RT9166-25GVL [RICHTEK]

IC REG LIN 2.5V 300MA SOT23-3L;
RT9166-25GVL
型号: RT9166-25GVL
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

IC REG LIN 2.5V 300MA SOT23-3L

文件: 总15页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT9166/A  
300/600mA, Ultra-Fast Transient Response LDO Regulator  
General Description  
Features  
z Low Quiescent Current (Typically 220μA)  
z Guaranteed 300/600mA Output Current  
z Low Dropout Voltage : 230/580mV at 300/600mA  
z Wide Operating Voltage Ranges : 3V to 5.5V  
z Ultra-Fast Transient Response  
The RT9166/A series are CMOS low dropout regulators  
optimized for ultra-fast transient response. The devices  
are capable of supplying 300mAor 600mA of output current  
with a dropout voltage of 230mV or 580mV respectively.  
The RT9166/Aseries are is optimized for CD/DVD-ROM,  
CD/RW or wireless communication supply applications.  
The RT9166/Aregulators are stable with output capacitors  
as low as 1μF. The other features include ultra low dropout  
voltage, high output accuracy, current limiting protection,  
and high ripple rejection ratio.  
z Tight Load and Line Regulation  
z Current Limiting Protection  
z Thermal Shutdown Protection  
z Only Low-ESR Ceramic Capacitor Required for  
Stability  
z Custom Voltage Available  
The devices are available in fixed output voltages range of  
1.2V to 4.5V with 0.1V per step. The RT9166/A regulators  
are available in 3-lead SOT-23 (RT9166 only), SOT-89,  
SOT-223, TO-92 andTO-252 packages.  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z CD/DVD-ROM, CD/RW  
z Wireless LAN Card/Keyboard/Mouse  
z Battery-Powered Equipment  
z XDSL Router  
Ordering Information  
RT9166/A-  
Package Type  
z PCMCIA Card  
VL : SOT-23-3 (L-Type) (RT9166 Only)  
X : SOT-89  
XL : SOT-89 (L-Type)  
G : SOT-223  
Marking Information  
GL : SOT-223 (L-Type)  
Z : TO-92  
L : TO-252  
For marking information, contact our sales representative  
directly or through a Richtek distributor located in your  
area.  
Lead Plating System  
P : Pb Free  
G : Green (Halogen Free and Pb Free)  
Pin Configurations  
(TOP VIEW)  
Output Voltage  
12 : 1.2V  
13 : 1.3V  
:
VIN  
3
45 : 4.5V  
1B : 1.25V  
2
GND  
VOUT  
600mA Output Current  
300mA Output Current  
SOT-23-3 (L-Type) (RT9166)  
Note :  
3
VOUT  
GND  
VIN  
Richtek products are :  
2
1
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
TO-92  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
1
RT9166/A  
1
2
3
1
2
3
1
2
3
1
1
3
2
3
2
GND  
GND  
VOUT  
GND VIN  
(TAB)  
VIN  
(TAB)  
VOUT  
VOUT  
GND  
VIN  
(TAB)  
VOUT GND  
(TAB)  
VIN  
VOUT  
VIN  
SOT-89  
SOT-89 (L-Type)  
SOT-223  
SOT-223 (L-Type)  
TO-252  
Typical Application Circuit  
RT9166/A  
V
VIN  
VOUT  
GND  
V
IN  
OUT  
C
C
OUT  
IN  
1uF  
1uF  
Note: To prevent oscillation, a 1μF minimum X7R or X5R dielectric is strongly recommended if ceramics are  
used as input/output capacitors. When using the Y5V dielectric, the minimum value of the input/output  
capacitance that can be used for stable over full operating temperature range is 3.3μF. (see Application  
Information Section for further details)  
Functional Pin Description  
Pin Name  
Pin Function  
VIN  
Supply Input.  
VOUT  
GND  
Regulator Output.  
Common Ground.  
Function Block Diagram  
VIN  
VOUT  
Error  
Amplifier  
Current  
Limiting  
Sensor  
-
Thermal  
Shutdown  
1.2V  
Reference  
GND  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS9166/A-23 June 2012  
RT9166/A  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage------------------------------------------------------------------------------------------------- 6.5V  
z Power Dissipation, PD @ T = 25°C  
A
SOT-23-3 --------------------------------------------------------------------------------------------------------------- 0.4W  
SOT-89 ------------------------------------------------------------------------------------------------------------------ 0.571W  
SOT-223 ---------------------------------------------------------------------------------------------------------------- 0.740W  
TO-252 ------------------------------------------------------------------------------------------------------------------ 1.470W  
z Package Thermal Resistance (Note 2)  
SOT-23-3, θJA ---------------------------------------------------------------------------------------------------------- 250°C/W  
SOT-89, θJA ------------------------------------------------------------------------------------------------------------ 175°C/W  
SOT-89, θJC ------------------------------------------------------------------------------------------------------------ 58°C/W  
SOT-223, θJA ----------------------------------------------------------------------------------------------------------- 135°C/W  
SOT-223, θJC ---------------------------------------------------------------------------------------------------------- 15°C/W  
TO-252, θJA ------------------------------------------------------------------------------------------------------------ 68°C/W  
TO-252, θJC ------------------------------------------------------------------------------------------------------------ 7°C/W  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------- 260°C  
z Junction Temperature ------------------------------------------------------------------------------------------------ 150°C  
z Storage Temperature Range --------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Model)----------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage------------------------------------------------------------------------------------------------- 2.8V to 5.5V  
z Junction Temperature Range--------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range--------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = VOUT + 1V or VIN = 2.8V whichever is greater, CIN = 1μF, COUT = 1μF, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
= 1mA  
OUT  
Min  
1  
300  
600  
--  
Typ  
--  
Max  
3
Unit  
Output Voltage Accuracy  
ΔV  
I
%
OUT  
RT9166  
--  
--  
Current Limit  
I
R = 1Ω  
LOAD  
mA  
μA  
LIM  
RT9166A  
--  
--  
Quiescent Current (Note 5)  
I
I
= 0mA  
220  
230  
580  
300  
--  
Q
OUT  
RT9166  
I
I
= 300mA  
= 600mA  
--  
OUT  
OUT  
Dropout Voltage  
(Note 6)  
V
DROP  
mV  
RT9166A  
--  
--  
V
= (V  
= 1mA  
+ 0.3V) to 5.5V,  
OUT  
IN  
Line Regulation  
ΔV  
ΔV  
--  
0.2  
--  
%/V  
mV  
LINE  
I
OUT  
RT9166  
1mA < I  
1mA < I  
< 300mA  
< 600mA  
= 1μF  
--  
--  
--  
--  
--  
15  
30  
35  
55  
--  
OUT  
OUT  
Load Regulation  
(Note 7)  
LOAD  
RT9166A  
Power Supply Rejection Rate  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
PSRR  
f = 1kHz, C  
55  
170  
40  
dB  
°C  
°C  
OUT  
T
--  
SD  
ΔT  
--  
SD  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
3
RT9166/A  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a low effective thermal conductivity single-layer test board per JEDEC 51-3.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under  
no load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground  
pin current.  
Note 6.The dropout voltage is defined as VIN VOUT, which is measured when VOUT is VOUT(NORMAL) 100mV.  
Note 7. Regulation is measured at constant junction temperature by using a 20ms current pulse. Devices are tested for load  
regulation in the load range from 1mA to 300mA and 600mA respectively.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS9166/A-23 June 2012  
RT9166/A  
Typical Operating Characteristics  
Dropout Voltage vs. Load Current  
Power Supply Rejection Ratio  
700  
0
-10  
-20  
-30  
-40  
-50  
-60  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
TJ = 125°C  
600  
500  
TJ = 25°C  
400  
300  
100mA  
TJ = 40°C  
200  
1mA  
100  
0
10  
100  
1k  
10k  
100k  
1M  
0
100  
200  
300  
400  
500  
600  
Frequency (Hz)  
Load Current (mA)  
Output Noise  
Region of Stable COUT ESR vs. Load Current  
100.00  
I
LOAD = 100mA  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF to 4.7uF  
10.00  
1.00  
0.10  
0.01  
0.00  
400  
Instable  
200  
0
Stable  
-200  
-400  
Instable  
f = 10Hz to 100KHz  
Time (1ms/DIV)  
0
100  
200  
300  
400  
500  
600  
Load Current (mA)  
Current Limit vs. Input voltage  
Current Limit vs. Input voltage  
900  
850  
800  
750  
700  
900  
850  
800  
750  
700  
VIN = 5V  
CIN = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
COUT = 1uF  
RL = 0.5Ω  
RT9166-33xX  
5.5  
RT9166-33xVL  
5.5  
3
3.5  
4
4.5  
5
3
3.5  
4
4.5  
5
Input voltage (V)  
Input voltage (V)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
5
RT9166/A  
Current Limit vs. Temperature  
Current Limit vs. Temperature  
900  
850  
800  
750  
700  
900  
850  
800  
750  
700  
VIN = 5V  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
RT9166-33xX  
75 100 125  
RT9166-33xVL  
75 100 125  
-40  
-25  
0
25  
50  
-50  
-40  
-25  
0
25  
50  
Temperature (°C)  
Temperature (°C)  
Quiescent Current vs. Temperature  
Quiescent Current vs. Temperature  
260  
240  
220  
200  
180  
160  
140  
260  
240  
220  
200  
180  
160  
140  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RT9166-33xX  
75 100 125  
RT9166-33xVL  
75 100 125  
-40  
-25  
0
25  
50  
-40  
-25  
0
25  
50  
Temperature (°C)  
Temperature (°C)  
Temperature Stability  
Temperature Stability  
3.40  
3.35  
3.30  
3.25  
3.20  
3.40  
3.35  
3.30  
3.25  
3.20  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RT9166-33xX  
75 100 125  
RT9166-33xVL  
75 100 125  
-40
-25  
0
25  
50  
-40  
-25  
0
25  
50  
Temperature (°C)  
Temperature (°C)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS9166/A-23 June 2012  
RT9166/A  
Load Transient Response  
Load Transient Response  
VIN = 5V, ILOAD = 1 to 150mA  
VIN = 5V, ILOAD = 1 to 150mA  
CIN = COUT = 1uF (Ceramic, X7R)  
CIN = COUT = 1uF (Ceramic, X7R)  
200  
100  
0
200  
100  
0
20  
0
20  
0
-20  
-20  
RT9166-33xX  
RT9166-33xVL  
Time (100μs/Div)  
Time (100μs/Div)  
Line Transient Response  
VIN = 4 to 5V  
CIN = 1uF  
COUT = 1uF  
5
4
20  
0
-20  
Time (100μs/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
7
RT9166/A  
Application Information  
No Load Stability  
Like any low-dropout regulator, the RT9166/A series  
requires input and output decoupling capacitors. These  
capacitors must be correctly selected for good performance  
(see Capacitor Characteristics Section). Please note that  
linear regulators with a low dropout voltage have high  
internal loop gains which require care in guarding against  
oscillation caused by insufficient decoupling capacitance.  
The device will remain stable and in regulation with no  
external load. This is specially important in CMOS RAM  
keep-alive applications.  
Input-Output (Dropout) Voltage  
A regulator's minimum input-to-output voltage differential  
(dropout voltage) determines the lowest usable supply  
voltage. In battery-powered systems, this determines the  
useful end-of-life battery voltage. Because the device uses  
a PMOS, its dropout voltage is a function of drain-to-  
source on-resistance, RDS(ON), multiplied by the load  
current :  
Input Capacitor  
An input capacitance of 1μF is required between the  
device input pin and ground directly (the amount of the  
capacitance may be increased without limit). The input  
capacitor MUST be located less than 1 cm from the device  
to assure input stability (see PCB Layout Section).Alower  
ESR capacitor allows the use of less capacitance, while  
higher ESR type (like aluminum electrolytic) require more  
capacitance.  
VDROPOUT = VIN VOUT = RDS(ON) x IOUT  
Current Limit  
The RT9166/A monitors and controls the PMOS' gate  
voltage, minimum limiting the output current to 300mA for  
RT9166 and 600mA for RT9166A. The output can be  
shorted to ground for an indefinite period of time without  
damaging the part.  
Capacitor types (aluminum, ceramic and tantalum) can  
be mixed in parallel, but the total equivalent input  
capacitance/ESR must be defined as above to stable  
operation.  
There are no requirements for the ESR on the input  
capacitor, but tolerance and temperature coefficient must  
be considered when selecting the capacitor to ensure the  
capacitance will be 1μF over the entire operating  
temperature range.  
Short-Circuit Protection  
The device is short circuit protected and in the event of a  
peak over-current condition, the short-circuit control loop  
will rapidly drive the output PMOS pass element off. Once  
the power pass element shuts down, the control loop will  
rapidly cycle the output on and off until the average power  
dissipation causes the thermal shutdown circuit to  
respond to servo the on/off cycling to a lower frequency.  
Please refer to the section on thermal information for power  
dissipation calculations.  
Output Capacitor  
The RT9166/A is designed specifically to work with very  
small ceramic output capacitors. The recommended  
minimum capacitance (temperature characteristics X7R  
or X5R) is 1μF to 4.7μF range with 10mΩ to 50mΩ range  
ceramic capacitor between LDO output and GND for  
transient stability, but it may be increased without limit.  
Higher capacitance values help to improve transient. The  
output capacitor's ESR is critical because it forms a zero  
to provide phase lead which is required for loop stability.  
(When using the Y5V dielectric, the minimum value of  
the input/output capacitance that can be used for stable  
over full operating temperature range is 3.3μF.)  
Capacitor Characteristics  
It is important to note that capacitance tolerance and  
variation with temperature must be taken into consideration  
when selecting a capacitor so that the minimum required  
amount of capacitance is provided over the full operating  
temperature range. In general, a good tantalum capacitor  
will show very little capacitance variation with temperature,  
but a ceramic may not be as good (depending on dielectric  
type).  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS9166/A-23 June 2012  
RT9166/A  
Aluminum electrolytics also typically have large  
temperature variation of capacitance value.  
The increasing ESR at lower temperatures can cause  
oscillations when marginal quality capacitors are used (if  
the ESR of the capacitor is near the upper limit of the  
stability range at room temperature).  
Equally important to consider is a capacitor's ESR change  
with temperature: this is not an issue with ceramics, as  
their ESR is extremely low. However, it is very important  
in Tantalum and aluminum electrolytic capacitors. Both  
show increasing ESR at colder temperatures, but the  
increase in aluminum electrolytic capacitors is so severe  
they may not be feasible for some applications.  
Aluminum :  
This capacitor type offers the most capacitance for the  
money. The disadvantages are that they are larger in  
physical size, not widely available in surface mount, and  
have poor AC performance (especially at higher  
frequencies) due to higher ESR and ESL.  
Ceramic :  
Compared by size, the ESR of an aluminum electrolytic  
is higher than either Tantalum or ceramic, and it also varies  
greatly with temperature. A typical aluminum electrolytic  
can exhibit an ESR increase of as much as 50X when  
going from 25°C down to 40°C.  
For values of capacitance in the 10μF to 100μF range,  
ceramics are usually larger and more costly than tantalums  
but give superior AC performance for by-passing high  
frequency noise because of very low ESR (typically less  
than 10mΩ). However, some dielectric types do not have  
good capacitance characteristics as a function of voltage  
and temperature.  
It should also be noted that many aluminum electrolytics  
only specify impedance at a frequency of 120Hz, which  
indicates they have poor high frequency performance. Only  
aluminum electrolytics that have an impedance specified  
at a higher frequency (between 20kHz and 100kHz) should  
be used for the device. Derating must be applied to the  
manufacturer's ESR specification, since it is typically only  
valid at room temperature.  
Z5U and Y5V dielectric ceramics have capacitance that  
drops severely with applied voltage. Atypical Z5U or Y5V  
capacitor can lose 60% of its rated capacitance with half  
of the rated voltage applied to it. The Z5U and Y5V also  
exhibit a severe temperature effect, losing more than 50%  
of nominal capacitance at high and low limits of the  
temperature range.  
Any applications using aluminum electrolytics should be  
thoroughly tested at the lowest ambient operating  
temperature where ESR is maximum.  
X7R and X5R dielectric ceramic capacitors are strongly  
recommended if ceramics are used, as they typically  
maintain a capacitance range within 20% of nominal over  
full operating ratings of temperature and voltage. Of course,  
they are typically larger and more costly than Z5U/Y5U  
types for a given voltage and capacitance.  
Thermal Considerations  
Thermal protection limits power dissipation in RT9166/A.  
When the operation junction temperature exceeds 170°C,  
the OTP circuit starts the thermal shutdown function and  
turns the pass element off. The pass element turn on again  
after the junction temperature cools by 40°C.  
Tantalum :  
Solid tantalum capacitors are recommended for use on  
the output because their typical ESR is very close to the  
ideal value required for loop compensation. They also work  
well as input capacitors if selected to meet the ESR  
requirements previously listed.  
For continuous operation, do not exceed absolute  
maximum operation junction temperature. The power  
dissipation definition in device is :  
PD = (VIN VOUT) x IOUT + VIN x IQ  
Tantalums also have good temperature stability : a good  
quality tantalum will typically show a capacitance value  
that varies less than 10 to 15% across the full temperature  
range of 125°C to 40°C. ESR will vary only about 2X  
going from the high to low temperature limits.  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
9
RT9166/A  
be calculated by following formula :  
PCB Layout  
Good board layout practices must be used or instability  
can be induced because of ground loops and voltage drops.  
The input and output capacitors MUST be directly  
connected to the input, output, and ground pins of the  
device using traces which have no other currents flowing  
through them.  
PD (MAX) = (TJ(MAX) TA) / θJA  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TAis the ambient temperature and the  
θJA is the junction to ambient thermal resistance.  
For recommended operating conditions specification,  
where TJ(MAX) is the maximum junction temperature of the  
die (125°C) and TA is the operated ambient temperature.  
The junction to ambient thermal resistance θJA is layout  
dependent. For SOT-23-3 packages, the thermal  
resistance θJA is 250°C/W on the standard JEDEC 51-3  
single-layer thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by following  
formula :  
The best way to do this is to layout CIN and COUT near the  
device with short traces to the VIN, VOUT, and ground pins.  
The regulator ground pin should be connected to the  
external circuit ground so that the regulator and its  
capacitors have a single point ground.  
It should be noted that stability problems have been seen  
in applications where viasto an internal ground plane  
were used at the ground points of the device and the input  
and output capacitors. This was caused by varying ground  
potentials at these nodes resulting from current flowing  
through the ground plane. Using a single point ground  
technique for the regulator and it’ s capacitors fixed the  
problem. Since high current flows through the traces going  
into VIN and coming from VOUT, Kelvin connect the capacitor  
leads to these pins so there is no voltage drop in series  
with the input and output capacitors.  
PD (MAX) = ( 125°C 25°C) / 250°C/W = 0.400W for  
SOT-23-3 packages  
PD (MAX) = ( 125°C 25°C) / 175°C/W = 0.571W for  
SOT-89 packages  
PD (MAX) = ( 125°C 25°C) / 135°C/W = 0.740W for  
SOT-223 packages  
PD (MAX) = ( 125°C 25°C) / 68°C/W = 1.470W for  
TO-252 packages  
Optimum performance can only be achieved when the  
device is mounted on a PC board according to the diagram  
below :  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. Figure 1 of derating curves allows the  
designer to see the effect of rising ambient temperature  
on the maximum power allowed.  
V
1500  
IN  
Single Layer PCB  
1400  
1300  
1200  
1100  
1000  
900  
TO-252  
800  
700  
600  
GND  
SOT-223  
500 SOT-89  
400  
300  
200  
100  
0
V
OUT  
SOT-23-3  
Figure 2. SOT-23-3 Board Layout  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 1. Derating Curve of Maximum PowerDissipation  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS9166/A-23 June 2012  
RT9166/A  
Outline Dimension  
H
D
L
C
B
e
b
A
A1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.889  
0.000  
1.397  
0.356  
2.591  
2.692  
1.803  
0.080  
0.300  
1.295  
0.152  
1.803  
0.508  
2.997  
3.099  
2.007  
0.254  
0.610  
0.035  
0.000  
0.055  
0.014  
0.102  
0.106  
0.071  
0.003  
0.012  
0.051  
0.006  
0.071  
0.020  
0.118  
0.122  
0.079  
0.010  
0.024  
b
C
D
e
H
L
SOT-23-3 Surface Mount Package  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
11  
RT9166/A  
D
D1  
A
B
C
C1  
e
e
H
A
b
b
b1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
b
1.397  
0.356  
2.388  
0.406  
3.937  
0.787  
4.394  
1.397  
1.448  
0.356  
1.600  
0.483  
2.591  
0.533  
4.242  
1.194  
4.597  
1.753  
1.549  
0.432  
0.055  
0.014  
0.094  
0.016  
0.155  
0.031  
0.173  
0.055  
0.057  
0.014  
0.063  
0.019  
0.102  
0.021  
0.167  
0.047  
0.181  
0.069  
0.061  
0.017  
B
b1  
C
C1  
D
D1  
e
H
3-Lead SOT-89 Surface Mount Package  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS9166/A-23 June 2012  
RT9166/A  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
1.800  
0.100  
0.840  
3.700  
7.300  
6.700  
3.100  
Min  
Max  
A
A1  
b
1.400  
0.020  
0.600  
3.300  
6.700  
6.300  
2.900  
0.055  
0.001  
0.071  
0.004  
0.033  
0.146  
0.287  
0.264  
0.122  
0.024  
0.130  
0.264  
0.248  
0.114  
B
C
D
b1  
e
2.300  
0.091  
H
0.230  
1.500  
0.800  
0.350  
2.000  
1.100  
0.009  
0.059  
0.031  
0.014  
0.079  
0.043  
L
L1  
3-Lead SOT-223 Surface Mount Package  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9166/A-23 June 2012  
www.richtek.com  
13  
RT9166/A  
D
U
C
D1  
R
B
T
V
S
E
L1  
L3  
e
b1  
L2  
b
b2  
A
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
2.388  
2.032  
0.889  
Min  
Max  
0.094  
0.080  
0.035  
0.086  
0.035  
0.020  
A
B
2.184  
0.889  
0.508  
b
b1  
b2  
C
1.016 Ref.  
0.040 Ref.  
0.457  
0.457  
6.350  
5.207  
5.334  
2.108  
9.398  
0.584  
0.584  
6.731  
5.461  
6.223  
2.438  
0.018  
0.018  
0.250  
0.205  
0.210  
0.083  
0.370  
0.023  
0.023  
0.265  
0.215  
0.245  
0.096  
0.410  
D
D1  
E
e
L1  
L2  
L3  
U
10.414  
0.508 Ref.  
0.020 Ref.  
0.025  
0.040  
0.635  
1.016  
3.810 Ref.  
3.048 Ref.  
0.150 Ref.  
0.120 Ref.  
V
R
0.200  
2.500  
0.500  
0.850  
3.400  
0.850  
0.008  
0.098  
0.020  
0.033  
0.134  
0.033  
S
T
3-Lead TO-252 Surface Mount Package  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS9166/A-23 June 2012  
RT9166/A  
A
D
E
L
b
C
e
D1  
A1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.125  
0.045  
0.016  
0.016  
0.175  
0.135  
0.170  
0.045  
0.165  
0.054  
0.021  
0.021  
0.205  
0.198  
0.210  
0.055  
A
A1  
b
3.175  
1.143  
0.406  
0.406  
4.445  
3.429  
4.318  
1.143  
4.191  
1.372  
0.533  
0.533  
5.207  
5.029  
5.334  
1.397  
C
D
D1  
E
e
12.700  
0.500  
L
3-Lead TO-92 Plastic Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS9166/A-23 June 2012  
www.richtek.com  
15  

相关型号:

RT9166-25P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-25PVL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-25PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-26C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-26P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-26PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-27C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-27P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-27PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-28C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-28GVL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-28GXL

IC REG LINEAR 2.8V 300MA SOT89-3
RICHTEK