
24,000  
16,000  
24,000  
16,000  
48,000  
32,000  
48,000  
32,000  
Logic Modules  
Register Cells  
Combinatorial Cells  
User I/Os (Maximum)  
JTAG  
1,452  
528  
924  
179  
1,452  
528  
924  
180  
Yes  
2,880  
1,080  
1,800  
227  
2,880  
1,080  
1,800  
228  
Yes  
Yes  
Yes  
Packages (by pin count)  
CQFP  
208, 256  
208, 256  
208, 256  
208, 256  
March 2001  
1
© 2001 Actel Corporation  
54SX Family FPGAs RadTolerant and HiRel  
Ordering Information  
RT54SX32  
1
CQ  
256  
B
Application (Temperature Range)  
Blank = Commercial (0 to +70°C)  
M = Military (55 to +125°C)  
B = MIL-STD-883  
E = E-Flow (Actel Space Level Flow)  
Package Lead Count  
Package Type  
CQ = Ceramic Quad Flat Pack  
Speed Grade  
Blank = Standard Speed  
1 = Approximately 15% Faster than Standard  
Part Number  
A54SX16= 16,000 Gates  
A54SX32= 32,000 Gates  
RT54SX16=16,000 GatesRadTolerant  
RT54SX32=32,000 GatesRad Tolerant  
Product Plan  
Speed Grade  
Application  
Std  
–1*  
C
M
B
E
RT54SX16 Devices  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A54SX16 Devices  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
RT54SX32 Devices  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A54SX32 Devices  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
Contact your Actel sales representative for product availability.  
Applications:  
C = Commercial  
M = Military  
Availability:  
= Available  
= Planned  
* Speed Grade: –1 = Approx. 15% Faster than Standard  
P
B = MIL-STD-883  
= Not Planned  
E = E-flow (Actel Space Level Flow)  
Ceramic Device Resources  
User I/Os  
CQFP 208-Pin CQFP 256-Pin  
Device  
RT54SX16  
A54SX16  
RT54SX32  
A54SX32  
174  
175  
173  
174  
179  
180  
227  
228  
Package Definitions: CQFP = Ceramic Quad Flat Pack  
(Contact your Actel sales representative for product availability.)  
2
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
General Description  
radiation effects is both device and lot dependent. The  
customer must evaluate and determine the applicability of  
these devices to their specific design and environmental  
requirements.  
Actels RadTolerant (RT) and HiRel versions of the SX  
Family of FPGAs offer all of these advantages for  
applications such as commercial and military satellites,  
deep space probes, and all types of military and high  
reliability equipment.  
Actel will provide total dose radiation testing along with the  
test data on each pedigreed lot that is available for sale.  
These reports are available on our website or you can  
contact your local sales representative to receive a copy. A  
listing of available lots and devices will also be provided.  
These results are only provided for reference and for  
customer information.  
The RT and HiRel versions are fully pin compatible allowing  
designs to migrate across different applications that may or  
may not have radiation requirements. Also, the HiRel  
devices can be used as a low cost prototyping tool for RT  
designs.  
The programmable architecture of these devices offer high  
performance, design flexibility, and fast and inexpensive  
prototypingall without the expense of test vectors, NRE  
charges, long lead times, and schedule and cost penalties  
for design modifications that are required by ASIC devices.  
For  
a radiation performance summary, see Radiation  
Performance of Actel Products at http://www.actel.com/hirel  
.
This summary will also show single event upset (SEU) and single  
event latch-up (SEL) testing that has been performed on Actel  
FPGAs.  
Device Description  
QML Certification  
The RT54SX16 and A54SX16 devices have 16,000 available  
gates and up to 179 I/Os. The RT54SX32 and A54SX32 have  
32,000 available gates and up to 228 I/Os. All of these  
devices support JTAG boundary scan testability.  
Actel has achieved full QML certification, demonstrating  
that quality management, procedures, processes, and  
controls are in place and comply with MIL-PRF-38535, the  
performance specification used by the Department of  
All of these devices are available in Ceramic Quad Flat Pack  
(CQFP) packaging, with 208-pin and 256-pin versions. The  
256-pin version offers the user the highest I/O capability,  
while the 208-pin version offers pin compatibility with the  
commercial Plastic Quad Flat Pack (PQFP-208). This  
compatibility allows the user to prototype using the very low  
cost plastic package and then switch to the ceramic  
package for production. For more information on plastic  
packages, refer to the SX family FPGAs data sheet at:  
Defense for monolithic integrated circuits.  
QML  
certification is a good example of Actel's commitment to  
supplying the highest quality products for all types of  
high-reliability, military and space applications.  
Many suppliers of microelectronics components have  
implemented QML as their primary worldwide business  
system. Appropriate use of this system not only helps in the  
implementation of advanced technologies, but also allows  
for a quality, reliable and cost-effective logistics support  
throughout QML productslife cycles.  
http://www.actel.com/docs/datasheets/A54SXDS.pdf  
The A54SX16 and A54SX32 are manufactured using a 0.35µ  
technology at the Chartered Semiconductor facility in  
Singapore. These devices offer the highest speed  
performance available in FPGAs today.  
Disclaimer  
All radiation performance information is provided for  
information purposes only and is not guaranteed. The total  
dose effects are lot-dependent, and Actel does not  
guarantee that future devices will continue to exhibit  
similar radiation characteristics. In addition, actual  
performance can vary widely due to a variety of factors,  
including but not limited to, characteristics of the orbit,  
radiation environment, proximity to satellite exterior,  
amount of inherent shielding from other sources within the  
satellite and actual bare die variations. For these reasons,  
Actel does not guarantee any level of radiation survivability,  
and it is solely the responsibility of the customer to  
determine whether the device will meet the requirements  
of the specific design.  
The RT54SX16 and RT54SX32 are manufactured using a  
0.6µ technology at the Matsushita (MEC) facility in Japan.  
These devices offer levels of radiation survivability far in  
excess of typical CMOS devices.  
Radiation Survivability  
Total dose results are summarized in two ways. First by the  
maximum total dose level that is reached when the parts  
fail to meet a device specification but remain functional.  
For Actel FPGAs, the parameter that exceeds the  
specification first is ICC, the standby supply current. Second  
by the maximum total dose that is reached prior to the  
functional failure of the device.  
The RT SX devices have varying total dose radiation  
survivability. The ability of these devices to survive  
v2.0  
3
54SX Family FPGAs RadTolerant and HiRel  
SX Family Architecture  
The SX family architecture was designed to satisfy  
next-generation performance and integration requirements  
for production-volume designs in a broad range of  
applications.  
antifuse interconnect elements, which are embedded  
between the M2 and M3 layers. The antifuses are normally  
open circuit and, when programmed, form a permanent  
low-impedance connection.  
The extremely small size of these interconnect elements  
gives the SX family abundant routing resources and provides  
excellent protection against design pirating. Reverse  
engineering is virtually impossible, because it is extremely  
difficult to distinguish between programmed and  
unprogrammed antifuses, and there is no configuration  
bitstream to intercept.  
Programmable Interconnect Element  
Actels SX family provides much more efficient use of silicon  
by locating the routing interconnect resources between the  
Metal 2 (M2) and Metal 3 (M3) layers (Figure 1). This  
completely eliminates the channels of routing and  
interconnect resources between logic modules (as  
implemented on SRAM FPGAs and previous generations of  
antifuse FPGAs), and enables the entire floor of the device  
to be spanned with an uninterrupted grid of logic modules.  
Additionally, the interconnects (i.e., the antifuses and metal  
tracks) have lower capacitance and lower resistance than  
any other device of similar capacity, leading to the fastest  
signal propagation in the industry.  
Interconnection between these logic modules is achieved  
using Actels patented metal-to-metal programmable  
Routing Tracks  
Metal 3  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug  
Contact  
Silicon Substrate  
Figure 1 SX Family Interconnect Elements  
Logic Module Design  
programmable clock polarity, selectable on  
a
The SX family architecture has been called  
a
register-by-register basis (Figure 3 on page 5). This provides  
the designer with additional flexibility while allowing  
mapping of synthesized functions into the SX FPGA. The  
clock source for the R-cell can be chosen from the  
hard-wired clock or the routed clock.  
sea-of-modulesarchitecture because the entire floor of  
the device is covered with a grid of logic modules with  
virtually no chip area lost to interconnect elements or  
routing (see Figure 2 on page 5). Actel provides two types of  
logic modules, the register cell (R-cell) and the  
combinatorial cell (C-cell).  
The C-cell implements a range of combinatorial functions  
up to 5-inputs (Figure 4 on page 6). Inclusion of the DB  
input and its associated inverter function dramatically  
increases the number of combinatorial functions that can be  
implemented in a single module from 800 options in  
previous architectures to more than 4,000 in the SX  
The R-cell contains a flip-flop featuring more control signals  
than in previous Actel architectures, including  
asynchronous clear, asynchronous preset, and clock enable  
(using the S0 and S1 lines). The R-cell registers feature  
4
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Channelled Array Architecture  
Sea-of-Modules Architecture  
Figure 2 Channelled Array and Sea-of-Modules Architectures  
Routed  
Data Input  
S1  
S0  
PSET  
Direct  
Connect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB  
CLRB  
CKS  
CKP  
Figure 3 R-Cell  
Module Organization  
architecture. An example of the improved flexibility  
enabled by the inversion capability is the ability to integrate  
a 3-input exclusive-OR function into a single C-cell. This  
facilitates construction of 9-bit parity-tree functions with 2  
ns propagation delays. At the same time, the C-cell  
structure is extremely synthesis-friendly, simplifying the  
overall design and reducing synthesis time.  
Actel has arranged all C-cell and R-cell logic modules into  
horizontal banks called Clusters. There are two types of  
Clusters: Type 1 contains two C-cells and one R-cell, while  
Type 2 contains one C-cell and two R-cells.  
To increase design efficiency and device performance, Actel  
has further organized these modules into SuperClusters  
(see Figure 5 on page 6). SuperCluster 1 is a two-wide  
grouping of Type 1 clusters. SuperCluster 2 is a two-wide  
group containing one Type 1 cluster and one Type 2 cluster.  
SX devices feature more SuperCluster 1 modules than  
SuperCluster 2 modules because designers typically require  
more combinatorial logic than flip-flops.  
Chip Architecture  
The SX familys chip architecture provides  
a
uniqueapproach to module organization and chip routing  
that delivers the best register/logic mix for a wide variety of  
new and emerging applications.  
v2.0  
5
54SX Family FPGAs RadTolerant and HiRel  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
A0 B0  
A1 B1  
Figure 4 C-Cell  
R-Cell  
C-Cell  
D0  
Routed  
Data Input  
S1  
D1  
S0  
PSET  
Y
D2  
D3  
Direct  
Connect  
Input  
D
Q
Y
Sa  
Sb  
HCLK  
CLKA,  
CLKB  
CLRB  
DB  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 2  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Type 2 SuperCluster  
Figure 5 Cluster Organization  
Routing Resources  
DirectConnect is a horizontal routing resource that provides  
connections from a C-cell to its neighboring R-cell in a given  
SuperCluster. DirectConnect uses a hard-wired signal path  
requiring no programmable interconnection to achieve its  
fast signal propagation time of less than 0.1 ns.  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect that enable extremely fast  
and predictable interconnections of modules within  
Clusters and SuperClusters (see Figure 6 and Figure 7 on  
page 7). This routing architecture also dramatically reduces  
the number of antifuses required to complete a circuit,  
ensuring the highest possible performance.  
FastConnect enables horizontal routing between any two  
logic modules within a given SuperCluster, and vertical  
routing with the SuperCluster immediately below it. Only  
one programmable connection is used in a FastConnect  
path, delivering maximum pin-to-pin propagation of 0.4 ns.  
6
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally-oriented routing  
resources known as segmented routing and high-drive  
routing. Actels segmented routing structure provides a  
variety of track lengths for extremely fast routing between  
SuperClusters. The exact combination of track lengths and  
antifuses within each path is chosen by the 100% automatic  
place and route software to minimize signal propagation  
delays.  
DirectConnect  
• No antifuses  
FastConnect  
• One antifuse  
Routing Segments  
Typically 2 antifuses  
• Max. 5 antifuses  
Type 1 SuperClusters  
Figure 6 DirectConnect and FastConnect for Type 1 SuperClusters  
DirectConnect  
No antifuses  
FastConnect  
One antifuse  
Routing Segments  
Typically 2 antifuses  
Max. 5 antifuses  
Type 2 SuperClusters  
Figure 7 DirectConnect and FastConnect for Type 2 SuperClusters  
v2.0  
7
54SX Family FPGAs RadTolerant and HiRel  
Clock Resources  
Other Architecture Features  
Actels high-drive routing structure provides three clock  
networks. The first clock, called HCLK, is hardwired from the  
HCLK buffer to the clock select MUX in each R-cell. HCLK  
cannot be connected to combinational logic. This provides a  
fast propagation path for the clock signal, enabling the 5.8 ns  
clock-to-out (pad-to-pad) performance of the RT54SX devices.  
The hard-wired clock is tuned to provide clock skew is less  
than 0.5ns worst case.  
Performance  
The combination of architectural features described above  
enables RT54SX devices to operate with internal clock  
frequencies exceeding 160 MHz, enabling very fast  
execution of complex logic functions. Thus, the RT54SX  
family is an optimal platform upon which to integrate the  
functionality previously contained in multiple CPLDs. In  
addition, designs that previously would have required a gate  
array to meet performance goals can now be integrated into  
an RT54SX device with dramatic improvements in cost and  
time-to-market. Using timing-driven place-and-route tools,  
designers can achieve highly deterministic device  
performance. With RT54SX devices, designers do not need  
to use complicated performance-enhancing design  
techniques such as redundant logic to reduce fanout on  
critical nets or the instantiation of macros in HDL code to  
achieve high performance.  
The remaining two clocks (CLKA, CLKB) are global clocks  
that can be sourced from external pins or from internal logic  
signals within the RT54SX device. CLKA and CLKB may be  
connected to sequential cells or to combinational logic. If  
CLKA or CLKB is sourced from internal logic signals then the  
external clock pin cannot be used for any other input and  
must be tied low or high. Figure 8 describes the clock circuit  
used for the constant load HCLK. Figure 9 describes the  
CLKA and CLKB circuit used in RT54SX devices with the  
exception of RT54SX72S.  
I/O Modules  
Each I/O on an RT54SX device can be configured as an  
input, an output, a tristate output, or a bidirectional pin.  
Even without the inclusion of dedicated registers, these  
I/Os, in combination with array registers, can achieve  
clock-to-out (PAD-to-PAD) timing as fast as 5.8 ns. I/O cells  
including embedded latches and flip-flops require  
instantiation in HDL code. This is a design complication not  
encountered in RT54SX FPGAs. Fast PAD-to-PAD timing  
ensures that the device will have little trouble interfacing  
with any other device in the system, which in turn enables  
parallel design of system components and reduces overall  
design time.  
Constant Load  
Clock Network  
HCLKBUF  
Figure 8 RT54SX Constant Load Clock Pad  
Clock Network  
From Internal Logic  
Power Requirements  
The RT54SX family supports either 3.3V or 5.0V I/O voltage  
operation and is designed to tolerate 5V inputs in each case  
(Table 1). Power consumption is extremely low due to the  
very short distances signals are required to travel to  
complete a circuit. Power requirements are further reduced  
due to the small number of antifuses in the path, and  
because of the low resistance properties of the antifuses.  
The antifuse architecture does not require active circuitry  
to hold a charge (as do SRAM or EPROM), making it the  
lowest-power architecture on the market.  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 9 RT54SX Clock Pads  
Table 1 Supply Voltages  
Maximum Maximum  
Input  
Tolerance  
Output  
Drive  
VCCA VCCI VCCR  
A54SX16  
A54SX32  
3.3V 3.3V 5.0V  
3.3V  
5.0V  
3.3V  
3.3V  
RTSX16  
RTSX32  
3.3V 3.3V 5.0V  
8
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Boundary Scan Testing (BST)  
Table 2 Boundary Scan Pin Functionality  
All RT54SX devices are IEEE 1149.1 (JTAG) compliant.  
They offer superior diagnostic and testing capabilities by  
providing Boundary Scan Testing (BST) and probing  
capabilities. These functions are controlled through the  
special test pins in conjunction with the program fuse. The  
functionality of each pin is described in Table 2. Figure 10  
is a block diagram of the RT54SX JTAG circuitry.  
Program Fuse Blown  
(Dedicated Test Mode)  
Program Fuse Not Blown  
(Flexible Mode)  
TCK, TDI, TDO are  
dedicated test pins  
TCK, TDI, TDO are flexible  
and may be used as I/Os  
No need for pull-up resistor Use a pull-up resistor of  
for TMS  
10k on TMS  
TDI  
Data Registers (DRs)  
0
1
output  
stage  
TDO  
Instruction Register (IR)  
clocks and/or controls  
TMS  
TCK  
TAP Controller  
TRST external  
hard-wired pin  
Figure 10 RT54SX JTAG Circuitry  
Configuring Diagnostic Pins  
is automatically enabled on both the TMS and TDI pins. In  
dedicated test mode, TCK, TDI, and TDO are dedicated test pins  
and become unavailable for pin assignment in the Pin Editor.  
The TMS pin will function as specified in the IEEE 1149.1  
(JTAG) Specification.  
The JTAG and Probe pins (TDI, TCK, TMS, TDO, PRA, and  
PRB) are placed in the desired mode by selecting the  
appropriate check boxes in the Variationdialog window.  
This dialog window is accessible through the Design Setup  
Wizard under the Tools menu in Actels Designer software.  
Flexible Mode  
TRST pin  
When the Reserve JTAGbox is not selected (default setting  
in Designer software), the RT54SX is placed in flexible mode,  
which allows the TDI, TCK, and TDO pins to function as user  
I/Os or BST pins. In this mode the internal pull-up resistors on  
the TMS and TDI pins are disabled. An external 10k pull-up  
resistor to VCCI is required on the TMS pin.  
The TRST pin functions as a Boundary Scan Reset pin. The  
TRST pin is an asynchronous, active-low input to initialize  
or reset the BST circuit. An internal pull-up resistor is  
automatically enabled on the TRST pin.  
Dedicated Test Mode  
The TDI, TCK, and TDO pins are transformed from user I/Os  
into BST pins when a rising edge on TCK is detected while  
TMS is at logical low. Once the BST pins are in test mode  
they will remain in BST mode until the internal BST state  
When the Reserve JTAGbox is checked in the Designer  
software, the RT54SX is placed in Dedicated Test mode, which  
configures the TDI, TCK, and TDO pins for BST or in-circuit  
verification with Silicon Explorer II. An internal pull-up resistor  
v2.0  
9
54SX Family FPGAs RadTolerant and HiRel  
machine reaches the logic resetstate. At this point the  
BST pins will be released and will function as regular I/O  
pins. The "logic resetstate is reached 5 TCK cycles after  
the TMS pin is set to logical HIGH.  
iteration. The probe circuitry is accessed by Silicon Explorer  
II, an easy to use integrated verification and logic analysis  
tool that can sample data at 100 MHz (asynchronous) or  
66 MHz (synchronous). Silicon Explorer attaches to a PCs  
standard COM port, turning the PC into a fully functional 18  
channel logic analyzer. Silicon Explorer allows designers to  
complete the design verification process at their desks and  
reduces verification time from several hours per cycle to a  
few seconds.  
The program fuse determines whether the device is in  
Dedicated Test or Flexible mode. The default (fuse not  
programmed) is Flexible mode.  
Development Tool Support  
The RT54SX RadTolerant devices are fully supported by  
Actels line of FPGA development tools, including the Actel  
DeskTOP Series and Designer Seriestools. The Actel  
DeskTOP Series is an integrated design environment for PCs  
that includes design entry, simulation, synthesis, and  
place-and-route tools. Designer Series is Actels suite of  
FPGA development point tools for PCs and Workstations  
that includes the ACTgen Macro Builder, Designer Series  
with DirectTime timing driven place-and-route and analysis  
tools, and device programming software.  
The Silicon Explorer II tool uses the boundary scan ports  
(TDI, TRST, TCK, TMS, and TDO) to select the desired nets  
for verification. The selected internal nets are assigned to  
the PRA/PRB pins for observation. Figure 11 illustrates the  
interconnection between Silicon Explorer II and the FPGA  
to perform in-circuit verification.  
Design Considerations  
For prototyping, the TDI, TCK, TDO, PRA, and PRB pins  
should not be used as input or bidirectional ports. Because  
these pins are active during probing, critical signals input  
through these pins are not available while probing. In  
addition, the security fuse should not be programmed during  
prototyping because doing so disables the probe circuitry.  
RT54SX Probe Circuit Control Pins  
The RT54SX RadTolerant devices contain internal probing  
circuitry that provides built-in access to every node in a  
design, enabling 100-percent real-time observation and  
analysis of a device's internal logic nodes without design  
RT54SX-S FPGA  
TRST  
TCK  
TMS  
Serial Connection  
Silicon Explorer II  
TDO  
PRA  
PRB  
Figure 11 Probe Setup  
10  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Recommended Operating Conditions  
3.3V/5V Operating Conditions  
Recommended Operating Conditions1  
Symbol  
Parameter  
Limits  
Units  
Parameter  
Commercial  
Military  
Units  
VCCR  
VCCA  
VCCI  
VI  
DC Supply Voltage  
DC Supply Voltage  
DC Supply Voltage  
Input Voltage  
0.3 to +6.0  
0.3 to +4.0  
0.3 to +4.0  
0.5 to +5.5  
0.5 to +3.6  
V
V
V
V
V
Temperature  
Range1  
0 to +70  
55 to +125  
°C  
3.3V Power2  
Supply Tolerance  
10  
5
10  
10  
%VCC  
%VCC  
VO  
Output Voltage  
5V Power Supply 2  
Tolerance  
I/O Source Sink  
Current2  
IIO  
30 to +5.0  
40 to +125  
mA  
Notes:  
1. Ambient temperature (TA) is used for commercial and  
industrial; case temperature (TC) is used for military.  
2. All power supplies must be in the recommended operating range  
for 250µs. For more information, please refer to the  
Power-Up Design Considerations application note at  
http://www.actel.com/appnotes.  
TSTG  
Storage Temperature  
°C  
Notes:  
1. Stresses beyond those listed in the Absolute Maximum Ratings  
table may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may  
affect device reliability. Device should not be operated outside  
the Recommended Operating Conditions.  
2. The I/O source sink numbers refer to tristated inputs and  
outputs  
Electrical Specifications  
Commercial  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
(IOH = 20µA) (CMOS)  
(IOH = 8mA) (TTL)  
(IOH = 6mA) (TTL)  
(VCCI 0.1)  
VCCI  
VCCI  
(VCCI 0.1)  
VCCI  
VOH  
2.4  
V
2.4  
VCCI  
(IOL= 20µA) (CMOS)  
(IOL = 12mA) (TTL)  
(IOL = 8mA) (TTL)  
0.10  
0.50  
VOL  
V
0.50  
0.8  
VIL  
Low Level Inputs  
0.8  
V
V
VIH  
High Level Inputs  
2.0  
2.0  
tR, tF  
CIO  
Input Transition Time tR, tF  
CIO I/O Capacitance  
Standby Current, ICC  
50  
10  
50  
10  
25  
ns  
pF  
mA  
ICC  
4.0  
ICC(D)  
ICC(D) Dynamic  
I
VCC Supply Current  
See the Power Dissipationsection on page 13.  
v2.0  
11  
54SX Family FPGAs RadTolerant and HiRel  
Power-Up Sequencing  
RT54SX16, A54SX16, RT54SX32, A54SX32  
VCCA  
VCCR  
VCCI  
Power-Up Sequence  
Comments  
5.0V First  
3.3V Second  
No possible damage to device.  
3.3V  
5.0V  
3.3V  
3.3V First  
Possible damage to device.  
5.0V Second  
Power-Down Sequencing  
RT54SX16, A54SX16, RT54SX32, A54SX32  
VCCA  
VCCR  
VCCI  
Power-Down Sequence  
Comments  
5.0V First  
3.3V Second  
Possible damage to device.  
3.3V  
5.0V  
3.3V  
3.3V First  
No possible damage to device.  
5.0V Second  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power  
dissipation allowed for an RT54SX16 in a CQFP 256-pin  
package at military temperature and still air is as follows:  
Max. junction temp. (°C) – Max. ambient temp. (°C)  
150°C – 125°C  
------------------------------------  
= 1.09W  
------------------------------------------------------------------------------------------------------------------------------  
Absolute Maximum Power Allowed =  
=
θja (°C/W)  
23°C/W  
θja  
Package Type  
Pin Count  
θjc  
Still Air  
Units  
RT54SX16  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
RT54SX32  
208  
256  
7.5  
4.6  
29  
23  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
A54SX16  
208  
256  
6.9  
3.5  
35  
20  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
A54SX32  
208  
256  
7.9  
5.6  
30  
25  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
208  
256  
7.6  
4.8  
30  
24  
°C/W  
°C/W  
12  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Power Dissipation  
and load device inputs. An additional component of the  
active power dissipation is the totempole current in CMOS  
transistor pairs. The net effect can be associated with an  
equivalent capacitance that can be combined with  
frequency and voltage to represent active power dissipation.  
P = [ICCstandby + ICCactive] * VCCA + IOL * VOL * N +  
I
OH *(VCCA VOH) * M  
where:  
ICCstandby is the current flowing when no inputs or  
outputs are changing.  
Equivalent Capacitance  
The power dissipated by a CMOS circuit can be expressed by  
Equation 1:  
ICCactive is the current flowing due to CMOS switching.  
IOL, IOH are TTL sink/source currents.  
Power (µW) = CEQ * VCCA2 * F  
(1)  
VOL, VOH are TTL level output voltages.  
where:  
N equals the number of outputs driving TTL loads to VOL.  
M equals the number of outputs driving TTL loads to VOH.  
CEQ  
VCCA  
F
= Equivalent capacitance in pF  
= Power supply in volts (V)  
= Switching frequency in MHz  
Accurate values for N and M are difficult to determine  
because they depend on the design and on the system I/O.  
The power can be divided into two components: static and  
active.  
Equivalent capacitance is calculated by measuring  
ICCactive at a specified frequency and voltage for each  
circuit component of interest. Measurements have been  
Static Power Component  
made over a range of frequencies at a fixed value of VCCA  
.
The power due to standby current is typically a small  
component of the overall power. Standby power is shown  
below for military, worst case conditions (70°C).  
Equivalent capacitance is frequency-independent so that  
the results may be used over a wide range of operating  
conditions. Equivalent capacitance values are shown below.  
ICC  
VCC  
Power  
CEQ Values (pF)  
20 mA  
3.6V  
72 mW  
To calculate the active power dissipated from the complete  
design, the switching frequency of each part of the logic  
must be known. Equation 2 shows a piece-wise linear  
summation over all components.  
Active Power Component  
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This component is  
frequency-dependent, a function of the logic and the  
external I/O. Active power dissipation results from charging  
internal chip capacitances of the interconnect,  
unprogrammed antifuses, module inputs, and module  
outputs, plus external capacitance due to PC board traces  
Power =VCCA2 * [(m * CEQM * fm)modules  
+
(n * CEQI * fn)inputs+ (p * (CEQO + CL) * fp)outputs  
+
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1  
0.5 * (q2 * CEQCR * fq2)routed_Clk2+ (r2 * fq2)routed_Clk2  
+
+
0.5 * (s1 * CEQCD * fs1)dedicated_CLK  
]
(2)  
RT54SX16  
A54SX16  
RT54SX32  
A54SX32  
Equivalent Capacitance (pF)  
Modules  
CEQM  
CEQI  
7.0  
2.0  
3.9  
1.0  
7.0  
2.0  
3.9  
1.0  
Input Buffers  
Output Buffers  
CEQO  
CEQCR  
CEQCD  
10.0  
0.4  
5.0  
10.0  
0.6  
5.0  
Routed Array Clock Buffer Loads  
Dedicated Clock Buffer Loads  
Fixed Capacitance (pF)  
0.2  
0.3  
0.25  
0.15  
0.34  
0.23  
routed_Clk1  
r1  
r2  
120  
120  
60  
60  
210  
210  
107  
107  
routed_Clk2  
Fixed Clock Loads  
Clock Loads on Dedicated Array Clock  
s1  
528  
528  
1,080  
1,080  
v2.0  
13  
54SX Family FPGAs RadTolerant and HiRel  
Determining Average Switching Frequency  
To determine the switching frequency for a design, you must  
have a detailed understanding of the data input values to  
the circuit. The following guidelines are meant to represent  
worst-case scenarios so that they can be generally used to  
predict the upper limits of power dissipation. These  
guidelines are as follows:  
where:  
m
n
p
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
= Number of clock loads on the first routed array  
clock  
= Number of clock loads on the second routed  
array clock  
= Fixed capacitance due to first routed array  
clock  
= Fixed capacitance due to second routed array  
clock  
= Fixed number of clock loads on the dedicated  
array clock = (528 for A54SX16)  
q1  
q2  
r1  
r2  
s1  
Logic Modules (m)  
Inputs Switching (n)  
Outputs Switching (p)  
=
=
=
80% of modules  
# inputs/4  
# output/4  
First Routed Array Clock Loads (q1) =  
40% of  
sequential  
modules  
Second Routed Array Clock Loads  
(q2)  
=
40% of  
sequential  
modules  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
CEQCR = Equivalent capacitance of routed array clock in  
pF  
CEQCD = Equivalent capacitance of dedicated array  
clock in pF  
CL  
fm  
fn  
fp  
fq1  
fq2  
Load Capacitance (CL)  
Average Logic Module Switching  
Rate (fm)  
=
=
35 pF  
F/10  
Average Input Switching Rate (fn) =  
Average Output Switching Rate (fp) =  
F/5  
F/10  
F/2  
Average First Routed Array Clock  
Rate (fq1)  
=
= Output lead capacitance in pF  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
= Average second routed array clock rate in MHz  
Average Second Routed Array Clock =  
Rate (fq2)  
Average Dedicated Array Clock Rate =  
(fs1)  
F/2  
F
14  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 3.0V)  
Junction Temperature (TJ)  
VCCA  
3.0  
40  
0.78  
0.73  
0.69  
0
25  
70  
85  
125  
1.16  
1.08  
1.02  
0.87  
0.82  
0.77  
0.89  
0.83  
0.78  
1.00  
0.93  
0.87  
1.04  
0.97  
0.92  
3.3  
3.6  
54SX Timing Model*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
Combinatorial  
Cell  
I/O Module  
tINY = 2.2 ns  
tIRD2 = 1.2 ns  
t
DHL = 2.8 ns  
tRD1 = 0.7 ns  
tRD4 = 2.2 ns  
tRD8 = 4.3 ns  
tPD =0.9 ns  
I/O Module  
tDHL = 2.8 ns  
Register  
Cell  
Register  
Cell  
D
D
Q
Q
tRD1 = 0.7 ns  
tRD1 = 0.7 ns  
tENZH = 2.8 ns  
tSUD = 0.8 ns  
tHD = 0.0 ns  
t
RCO = 0.6 ns  
tRCO = 0.6 ns  
Routed  
Clock  
tRCKH = 2.8 ns (100% Load)  
FMAX = 175 MHz  
Hard-Wired  
Clock  
tHCKH = 1.3 ns  
FHMAX = 240 MHz  
*Values shown for A54SX16-1 at worst-case commercial conditions.  
Hard-Wired Clock  
Routed Clock  
External Set-Up = tINY + tIRD1 + tSUD tHCKH  
External Set-Up = tINY + tIRD1 + tSUD tRCKH  
= 2.2 + 0.7 + 0.8 2.4 = 1.3 ns  
Clock-to-Out (Pin-to-Pin)  
= 2.2 + 0.7 + 0.8 1.7 = 2.0 ns  
Clock-to-Out (Pin-to-Pin)  
= tHCKH + tRCO + tRD1 + tDHL  
= tRCKH + tRCO + tRD1 + tDHL  
= 1.7 + 0.6 + 0.7 + 2.8 = 5.8 ns  
= 2.4 + 0.6 + 0.7 + 2.8 = 6.5 ns  
v2.0  
15  
54SX Family FPGAs RadTolerant and HiRel  
Output Buffer Delays  
E
D
To AC test loads (shown below)  
PAD  
TRIBUFF  
VCC  
VCC  
VCC  
In  
GND  
1.5V  
50%  
VOH  
En  
Out  
GND  
10%  
50%  
En  
GND  
90%  
50%  
50%  
VCC  
50%  
VOH  
50%  
1.5V  
VOL  
Out  
VOL  
Out  
GND  
1.5V  
1.5V  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tENHZ  
AC Test Loads  
Load 1  
Load 2  
(Used to measure rising/falling edges)  
(Used to measure propagation delay)  
VCC  
GND  
To the output under test  
50 pF  
R to VCC for tPLZ/tPZL  
R to GND for tPHZ/tPZH  
R = 1 kΩ  
To the output under test  
50 pF  
Input Buffer Delays  
C-Cell Delays  
S
A
B
Y
Y
PAD  
INBUF  
VCC  
GND  
S, A or B  
50% 50%  
VCC  
3V  
In  
0V  
50%  
1.5V  
VCC  
1.5V  
50%  
Out  
50%  
GND  
tPD  
tPD  
Out  
GND  
50%  
VCC  
50%  
Out  
GND  
tPD  
50%  
tPD  
tINY  
tINY  
16  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Register Cell Timing Characteristics  
Flip-Flops  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tHP  
tHPWH  
,
tSUD  
tRPWH  
CLK  
tHPWL  
,
tRPWL  
tRCO  
Q
tCLR  
tPRESET  
CLR  
tWASYN  
PRESET  
Long Tracks  
Timing Characteristics  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows, columns,  
or modules. Long tracks employ three and sometimes five  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically up to 6% of nets in a fully  
utilized device require long tracks. Long tracks contribute  
approximately 4 ns to 8.4 ns delay. This additional delay is  
represented statistically in higher fanout (FO=24) routing  
delays in the data sheet specifications section.  
Timing characteristics for 54SX devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all 54SX family members.  
Internal routing delays are device dependent. Design  
dependency means actual delays are not determined until  
after placement and routing of the users design is  
complete. Delay values may then be determined by using  
the DirectTime Analyzer utility or performing simulation  
with post-layout delays.  
Timing Derating  
Critical Nets and Typical Nets  
54SX devices are manufactured in a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process variations. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case processing.  
Maximum timing parameters reflect minimum operating  
voltage, maximum operating temperature, and worst-case  
processing.  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most  
time-critical paths. Critical nets are determined by net  
property assignment prior to placement and routing. Up to  
6 percent of the nets in a design may be designated as  
critical, while 90 percent of the nets in a design are typical.  
v2.0  
17  
54SX Family FPGAs RadTolerant and HiRel  
A54SX16 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
C-Cell Propagation Delays1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tPD  
Internal Array Module  
0.9  
1.0  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.6  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.1  
0.7  
0.8  
1.4  
2.0  
2.6  
5.0  
6.6  
11.0  
14.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
tRCO  
tCLR  
tSUD  
tHD  
Sequential Clock-to-Q  
0.6  
0.6  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
0.8  
0.0  
2.4  
0.9  
0.0  
2.9  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
2.2  
2.2  
2.6  
2.6  
ns  
ns  
Predicted Input Routing Delays3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
tIRD18  
tIRD24  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.8  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
2.6  
5.0  
6.6  
11.0  
14.6  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
18  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
A54SX16 Timing Characteristics (continued)  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
I/O Module TTL Output Timing1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
2.8  
2.8  
3.3  
3.3  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
2.3  
2.8  
ns  
2.8  
3.3  
ns  
4.5  
5.2  
ns  
2.2  
2.6  
ns  
0.05  
0.05  
0.06  
0.08  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.9  
2.0  
2.2  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
2.1  
2.1  
2.4  
2.4  
ns  
0.4  
0.4  
ns  
Minimum Period  
4.2  
4.9  
ns  
fHMAX  
Maximum Frequency  
240  
205  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
2.4  
2.7  
2.9  
2.9  
2.8  
2.9  
2.9  
3.1  
3.3  
3.5  
3.3  
3.5  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
Min. Pulse Width HIGH  
3.1  
3.1  
3.7  
3.7  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Note:  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.6  
0.8  
0.8  
0.8  
0.9  
0.9  
1. Delays based on 35 pF loading, except for tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.  
v2.0  
19  
54SX Family FPGAs RadTolerant and HiRel  
RT54SX16 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
C-Cell Propagation Delays1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tPD  
Internal Array Module  
1.7  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.2  
1.1  
0.2  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
tRD1  
1.3  
1.5  
tRD2  
2.2  
2.6  
tRD3  
3.1  
3.6  
tRD4  
4.0  
4.7  
tRD8  
7.8  
9.0  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
tRCO  
tCLR  
tSUD  
tHD  
Sequential Clock-to-Q  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
2.0  
0.0  
4.4  
2.2  
0.0  
5.3  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
4.0  
4.0  
4.7  
4.7  
ns  
ns  
Predicted Input Routing Delays3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
tIRD18  
tIRD24  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
1.3  
2.2  
1.5  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.1  
3.6  
4.0  
4.7  
7.8  
9.0  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
20  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
RT54SX16 Timing Characteristics (continued)  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
I/O Module TTL Output Timing1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
5.1  
5.1  
6.0  
6.0  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
4.2  
5.1  
ns  
5.1  
6.0  
ns  
8.1  
9.4  
ns  
4.0  
4.7  
ns  
0.09  
0.09  
0.11  
0.15  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
3.1  
3.5  
3.6  
4.0  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
3.8  
3.8  
4.4  
4.4  
ns  
0.8  
0.8  
ns  
Minimum Period  
7.6  
8.9  
ns  
fHMAX  
Maximum Frequency  
130  
110  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
4.4  
4.9  
5.3  
5.3  
5.1  
5.3  
5.3  
5.6  
6.0  
6.3  
6.0  
6.3  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
Min. Pulse Width HIGH  
5.6  
5.6  
6.7  
6.7  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Note:  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.1  
1.5  
1.5  
1.5  
1.7  
1.7  
1. Delays based on 35 pF loading, except for tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.  
v2.0  
21  
54SX Family FPGAs RadTolerant and HiRel  
A54SX32 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
C-Cell Propagation Delays1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tPD  
Internal Array Module  
0.9  
1.0  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.6  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.1  
0.7  
0.8  
1.4  
2.0  
2.6  
5.0  
6.6  
11.0  
14.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
tRCO  
tCLR  
tSUD  
tHD  
Sequential Clock-to-Q  
0.6  
0.6  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
0.8  
0.0  
2.4  
0.9  
0.0  
2.9  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
2.2  
2.2  
2.6  
2.6  
ns  
ns  
Predicted Input Routing Delays3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
tIRD18  
tIRD24  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.8  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
2.6  
5.0  
6.6  
11.0  
14.6  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
22  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
A54SX32 Timing Characteristics (continued)  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
I/O Module TTL Output Timing1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
2.8  
2.8  
3.3  
3.3  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
2.3  
2.8  
ns  
2.8  
3.3  
ns  
4.5  
5.2  
ns  
2.2  
2.6  
ns  
0.05  
0.05  
0.06  
0.08  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.9  
2.0  
2.2  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
2.1  
2.1  
2.4  
2.4  
ns  
0.4  
0.4  
ns  
Minimum Period  
4.2  
4.8  
ns  
fHMAX  
Maximum Frequency  
240  
205  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
2.4  
2.7  
2.9  
2.9  
2.8  
2.9  
2.9  
3.1  
3.3  
3.5  
3.3  
3.5  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
Min. Pulse Width HIGH  
3.1  
3.1  
3.7  
3.7  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Note:  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.6  
0.8  
0.8  
0.8  
0.9  
0.9  
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.  
v2.0  
23  
54SX Family FPGAs RadTolerant and HiRel  
RT54SX32 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
C-Cell Propagation Delays1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tPD  
Internal Array Module  
1.7  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.2  
1.1  
0.2  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
tRD1  
1.3  
1.5  
tRD2  
2.2  
2.6  
tRD3  
3.1  
3.6  
tRD4  
4.0  
4.7  
tRD8  
7.8  
9.0  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
tRCO  
tCLR  
tSUD  
tHD  
Sequential Clock-to-Q  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
2.0  
0.0  
4.4  
2.2  
0.0  
5.3  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
4.0  
4.0  
4.7  
4.7  
ns  
ns  
Predicted Input Routing Delays3  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
tIRD18  
tIRD24  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
FO=18 Routing Delay  
FO=24 Routing Delay  
1.3  
2.2  
1.5  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.1  
3.6  
4.0  
4.7  
7.8  
9.0  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
24  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
RT54SX32 Timing Characteristics (continued)  
(Worst-Case Military Conditions, VCCR = 4.75V, VCCA, VCCI = 3.0V, TJ = 125°C)  
I/O Module TTL Output Timing1  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
5.1  
5.1  
6.0  
6.0  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
4.2  
5.1  
ns  
5.1  
6.0  
ns  
8.1  
9.4  
ns  
4.0  
4.7  
ns  
0.09  
0.09  
0.11  
0.15  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
3.1  
3.5  
3.6  
4.0  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
3.8  
3.8  
4.4  
4.4  
ns  
0.8  
0.8  
ns  
Minimum Period  
7.6  
8.9  
ns  
fHMAX  
Maximum Frequency  
130  
110  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
4.4  
4.9  
5.3  
5.3  
5.1  
5.3  
5.3  
5.6  
6.0  
6.3  
6.0  
6.3  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
Min. Pulse Width HIGH  
5.6  
5.6  
6.7  
6.7  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Note:  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.1  
1.5  
1.5  
1.5  
1.7  
1.7  
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.  
v2.0  
25  
54SX Family FPGAs RadTolerant and HiRel  
Pin Description  
CLKA,  
Clock A and B  
TDI, I/O  
Test Data Input  
CLKB  
Serial input for boundary scan testing and diagnostic probe.  
In flexible mode, TDI is active when the TMS pin is set LOW  
(refer to Table 2 on page 9). This pin functions as an I/O  
when the boundary scan state machine reaches the logic  
resetstate.  
These pins are clock inputs for clock distribution networks.  
Input levels are compatible with standard TTL or LVTTL  
specifications. The clock input is buffered prior to clocking  
the R-cells. If not used, this pin must be set LOW or HIGH on  
the board. It must not be left floating.  
TDO, I/O  
Test Data Output  
GND  
Ground  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set LOW (refer to Table 2  
on page 9). This pin functions as an I/O when the boundary  
scan state machine reaches the logic resetstate.  
LOW supply voltage.  
HCLK  
Dedicated (Hard-wired)  
Array Clock  
TMS  
Test Mode Select  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL or LVTTL  
specifications. This input is directly wired to each R-cell and  
offers clock speeds independent of the number of R-cells  
being driven. If not used, this pin must be set LOW or HIGH  
on the board. It must not be left floating.  
The TMS pin controls the use of the IEEE 1149.1 Boundary  
Scan pins (TCK, TDI, TDO, TRST). In flexible mode when  
the TMS pin is set LOW, the TCK, TDI, and TDO pins are  
boundary scan pins (refer to Table 2 on page 9). Once the  
boundary scan pins are in test mode, they will remain in that  
mode until the internal boundary scan state machine  
reaches the logic resetstate. At this point, the boundary  
scan pins will be released and will function as regular I/O  
pins. The logic resetstate is reached 5 TCK cycles after  
the TMS pin is set HIGH. In dedicated test mode, TMS  
functions as specified in the IEEE 1149.1 specifications.  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations, input  
and output levels are compatible with standard TTL or  
LVTTL specifications. Unused I/O pins are automatically  
tristated by the Designer Series software.  
TRST  
Boundary Scan Reset Pin  
NC  
No Connection  
The TRST pin functions as an active-low input to  
asynchronously initialize or reset the boundary scan circuit.  
The TRST pin is equipped with an internal pull-up resistor.  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
VCCI  
Supply Voltage  
PRA, I/O,  
PRB, I/O  
Probe A/B  
Supply voltage for I/Os. See Table 1 on page 8.  
VCCA  
Supply Voltage  
The Probe pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the other probe pin to  
allow real-time diagnostic output of any signal path within  
the device. The Probe pin can be used as a user-defined I/O  
when verification has been completed. The pins probe  
capabilities can be permanently disabled to protect  
programmed design confidentiality.  
Supply voltage for Array. See Table 1 on page 8.  
VCCR  
Supply Voltage  
Supply voltage for input tolerance (required for internal  
biasing). See Table 1 on page 8.  
TCK, I/O  
Test Clock (Input)  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active when  
the TMS pin is set LOW (see Table 2 on page 9). This pin  
functions as an I/O when the JTAG state machine reaches  
the logic reset state.  
26  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
Package Pin Assignments  
208-Pin CQFP (Top View)  
208 207 206 205 204 203 202 201 200  
164 163 162 161 160 159 158 157  
Pin #1  
Index  
1
2
3
4
5
6
7
8
156  
155  
154  
153  
152  
151  
150  
149  
208-Pin  
CQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
113  
112  
111  
110  
109  
108  
107  
106  
105  
53 54 55 56 57 58 59 60 61  
97 98 99 100 101 102 103 104  
v2.0  
27  
54SX Family FPGAs RadTolerant and HiRel  
208-Pin CQFP  
Pin A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Number Function  
Number Function  
1
2
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
3
I/O  
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
Notes:  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
I/O  
TRST  
I/O  
I/O  
TRST  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
GND  
GND  
GND  
GND  
1.  
2.  
Pin 30 in RT54SX16 and RT54SX32-CQ208 are TRST pins.  
Pin 65 in A54SX32 and RT54SX32-CQ208 are No Connects.  
28  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
208-Pin CQFP (Continued)  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Number Function  
Number Function  
105  
106  
107  
108  
109  
110  
111  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
Notes:  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
1.  
2.  
Pin 30 in RT54SX16 and RT54SX32-CQ208 are TRST pins.  
Pin 65 in A54SX32 and RT54SX32-CQ208 are No Connects.  
v2.0  
29  
54SX Family FPGAs RadTolerant and HiRel  
Package Pin Assignments (continued)  
256-Pin CQFP (Top View)  
256 255 254 253 252 251 250 249 248  
200 199 198 197 196 195 194 193  
Pin #1  
Index  
1
2
3
4
5
6
7
8
192  
191  
190  
189  
188  
187  
186  
185  
256-Pin  
CQFP  
56  
57  
58  
59  
60  
61  
62  
63  
64  
137  
136  
135  
134  
133  
132  
131  
130  
129  
65 66 67 68 69 70 71 72 73  
121 122 123 124 125 126 127 128  
30  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Number Function  
Number Function  
1
2
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
3
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
Note:  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
NC  
NC  
I/O  
TMS  
NC  
NC  
I/O  
TMS  
I/O  
TMS  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
VCCA  
GND  
NC  
I/O  
VCCI  
GND  
VCCA  
GND  
NC  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TRST  
I/O  
I/O  
TRST  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
1. Pin 34 in RT54SX16 and RT54SX32-CQ256 are TRST pins.  
v2.0  
31  
54SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
Pin A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Number Function  
Number Function  
105  
106  
107  
108  
109  
110  
111  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
GND  
VCCR  
GND  
VCCI  
I/O  
GND  
VCCR  
GND  
VCCI  
I/O  
GND  
VCCR  
GND  
VCCI  
I/O  
GND  
VCCR  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
TDO, I/O  
NC  
GND  
I/O  
NC  
TDO, I/O  
NC  
GND  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
NC  
NC  
NC  
VCCA  
I/O  
NC  
NC  
NC  
VCCA  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Note:  
1. Pin 34 in RT54SX16 and RT54SX32-CQ256 are TRST pins.  
32  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Pin  
A54SX16  
RT54SX16  
Function  
A54SX32  
Function  
RT54SX32  
Function  
Number Function  
Number Function  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
VCCR  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
VCCR  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
VCCR  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
VCCR  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
Note:  
1. Pin 34 in RT54SX16 and RT54SX32-CQ256 are TRST pins.  
v2.0  
33  
54SX Family FPGAs RadTolerant and HiRel  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (Preliminary v 1.5.1 (web-only))  
Page  
Power up and down sequencing information was modified: damage to the device is  
possible when 3.3V is powered up first and when 5.0V is powered down first.  
13  
Preliminary v1.5  
The last line of equation 2 was cut off in the previous version. It has been replaced in  
14  
the existing version.  
The User I/Os changed.  
1, 2, 3  
The following sections are new or were updated: Clock Resources , Performance ,  
I/O Modules , Power Requirements , Boundary Scan Testing (BST) , and Configuring  
Diagnostic Pins , TRST pin , Dedicated Test Mode , and Flexible Mode ,  
Development Tool Support , RT54SX Probe Circuit Control Pins , and Design  
8-10  
26  
Considerations .  
Preliminary v1.5.2  
The Pin Descriptionon page 26 has been updated.  
Note that the Package Characteristics and Mechanical Drawingssection has been  
eliminated from the data sheet. The mechanical drawings are now contained in a  
separate document, Package Characteristics and Mechanical Drawings,available  
on the Actel web site.  
Data Sheet Categories  
In order to provide the latest information to designers, some data sheets are published before data has been fully  
characterized. These data sheets are marked as Advancedor Preliminarydata sheets. The definition of these categories  
are as follows:  
Advanced  
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This  
information can be used as estimates, but not for production.  
Preliminary  
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be  
correct, but changes are possible.  
Unmarked (production)  
The data sheet contains information that is considered to be final.  
34  
v2.0  
54SX Family FPGAs RadTolerant and HiRel  
v2.0  
35  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Europe Ltd.  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Asia-Pacific  
Maxfli Court, Riverside Way  
Camberly, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: +44 (0)1256 305600  
Fax: +44 (0)1256 355420  
Tel: (408) 739-1010  
Fax: (408) 739-1540  
Tel: +81 03-3445-7671  
Fax: +81 03-3445-7668  
5172136-8/3.01  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY