S-1410H30-K8T2U4 [ETC]

TIMER WITH RESET FUNCTION;
S-1410H30-K8T2U4
型号: S-1410H30-K8T2U4
厂家: ETC    ETC
描述:

TIMER WITH RESET FUNCTION

文件: 总56页 (文件大小:816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-1410/1411 Series  
105°C OPERATION,  
A CURRENT CONSUMPTION WATCHDOG TIMER  
WITH RESET FUNCTION  
3.8  
μ
www.ablic.com  
© ABLIC Inc., 2015-2020  
Rev.2.5_00  
The S-1410/1411 Series is a watchdog timer developed using CMOS technology, which can operate with low current  
consumption of 3.8 μA typ. The reset function and the low voltage detection function are available.  
Features  
Detection voltage:  
Detection voltage accuracy:  
Input voltage:  
2.0 V to 5.0 V, selectable in 0.1 V step  
1.5%  
VDD = 0.9 V to 6.0 V  
5% typ.  
Hysteresis width:  
Current consumption during watchdog timer operation: 3.8 μA typ.  
Reset time-out period:  
14.5 ms typ. (CPOR = 2200 pF)  
Watchdog time-out period:  
24.6 ms typ. (CWDT = 470 pF)  
Enable, Disable  
VDD = 2.5 V to 6.0 V  
Time-out mode, window mode  
Rising edge, falling edge, both rising and falling edges  
S-1410 Series___  
Watchdog operation is switchable:  
Watchdog operation voltage range:  
Watchdog mode switching function*1:  
Watchdog input edge is selectable:  
Product type is selectable:  
________  
(Product with W / T pin (Output: WDO pin))  
S-1411 Series  
___  
_______  
________  
(Product without W / T pin (Output: RST pin, WDO pin))  
Operation temperature range:  
Ta = 40°C to +105°C  
Lead-free (Sn 100%), halogen-free  
*1. The S-1411 Series is fixed to the window mode.  
Application  
Power supply monitoring and system monitoring in microcontroller mounted apparatus  
Packages  
TMSOP-8  
HSNT-8(2030)  
1
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
Block Diagrams  
1. S-1410 Series A / B / C Type  
CWDT  
VDD  
Noise  
filter  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Noise  
filter  
W / T  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 1  
2. S-1410 Series D / E / F Type  
CWDT  
VDD  
Noise  
filter  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Noise  
filter  
W / T  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 2  
2
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
3. S-1410 Series G / H / I Type  
CWDT  
VDD  
Noise  
filter  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Noise  
filter  
W / T  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 3  
4. S-1410 Series J / K / L Type  
CWDT  
VDD  
Noise  
filter  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Noise  
filter  
W / T  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 4  
3
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
5. S-1411 Series A / B / C Type  
CWDT  
VDD  
Noise  
filter  
RST  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 5  
6. S-1411 Series D / E / F Type  
CWDT  
VDD  
Noise  
filter  
RST  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 6  
4
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
7. S-1411 Series G / H / I Type  
CWDT  
VDD  
Noise  
filter  
RST  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 7  
8. S-1411 Series J / K / L Type  
CWDT  
VDD  
Noise  
filter  
RST  
WEN  
WDI  
Noise  
filter  
WDT circuit  
WDO  
Voltage detection  
circuit  
Reference  
voltage circuit  
VSS  
CPOR  
Figure 8  
5
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
Product Name Structure  
Users can select the product type, detection voltage, and package type for the S-1410/1411 Series. Refer to  
"1. Product name" regarding the contents of product name, "2. Product type list" regarding the product types,  
"3. Packages" regarding the package drawings.  
1. Product name  
S-141  
x
x
xx  
-
xxxx  
U
4
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and IC packing specifications*1  
K8T2: TMSOP-8, Tape  
A8T1: HSNT-8(2030), Tape  
Detection voltage  
20 to 50  
(e.g., when the detection voltage is 2.0 V, it is expressed as 20.)  
Product type 1*2  
A to L  
Product type 2*3  
0, 1  
*1. Refer to the tape drawing.  
*2. Refer to "2. Product type list".  
___  
*3. 0: S-1410 Series (Product with W / T pin)  
________  
The WDO pin outputs the signals which are from the watchdog timer circuit and the voltage detection  
circuit.  
___  
1: S-1411 Series (Product without W / T pin)  
________  
The WDO pin outputs the signals which are from the watchdog timer circuit and the voltage detection  
circuit.  
_______  
The RST pin outputs the signal which is from the voltage detection circuit.  
The watchdog mode is fixed to the window mode.  
6
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
2. Product type list  
Table 1  
Output Pull-up  
Resistor  
Constant Current Source Pull-down  
for WEN Pin  
Product Type WEN Pin Logic  
Input Edge  
A
B
C
D
E
F
G
H
I
Active "H"  
Active "H"  
Active "H"  
Active "L"  
Active "L"  
Active "L"  
Active "H"  
Active "H"  
Active "H"  
Active "L"  
Active "L"  
Active "L"  
Available  
Rising edge  
Falling edge  
Available  
Available  
Available  
Available  
Both rising and falling edges Available  
Unavailable  
Unavailable  
Unavailable  
Available  
Rising edge  
Falling edge  
Available  
Available  
Both rising and falling edges Available  
Rising edge  
Falling edge  
Unavailable  
Unavailable  
Available  
Available  
Both rising and falling edges Unavailable  
J
Unavailable  
Unavailable  
Unavailable  
Rising edge  
Falling edge  
Unavailable  
Unavailable  
K
L
Both rising and falling edges Unavailable  
3. Packages  
Table 2 Package Drawing Codes  
Package Name  
TMSOP-8  
Dimension  
Tape  
Reel  
Land  
FM008-A-P-SD  
PP008-A-P-SD  
FM008-A-C-SD  
PP008-A-C-SD  
FM008-A-R-SD  
PP008-A-R-SD  
HSNT-8(2030)  
PP008-A-L-SD  
7
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
Pin Configurations  
1. TMSOP-8  
Table 3 S-1410 Series  
Top view  
Pin No.  
Symbol  
Description  
Watchdog mode switching pin  
Reset time-out period adjustment pin  
Watchdog time-out period adjustment pin  
GND pin  
_
W / T*1  
CPOR  
CWDT  
VSS  
1
2
3
4
5
6
7
8
1
2
3
4
8
7
6
5
WEN  
Watchdog enable pin  
______  
Figure 9  
WDO  
WDI  
Watchdog output and reset output pin  
Watchdog input pin  
VDD  
Voltage input pin  
Table 4 S-1411 Series  
Description  
Reset output pin  
Pin No.  
Symbol  
_____  
RST  
1
2
3
4
5
6
7
8
CPOR  
CWDT  
VSS  
Reset time-out period adjustment pin  
Watchdog time-out period adjustment pin  
GND pin  
WEN  
Watchdog enable pin  
______  
WDO  
WDI  
Watchdog output pin  
Watchdog input pin  
VDD  
Voltage input pin  
___  
*1. W / T pin = "H": Time-out mode  
___  
W / T pin = "L": Window mode  
8
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
2. HSNT-8(2030)  
Table 5 S-1410 Series  
Top view  
1
Pin No.  
Symbol  
Description  
Watchdog mode switching pin  
Reset time-out period adjustment pin  
Watchdog time-out period adjustment pin  
GND pin  
_
W / T*2  
CPOR  
CWDT  
VSS  
1
2
3
4
5
6
7
8
8
4
5
Bottom view  
WEN  
Watchdog enable pin  
______  
WDO  
WDI  
Watchdog output and reset output pin  
Watchdog input pin  
8
1
4
VDD  
Voltage input pin  
5
*1  
Figure 10  
Table 6 S-1411 Series  
Description  
Reset output pin  
Pin No.  
Symbol  
_____  
RST  
1
2
3
4
5
6
7
8
CPOR  
CWDT  
VSS  
Reset time-out period adjustment pin  
Watchdog time-out period adjustment pin  
GND pin  
WEN  
Watchdog enable pin  
______  
WDO  
WDI  
Watchdog output pin  
Watchdog input pin  
VDD  
Voltage input pin  
*1. Connect the heat sink of backside at shadowed area to the board, and set electric potential GND.  
However, do not use it as the function of electrode.  
___  
*2. W / T pin = "H": Time-out mode  
___  
W / T pin = "L": Window mode  
9
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
Pin Functions  
Refer to "Operations" for details.  
____  
1. W / T pin (Only S-1410 Series)  
This is a pin to switch the watchdog mode.  
___  
The S-1410 Series changes to the time-out mode when the W / T pin is "H", and changes to the window mode  
___  
when the W / T pin is "L". Switching the mode is prohibited during the operation.  
___  
The W / T pin is connected to a constant current source (0.3 μA typ.) and is pulled down internally.  
___  
In addition, the W / T pin has a noise filter. When the power supply voltage is 5.0 V, noise with a minimum pulse  
width of 200 ns can be eliminated.  
________  
2. RST pin (Only S-1411 Series)  
This is a reset output pin. It outputs "L" when detecting a low voltage.  
_______  
Be sure to connect an external pull-up resistor (RextR) to the RST pin in the product without an output pull-up  
resistor.  
_________  
3. WDO pin  
3. 1 S-1410 Series  
This pin combines the reset output and the watchdog output (time-out detection, double pulse detection).  
________  
Be sure to connect an external pull-up resistor (RextW) to the WDO pin in the product without an output pull-up  
________  
resistor. Table 7 shows the WDO pin output status.  
Table 7  
______  
WDO Pin  
_
_
Operation Status  
Normal operation  
W / T Pin = "H"  
W / T Pin = "L"  
"H"  
"L"  
"L"  
"H"  
"H"  
"H"  
"L"  
"L"  
"L"  
"H"  
Low voltage detection  
Time-out detection  
Double pulse detection  
When watchdog timer is in Disable  
3. 2 S-1411 Series  
This is the watchdog output (time-out detection, double pulse detection) pin.  
________  
Be sure to connect an external pull-up resistor (RextW) to the WDO pin in the product without an output pull-up  
________  
_______  
resistor. Table 8 shows the WDO pin and RST pin output statuses.  
Table 8  
______  
_____  
WDO Pin  
RST Pin  
Operation Status  
Normal operation  
"H"  
"L"  
"L"  
"L"  
"H"  
"H"  
"L"  
Low voltage detection  
Time-out detection  
"H"  
"H"  
"H"  
Double pulse detection  
When watchdog timer is in Disable  
10  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
4. CPOR pin  
This is a pin to connect an adjustment capacitor for reset time-out period (CPOR) in order to generate the reset  
time-out period (tRST). CPOR is charged and discharged by an internal constant current circuit, and the  
charge-discharge duration is tRST  
Refer to "Recommended Operation Conditions" and consider variation of CPOR to select an appropriate CPOR  
RST is calculated by using the following equation.  
.
.
t
t
RST [ms] = CPOR delay coefficient × CPOR [nF] + tRST0 [ms]  
Table 9  
Min.  
3.9  
Typ.  
6.5  
Max.  
9.1  
Item  
CPOR delay coefficient  
tRST0 [ms]  
0.0  
0.2  
0.6  
5. CWDT pin  
This is a pin to connect an adjustment capacitor for watchdog time-out period (CWDT) in order to generate the  
watchdog time-out period (tWDU) and the watchdog double pulse detection time (tWDL). CWDT is charged and  
discharged by an internal constant current circuit.  
Refer to "Recommended Operation Conditions" and consider variation of CWDT to select an appropriate CWDT  
.
t
WDU is calculated by using the following equation.  
tWDU [ms] = CWDT delay coefficient 1 × CWDT [nF] + tWDU0 [ms]  
Table 10  
Min.  
30  
Typ.  
50  
Max.  
70  
Item  
CWDT delay coefficient 1  
tWDU0 [ms]  
0.0  
1.1  
3.0  
In addition, tWDL is calculated by using the following equation.  
tWDU  
tWDL  
=
32  
5. 1 Cautions on watchdog double pulse detection time  
The watchdog double pulse detection time (tWDL) noted in "Electrical Characteristics" is a value with a starting  
point at the time when the CWDT pin voltage (VCWDT) begins to rise from the CWDT charge lower limit threshold  
(VCWL).  
The double pulse detection in window mode is performed even during ΔtWDL shown in Timing Diagram 7-4.  
Therefore, if setting to a value with a starting point at the time when VCWDT begins to rise from 0 V, the watchdog  
double pulse detection time (tWDL2) is calculated adding ΔtWDL as shown in the following equations.  
tWDL2 [ms] = tWDL + ΔtWDL [ms]  
ΔtWDL [ms] = CWDT delay coefficient 2 × CWDT [nF] + tWDL0 [ms]  
Table 11  
Min.  
0.00  
0.00  
Typ.  
0.27  
0.01  
Max.  
0.65  
0.02  
Item  
CWDT delay coefficient 2  
tWDL0 [ms]  
11  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
6. WEN pin  
This is a pin to switch Enable / Disable of the watchdog timer.  
The voltage detection circuit independently operates at all times regardless of the watchdog timer operation.  
In addition, the WEN pin has a noise filter. When the power supply voltage is 5.0 V, noise with a minimum pulse  
width of 200 ns can be eliminated.  
6. 1 S-1410/1411 Series A / B / C / G / H / I type (WEN pin logic active "H" product)  
The watchdog timer goes to Enable if the input is "H", and the charge-discharge operation is performed at the  
CWDT pin.  
The WEN pin is connected to a constant current source (0.3 μA typ.) and is pulled down internally.  
6. 2 S-1410/1411 Series D / E / F / J / K / L type (WEN pin logic active "L" product)  
The watchdog timer goes to Enable if the input is "L", and the charge-discharge operation is performed at the  
CWDT pin.  
The WEN pin is not pulled down internally.  
7. WDI pin  
This is an input pin to receive a signal from the monitored object. By inputting an edge at an appropriate timing, the  
WDI pin confirms the normal operation of the monitored object.  
The WDI pin is connected to a constant current source (0.3 μA typ.) and is pulled down internally.  
If the WEN pin is in Disable after the initialization and reset release are performed subsequent to the power supply  
voltage rise, the WDI pin will be able to receive input signals after the WEN pin goes to Enable and then the input  
setup time (tiset) elapses.  
In addition, the WDI pin has a noise filter. When the power supply voltage is 5.0 V, noise with a minimum pulse  
width of 200 ns can be eliminated.  
12  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Absolute Maximum Ratings  
Table 12  
Symbol  
(Ta = +25°C unless otherwise specified)  
Item  
VDD pin voltage  
Absolute Maximum Rating  
Unit  
V
VDD  
VSS 0.3 to VSS + 7.0  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VSS + 7.0  
WDI pin voltage  
VWDI  
V
WEN pin voltage  
VWEN  
V
___  
V___  
W / T pin voltage  
CPOR pin voltage  
CWDT pin voltage  
w / T  
V
VCPOR  
VCWDT  
V
V
_______  
A / B / C / D / E / F type  
V
V_R__S__T__  
RST pin voltage  
G / H / I / J / K / L type  
V
________  
A / B / C / D / E / F type  
VSS 0.3 to VDD + 0.3 VSS + 7.0  
VSS 0.3 to VSS + 7.0  
V
________  
VWDO  
WDO pin voltage  
G / H / I / J / K / L type  
V
Operation ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to +105  
40 to +150  
°C  
°C  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
Thermal Resistance Value  
Table 13  
Item  
Symbol  
Condition  
Board A  
Min.  
Typ.  
160  
133  
Max.  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Board B  
Board C  
Board D  
Board E  
Board A  
Board B  
Board C  
Board D  
Board E  
TMSOP-8  
Junction-to-ambient thermal  
resistance*1  
θJA  
181  
135  
40  
HSNT-8(2030)  
42  
32  
*1. Test environment: compliance with JEDEC STANDARD JESD51-2A  
Remark Refer to "Power Dissipation" and "Test Board" for details.  
Recommended Operation Conditions  
Table 14  
Item  
VDD pin voltage  
Symbol  
VDD  
Condition  
Voltage detection circuit  
Watchdog timer circuit  
0.1 V step  
Min.  
0.9  
2.5  
2.0  
Typ.  
Max. Unit  
6.0  
6.0  
5.0  
V
V
V
Set detection voltage  
VDET(S)  
External pull-up resistor  
for RST pin  
_______  
RextR  
S-1411 Series G / H / I / J / K / L type  
10  
10  
100  
100  
2.2  
kΩ  
kΩ  
nF  
nF  
External pull-up resistor  
________  
RextW  
CPOR  
CWDT  
S-1410/1411 Series G / H / I / J / K / L type  
for WDO pin  
Adjustment capacitance  
for reset time-out period  
Adjustment capacitance  
for watchdog time-out period  
0.1  
0.1  
1000  
1000  
0.47  
13  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
Electrical Characteristics  
1. S-1410 Series  
Table 15 (1 / 2)  
(WEN pin logic active "H" product, VDD = 5.0 V, Ta = +25°C unless otherwise specified)  
Test  
Item  
Detection voltage*1  
Hysteresis width  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
V
Circuit  
VDET(S)  
× 0.985  
VDET  
VDET(S)  
× 1.015  
VDET  
VDET  
VDET(S)  
1
VDET  
× 0.05  
VHYS  
ISS1  
V
1
2
× 0.03  
× 0.07  
Current consumption during  
watchdog timer operation  
Current consumption during  
watchdog timer stop  
VWEN = VDD  
VWEN = 0 V  
3.8  
7.8  
μA  
ISS2  
VDD 1.0  
2.7  
5.7  
μA  
V
2
5
6
Only A / B / C / D / E / F type  
External pull-up resistor of 100 k  
Watchdog output voltage "H" VWOH  
Watchdog output voltage "L" VWOL  
Ω
is  
0.4  
V
connected for G / H / I / J / K / L type  
Only A / B / C / D / E / F type  
VDD = 1.5 V  
Watchdog output pull-up  
RWUP  
2.0  
5.88  
12.5  
MΩ  
resistance  
0.6  
1.1  
2.1  
2.8  
1.1  
1.6  
2.6  
3.3  
mA  
mA  
mA  
mA  
7
7
7
7
VDD = 1.8 V  
VDS = 0.4 V  
Watchdog output current  
IWOUT  
VDD = 2.5 V  
VDD = 3.0 V  
VDS = 6.0 V, VDD = 6.0 V  
WEN pin  
Watchdog output leakage  
current  
IWLEAK  
0.096  
μA  
8
Input pin voltage 1 "H"  
Input pin voltage 1 "L"  
Input pin voltage 2 "H"  
Input pin voltage 2 "L"  
Input pin voltage 3 "H"  
Input pin voltage 3 "L"  
VSH1  
VSL1  
VSH2  
VSL2  
VSH3  
VSL3  
0.7 × VDD  
V
V
V
V
V
V
9
9
9
9
9
9
WEN pin  
0.3 × VDD  
0.3 × VDD  
_
W / T pin  
0.7 × VDD  
_
W / T pin  
WDI pin  
WDI pin  
0.7 × VDD  
0.3 × VDD  
14  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Table 15 (2 / 2)  
(WEN pin logic active "H" product, VDD = 5.0 V, Ta = +25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
A / B / C  
/ G / H / I  
type  
0.3  
1.0  
μA  
9
WEN pin,  
VDD = 6.0 V,  
Input pin voltage = 6.0 V  
Input pin current 1 "H"  
ISH1  
D / E / F  
/ J / K / L  
type  
0.1  
0.1  
μA  
9
WEN pin, VDD = 6.0 V,  
I_n_put pin voltage = 0 V  
W / T pin,  
Input pin current 1 "L"  
Input pin current 2 "H"  
Input pin current 2 "L"  
Input pin current 3 "H"  
Input pin current 3 "L"  
ISL1  
ISH2  
ISL2  
ISH3  
ISL3  
0.1  
0.3  
0.1  
1.0  
0.1  
1.0  
0.1  
μA  
μA  
μA  
μA  
μA  
9
9
9
9
9
V
DD = 6.0 V, Input pin voltage = 6.0 V  
__  
W / T pin,  
DD = 6.0 V, Input pin voltage = 0 V  
0.1  
V
WDI pin, VDD = 6.0 V,  
Input pin voltage = 6.0 V  
WDI pin, VDD = 6.0 V,  
Input pin voltage = 0 V  
0.3  
0.1  
Input pulse width "H"*2  
Input pulse width "L"*2  
thigh1  
tlow1  
Timing Diagram 1  
Timing Diagram 1  
CPOR = 2200 pF,  
1.5  
1.5  
μs  
μs  
10  
10  
tRST  
tWDU  
tWDL  
Reset time-out period  
8.7  
15  
14.5  
24.6  
20  
34  
ms  
ms  
3
3
4
3
Timing Diagram 2, 5  
CWDT = 470 pF,  
Watchdog time-out period  
Timing Diagram 4, 5  
Watchdog double pulse  
detection time  
CWDT = 470 pF,  
461  
769  
25  
1077  
40  
μs  
μs  
Timing Diagram 7-1 to 7-4  
Timing Diagram 2, 3-2,  
7-1 to 7-3  
Watchdog output delay time tWOUT  
Reset output delay time  
Input setup time  
tROUT  
tiset  
Timing Diagram 2, 7-1 to 7-3  
1.0  
25  
40  
μs  
μs  
3
3
Timing Diagram 4  
*1. VDET: Actual detection voltage, VDET(S): Set detection voltage  
*2. Inputs to the WEN pin and the WDI pin should be greater than or equal to the min. value specified in "Electrical  
Characteristics".  
15  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
2. S-1411 Series  
Table 16 (1 / 2)  
(WEN pin logic active "H" product, VDD = 5.0 V, Ta = +25°C unless otherwise specified)  
Test  
Item  
Detection voltage*1  
Hysteresis width  
Symbol  
VDET  
VHYS  
Condition  
Min.  
Typ.  
Max.  
Unit  
V
Circuit  
VDET(S)  
× 0.985  
VDET  
VDET(S)  
× 1.015  
VDET  
VDET(S)  
11  
VDET  
× 0.05  
V
11  
12  
× 0.03  
× 0.07  
Current consumption during  
watchdog timer operation  
Current consumption during  
watchdog timer stop  
ISS1  
VWEN = VDD  
VWEN = 0 V  
3.8  
7.8  
μA  
ISS2  
VDD 1.0  
2.7  
5.7  
μA  
V
12  
15  
16  
Reset output voltage "H"  
VROH  
VROL  
Only A / B / C / D / E / F type  
External pull-up resistor of 100 k  
Ω
is  
Reset output voltage "L"  
0.4  
V
connected for G / H / I / J / K / L type  
Only A / B / C / D / E / F type  
VDD = 1.5 V  
Reset output pull-up  
resistance  
RRUP  
2.0  
5.88  
12.5  
MΩ  
0.6  
1.1  
1.1  
1.6  
2.6  
3.3  
mA  
mA  
mA  
mA  
μA  
V
17  
17  
17  
17  
18  
19  
VDD = 1.8 V  
VDS = 0.4 V  
Reset output current  
IROUT  
VDD = 2.5 V  
2.1  
VDD = 3.0 V  
VDS = 6.0 V, VDD = 6.0 V  
2.8  
Reset output leakage current  
IRLEAK  
0.096  
Watchdog output voltage "H" VWOH  
Only A / B / C / D / E / F type  
VDD 1.0  
External pull-up resistor of 100 k  
Ω is  
Watchdog output voltage "L" VWOL  
0.4  
V
20  
connected for G / H / I / J / K / L type  
Only A / B / C / D / E / F type  
VDD = 1.5 V  
Watchdog output pull-up  
RWUP  
2.0  
5.88  
12.5  
MΩ  
resistance  
0.6  
1.1  
2.1  
2.8  
1.1  
1.6  
2.6  
3.3  
mA  
mA  
mA  
mA  
21  
21  
21  
21  
VDD = 1.8 V  
VDS = 0.4 V  
Watchdog output current  
IWOUT  
VDD = 2.5 V  
VDD = 3.0 V  
Watchdog output leakage  
current  
IWLEAK  
VDS = 6.0 V, VDD = 6.0 V  
0.096  
μA  
22  
Input pin voltage 1 "H"  
Input pin voltage 1 "L"  
Input pin voltage 3 "H"  
Input pin voltage 3 "L"  
VSH1  
VSL1  
VSH3  
VSL3  
WEN pin  
WEN pin  
WDI pin  
WDI pin  
0.7 × VDD  
V
V
V
V
23  
23  
23  
23  
0.7 × VDD  
0.3 × VDD  
0.3 × VDD  
16  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Table 16 (2 / 2)  
(WEN pin logic active "H" product, VDD = 5.0 V, Ta = +25°C unless otherwise specified)  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Circuit  
23  
A / B / C  
/ G / H / I  
type  
0.3  
1.0  
μA  
WEN pin,  
VDD = 6.0 V,  
Input pin current 1 "H"  
ISH1  
D / E / F  
/ J / K / L  
type  
Input pin voltage = 6.0 V  
0.1  
0.1  
μA  
23  
WEN pin, VDD = 6.0 V,  
Input pin voltage = 0 V  
WDI pin, VDD = 6.0 V,  
Input pin voltage = 6.0 V  
WDI pin, VDD = 6.0 V,  
Input pin voltage = 0 V  
Input pin current 1 "L"  
Input pin current 3 "H"  
Input pin current 3 "L"  
ISL1  
ISH3  
ISL3  
0.1  
0.3  
0.1  
1.0  
0.1  
μA  
μA  
μA  
23  
23  
23  
0.1  
Input pulse width "H"*2  
Input pulse width "L"*2  
thigh1  
tlow1  
1.5  
1.5  
μs  
μs  
24  
24  
Timing Diagram 1  
Timing Diagram 1  
C
POR = 2200 pF,  
Timing Diagram 2, 5  
WDT = 470 pF,  
Timing Diagram 4, 5  
WDT = 470 pF,  
tRST  
Reset time-out period  
8.7  
15  
461  
14.5  
24.6  
769  
25  
20  
34  
ms  
ms  
μs  
13  
13  
14  
13  
C
tWDU  
Watchdog time-out period  
Watchdog double pulse  
detection time  
C
tWDL  
1077  
40  
Timing Diagram 7-1 to 7-4  
Watchdog output delay  
time  
Timing Diagram 2, 3-2, 7-1 to 7-3  
tWOUT  
μs  
Timing Diagram 2, 3-1, 7-1 to 7-3  
Reset output delay time  
Input setup time  
tROUT  
tiset  
1.0  
25  
40  
μs  
μs  
13  
13  
Timing Diagram 4  
*1. VDET: Actual detection voltage, VDET(S): Set detection voltage  
*2. Inputs to the WEN pin and the WDI pin should be greater than or equal to the min. value specified in "Electrical  
Characteristics".  
Timing Diagrams on Electrical Characteristics  
(1) Timing Diagram 1  
thigh1  
VSH1  
VSH1  
WEN  
WDI  
VSL1  
VSL1  
tlow1  
thigh1  
VSH3  
VSH3  
VSL3  
VSL3  
tlow1  
Figure 11 Input Pulse Width  
17  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
(2) Timing Diagram 2  
VDD  
+VDET  
0 V  
1
2
3
4
VCPU  
CPOR  
0 V  
VCPL  
*2  
ΔtRST  
1
Δt  
*
tINIT  
tRST  
WDO,  
RST*4  
VWOH,VROH  
*4  
tWOUT, tROUT  
Figure 12 VDD Rising  
(3) Timing Diagram 3-1  
(4) Timing Diagram 3-2  
VDD  
VDD  
-VDET  
VCWU  
VCWL  
-VDET  
VCPU  
VCPL  
CWDT  
CPOR  
*
*
3
3
Δt2  
Δt1  
RST*4  
WDO,  
RST*4  
VWOL,VROL  
VROL  
*4  
*4  
tWOUT, tROUT  
tROUT  
Figure 13 VDD Falling during CPOR Pin Charge Operation  
Figure 14 VDD Falling during CWDT Pin Charge Operation  
*1. The CPOR pin voltage fall delay time (Δt) is sufficiently small compared to the reset time-out period (tRST).  
*2. The time (ΔtRST) the CPOR pin voltage (VCPOR) reaches the CPOR charge lower limit threshold (VCPL) from 0 V is  
proportional to the adjustment capacitance for reset time-out period (CPOR). Thus, large CPOR results in large ΔtRST  
.
Refer to "12. Initialization time (tINIT) vs. Power supply voltage rise time (tr)" in "Characteristics (Typical  
Data)".  
*3. CPOR pin voltage forced fall delay time (Δt1) and the CWDT pin voltage forced fall delay time (Δt2) is sufficiently small  
compared to tRST in Timing Diagram 2.  
*4. Only the S-1411 Series  
Remark VCPU: CPOR charge upper limit threshold (1.25 V typ.), VCPL: CPOR charge lower limit threshold (0.20 V typ.)  
V
CWU: CWDT charge upper limit threshold (1.25 V typ.), VCWL: CWDT charge lower limit threshold (0.20 V typ.)  
18  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
(5) Timing Diagram 4  
WEN  
VSH1  
tSH1  
VSL1  
31  
32  
1
2
CWDT  
VCWU  
・・・  
tacp  
VCWL  
tiset  
tWDU  
*2  
Δt*1  
ΔtWDL  
Figure 15 Counter Reset due to VWEN  
(6) Timing Diagram 5  
1
2
3
4
CPOR  
VCPU  
VCPL  
31  
32  
1
2
CWDT  
VCWU  
・・・  
VCWL  
Δt*3  
Δt*4  
ΔtRST  
ΔtWDL  
tWDU  
*
*
4
3
tRST  
(Δt Δt  
)
(Δt Δt  
)
RST  
+
+
WDL  
Figure 16 Watchdog Time-out Detection  
*1. CWDT pin voltage forced fall delay time (Δt) is sufficiently small compared to the watchdog time-out period (tWDU).  
*2. The CWDT pin voltage rise delay time (tiset + ΔtWDL) is sufficiently small (less than 1%) compared to tWDU  
.
*3. The delay time (Δt + ΔtWDL) from when the CPOR pin voltage (VCPOR) falls to the CPOR charge lower limit threshold  
(VCPL) to when the CWDT pin voltage (VCWDT) reaches the CWDT charge lower limit threshold (VCWL) is sufficiently  
small (less than 1%) compared to tWDU  
.
*4. The delay time (Δt + ΔtRST) from when VCWDT falls to VCWL to when VCPOR reaches VCPL is sufficiently small  
(less than 5%) compared to reset time-out period (tRST).  
Remark tiset: Input setup time (less than 1 μs)  
The time from when VWEN exceeds VSH1 (tSH1) to when the WDI pin is able to receive input signals (tacp).  
19  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
(7) Timing Diagram 6-1  
(8) Timing Diagram 6-2  
WDI  
WDI  
1
2
1
2
CWDT  
0 V  
VCWU  
CWDT  
0 V  
VCWU  
VCWL  
VCWL  
Δt*2  
Δt*1  
*
*
3
3
ΔtWDL  
ΔtWDL  
Figure 17 VWDI Rising Edge  
(9) Timing Diagram 6-3  
Figure 18 VWDI Falling Edge  
(10) Timing Diagram 6-4  
WDI  
WDI  
1
1
1
1
CWDT  
0 V  
VCWU  
CWDT  
0 V  
VCWU  
VCWL  
VCWL  
*
*
1
2
*
Δt*1  
Δt  
2
Δt  
Δt  
ΔtWDL  
*
*
3
3
ΔtWDL  
*
*
3
3
ΔtWDL  
ΔtWDL  
Figure 19 VWDI Both Rising and Falling Edges 1  
Figure 20 VWDI Both Rising and Falling Edges 2  
*1. The delay time (Δt) from the WDI pin voltage (VWDI) rising edge to the CWDT pin voltage (VCWDT) rising start is sufficiently  
small (less than 1%) compared to tWDU in Timing Diagram 4 and 5.  
*2. The delay time (Δt) from the VWDI falling edge to the VCWDT rising start is sufficiently small (less than 1%) compared to  
t
WDU in Timing Diagram 4 and 5.  
*3. The time (ΔtWDL) VCWDT reaches VCWL from 0 V is proportional to the adjustment capacitance for watchdog time-out period  
(CWDT). Thus, large CWDT results in large ΔtWDL  
.
20  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
(11) Timing Diagram 7-1  
(12) Timing Diagram 7-2  
WDI  
WDI  
CWDT  
VCWU  
CWDT  
0 V  
VCWU  
VCWL  
VCWL  
*
6
Δt*1  
Δt  
tWDL  
tWDL  
*2  
*2  
tWDL  
tWDL  
ΔtWDL  
ΔtWDL  
CPOR  
0 V  
VCPU  
CPOR  
0 V  
VCPU  
VCPL  
VCPL  
Δt*3  
Δt*7  
*4  
*4  
ΔtRST  
ΔtRST  
WDO,  
RST*5  
WDO,  
RST*5  
VWOL,VROL  
VWOL,VROL  
*5  
*5  
tWOUT, tROUT  
tWOUT, tROUT  
Figure 21 Double Pulse Detection due to VWDI Rising Edge  
Figure 22 Double Pulse Detection due to VWDI Falling Edge  
*1. The delay time (Δt) from the VWDI rising edge to the VCWDT rising start is sufficiently small (less than 1%) compared to  
the watchdog double pulse detection time (tWDL).  
*2. The time (ΔtWDL) VCWDT reaches VCWL from 0 V is proportional to CWDT. Thus, large CWDT results in large ΔtWDL  
In window mode, a double pulse is detected during both periods of ΔtWDL and tWDL  
.
.
*3. The delay time (Δt) from the VWDI rising edge to the VCPOR rising start is sufficiently small (less than 1%) compared to  
tRST in Timing Diagram 2 and 5.  
*4. The time (ΔtRST) VCPOR reaches VCPL from 0 V is proportional to CPOR. Thus, large CPOR results in large ΔtRST. Refer to  
"12. Initialization time (tINIT) vs. Power supply voltage rise time (tr)" in "Characteristics (Typical Data)".  
*5. Only the S-1411 Series  
*6. The delay time (Δt) from the VWDI falling edge to the VCWDT rising start is sufficiently small (less than 1%) compared to  
tWDL  
.
*7. The delay time (Δt) from the VWDI falling edge to the VCPOR rising start is sufficiently small (less than 1%) compared to  
tRST in Timing Diagram 2 and 5.  
21  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
(13) Timing Diagram 7-3  
(14) Timing Diagram 7-4  
WDI  
WDI  
CWDT  
0 V  
VCWU  
CWDT  
VCWU  
VCWL  
VCWL  
Δt*6  
Δt*7  
0 V  
Δt*1  
tWDL  
*2  
*2  
tWDL  
ΔtWDL  
ΔtWDL  
*2  
ΔtWDL  
CPOR  
VCPU  
WDI  
*8  
VCPL  
0 V  
Δt*3  
*4  
ΔtRST  
CWDT  
VCWU  
WDO,  
RST*5  
VCWL  
0 V  
VWOL,VROL  
tWDL  
*2  
ΔtWDL  
*5  
tWOUT, tROUT  
tWDL2  
Figure 23 Double Pulse Detection due to VWDI Both  
Rising and Falling Edges  
Figure 24 Double Pulse Non-detection due to VWDI Both  
Rising and Falling Edges  
*1. The delay time (Δt) from the VWDI rising edge to the VCWDT rising start is sufficiently small (less than 1%) compared to  
tWDL  
*2. The time (ΔtWDL) VCWDT reaches VCWL from 0 V is proportional to CWDT. Thus, large CWDT results in large ΔtWDL  
In window mode, a double pulse is detected during both periods of ΔtWDL and tWDL  
*3. The delay time (Δt) from the VWDI falling edge to the VCPOR rising start is sufficiently small (less than 1%) compared to  
RST in Timing Diagram 2 and 5.  
.
.
.
t
*4. The time (ΔtRST) VCPOR reaches VCPL from 0 V is proportional to CPOR. Thus, large CPOR results in large ΔtRST. Refer to  
"12. Initialization time (tINIT) vs. Power supply voltage rise time (tr)" in "Characteristics (Typical Data)".  
*5. Only the S-1411 Series  
*6. The delay time (Δt) from the VWDI falling edge to the VCWDT rising start is sufficiently small (less than 1%) compared to  
t
WDU in Timing Diagram 4 and 5.  
*7. The delay time (Δt) from the VWDI rising edge to the VCWDT rising start is sufficiently small (less than 1%) compared to  
WDU in Timing Diagram 4 and 5.  
t
*8. As indicated by the waveform illustrated with dashed lines, if VCWDT does not fall to 0 V when the VWDI rising or falling  
edge is input, ΔtWDL may approach 0. Similar phenomena may occur in Timing Diagrams 6-1 to 6-4 and Timing  
Diagram 7-1 to 7-3 as well.  
22  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Test Circuits  
Refer to "Recommended Operation Conditions" when setting constants of external pull-up resistors (RextR, RextW  
)
and external capacitors (CPOR, CWDT).  
1. S-1410 Series  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
WDO  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
W / T  
WEN  
W / T  
V
V
+
+
+
V
V
VSS  
VSS  
Figure 25 Test Circuit 1  
A
VDD  
CPOR  
WDO  
CWDT  
WDI  
WEN  
W / T  
VSS  
Figure 26 Test Circuit 2  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
VDD  
CPOR  
CWDT  
WDI  
CPOR  
WDO  
WDO  
CWDT  
WDI  
+
+
WEN  
W / T  
WEN  
W / T  
V
V
VSS  
VSS  
Figure 27 Test Circuit 3  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
WDO  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
W / T  
WEN  
W / T  
V
V
VSS  
VSS  
Figure 28 Test Circuit 4  
23  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
VDD  
CPOR  
CWDT  
WDI  
WDO  
+
WEN  
W / T  
V
VSS  
Figure 29 Test Circuit 5  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
WDO  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
W / T  
WEN  
W / T  
V
V
VSS  
VSS  
Figure 30 Test Circuit 6  
VDD  
CPOR  
VDD  
CPOR  
+
+
WDO  
A
WDO  
A
CWDT  
WDI  
CWDT  
WDI  
WEN  
W / T  
WEN  
W / T  
VSS  
VSS  
Figure 31 Test Circuit 7  
(1) A / B / C / D / E / F type  
Figure 32 Test Circuit 8  
(2) G / H / I / J / K / L type  
VDD  
VDD  
CPOR  
CPOR  
WDO  
WDO  
CWDT  
CWDT  
+
+
+
+
A
A
WEN, WDI, W / T  
VSS  
WEN, WDI, W / T  
VSS  
V
V
Figure 33 Test Circuit 9  
24  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
VDD  
CPOR  
CPOR  
WDO  
WDO  
CWDT  
CWDT  
+
+
WEN, WDI, W / T  
VSS  
WEN, WDI, W / T  
VSS  
V
V
Figure 34 Test Circuit 10  
25  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
2. S-1411 Series  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
RST  
WDO  
RST  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
WEN  
V
V
+
+
+
V
V
VSS  
VSS  
Figure 35 Test Circuit 11  
A
VDD  
CPOR  
WDO  
RST  
CWDT  
WDI  
WEN  
VSS  
Figure 36 Test Circuit 12  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
RST  
WDO  
RST  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
WEN  
V
V
VSS  
VSS  
Figure 37 Test Circuit 13  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
RST  
WDO  
RST  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
WEN  
V
V
VSS  
VSS  
Figure 38 Test Circuit 14  
26  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
VDD  
CPOR  
CWDT  
WDI  
WDO  
RST  
WEN  
+
V
VSS  
Figure 39 Test Circuit 15  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
RST  
WDO  
RST  
CWDT  
WDI  
CWDT  
WDI  
WEN  
WEN  
+
+
V
V
VSS  
VSS  
Figure 40 Test Circuit 16  
VDD  
CPOR  
VDD  
CPOR  
WDO  
WDO  
CWDT  
WDI  
CWDT  
WDI  
+
+
A
A
WEN  
RST  
WEN  
RST  
VSS  
VSS  
Figure 41 Test Circuit 17  
Figure 42 Test Circuit 18  
VDD  
CPOR  
WDO  
RST  
CWDT  
WDI  
+
WEN  
V
VSS  
Figure 43 Test Circuit 19  
27  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
CPOR  
VDD  
CPOR  
WDO  
RST  
WDO  
RST  
CWDT  
WDI  
CWDT  
WDI  
+
+
WEN  
WEN  
V
V
VSS  
VSS  
Figure 44 Test Circuit 20  
VDD  
CPOR  
VDD  
CPOR  
+
+
WDO  
RST  
A
WDO  
RST  
A
CWDT  
WDI  
CWDT  
WDI  
WEN  
WEN  
VSS  
VSS  
Figure 45 Test Circuit 21  
(1) A / B / C / D / E / F type  
Figure 46 Test Circuit 22  
(2) G / H / I / J / K / L type  
VDD  
VDD  
CPOR  
CPOR  
WDO  
WDO  
CWDT  
CWDT  
+
+
+
+
A
A
WEN, WDI RST  
VSS  
WEN, WDI RST  
VSS  
V
V
Figure 47 Test Circuit 23  
(1) A / B / C / D / E / F type  
(2) G / H / I / J / K / L type  
VDD  
VDD  
CPOR  
CPOR  
WDO  
WDO  
CWDT  
CWDT  
+
+
WEN, WDI RST  
VSS  
WEN, WDI RST  
VSS  
V
V
Figure 48 Test Circuit 24  
28  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Standard Circuits  
1. S-1410 Series A / B / C / D / E / F type  
VDD  
WEN  
VDD  
WDI  
WDO  
W / T  
VSS  
CPOR CWDT  
*2, *3  
*1, *3  
POR  
CWDT  
C
*1. Connect the adjustment capacitor for reset time-out period (CPOR) directly between the CPOR pin and  
the VSS pin.  
*2. Connect the adjustment capacitor for watchdog time-out period (CWDT) directly between the CWDT pin  
and the VSS pin.  
*3. A capacitor of 100 pF to 1 μF can be used for CPOR and CWDT. Even if the capacitance is within this range,  
cautions are still needed when the value is extremely large. Refer to "1. Low voltage operation when CPOR  
is extremely large" and "2. Relation between CPOR and CWDT" in "Precautions for Use".  
Figure 49  
2. S-1410 Series G / H / I / J / K / L type  
VDD  
*1  
RextW  
VDD  
WEN  
WDI  
WDO  
W / T  
VSS  
CPOR CWDT  
*2, *4  
POR  
*3, *4  
C
CWDT  
________  
*1. RextW is an external pull-up resistor for the WDO pin.  
*2. Connect the adjustment capacitor for reset time-out period (CPOR) directly between the CPOR pin and  
the VSS pin.  
*3. Connect the adjustment capacitor for watchdog time-out period (CWDT) directly between the CWDT pin  
and the VSS pin.  
*4. A capacitor of 100 pF to 1 μF can be used for CPOR and CWDT. Even if the capacitance is within this range,  
cautions are still needed when the value is extremely large. Refer to "1. Low voltage operation when CPOR  
is extremely large" and "2. Relation between CPOR and CWDT" in "Precautions for Use".  
Figure 50  
Caution The above connection diagrams and constants will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constants.  
29  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
3. S-1411 Series A / B / C / D / E / F type  
VDD  
WEN  
WDI  
WDO  
RST  
VDD  
VSS  
CPOR CWDT  
*2, *3  
*1, *3  
POR  
CWDT  
C
*1. Connect the adjustment capacitor for reset time-out period (CPOR) directly between the CPOR pin and  
the VSS pin.  
*2. Connect the adjustment capacitor for watchdog time-out period (CWDT) directly between the CWDT pin  
and the VSS pin.  
*3. A capacitor of 100 pF to 1 μF can be used for CPOR and CWDT. Even if the capacitance is within this range,  
cautions are still needed when the value is extremely large. Refer to "1. Low voltage operation when CPOR  
is extremely large" and "2. Relation between CPOR and CWDT" in "Precautions for Use".  
Figure 51  
4. S-1411 Series G / H / I / J / K / L type  
*1  
RextW  
VDD  
WEN  
WDI  
WDO  
RST  
VDD  
*2  
RextR  
VSS  
CPOR CWDT  
*4, *5  
*3, *5  
POR  
CWDT  
C
________  
*1. RextW is an external pull-up resistor for the WDO pin.  
_______  
*2.  
RextR is an external pull-up resistor for the RST pin.  
*3. Connect the adjustment capacitor for reset time-out period (CPOR) directly between the CPOR pin and  
the VSS pin.  
*4. Connect the adjustment capacitor for watchdog time-out period (CWDT) directly between the CWDT pin  
and the VSS pin.  
*5. A capacitor of 100 pF to 1 μF can be used for CPOR and CWDT. Even if the capacitance is within this range,  
cautions are still needed when the value is extremely large. Refer to "1. Low voltage operation when CPOR  
is extremely large" and "2. Relation between CPOR and CWDT" in "Precautions for Use".  
Figure 52  
Caution The above connection diagrams and constants will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constants.  
30  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Operations  
1. Voltage detector circuit  
1. 1 Basic operation  
(1) When the power supply voltage (VDD) is release voltage (+VDET) of the detector or higher, the Nch transistor  
_______  
(N2) is turned off and "H" is output to the RST pin. Since the Pch transistor (P1) is turned on,  
RB VDD  
RA + RB  
the input voltage to the comparator (C1) is  
.
_______  
(2) Even if VDD decreases to +VDET or lower, "H" is output to the RST pin when VDD is the detection voltage (VDET  
)
or higher. When VDD decreases to VDET (point A in Figure 54) or lower, N2 which is controlled by C1 is turned  
_______  
on, and then "L" is output to the RST pin. At this time, P1 is turned off, and the input voltage to C1 is  
RB VDD  
RA + RB + RC  
.
_______  
(3) If VDD further decreases to the IC's minimum operation voltage or lower, the RST pin output is "H".  
_______  
(4) When VDD increases to the IC's minimum operation voltage or higher, "L" is output to the RST pin. In addition,  
even if VDD exceeds VDET, the output is "L" when VDD is lower than +VDET  
.
_______  
(5) When VDD increases to +VDET (point B in Figure 54) or higher, N2 is turned off, and "H" is output to the RST  
pin after elapse of tINIT + tRST  
.
VDD  
P1  
RC  
RA  
______  
RST  
C1  
Reference  
voltage circuit  
+
Delay  
circuit  
N2  
RB  
VSS  
Figure 53 Operation of Voltage Detector Circuit  
(2) (3) (4)  
(5)  
(1)  
B
Release voltage (+VDET  
)
A
Hysteresis width (VHYS  
VDD  
)
Detection voltage (VDET  
)
Minimum operation voltage  
VSS  
______  
RST pin output*1,  
________  
WDO pin output  
VSS  
tINIT + tRST  
*1. Only the S-1411 Series  
Figure 54 Timing Chart of Voltage Detector Circuit  
31  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
1. 2 From power-on to reset release  
The S-1410/1411 Series initiates the initialization if the VDD pin voltage exceeds the release voltage (+VDET).  
The _c__h_a__r_g_ e-discharge operation to the CPOR pin is initiated after the passage of the initialization time (tINIT), and  
_______  
the WDO pin output and the RST pin output change from "L" to "H" after the operation is performed 4 times.  
Refer to Figure 55.  
t
INIT changes according to the power supply voltage rise time (tr). Refer to "12. Initialization time (tINIT) vs. Power  
supply voltage rise time (tr)" in "Characteristics (Typical Data)" for the relation between tINIT and tr.  
End of  
Power-on  
0 V  
initialization Reset release  
VDD  
1
2 3 4  
CPOR  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 55  
1. 3 Operation of low voltage detection  
The voltage detection circui_t__d__e_t_e_ cts a low volt_a_g__e___if the power supply voltage falls below the detection voltage, and  
then "L" is output from the WDO pin and the RST pin (only the S-1411 Series). The output is maintained until the  
charge-discharge operation of the CPOR pin is performed 4 times.  
The S-1410/1411 Series can detect a low voltage even if either the CPOR pin or the CWDT pin performs the  
___  
charge-discharge operation. In this case, no influence is exerted on the status of the WEN pin or the W / T pin.  
End of initialization  
Low voltage  
End of initialization  
Low voltage  
detection  
Low voltage  
Reset release  
detection  
Power-on  
VDD  
release  
0 V  
1
2 3 4  
CPOR  
CWDT  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 56  
32  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
2. Watchdog timer  
2. 1 Watchdog mode (only S-1410 Series)  
___  
2. 1. 1 Time-out mode (W / T pin = "H")  
The S-1410 Series detects an abnormality wh_e_n___n__o_t inputting an edge to the WDI pin during the watchdog time-out  
period (tWDU). And then "L" is output from the WDO pin.  
End of  
Power-on initialization  
Watchdog time-out  
Reset release  
Double pulse  
VDD  
0 V  
W / T*1  
WDI  
CPOR  
CWDT  
1
1 2 3 4  
29 30 31 32  
WDO  
*1. Only the S-1410 Series  
Figure 57 Abnormality Detection during Time-out Mode  
___  
2. 1. 2 Window mode (W / T pin = "L")  
When not inputting an edge to the WDI pin during tWDU, or when an edge is input to the WDI pin again within a  
specific period of time (the discharge time due to an edge detection + 1 charge-discharge time (tWDL)) after  
________  
inputting an edge to the WDI pin, the WDO pin output changes from "H" to "L".  
End of  
initialization  
Power-on  
0 V  
Reset release Double pulse Reset time-out  
Watchdog time-out  
VDD  
W / T*1  
WDI  
1
2 3 4  
CPOR  
CWDT  
WDO  
1
1 2 3  
30 31 32  
*1. Only the S-1410 Series  
Figure 58 Abnormality Detection during Window Mode  
33  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
2. 2 From reset release to initiation of charge-discharge operation to CWDT pin  
The charge-discharge operation to the CWDT pin differs depending on the status of the WEN pin at the reset release.  
2. 2. 1 When WEN pin is in Enable at reset release  
Since the watchdog timer is in Enable, the S-1410/1411 Series initiates the charge-discharge operation to the  
CWDT pin.  
End of  
initialization  
Power-on  
VDD  
Reset release  
0 V  
WEN  
CPOR  
CWDT  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 59 WEN Pin = "H"  
2. 2. 2 When WEN pin is in Disable at reset release  
Since the watchdog timer is in Disable after the CPOR pin performs the charge-discharge operation 4 times, the  
S-1410/1411 Series does not initiate the charge-discharge operation to the CWDT pin. If the input to the WEN pin  
changes to "H" in this status, the S-1410/1411 Series initiates the charge-discharge operation to the CWDT pin.  
End of  
Power-on  
0 V  
Reset release  
initialization  
VDD  
WEN  
(WDT  
)
(WDT  
)
CPOR  
CWDT  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 60 WEN Pin = "L" "H"  
34  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
2. 3 Watchdog time-out detection  
The watchdog timer detects a time-out after the charge-discharge operation to the CWDT pin is performed 32 times,  
________  
then the WDO pin output changes from "H" to "L".  
End of  
Reset  
time-out  
Watchdog  
time-out  
Power-on initialization Reset release  
VDD  
WDI  
0 V  
1
2
3
4
CPOR  
CWDT  
RST*1  
1
2 3 4 5  
29 30 31 32  
WDO  
*1. Only the S-1411 Series  
Figure 61  
2. 4 Internal counter reset due to edge  
When the WDI pin detects an edge during the charge-discharge operation to the CWDT pin, the internal counter  
which counts the number of times of the charge-discharge operation is reset. The CWDT pin initiates the discharge  
operation when an edge is detected and initiates the charge-discharge operation again after the discharge operation  
is completed.  
2. 4. 1 Counter reset due to rising edge  
(S-141xAxx, S-141xDxx, S-141xGxx, S-141xJxx)  
End of  
initialization  
Watchdog  
time-out  
Reset release Rising edge  
Power-on  
0 V  
VDD  
WDI  
CPOR  
CWDT  
1
2 3 4 5  
29 30 31 32  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 62  
35  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
2. 4. 2 Counter reset due to falling edge  
(S-141xBxx, S-141xExx, S-141xHxx, S-141xKxx)  
End of  
initialization  
Watchdog  
time-out  
Power-on  
0 V  
Reset release Falling edge  
VDD  
WDI  
CPOR  
CWDT  
1
2 3 4 5  
29 30 31 32  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 63  
2. 4. 3 Counter reset due to both rising and falling edges 1  
(S-141xCxx, S-141xFxx, S-141xIxx, S-141xLxx)  
End of  
Watchdog  
time-out  
Power-on initialization Reset release Rising  
Falling  
VDD  
WDI  
0 V  
CPOR  
CWDT  
RST*1  
WDO  
1
2
1 2 3  
29 30 31 32  
*1. Only the S-1411 Series  
Figure 64  
36  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
2. 4. 4 Counter reset due to both rising and falling edges 2  
(S-141xCxx, S-141xFxx, S-141xIxx, S-141xLxx)  
End of  
Watchdog  
time-out  
Power-on initialization Reset release  
Falling  
Rising  
VDD  
WDI  
0 V  
CPOR  
CWDT  
RST*1  
WDO  
1
2 1 2 3  
29 30 31 32  
*1. Only the S-1411 Series  
Figure 65  
2. 5 Watchdog double pulse detection (only during window mode)  
If an edge is input to the WDI pin again within a specific period of time (the discharge time due to an edge detection +  
1 charge-discharge time (tWDL)) after inputting an edge to the WDI pin when the S-1410/1411 Series is in the window  
________  
mode, the WDO pin output changes from "H" to "L".  
When the watchdog time_r__g__o__e_s to Disable due to a change of the WEN pin ("H" "L" "H") after inputting an  
edge to the WDI pin, the WDO pin continues outputting "H" even if an edge is input to the WDI pin within the specific  
period of time mentioned above.  
2. 5. 1 Double pulse detection due to rising edge  
(S-141xAxx, S-141xDxx, S-141xGxx, S-141xJxx)  
End of  
Power-on  
Double pulse  
initialization Reset release  
Reset time-out Rising  
Rising  
VDD  
0 V  
WDI  
CPOR  
CWDT  
RST*1  
WDO  
1
2 3 4  
1
1 2 1 2 3 4  
*1. Only the S-1411 Series  
Figure 66  
37  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
2. 5. 2 Double pulse detection due to falling edge  
(S-141xBxx, S-141xExx, S-141xHxx, S-141xKxx)  
End of  
Double pulse Reset time-out  
Power-on initialization Reset release  
Falling Falling  
VDD  
WDI  
0 V  
1
2 3 4  
CPOR  
CWDT  
RST*1  
WDO  
1
1 2 1 2 3 4  
*1. Only the S-1411 Series  
Figure 67  
2. 5. 3 Double pulse detection due to both rising and falling edges  
(S-141xCxx, S-141xFxx, S-141xIxx, S-141xLxx)  
The double pulse is detected only when edges are input in order of rising and falling.  
(1) When edges are input to WDI pin in order of rising and falling  
End of  
Both edges Reset time-out Rising Falling  
Power-on initialization Reset release  
VDD  
WDI  
0 V  
1
2 3 4  
CPOR  
CWDT  
1
1 2 1 2 3 4  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 68 Double Pulse Detection  
38  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
(2) When edges are input to WDI pin in order of falling and rising  
In this case, no double pulse is detected, but the counter is reset.  
End of  
Both edges  
Falling  
Rising  
Power-on initialization Reset release  
VDD  
WDI  
0 V  
CPOR  
CWDT  
1
1
2
1 2 1 2 3 4  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 69 Double Pulse Non-detection  
2. 6 Counter reset due to WEN pin during charge-discharge operation to CWDT pin  
When the WEN pin changes from "H" to "L" during the charge-discharge operation to the CWDT pin, the CWDT pin  
performs the discharge operation. In addition, the internal counter which counts the number of times of the  
charge-discharge operation for the CWDT pin is also reset.  
If the WEN pin changes to "H" again in this status, the CWDT pin initiates the charge-discharge operation.  
Watchdog  
time-out  
End of  
Power-on initialization  
Reset release  
VDD  
0 V  
Enable  
Enable  
Enable  
WEN  
Disable  
2 3 4  
Disable  
1
CPOR  
CWDT  
1
2
3
29 30 31 32  
RST*1  
WDO  
*1. Only the S-1411 Series  
Figure 70  
39  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
Precautions for Use  
A capacitor of 100 pF to 1 μF can be used for the adjustment capacitor for reset time-out period (CPOR) and the  
adjustment capacitor for watchdog time-out period (CWDT). Even if the capacitance is within this range, cautions are still  
needed when the value is extremely large.  
1. Low voltage operation when CPOR is extremely large  
When the S-1410/1411 Series detects a low voltage during the CPOR charge-discharge operation, it will take time  
for the CPOR discharge operation to be performed if CPOR is extremely large. Therefore, the discharge operation  
may not be completed by the time the power supply voltage (VDD) exceeds the release voltage (+VDET). In this  
case, since the charge-discharge operation is performed after the discharge operation is completed, a delay time  
of the same length as the CPOR discharge operation time occurs by the time the reset time-out period (tRST) count  
starts.  
Low voltage detection  
VDD  
+VDET  
*1  
CPOR  
VCPL  
tRST  
*2  
CPOR  
VCPL  
*3  
tRST  
*1. When the capacitance is sufficiently small.  
*2. When the capacitance is extremely large.  
*3. Delay time of the same length as the CPOR discharge operation time  
Figure 71  
2. Relation between CPOR and CWDT  
Select a capacitor which satisfies the following expression for CPOR and CWDT. When this condition is not satisfied,  
the S-1410/1411 Series may not complete the CWDT discharge operation after a double pulse detection. Unless  
the CWDT discharge operation has been completed, the S-1410/1411 Series will not be able to initiate the next  
charge-discharge operation even if tRST has elapsed. For this reason, a delay time of the same length as the CWDT  
discharge operation time occurs by the time the watchdog time-out period (tWDU) count starts.  
C
WDT / CPOR 600  
Double pulse detection  
CPOR  
VCPL  
*1  
CWDT  
VCWL  
tWDU  
*2  
CWDT  
VCWL  
tWDU  
*3  
*1. When CWDT / CPOR 600.  
*2. When CWDT / CPOR > 600.  
*3. Delay time of the same length as the CWDT discharge operation time  
Figure 72  
40  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
3. Re-applying power supply  
If the power supply voltage (VDD) falls to 0.9 V or lower, a standby status for 20 μs is required by the time low  
voltage detection is released in order for the discharge operation of internal circuit to be performed fully. If an  
appropriate amount of time is not secured for the standby status to be completed by the time the power supply is  
re-applied, the initialization start will be delayed. For this reason, a delay time of the same length as the time until  
the standby status has been completed occurs by the time the tRST count starts after the power supply rises.  
3. 1 If the time from when VDD falls below 0.9 V to when it rises again is longer than 20 μs  
+VDET  
VDD  
0.9 V  
20 μs  
Nomal operation  
Nomal operation  
Standby  
CPOR  
VCPL  
tRST  
tINIT  
Figure 73  
3. 2 If the time from when VDD falls below 0.9 V to when it rises again is shorter than 20 μs  
+VDET  
VDD  
0.9 V  
20 μs  
Nomal operation  
Nomal operation  
Standby  
CPOR  
VCPL  
*1  
tRST  
tINIT  
*1. Delay time of the same length as the time until standby status at power-on has been completed  
Figure 74  
41  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
4. Low voltage detection at instantaneous voltage drop  
________  
In the S-1410/1411 Series, when the period of 0.9 V VDD ≤ −VDET is shorter than 20 μs, the WDO pin and the  
_______  
RST pin may not output a low voltage detection signal. Even in this case, the S-1410/1411 Series carries out the  
charge-discharge operation for CPOR in the same manner at power-on. For this reason, a delay time of the same  
length as the CPOR charge-discharge operation time occurs by the time the tWDU count starts after the power  
supply rises.  
+VDET  
VDD  
VDET  
0.9 V  
< 20 μs  
CPOR  
1
*
CWDT  
VCWL  
tWDU  
"H"  
"H"  
WDO  
Undetection  
Undetection  
RST *2  
*1. Delay time of the same length as the CPOR discharge operation time (tINIT + tRST  
)
*2. Only the S-1411 Series  
Figure 75  
Precautions  
___  
Since input pins (the WEN pin, the WDI pin and the W / T pin) in the S-1410/1411 Series are CMOS configurations,  
make sure that an intermediate potential is not input when the S-1410/1411 Series operates.  
________  
_______  
Since the WDO pin and the RST pin are affected by external resistance and external capacitance, use the  
S-1410/1411 Series after performing thorough evaluation with the actual application.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
42  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Characteristics (Typical Data)  
1. Current consumption during watchdog timer stop (ISS2) vs. 2. Current consumption during watchdog timer operation (ISS1) vs.  
Input voltage (VDD  
)
Input voltage (VDD)  
WDT = OFF, VDET(S) = 4.0 V, Ta = +25°C  
WDT = ON, VDET(S) = 4.0 V, WDI input  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
°C  
+
°C  
+
°C  
4.0  
4.5  
5.0  
V
5.5  
6.0  
6.5  
0
1
2
3
4
5
6
DD [V]  
V
DD [V]  
3. Current consumption during watchdog timer operation (ISS1) vs.  
Temperature (Ta)  
4. Detection voltage (  
VDET  
)
,
Release voltage (  
+
VDET) vs. Temperature (Ta)  
WDT = ON,  
5.0  
VDET(S) = 4.0 V, VDD = 5.0 V, WDI input  
VDET(S) = 4.0 V  
4.5  
+VDET  
VDET  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.5  
3.0  
40 25  
0
25  
50  
75  
105  
40 25  
0
25  
50  
75  
105  
Ta [°C]  
Ta [°C]  
5. Reset time-out period (tRST) vs. Temperature (Ta)  
6. Watchdog time-out period (tWDU) vs. Temperature (Ta)  
VDD = 5.0 V, CPOR = 2200 pF  
40  
VDD = 5.0 V, CWDT = 470 pF  
40  
30  
20  
10  
0
30  
20  
10  
0
40  
0
25  
50  
75  
105  
40 25  
0
25  
50  
75  
105  
25  
Ta [°C]  
Ta [°C]  
7. Reset output delay time (tROUT) vs. Temperature (Ta)  
8. Watchdog output delay time (tWOUT) vs. Temperature (Ta)  
VDD = VDET(S) + 1.0 V → −VDET(S) 1.0 V,  
VDD = 5.0 V, CWDT = 470 pF  
40  
CPOR = 2200 pF  
40  
30  
20  
10  
0
30  
20  
10  
0
40 25  
0
25  
Ta [°C]  
50  
75  
105  
40 25  
0
25  
Ta [°C]  
50  
75  
105  
43  
105°C OPERATION, 3.8  
S-1410/1411 Series  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
Rev.2.5_00  
9. Reset time-out period (tRST) vs. CPOR  
10. Watchdog time-out period (tWDU) vs. CWDT  
VDD = 5.0 V, Ta = +25°C  
VDD = 5.0 V, Ta = +25°C  
10  
1
0.1  
10  
1
0.01  
0.1  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
CPOR [μF]  
C
WDT [μF]  
11. Nch driver output current (IWOUT) vs. Input voltage (VDD  
)
12. Initialization time (tINIT) vs. Power supply voltage rise time (tr)  
V
DD = VWEN = 0 V 6 V, CPOR = 100 pF,  
Ta = +25°C  
VDS = 0.4 V, VDET(S) = 4.0 V  
6.0  
100  
10  
+
°C  
4.0  
2.0  
0.0  
°C  
1
0.1  
+
°C  
0.01  
0
1
2
3
4
5
0.001 0.01 0.1  
1
10  
100  
1000  
V
DD [V]  
t
r
[ms]  
44  
105°C OPERATION, 3.8  
Rev.2.5_00  
μ
A CURRENT CONSUMPTION WATCHDOG TIMER WITH RESET FUNCTION  
S-1410/1411 Series  
Power Dissipation  
TMSOP-8  
HSNT-8(2030)  
T
j
= +125°C max.  
T = +125°C max.  
j
1.0  
5
4
3
2
1
0
0.8  
0.6  
0.4  
0.2  
0.0  
B
A
E
C
D
B
A
0
25  
50  
75  
100 125 150 175  
0
25  
50  
75  
100 125 150 175  
Ambient temperature (Ta) [°C]  
Ambient temperature (Ta) [°C]  
Board  
Power Dissipation (PD)  
Board  
Power Dissipation (PD)  
0.55 W  
A
B
C
D
E
A
B
C
D
E
0.63 W  
0.75 W  
0.74 W  
2.50 W  
2.38 W  
3.13 W  
45  
TMSOP-8 Test Board  
No. TMSOP8-A-Board-SD-1.0  
ABLIC Inc.  
HSNT-8(2030) Test Board  
enlarged view  
No. HSNT8-A-Board-SD-2.0  
ABLIC Inc.  
HSNT-8(2030) Test Board  
IC Mount Area  
enlarged view  
enlarged view  
No. HSNT8-A-Board-SD-2.0  
ABLIC Inc.  
2.90±0.2  
8
5
1
4
0.13±0.1  
0.2±0.1  
0.65±0.1  
No. FM008-A-P-SD-1.2  
TMSOP8-A-PKG Dimensions  
FM008-A-P-SD-1.2  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
2.00±0.05  
4.00±0.1  
1.00±0.1  
4.00±0.1  
+0.1  
-0  
1.5  
1.05±0.05  
0.30±0.05  
3.25±0.05  
1
8
4
5
Feed direction  
No. FM008-A-C-SD-2.0  
TMSOP8-A-Carrier Tape  
FM008-A-C-SD-2.0  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
16.5max.  
13.0±0.3  
Enlarged drawing in the central part  
13±0.2  
(60°)  
(60°)  
No. FM008-A-R-SD-1.0  
TMSOP8-A-Reel  
FM008-A-R-SD-1.0  
TITLE  
No.  
4,000  
QTY.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
2.0±0.1  
5
8
(1.70)  
+0.05  
-0.02  
0.08  
1
4
0.5  
0.23±0.1  
The heat sink of back side has different electric  
potential depending on the product.  
Confirm specifications of each product.  
Do not use it as the function of electrode.  
No. PP008-A-P-SD-2.0  
TITLE  
HSNT-8-A-PKG Dimensions  
PP008-A-P-SD-2.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+0.1  
-0  
2.0±0.05  
4.0±0.1  
0.25±0.05  
ø1.5  
+0.1  
-0  
0.60±0.05  
ø1.0  
4.0±0.1  
2.3±0.05  
4 3 2 1  
5 6 78  
Feed direction  
No. PP008-A-C-SD-1.0  
TITLE  
HSNT-8-A-Carrier Tape  
PP008-A-C-SD-1.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+1.0  
- 0.0  
9.0  
11.4±1.0  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PP008-A-R-SD-1.0  
TITLE  
HSNT-8-A-Reel  
No.  
PP008-A-R-SD-1.0  
QTY.  
5,000  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
1.6  
0.50  
0.30  
No. PP008-A-L-SD-1.0  
HSNT-8-A  
TITLE  
-Land Recommendation  
No.  
PP008-A-L-SD-1.0  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products  
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other  
right due to the use of the information described herein.  
3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described  
herein.  
4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to  
the use of the products outside their specified ranges.  
5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of  
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands  
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,  
biological or chemical weapons or missiles, or use any other military purposes.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by  
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of  
the products.  
9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should  
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread  
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social  
damage, etc. that may ensue from the products' failure or malfunction.  
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are  
allowed to apply for the system on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information  
described herein does not convey any license under any intellectual property rights or any other rights belonging to  
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this  
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express  
permission of ABLIC Inc.  
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales  
representative.  
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into  
the English language and the Chinese language, shall be controlling.  
2.4-2019.07  
www.ablic.com  

相关型号:

S-1410H50-A8T1U4

Watchdog operation is switchable
SII

S-1410H50-K8T2U4

Watchdog operation is switchable
SII

S-1410I20-A8T1U4

Watchdog operation is switchable
SII

S-1410I20-K8T2U4

Watchdog operation is switchable
SII

S-1410I45-K8T2U4

TIMER WITH RESET FUNCTION
ETC

S-1410I50-A8T1U4

Watchdog operation is switchable
SII

S-1410I50-K8T2U4

Watchdog operation is switchable
SII

S-1410J20-A8T1U4

Watchdog operation is switchable
SII

S-1410J20-K8T2U4

Watchdog operation is switchable
SII

S-1410J27-A8T1U4

TIMER WITH RESET FUNCTION
ETC

S-1410J28-K8T2U4

TIMER WITH RESET FUNCTION
ETC

S-1410J41-K8T2U4

TIMER WITH RESET FUNCTION
ETC