RT9166-23P [ETC]

300/600mA, Ultra-Fast Transient Response LDO Regulator; 300 / 600毫安,超快速瞬态响应LDO稳压器
RT9166-23P
型号: RT9166-23P
厂家: ETC    ETC
描述:

300/600mA, Ultra-Fast Transient Response LDO Regulator
300 / 600毫安,超快速瞬态响应LDO稳压器

稳压器
文件: 总14页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT9166/A  
300/600mA, Ultra-Fast Transient Response LDO Regulator  
General Description  
Features  
z Low Quiescent Current (Typically 220µA)  
z Guaranteed 300/600mA Output Current  
z Low Dropout Voltage: 230/580mV at 300/600mA  
z Wide Operating Voltage Ranges: 3V to 5.5V  
z Ultra-Fast Transient Response  
z Tight Load and Line Regulation  
z Current Limiting Protection  
The RT9166/A series are CMOS low dropout regulators  
optimized for ultra-fast transient response. The devices are  
capable of supplying 300mA or 600mA of output current  
with a dropout voltage of 230mV or 580mV respectively.  
The RT9166/A series are is optimized for CD/DVD-ROM,  
CD/RW or wireless communication supply applications.  
The RT9166/Aregulators are stable with output capacitors  
as low as 1µF. The other features include ultra low dropout  
voltage, high output accuracy, current limiting protection,  
and high ripple rejection ratio.  
z Thermal Shutdown Protection  
z Only low-ESR Ceramic Capacitor Required for  
Stability  
z Custom Voltage Available  
The devices are available in fixed output voltages range of  
1.2V to 4.5V with 0.1V per step. The RT9166/A regulators  
are available in 3-lead SOT-23, SOT-89, SOT-223 and TO-92  
packages.  
Applications  
z CD/DVD-ROM, CD/RW  
z Wireless LAN Card/Keyboard/Mouse  
z Battery-Powered Equipment  
z XDSL Router  
Ordering Information  
z PCMCIA Card  
RT9166/A -  
Pin Configurations  
Package Type  
VL : SOT-23 (L-Type)  
X : SOT-89  
(TOP VIEW)  
VIN  
XL : SOT-89 (L-Type)  
G : SOT-223  
GL : SOT-223 (L-Type)  
Z : TO-92  
3
VOUT  
GND  
VIN  
3
2
1
1
2
TO-92  
GND  
VOUT  
(RT9166/A)  
SOT-23 (L-Type)  
(RT9166)  
Operating Temperature Range  
C : Commercial Standard  
P : Pb Free with Commercial Standard  
Output Voltage  
12 : 1.2V  
13 : 1.3V  
:
1
2
3
1
2
3
GND  
VOUT  
VIN  
(TAB)  
GND VIN  
(TAB)  
VOUT  
45 : 4.5V  
SOT-89 (L-Type)  
SOT-89  
600mA Output Current  
300mA Output Current  
Marking Information  
1
2
3
1
3
2
For marking information, contact our sales representative  
directly or through a RichTek distributor located in your  
area, otherwise visit our website for detail.  
VOUT  
GND  
VIN  
(TAB)  
VOUT GND  
(TAB)  
VIN  
SOT-223 (L-Type)  
SOT-223  
DS9166/A-09 October 2004  
www.richtek.com  
1
Preliminary  
RT9166/A  
Typical Application Circuit  
RT9166/A  
V
VIN  
VOUT  
GND  
V
IN  
OUT  
C
C
OUT  
IN  
1uF  
1uF  
Note: To prevent oscillation, a 1µF minimum X7R or X5R dielectric is strongly recommended if ceramics are  
used as input/output capacitors. When using the Y5V dielectric, the minimum value of the input/output  
capacitance that can be used for stable over full operating temperature range is 3.3µF. (see Application  
Information Section for further details)  
Functional Pin Description  
Pin Name  
Pin Function  
VIN  
Supply Input  
VOUT  
GND  
Regulator Output  
Common Ground  
Function Block Diagram  
VIN  
VOUT  
Error  
Amplifier  
Current  
Limiting  
Sensor  
-
Thermal  
Shutdown  
1.2V  
Reference  
GND  
www.richtek.com  
2
DS9166/A-09 October 2004  
Preliminary  
Absolute Maximum Ratings (Note 1)  
RT9166/A  
z Supply Input Voltage-------------------------------------------------------------------------------------------------- 6.5V  
z Power Dissipation, PD @ T = 25°C  
A
SOT-23 ------------------------------------------------------------------------------------------------------------------- 0.4W  
SOT-89 ------------------------------------------------------------------------------------------------------------------- 0.571W  
SOT-223 ----------------------------------------------------------------------------------------------------------------- 0.740W  
z Package Thermal Resistance (Note 7)  
SOT-23, θJA ------------------------------------------------------------------------------------------------------------- 250°C/W  
SOT-89, θJA ------------------------------------------------------------------------------------------------------------- 175°C/W  
SOT-223, θJA ------------------------------------------------------------------------------------------------------------ 135°C/W  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z Junction Temperature ------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV  
MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Input Voltage-------------------------------------------------------------------------------------------------- 2.8V to 5.5V  
z Junction Temperature Range---------------------------------------------------------------------------------------- 40°C to 125°C  
Electrical Characteristics  
(VIN = VOUT + 1V or VIN = 2.8V whichever is greater, CIN = 1µF, COUT = 1µF, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
IOUT = 1mA  
Min  
Typ  
Max Units  
Output Voltage Accuracy  
--  
--  
+3  
--  
%
VOUT  
1  
300  
600  
--  
RT9166  
ILIM  
IQ  
mA  
R
LOAD = 1Ω  
Current Limit  
RT9166A  
--  
--  
Quiescent Current  
Dropout Voltage  
(Note 4)  
(Note 6)  
IOUT = 0mA  
220  
300  
µA  
RT9166  
IOUT = 300mA  
--  
--  
230  
580  
--  
--  
VDROP  
mV  
RT9166A  
I
OUT = 600mA  
VIN = (VOUT + 0.3V) to 5.5V,  
OUT = 1mA  
Line Regulation  
--  
0.2  
--  
%/V  
mV  
VLINE  
I
1mA < IOUT < 300mA  
1mA < IOUT < 600mA  
f = 1kHz, COUT = 1µF  
Load Regulation  
(Note 5)  
RT9166  
--  
--  
15  
30  
35  
55  
--  
VLOAD  
RT9166A  
dB  
°C  
°C  
Power Supply Rejection Rate  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
PSRR  
TSD  
--  
--  
--  
55  
170  
40  
--  
--  
TSD  
DS9166/A-09 October 2004  
www.richtek.com  
3
Preliminary  
RT9166/A  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4.The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) 100mV.  
Note 5. Regulation is measured at constant junction temperature by using a 20ms current pulse. Devices are tested for load  
regulation in the load range from 1mA to 300mA and 600mA respectively.  
Note 6. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under  
no load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground  
pin current.  
Note 7. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
www.richtek.com  
4
DS9166/A-09 October 2004  
Preliminary  
Typical Operating Characteristics  
RT9166/A  
Power Supply Rejection Ratio  
Dropout Voltage vs. Load Current  
700  
600  
500  
400  
300  
200  
100  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
TJ = 125°C  
TJ = 25°C  
100mA  
TJ = 40°C  
1mA  
10  
100  
1k  
10k  
100k  
1M  
0
100  
200  
300  
400  
500  
600  
Frequency (Hz)  
Load Current (mA)  
Output Noise  
Region of Stable COUT ESR vs. Load Current  
100.00  
I
LOAD = 100mA  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF to 4.7uF  
10.00  
1.00  
0.10  
0.01  
0.00  
400  
Instable  
200  
0
Stable  
-200  
-400  
Instable  
f = 10Hz to 100KHz  
Time (1ms/DIV)  
0
100  
200  
300  
400  
500  
600  
Load Current (mA)  
Current Limit vs. Input voltage  
Current Limit vs. Input voltage  
900  
850  
800  
750  
700  
900  
850  
800  
750  
700  
VIN = 5V  
CIN = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
COUT = 1uF  
RL = 0.5Ω  
RT9166-33CX  
5.5  
RT9166-33CVL  
3
3.5  
4
4.5  
5
3
3.5  
4
4.5  
5
5.5  
Input voltage (V)  
Input voltage (V)  
DS9166/A-09 October 2004  
www.richtek.com  
5
Preliminary  
RT9166/A  
Current Limit vs. Temperature  
Current Limit vs. Temperature  
900  
850  
800  
750  
700  
900  
850  
800  
750  
700  
VIN = 5V  
VIN = 5V  
CIN = 1uF  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
COUT = 1uF  
RL = 0.5Ω  
RT9166-33CX  
75 100 125  
RT9166-33CVL  
75 100 125  
-40  
-25  
0
25  
50  
-40  
-25  
0
25  
50  
C)  
Temperature  
C)  
Temperature  
Quiescent Current vs. Temperature  
Quiescent Current vs. Temperature  
260  
240  
220  
200  
180  
160  
140  
260  
240  
220  
200  
180  
160  
140  
VIN = 5V  
CIN = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
COUT = 1uF  
RT9166-33CX  
75 100 125  
RT9166-33CVL  
75 100 125  
-40  
-40  
-25  
0
25  
50  
-25  
0
25  
50  
C)  
C)  
Temperature  
Temperature  
Temperature Stability  
Temperature Stability  
3.4  
3.35  
3.3  
3.4  
3.35  
3.3  
3.25  
3.2  
3.25  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RT9166-33CX  
75 100 125  
RT9166-33CVL  
75 100 125  
3.2  
-40
-25  
0
25  
50  
-40  
-25  
0
25  
50  
Temperature  
Temperature  
C)  
C)  
www.richtek.com  
6
DS9166/A-09 October 2004  
Preliminary  
RT9166/A  
Load Transient Response  
Load Transient Response  
VIN = 5V, ILOAD = 1 to 150mA  
VIN = 5V, ILOAD = 1 to 150mA  
CIN = COUT = 1uF (Ceramic, X7R)  
CIN = COUT = 1uF (Ceramic, X7R)  
200  
100  
0
200  
100  
0
20  
0
20  
0
-20  
-20  
RT9166-33CX  
RT9166-33CVL  
Time (100us/Div)  
Time (100us/Div)  
Line Transient Response  
VIN = 4 to 5V  
CIN = 1uF  
COUT = 1uF  
5
4
20  
0
-20  
Time (100us/Div)  
DS9166/A-09 October 2004  
www.richtek.com  
7
Preliminary  
RT9166/A  
Application Information  
No Load Stability  
Like any low-dropout regulator, the RT9166/A series  
requires input and output decoupling capacitors. These  
capacitors must be correctly selected for good  
performance (see Capacitor Characteristics Section).  
Please note that linear regulators with a low dropout  
voltage have high internal loop gains which require care  
in guarding against oscillation caused by insufficient  
decoupling capacitance.  
The device will remain stable and in regulation with no  
external load. This is specially important in CMOS RAM  
keep-alive applications.  
Input-Output (Dropout) Voltage  
A regulator's minimum input-to-output voltage differential  
(dropout voltage) determines the lowest usable supply  
voltage. In battery-powered systems, this determines the  
useful end-of-life battery voltage. Because the device uses  
a PMOS, its dropout voltage is a function of drain-to-  
source on-resistance, RDS(ON), multiplied by the load  
current:  
Input Capacitor  
An input capacitance of 1µF is required between the  
device input pin and ground directly (the amount of the  
capacitance may be increased without limit). The input  
capacitor MUST be located less than 1 cm from the device  
to assure input stability (see PCB Layout Section).Alower  
ESR capacitor allows the use of less capacitance, while  
higher ESR type (like aluminum electrolytic) require more  
capacitance.  
VDROPOUT = VIN - VOUT = RDS(ON) x IOUT  
Current Limit  
The RT9166/A monitors and controls the PMOS' gate  
voltage, minimum limiting the output current to 300mA for  
RT9166 and 600mA for RT9166A. The output can be  
shorted to ground for an indefinite period of time without  
damaging the part.  
Capacitor types (aluminum, ceramic and tantalum) can  
be mixed in parallel, but the total equivalent input  
capacitance/ESR must be defined as above to stable  
operation.  
Short-Circuit Protection  
There are no requirements for the ESR on the input  
capacitor, but tolerance and temperature coefficient must  
be considered when selecting the capacitor to ensure the  
capacitance will be 1µF over the entire operating  
temperature range.  
The device is short circuit protected and in the event of a  
peak over-current condition, the short-circuit control loop  
will rapidly drive the output PMOS pass element off. Once  
the power pass element shuts down, the control loop will  
rapidly cycle the output on and off until the average power  
dissipation causes the thermal shutdown circuit to  
respond to servo the on/off cycling to a lower frequency.  
Please refer to the section on thermal information for  
power dissipation calculations.  
Output Capacitor  
The RT9166/A is designed specifically to work with very  
small ceramic output capacitors. The recommended  
minimum capacitance (temperature characteristics X7R  
or X5R) is 1µF to 4.7µF range with 10mto 50mrange  
ceramic capacitor between LDO output and GND for  
transient stability, but it may be increased without limit.  
Higher capacitance values help to improve transient. The  
output capacitor's ESR is critical because it forms a zero  
to provide phase lead which is required for loop stability.  
(When using the Y5V dielectric, the minimum value of  
the input/output capacitance that can be used for stable  
over full operating temperature range is 3.3µF.)  
Capacitor Characteristics  
It is important to note that capacitance tolerance and  
variation with temperature must be taken into  
consideration when selecting a capacitor so that the  
minimum required amount of capacitance is provided over  
the full operating temperature range. In general, a good  
tantalum capacitor will show very little capacitance  
variation with temperature, but a ceramic may not be as  
good (depending on dielectric type).  
www.richtek.com  
8
DS9166/A-09 October 2004  
Preliminary  
RT9166/A  
Aluminum electrolytics also typically have large  
temperature variation of capacitance value.  
Tantalums also have good temperature stability: a good  
quality tantalum will typically show a capacitance value  
that varies less than 10~15% across the full temperature  
range of 125°C to -40°C. ESR will vary only about 2X  
going from the high to low temperature limits.  
Equally important to consider is a capacitor's ESR change  
with temperature: this is not an issue with ceramics, as  
their ESR is extremely low. However, it is very important  
in Tantalum and aluminum electrolytic capacitors. Both  
show increasing ESR at colder temperatures, but the  
increase in aluminum electrolytic capacitors is so severe  
they may not be feasible for some applications.  
The increasing ESR at lower temperatures can cause  
oscillations when marginal quality capacitors are used (if  
the ESR of the capacitor is near the upper limit of the  
stability range at room temperature).  
Ceramic:  
Aluminum:  
For values of capacitance in the 10µF to 100µF range,  
ceramics are usually larger and more costly than  
tantalums but give superior AC performance for by-  
passing high frequency noise because of very low ESR  
(typically less than 10m). However, some dielectric types  
do not have good capacitance characteristics as a function  
of voltage and temperature.  
This capacitor type offers the most capacitance for the  
money. The disadvantages are that they are larger in  
physical size, not widely available in surface mount, and  
have poor AC performance (especially at higher  
frequencies) due to higher ESR and ESL.  
Compared by size, the ESR of an aluminum electrolytic  
is higher than either Tantalum or ceramic, and it also varies  
greatly with temperature. A typical aluminum electrolytic  
can exhibit an ESR increase of as much as 50X when  
going from 25°C down to -40°C.  
Z5U and Y5V dielectric ceramics have capacitance that  
drops severely with applied voltage. Atypical Z5U or Y5V  
capacitor can lose 60% of its rated capacitance with half  
of the rated voltage applied to it. The Z5U and Y5V also  
exhibit a severe temperature effect, losing more than 50%  
of nominal capacitance at high and low limits of the  
temperature range.  
It should also be noted that many aluminum electrolytics  
only specify impedance at a frequency of 120Hz, which  
indicates they have poor high frequency performance.  
Only aluminum electrolytics that have an impedance  
specified at a higher frequency (between 20kHz and  
100kHz) should be used for the device. Derating must be  
applied to the manufacturer's ESR specification, since it  
is typically only valid at room temperature.  
X7R and X5R dielectric ceramic capacitors are strongly  
recommended if ceramics are used, as they typically  
maintain a capacitance range within 20% of nominal over  
full operating ratings of temperature and voltage. Of  
course, they are typically larger and more costly than  
Z5U/Y5U types for a given voltage and capacitance.  
Any applications using aluminum electrolytics should be  
thoroughly tested at the lowest ambient operating  
temperature where ESR is maximum.  
Tantalum:  
Solid tantalum capacitors are recommended for use on  
the output because their typical ESR is very close to the  
ideal value required for loop compensation. They also  
work well as input capacitors if selected to meet the ESR  
requirements previously listed.  
DS9166/A-09 October 2004  
www.richtek.com  
9
Preliminary  
RT9166/A  
Thermal Considerations  
It should be noted that stability problems have been seen  
in applications where “ vias” to an internal ground plane  
were used at the ground points of the device and the  
input and output capacitors. This was caused by varying  
ground potentials at these nodes resulting from current  
flowing through the ground plane. Using a single point  
ground technique for the regulator and it’ s capacitors fixed  
the problem. Since high current flows through the traces  
going into VIN and coming from VOUT, Kelvin connect the  
capacitor leads to these pins so there is no voltage drop  
in series with the input and output capacitors.  
The RT9166/A series can deliver a current of up to 300/  
600mAover the full operating junction temp-erature range.  
However, the maximum output current must be derated  
at higher ambient temperature to ensure the junction  
temperature does not exceed 125°C. With all possible  
conditions, the junction temperature must be within the  
range specified under operating conditions. Power  
dissipation can be calculated based on the output current  
and the voltage drop across regulator.  
PD = (VIN - VOUT) IOUT + VIN IGND  
Optimum performance can only be achieved when the  
device is mounted on a PC board according to the diagram  
below:  
The final operating junction temperature for any set of  
conditions can be estimated by the following thermal  
equation:  
PD (MAX) = ( TJ (MAX) - TA ) / θJA  
Where TJ(MAX) is the maximum junction temperature of  
the die (125°C) and TA is the maximum ambient  
temperature. The junction to ambient thermal resistance  
(θJA) for SOT-23 package at recomm-ended minimum  
footprint is 250°C/W, 175°C/W for SOT-89 package and  
135°C/W for SOT-223 package (θJA is layout dependent).  
Visit our website in which Recommended Footprints for  
Soldering Surface Mount Packagesfor detail.  
V
IN  
GND  
V
OUT  
PCB Layout  
SOT-23 Board Layout  
Good board layout practices must be used or instability  
can be induced because of ground loops and voltage  
drops. The input and output capacitors MUST be directly  
connected to the input, output, and ground pins of the  
device using traces which have no other currents flowing  
through them.  
The best way to do this is to layout CIN and COUT near the  
device with short traces to the VIN, VOUT, and ground pins.  
The regulator ground pin should be connected to the  
external circuit ground so that the regulator and its  
capacitors have a single point ground.  
www.richtek.com  
10  
DS9166/A-09 October 2004  
Preliminary  
RT9166/A  
Outline Dimension  
H
D
L
C
B
e
b
A
A1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.889  
0.000  
1.397  
0.356  
2.591  
2.692  
1.803  
0.080  
0.300  
1.295  
0.152  
1.803  
0.508  
2.997  
3.099  
2.007  
0.254  
0.610  
0.035  
0.000  
0.055  
0.014  
0.102  
0.106  
0.071  
0.003  
0.012  
0.051  
0.006  
0.071  
0.020  
0.118  
0.122  
0.079  
0.010  
0.024  
b
C
D
e
H
L
SOT-23 Surface Mount Package  
DS9166/A-09 October 2004  
www.richtek.com  
11  
Preliminary  
RT9166/A  
D
D1  
A
B
C
C1  
e
e
H
A
b
b
b1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
1.397  
0.356  
2.388  
0.406  
--  
Max  
Min  
0.055  
0.014  
0.094  
0.016  
--  
Max  
A
b
1.600  
0.483  
2.591  
0.533  
4.242  
1.194  
4.597  
1.753  
1.549  
0.432  
0.063  
0.019  
0.102  
0.021  
0.167  
0.047  
0.181  
0.069  
0.061  
0.017  
B
b1  
C
C1  
D
0.787  
4.394  
1.397  
1.448  
0.355  
0.031  
0.173  
0.055  
0.057  
0.014  
D1  
e
H
3-Lead SOT-89 Surface Mount Package  
www.richtek.com  
12  
DS9166/A-09 October 2004  
Preliminary  
RT9166/A  
D
D1  
H
C
B
L
L1  
e
e
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.071  
0.0047  
0.031  
0.146  
0.287  
0.264  
0.124  
0.093  
0.013  
0.077  
0.013  
A
A1  
b
1.450  
0.020  
0.610  
3.302  
6.706  
6.299  
2.896  
2.261  
0.229  
1.550  
0.800  
1.803  
0.100  
0.787  
3.708  
7.290  
6.706  
3.150  
2.362  
0.330  
1.950  
1.100  
0.057  
0.0008  
0.024  
0.130  
0.264  
0.248  
0.114  
0.089  
0.009  
0.061  
0.009  
B
C
D
D1  
e
H
L
L1  
3-Lead SOT-223 Surface Mount Package  
DS9166/A-09 October 2004  
www.richtek.com  
13  
Preliminary  
RT9166/A  
A
D
E
L
b
C
e
D1  
A1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
3.175  
1.143  
0.406  
0.406  
4.445  
3.429  
4.318  
1.143  
12.700  
Max  
4.191  
1.372  
0.533  
0.533  
5.207  
--  
Min  
Max  
0.165  
0.054  
0.021  
0.021  
0.205  
--  
0.125  
0.045  
0.016  
0.016  
0.175  
0.135  
0.170  
0.045  
0.500  
A
A1  
b
C
D
D1  
E
0.210  
0.055  
--  
5.334  
1.397  
--  
e
L
3-Lead TO-92 Plastic Package  
RICHTEK TECHNOLOGY CORP.  
RICHTEK TECHNOLOGY CORP.  
Headquarter  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F-1, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
14  
DS9166/A-09 October 2004  

相关型号:

RT9166-24C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-24P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-25C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-25GVL

IC REG LIN 2.5V 300MA SOT23-3L
RICHTEK

RT9166-25P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-25PVL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-25PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-26C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-26P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-26PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-27C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-27P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC