S1D15606D02B [ETC]

Single-chip dot matrix liquid crystal display drivers; 单芯片点阵液晶显示器的驱动
S1D15606D02B
型号: S1D15606D02B
厂家: ETC    ETC
描述:

Single-chip dot matrix liquid crystal display drivers
单芯片点阵液晶显示器的驱动

显示器 驱动
文件: 总87页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8. S1D15605 Series  
Rev. 2.4a  
Contents  
1. DESCRIPTION ................................................................................................................................................8-1  
2. FEATURES......................................................................................................................................................8-1  
3. BLOCK DIAGRAM........................................................................................................................................... 8-3  
4. PAD .................................................................................................................................................................8-4  
5. PIN DESCRIPTIONS .....................................................................................................................................8-20  
6. DESCRIPTION OF FUNCTIONS ..................................................................................................................8-24  
7. COMMANDS .................................................................................................................................................8-49  
8. COMMAND DESCRIPTION ..........................................................................................................................8-58  
9. ABSOLUTE MAXIMUM RATINGS ................................................................................................................8-64  
10. DC CHARACTERISTICS...............................................................................................................................8-65  
11. TIMING CHARACTERISTICS .......................................................................................................................8-73  
12. THE MPU INTERFACE (REFERENCE EXAMPLES) ...................................................................................8-81  
13. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLE).....................................................8-82  
14. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLES) ..................................................8-83  
15. A SAMPLE TCP PIN ASSIGNMENT .............................................................................................................8-84  
16. EXTERNAL VIEW OF TCP PINS ..................................................................................................................8-85  
– i –  
Rev. 2.4a  
S1D15605 Series  
• High-speed 8-bit MPU interface (The chip can be  
connected directly to the both the 80x86 series MPUs  
and the 68000 series MPUs)  
/Serial interfaces are supported.  
• Abundant command functions  
1. DESCRIPTION  
The S1D15605 Series is a series of single-chip dot matrix  
liquid crystal display drivers that can be connected  
directly to a microprocessor bus. 8-bit parallel or serial  
display data sent from the microprocessor is stored in  
the internal display data RAM and the chip generates a  
liquid crystal drive signal independent of the micro-  
Display data Read/Write, display ON/OFF, Normal/  
Reverse display mode, page address set, display start  
line set, column address set, status read, display all  
points ON/OFF, LCD bias set, electronic volume,  
read/modify/write, segment driver direction select,  
power saver, static indicator, common output status  
select, V5 voltage regulation internal resistor ratio  
set.  
processor. Because the chips in the S1D15605*****  
contain 65 × 132 bits of display data RAM and there is  
a 1-to-1 correspondence between the liquid crystal  
panel pixels and the internal RAM bits, these chips  
enable displays with a high degree of freedom.  
The S1D15606***** chips contain 49 common output  
• Static drive circuit equipped internally for indicators.  
(1 system, with variable flashing speed.)  
• Low-power liquid crystal display power supply circuit  
equipped internally.  
circuits and 132 segment output circuits, so that a single  
chip can drive a 49 × 132 dot display (capable of  
displaying 8 columns × 4 rows of a 16 × 16 dot kanji  
font). The S1D15607***** chips contain 33 common  
Booster circuit (with Boost ratios of Double/Triple/  
Quad, where the step-up voltage reference power  
supply can be input externally)  
High-accuracy voltage adjustment circuit (Thermal  
gradient –0.05%/°C or –0.2%/°C or external input)  
V5 voltage regulator resistors equipped internally,  
V1 to V4 voltage divider resistors equipped internally,  
electronic volume function equipped internally,  
voltage follower.  
output circuits and 132 segment output circuits, so that  
a single chip can drive 33 × 132 dot display (capable of  
displaying 8 columns × 2 rows of 16 × 16 dot kanji  
fonts). Thanks to the built-in 55 common output circuits  
and 132 segment output circuits, the S1D15608*****  
is capable of displaying 55 × 132 dots (11 columns × 4  
lines using 11 × 12 dots Kanji font) with a single chip.  
The S1D15609***** chips contain 53 common output  
circuits and 132 segment output circuits, so that a single  
• CR oscillator circuit equipped internally (external  
clock can also be input)  
• Extremely low power consumption  
chip can drive 53 × 132 dot display (capable of displaying  
11 columns × 4 rows of 11 × 12 dot kanji fonts).  
Moreover, the capacity of the display can be extended  
through the use of master/slave structures between  
chips.  
The chips are able to minimize power consumption  
because no external operating clock is necessary for the  
display data RAM read/write operation. Furthermore,  
because each chip is equipped internally with a low-  
power liquid crystal driver power supply, resistors for  
liquid crystal driver power voltage adjustment and a  
display clock CR oscillator circuit, the S1D15605 Series  
chips can be used to create the lowest power display  
system with the fewest components for high-  
performance portable devices.  
Operating power when the built-in power supply is  
used (an example)  
S1D15605D00B 81 µA (VDD – VSS = VDD – VSS2=  
*
/S1D15605D11B 3.0 V, Quad voltage, V5 – VDD =  
*
–11.0 V)  
S1D15606D00B 43 µA (VDD – VSS = VDD – VSS2  
=
*
/S1D15606D11B 3.0 V, Triple voltage, V5 – VDD =  
*
–8.0 V)  
S1D15607D00B 29 µA (VDD – VSS = VDD – VSS2  
=
*
/S1D15607D11B 3.0 V, Triple voltage, V5 – VDD =  
*
–8.0 V)  
S1D15608D00B /S1D15608D11B  
*
*
/S1D15609D00B /S1D15609D11B  
*
*
46µA (VDD – VSS = VDD – VSS2 =  
3.0 V, Triple voltage, V5 – VDD =  
– 8.0 V)  
2. FEATURES  
• Direct display of RAM data through the display data  
RAM.  
Conditions: When all displays are in white and the  
normal mode is selected (see page 60 *12 for details  
of the conditions).  
RAM bit data: “1” Display on  
“0” Display off  
(during normal display)  
• RAM capacity  
65 × 132 = 8580 bits  
• Display driver circuits  
• Power supply  
Operable on the low 1.8 voltage  
Logic power supply VDD – VSS = 1.8 V to 5.5 V  
Boost reference voltage: VDD – VSS2 = 1.8 V to  
6.0 V  
Liquid crystal drive power supply: V5 – VDD = –4.5  
V to –16.0 V  
S1D15605*****:65 common output and 132  
segment outputs  
S1D15606*****:49 common output and 132  
segment outputs  
• Wide range of operating temperatures: –40 to 85°C  
• CMOS process  
• Shipping forms include bare chip and TCP.  
• These chips not designed for resistance to light or  
resistance to radiation.  
S1D15607*****:33 common outputs and 132  
segment outputs  
S1D15608*****:55 common outputs and 132  
segment outputs  
S1D15609*****:53 common outputs and 132  
segment outputs  
Rev. 2.4a  
EPSON  
8–1  
S1D15605 Series  
Series Specifications  
Bare chip  
Product Name  
Duty  
Bias  
SEG Dr  
COM Dr  
VREG Temperature  
Gradient  
Chip  
Thickness  
S1D15605D00B  
1/65  
1/65  
1/65  
1/65  
1/65  
1/49  
1/49  
1/49  
1/49  
1/33  
1/33  
1/33  
1/33  
1/55  
1/53  
1/9, 1/7  
1/9, 1/7  
1/9, 1/7  
1/9, 1/7  
1/9, 1/7  
1/8, 1/6  
1/8, 1/6  
1/8, 1/6  
1/8, 1/6  
1/6, 1/5  
1/6, 1/5  
1/6, 1/5  
1/6, 1/5  
1/8, 1/6  
1/8, 1/6  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
65  
65  
65  
65  
65  
49  
49  
49  
49  
33  
33  
33  
33  
55  
53  
–0.05%/°C  
–0.05%/°C  
–0.05%/°C  
–0.2%/°C  
625 µm  
625 µm  
300 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
625 µm  
*
S1D15605D11B  
S1D15605D11E  
S1D15605D01B  
S1D15605D02B  
S1D15606D00B  
S1D15606D01B  
S1D15606D02B  
S1D15606D11B  
S1D15607D00B  
S1D15607D01B  
S1D15607D02B  
S1D15607D11B  
S1D15608D00B  
S1D15609D00B  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External Input  
–0.05%/°C  
–0.2%/°C  
External Input  
–0.05%/°C  
–0.05%/°C  
–0.2%/°C  
External Input  
–0.05%/°C  
–0.05%/°C  
–0.05%/°C  
TCP  
Product Name  
Duty  
1/65  
1/49  
1/33  
Bias  
SEG Dr  
132  
COM Dr  
65  
VREG Temperature Gradient  
–0.05%/°C  
1/9, 1/7  
1/8, 1/6  
1/6, 1/5  
S1D15605T00**  
S1D15606T00**  
S1D15607T00**  
132  
49  
–0.05%/°C  
132  
33  
–0.05%/°C  
Product name of custom TCP can be coped with specially.  
8–2  
EPSON  
Rev. 2.4a  
S1D15605 Series  
3. BLOCK DIAGRAM  
Example: S1D15605  
*****  
• • • • • • • • • • • • • • • • • • • • • • • • •  
• • • • • • • • • •  
VSS  
VDD  
V1  
V2  
SEG Drivers  
COM Drivers  
Shift register  
V3  
V4  
V5  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3+  
VOUT  
Display data latch circuit  
FRS  
FR  
CL  
Power  
supply  
circuit  
Display data RAM  
132 x 65  
DOF  
M/S  
VSS2  
VR  
VRS  
IRS  
HPM  
Column address circuit  
CLS  
Bus holder  
Command decoder  
MPU interface  
Status  
Rev. 2.4a  
EPSON  
8–3  
S1D15605 Series  
4. PAD  
Pad Layout  
99  
1
100  
309  
275  
S1D15605 Series  
(0, 0)  
Die No.  
134  
135  
274  
Chip Size  
10.82 mm × 2.81 mm  
0.625 mm  
Chip Thickness  
Bump Pitch  
Bump Size  
71 µm (Min.)  
PAD No. 1~24  
PAD No. 25~82  
PAD No. 83~99  
PAD No. 100  
85 µm × 85 µm  
64 µm × 85 µm  
85 µm × 85 µm  
85 µm × 73 µm  
85 µm × 47 µm  
85 µm × 73 µm  
73 µm × 85 µm  
47 µm × 85 µm  
73 µm × 85 µm  
86 µm × 73 µm  
85 µm × 47 µm  
85 µm × 73 µm  
PAD No. 101~133  
PAD No. 134  
PAD No. 135  
PAD No. 136~273  
PAD No. 274  
PAD No. 275  
PAD No. 276~308  
PAD No. 309  
Bump Height  
17 µm (Typ.)  
8–4  
EPSON  
Rev. 2.4a  
S1D15605 Series  
S1D15605  
Pad Center Coordinates  
*****  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(NC)  
FRS  
FR  
CL  
DOF  
4973  
4853  
4734  
4614  
4494  
1246  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CAP3–  
(NC)  
695  
605  
516  
427  
338  
249  
160  
71  
1246  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101 COM31  
102 COM30  
103 COM29  
104 COM28  
105 COM27  
106 COM26  
107 COM25  
108 COM24  
109 COM23  
110 COM22  
111 COM21  
112 COM20  
113 COM19  
114 COM18  
115 COM17  
116 COM16  
117 COM15  
118 COM14  
119 COM13  
120 COM12  
TEST4 –2867 1246  
(NC)  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
–2957  
–3059  
–3179  
–3298  
–3418  
–3538  
–3657  
–3777  
–3896  
–4016  
–4136  
–4255  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
TEST0 4375  
VSS  
CS1  
CS2  
VDD  
RES  
A0  
4255  
4136  
4016  
3896  
3777  
3657  
3538  
–18  
CAP2+ –107  
VSS  
VSS  
VRS  
VRS  
VDD  
VDD  
V1  
V1  
V2  
V2  
(NC)  
V3  
V3  
V4  
V4  
V5  
V5  
(NC)  
VR  
VR  
VDD  
VDD  
–196  
–285  
–374  
–463  
–552  
–641  
–730  
–819  
–908  
IRS  
VDD  
VSS  
14 WR, R/W 3418  
TEST5 –4375  
TEST6 –4494  
TEST7 –4614  
TEST8 –4734  
TEST9 –4853  
15  
16  
17  
18  
19  
20  
21  
22  
RD, E  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
3298  
3179  
3059  
2940  
2820  
2700  
2581  
2461  
(NC)  
(NC)  
–4973  
–5252 1248  
1163  
1090  
1017  
945  
–997  
–1086  
–1176  
–1265  
–1354  
–1443  
–1532  
–1621  
–1710  
–1799  
–1888  
–1977  
–2066  
23 D6, SCL 2342  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
D7, SI  
(NC)  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
(NC)  
VOUT  
VOUT  
CAP3–  
2222  
2119  
2030  
1941  
1852  
1763  
1674  
1585  
1496  
1407  
1318  
1229  
1140  
1051  
962  
872  
799  
727  
654  
581  
509  
436  
363  
291  
218  
145  
73  
0
–73  
–145  
–218  
TEST1 –2155  
TEST1 –2244  
TEST2 –2333  
TEST2 –2422  
(NC)  
–2511  
TEST3 –2600  
TEST3 –2689  
TEST4 –2778  
873  
784  
Rev. 2.4a  
EPSON  
8–5  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
121 COM11 –5252 –291  
161 SEG22 –3127 –1246  
162 SEG23 –3055  
163 SEG24 –2983  
164 SEG25 –2912  
165 SEG26 –2840  
166 SEG27 –2768  
167 SEG28 –2696  
168 SEG29 –2624  
169 SEG30 –2552  
170 SEG31 –2480  
171 SEG32 –2408  
172 SEG33 –2336  
173 SEG34 –2265  
174 SEG35 –2193  
175 SEG36 –2121  
176 SEG37 –2049  
177 SEG38 –1977  
178 SEG39 –1905  
179 SEG40 –1833  
180 SEG41 –1761  
181 SEG42 –1689  
182 SEG43 –1618  
183 SEG44 –1546  
184 SEG45 –1474  
185 SEG46 –1402  
186 SEG47 –1330  
187 SEG48 –1258  
188 SEG49 –1186  
189 SEG50 –1114  
190 SEG51 –1042  
191 SEG52 –971  
192 SEG53 –899  
193 SEG54 –827  
194 SEG55 –755  
195 SEG56 –683  
196 SEG57 –611  
197 SEG58 –539  
198 SEG59 –467  
199 SEG60 –395  
200 SEG61 –324  
201 SEG62 –252 –1246  
202 SEG63 –180  
203 SEG64 –108  
122 COM10  
–363  
–436  
–509  
–581  
–654  
–727  
–800  
–872  
–945  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
COMS  
(NC)  
204 SEG65  
205 SEG66  
206 SEG67  
207 SEG68  
208 SEG69  
209 SEG70  
210 SEG71  
211 SEG72  
212 SEG73  
213 SEG74  
214 SEG75  
215 SEG76  
216 SEG77  
217 SEG78  
218 SEG79  
–36  
36  
108  
180  
252  
324  
395  
467  
539  
611  
683  
755  
827  
899  
971  
–1018  
–1090  
–1163  
–1248  
–5009 –1246  
–4924  
–4853  
–4781  
(NC)  
(NC)  
(NC)  
(NC)  
SEG0 –4709  
SEG1 –4637  
SEG2 –4565  
SEG3 –4493  
SEG4 –4421  
SEG5 –4349  
SEG6 –4277  
SEG7 –4206  
SEG8 –4134  
SEG9 –4062  
219 SEG80 1042  
220 SEG81 1114  
221 SEG82 1186  
222 SEG83 1258  
223 SEG84 1330  
224 SEG85 1402  
225 SEG86 1474  
226 SEG87 1546  
227 SEG88 1618  
228 SEG89 1689  
229 SEG90 1761  
230 SEG91 1833  
231 SEG92 1905  
232 SEG93 1977  
233 SEG94 2049  
234 SEG95 2121  
235 SEG96 2193  
236 SEG97 2265  
237 SEG98 2336  
238 SEG99 2408  
239 SEG100 2480  
240 SEG101 2552  
149 SEG10 –3990  
150 SEG11 –3918  
151 SEG12 –3846  
152 SEG13 –3774  
153 SEG14 –3702  
154 SEG15 –3630  
155 SEG16 –3559  
156 SEG17 –3487  
157 SEG18 –3415  
158 SEG19 –3343  
159 SEG20 –3271  
160 SEG21 –3199  
8–6  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
241 SEG102 2624 –1246  
242 SEG103 2696  
243 SEG104 2768  
244 SEG105 2840  
245 SEG106 2912  
246 SEG107 2983  
247 SEG108 3055  
248 SEG109 3127  
249 SEG110 3199  
250 SEG111 3271  
251 SEG112 3343  
252 SEG113 3415  
253 SEG114 3487  
254 SEG115 3558  
255 SEG116 3630  
256 SEG117 3702  
257 SEG118 3774  
258 SEG119 3846  
259 SEG120 3918  
260 SEG121 3990  
261 SEG122 4062  
262 SEG123 4134  
263 SEG124 4206  
264 SEG125 4277  
265 SEG126 4349  
266 SEG127 4421  
267 SEG128 4493  
268 SEG129 4565  
269 SEG130 4637  
270 SEG131 4709  
281 COM37 5252  
282 COM38  
283 COM39  
284 COM40  
285 COM41  
286 COM42  
287 COM43  
288 COM44  
289 COM45  
290 COM46  
291 COM47  
292 COM48  
293 COM49  
294 COM50  
295 COM51  
296 COM52  
297 COM53  
298 COM54  
299 COM55  
300 COM56  
301 COM57  
302 COM58  
303 COM59  
304 COM60  
305 COM61  
306 COM62  
307 COM63  
–800  
–727  
–654  
–581  
–509  
–436  
–363  
–291  
–218  
–145  
–73  
0
73  
145  
218  
291  
363  
436  
509  
581  
654  
727  
799  
872  
945  
1017  
1090  
1163  
1248  
308  
309  
COMS  
(NC)  
271  
272  
273  
274  
275  
276 COM32  
277 COM33  
278 COM34  
279 COM35  
280 COM36  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
4781  
4853  
4924  
5009  
5252 –1248  
–1163  
–1090  
–1018  
–945  
–872  
Rev. 2.4a  
EPSON  
8–7  
S1D15605 Series  
S1D15606 Pad Center Coordinates  
*****  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(NC)  
FRS  
FR  
CL  
DOF  
4973  
4853  
4734  
4614  
4494  
1246  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CAP3–  
(NC)  
695  
605  
516  
427  
338  
249  
160  
71  
1246  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
TEST4 –2867 1246  
(NC)  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
–2957  
–3059  
–3179  
–3298  
–3418  
–3538  
–3657  
–3777  
–3896  
–4016  
–4136  
–4255  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
TEST0 4375  
VSS  
CS1  
CS2  
VDD  
RES  
A0  
4255  
4136  
4016  
3896  
3777  
3657  
3538  
–18  
CAP2+ –107  
VSS  
VSS  
VRS  
VRS  
VDD  
VDD  
V1  
V1  
V2  
V2  
(NC)  
V3  
V3  
V4  
V4  
V5  
V5  
(NC)  
VR  
VR  
VDD  
VDD  
–196  
–285  
–374  
–463  
–552  
–641  
–730  
–819  
–908  
VSS  
14 WR, R/W 3418  
TEST5 –4375  
TEST6 –4494  
TEST7 –4614  
TEST8 –4734  
TEST9 –4853  
15  
16  
17  
18  
19  
20  
21  
22  
RD, E  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
3298  
3179  
3059  
2940  
2820  
2700  
2581  
2461  
(NC)  
(NC)  
(NC)  
(NC)  
–4973  
–5252 1248  
1163  
1090  
1017  
945  
–997  
–1086  
–1176  
–1265  
–1354  
–1443  
–1532  
–1621  
–1710  
–1799  
–1888  
–1977  
–2066  
23 D6, SCL 2342  
103 COM23  
104 (NC)  
105 COM22  
106 (NC)  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
D7, SI  
(NC)  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
(NC)  
VOUT  
VOUT  
CAP3–  
2222  
2119  
2030  
1941  
1852  
1763  
1674  
1585  
1496  
1407  
1318  
1229  
1140  
1051  
962  
872  
799  
727  
654  
581  
509  
436  
363  
291  
218  
145  
73  
0
–73  
107 COM21  
108 COM20  
109 COM19  
110 COM18  
111 COM17  
112 COM16  
113 COM15  
114 COM14  
115 COM13  
116 COM12  
117 COM11  
118 COM10  
TEST1 –2155  
TEST1 –2244  
TEST2 –2333  
TEST2 –2422  
(NC)  
–2511  
TEST3 –2600  
TEST3 –2689  
TEST4 –2778  
873  
784  
119  
120  
COM9  
COM8  
–145  
–218  
8–8  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
COM7 –5252 –291  
161 SEG22 –3127 –1246  
162 SEG23 –3055  
163 SEG24 –2983  
164 SEG25 –2912  
165 SEG26 –2840  
166 SEG27 –2768  
167 SEG28 –2696  
168 SEG29 –2624  
169 SEG30 –2552  
170 SEG31 –2480  
171 SEG32 –2408  
172 SEG33 –2336  
173 SEG34 –2265  
174 SEG35 –2193  
175 SEG36 –2121  
176 SEG37 –2049  
177 SEG38 –1977  
178 SEG39 –1905  
179 SEG40 –1833  
180 SEG41 –1761  
181 SEG42 –1689  
182 SEG43 –1618  
183 SEG44 –1546  
184 SEG45 –1474  
185 SEG46 –1402  
186 SEG47 –1330  
187 SEG48 –1258  
188 SEG49 –1186  
189 SEG50 –1114  
190 SEG51 –1042  
191 SEG52 –971  
192 SEG53 –899  
193 SEG54 –827  
194 SEG55 –755  
195 SEG56 –683  
196 SEG57 –611  
197 SEG58 –539  
198 SEG59 –467  
199 SEG60 –395  
200 SEG61 –324  
201 SEG62 –252 –1246  
202 SEG63 –180  
203 SEG64 –108  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
(NC)  
–363  
–436  
–509  
–581  
–654  
204 SEG65  
205 SEG66  
206 SEG67  
207 SEG68  
208 SEG69  
209 SEG70  
210 SEG71  
211 SEG72  
212 SEG73  
213 SEG74  
214 SEG75  
215 SEG76  
216 SEG77  
217 SEG78  
218 SEG79  
–36  
36  
108  
180  
252  
324  
395  
467  
539  
611  
683  
755  
827  
899  
971  
–727  
–800  
COM0  
(NC)  
–872  
–945  
COMS  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
–1018  
–1090  
–1163  
–1248  
–5009 –1246  
–4924  
–4853  
–4781  
SEG0 –4709  
SEG1 –4637  
SEG2 –4565  
SEG3 –4493  
SEG4 –4421  
SEG5 –4349  
SEG6 –4277  
SEG7 –4206  
SEG8 –4134  
SEG9 –4062  
219 SEG80 1042  
220 SEG81 1114  
221 SEG82 1186  
222 SEG83 1258  
223 SEG84 1330  
224 SEG85 1402  
225 SEG86 1474  
226 SEG87 1546  
227 SEG88 1618  
228 SEG89 1689  
229 SEG90 1761  
230 SEG91 1833  
231 SEG92 1905  
232 SEG93 1977  
233 SEG94 2049  
234 SEG95 2121  
235 SEG96 2193  
236 SEG97 2265  
237 SEG98 2336  
238 SEG99 2408  
239 SEG100 2480  
240 SEG101 2552  
149 SEG10 –3990  
150 SEG11 –3918  
151 SEG12 –3846  
152 SEG13 –3774  
153 SEG14 –3702  
154 SEG15 –3630  
155 SEG16 –3559  
156 SEG17 –3487  
157 SEG18 –3415  
158 SEG19 –3343  
159 SEG20 –3271  
160 SEG21 –3199  
Rev. 2.4a  
EPSON  
8–9  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
241 SEG102 2624 –1246  
242 SEG103 2696  
243 SEG104 2768  
244 SEG105 2840  
245 SEG106 2912  
246 SEG107 2983  
247 SEG108 3055  
248 SEG109 3127  
249 SEG110 3199  
250 SEG111 3271  
251 SEG112 3343  
252 SEG113 3415  
253 SEG114 3487  
254 SEG115 3558  
255 SEG116 3630  
256 SEG117 3702  
257 SEG118 3774  
258 SEG119 3846  
259 SEG120 3918  
260 SEG121 3990  
261 SEG122 4062  
262 SEG123 4134  
263 SEG124 4206  
264 SEG125 4277  
265 SEG126 4349  
266 SEG127 4421  
267 SEG128 4493  
268 SEG129 4565  
269 SEG130 4637  
270 SEG131 4709  
281  
(NC)  
5252  
–800  
–727  
–654  
–581  
–509  
–436  
–363  
–291  
–218  
–145  
–73  
0
73  
145  
218  
291  
363  
436  
509  
581  
654  
727  
799  
872  
945  
1017  
1090  
1163  
1248  
282 COM26  
283 COM27  
284 COM28  
285 COM29  
286 COM30  
287 COM31  
288 COM32  
289 COM33  
290 COM34  
291 COM35  
292 COM36  
293 COM37  
294 COM38  
295 COM39  
296 COM40  
297 COM41  
298 COM42  
299 COM43  
300 COM44  
301 COM45  
302 COM46  
303  
304 COM47  
(NC)  
305  
306  
307  
308  
309  
(NC)  
COMS  
(NC)  
(NC)  
(NC)  
271  
272  
273  
274  
275  
276  
277  
278 COM24  
279 (NC)  
280 COM25  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
4781  
4853  
4924  
5009  
5252 –1248  
–1163  
–1090  
–1018  
–945  
–872  
8–10  
EPSON  
Rev. 2.4a  
S1D15605 Series  
S1D15607  
Pad Center Coordinates  
*****  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(NC)  
FRS  
FR  
CL  
DOF  
4973  
4853  
4734  
4614  
4494  
1246  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CAP3–  
(NC)  
695  
605  
516  
427  
338  
249  
160  
71  
1246  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101 COM15  
102 COM15  
103 COM14  
104 COM14  
105 COM13  
106 COM13  
107 COM12  
108 COM12  
109 COM11  
110 COM11  
111 COM10  
112 COM10  
TEST4 –2867 1246  
(NC)  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
–2957  
–3059  
–3179  
–3298  
–3418  
–3538  
–3657  
–3777  
–3896  
–4016  
–4136  
–4255  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
TEST0 4375  
VSS  
CS1  
CS2  
VDD  
RES  
A0  
4255  
4136  
4016  
3896  
3777  
3657  
3538  
–18  
CAP2+ –107  
VSS  
VSS  
VRS  
VRS  
VDD  
VDD  
V1  
V1  
V2  
V2  
(NC)  
V3  
V3  
V4  
V4  
V5  
V5  
(NC)  
VR  
VR  
VDD  
VDD  
–196  
–285  
–374  
–463  
–552  
–641  
–730  
–819  
–908  
VSS  
14 WR, R/W 3418  
TEST5 –4375  
TEST6 –4494  
TEST7 –4614  
TEST8 –4734  
TEST9 –4853  
15  
16  
17  
18  
19  
20  
21  
22  
RD, E  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
3298  
3179  
3059  
2940  
2820  
2700  
2581  
2461  
(NC)  
(NC)  
–4973  
–5252 1248  
1163  
1090  
1017  
945  
–997  
–1086  
–1176  
–1265  
–1354  
–1443  
–1532  
–1621  
–1710  
–1799  
–1888  
–1977  
–2066  
23 D6, SCL 2342  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
D7, SI  
(NC)  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
(NC)  
VOUT  
VOUT  
CAP3–  
2222  
2119  
2030  
1941  
1852  
1763  
1674  
1585  
1496  
1407  
1318  
1229  
1140  
1051  
962  
872  
799  
727  
654  
581  
509  
436  
363  
TEST1 –2155  
TEST1 –2244  
TEST2 –2333  
TEST2 –2422  
113  
114  
115  
116  
117  
118  
119  
120  
COM9  
COM9  
COM8  
COM8  
COM7  
COM7  
COM6  
COM6  
291  
218  
145  
73  
0
–73  
–145  
–218  
(NC)  
–2511  
TEST3 –2600  
TEST3 –2689  
TEST4 –2778  
873  
784  
Rev. 2.4a  
EPSON  
8–11  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
COM5 –5252 –291  
161 SEG22 –3127 –1246  
162 SEG23 –3055  
163 SEG24 –2983  
164 SEG25 –2912  
165 SEG26 –2840  
166 SEG27 –2768  
167 SEG28 –2696  
168 SEG29 –2624  
169 SEG30 –2552  
170 SEG31 –2480  
171 SEG32 –2408  
172 SEG33 –2336  
173 SEG34 –2265  
174 SEG35 –2193  
175 SEG36 –2121  
176 SEG37 –2049  
177 SEG38 –1977  
178 SEG39 –1905  
179 SEG40 –1833  
180 SEG41 –1761  
181 SEG42 –1689  
182 SEG43 –1618  
183 SEG44 –1546  
184 SEG45 –1474  
185 SEG46 –1402  
186 SEG47 –1330  
187 SEG48 –1258  
188 SEG49 –1186  
189 SEG50 –1114  
190 SEG51 –1042  
191 SEG52 –971  
192 SEG53 –899  
193 SEG54 –827  
194 SEG55 –755  
195 SEG56 –683  
196 SEG57 –611  
197 SEG58 –539  
198 SEG59 –467  
199 SEG60 –395  
200 SEG61 –324  
201 SEG62 –252 –1246  
202 SEG63 –180  
203 SEG64 –108  
COM5  
COM4  
COM4  
COM3  
COM3  
COM2  
COM2  
COM1  
COM1  
COM0  
COM0  
COMS  
(NC)  
–363  
–436  
–509  
–581  
–654  
–727  
–800  
–872  
–945  
204 SEG65  
205 SEG66  
206 SEG67  
207 SEG68  
208 SEG69  
209 SEG70  
210 SEG71  
211 SEG72  
212 SEG73  
213 SEG74  
214 SEG75  
215 SEG76  
216 SEG77  
217 SEG78  
218 SEG79  
–36  
36  
108  
180  
252  
324  
395  
467  
539  
611  
683  
755  
827  
899  
971  
–1018  
–1090  
–1163  
–1248  
–5009 –1246  
–4924  
–4853  
–4781  
(NC)  
(NC)  
(NC)  
(NC)  
SEG0 –4709  
SEG1 –4637  
SEG2 –4565  
SEG3 –4493  
SEG4 –4421  
SEG5 –4349  
SEG6 –4277  
SEG7 –4206  
SEG8 –4134  
SEG9 –4062  
219 SEG80 1042  
220 SEG81 1114  
221 SEG82 1186  
222 SEG83 1258  
223 SEG84 1330  
224 SEG85 1402  
225 SEG86 1474  
226 SEG87 1546  
227 SEG88 1618  
228 SEG89 1689  
229 SEG90 1761  
230 SEG91 1833  
231 SEG92 1905  
232 SEG93 1977  
233 SEG94 2049  
234 SEG95 2121  
235 SEG96 2193  
236 SEG97 2265  
237 SEG98 2336  
238 SEG99 2408  
239 SEG100 2480  
240 SEG101 2552  
149 SEG10 –3990  
150 SEG11 –3918  
151 SEG12 –3846  
152 SEG13 –3774  
153 SEG14 –3702  
154 SEG15 –3630  
155 SEG16 –3559  
156 SEG17 –3487  
157 SEG18 –3415  
158 SEG19 –3343  
159 SEG20 –3271  
160 SEG21 –3199  
8–12  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
241 SEG102 2624 –1246  
242 SEG103 2696  
243 SEG104 2768  
244 SEG105 2840  
245 SEG106 2912  
246 SEG107 2983  
247 SEG108 3055  
248 SEG109 3127  
249 SEG110 3199  
250 SEG111 3271  
251 SEG112 3343  
252 SEG113 3415  
253 SEG114 3487  
254 SEG115 3558  
255 SEG116 3630  
256 SEG117 3702  
257 SEG118 3774  
258 SEG119 3846  
259 SEG120 3918  
260 SEG121 3990  
261 SEG122 4062  
262 SEG123 4134  
263 SEG124 4206  
264 SEG125 4277  
265 SEG126 4349  
266 SEG127 4421  
267 SEG128 4493  
268 SEG129 4565  
269 SEG130 4637  
270 SEG131 4709  
281 COM18 5252  
282 COM19  
283 COM19  
284 COM20  
285 COM20  
286 COM21  
287 COM21  
288 COM22  
289 COM22  
290 COM23  
291 COM23  
292 COM24  
293 COM24  
294 COM25  
295 COM25  
296 COM26  
297 COM26  
298 COM27  
299 COM27  
300 COM28  
301 COM28  
302 COM29  
303 COM29  
304 COM30  
305 COM30  
306 COM31  
307 COM31  
–800  
–727  
–654  
–581  
–509  
–436  
–363  
–291  
–218  
–145  
–73  
0
73  
145  
218  
291  
363  
436  
509  
581  
654  
727  
799  
872  
945  
1017  
1090  
1163  
1248  
308  
309  
COMS  
(NC)  
271  
272  
273  
274  
275  
276 COM16  
277 COM16  
278 COM17  
279 COM17  
280 COM18  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
4781  
4853  
4924  
5009  
5252 –1248  
–1163  
–1090  
–1018  
–945  
–872  
Rev. 2.4a  
EPSON  
8–13  
S1D15605 Series  
S1D15608 Pad Center Coordinates  
*****  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CAP3–  
(NC)  
695  
605  
516  
427  
338  
249  
160  
71  
1246  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
TEST4 –2867 1246  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(NC)  
FRS  
FR  
CL  
DOF  
4973  
4853  
4734  
4614  
4494  
1246  
(NC)  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
–2957  
–3059  
–3179  
–3298  
–3418  
–3538  
–3657  
–3777  
–3896  
–4016  
–4136  
–4255  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
TEST0 4375  
VSS  
CS1  
CS2  
VDD  
RES  
A0  
4255  
4136  
4016  
3896  
3777  
3657  
3538  
–18  
CAP2+ –107  
VSS  
VSS  
VRS  
VRS  
VDD  
VDD  
V1  
V1  
V2  
V2  
(NC)  
V3  
V3  
V4  
V4  
V5  
V5  
(NC)  
VR  
VR  
VDD  
VDD  
–196  
–285  
–374  
–463  
–552  
–641  
–730  
–819  
–908  
VSS  
TEST5 –4375  
TEST6 –4494  
TEST7 –4614  
TEST8 –4734  
TEST9 –4853  
14 WR, R/W 3418  
15  
16  
17  
18  
19  
20  
21  
22  
RD, E  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
3298  
3179  
3059  
2940  
2820  
2700  
2581  
2461  
(NC)  
(NC)  
(NC)  
–4973  
–5252 1248  
1163  
1090  
1017  
945  
–997  
–1086  
–1176  
–1265  
–1354  
–1443  
–1532  
–1621  
–1710  
–1799  
–1888  
–1977  
–2066  
102 COM26  
103 (NC)  
23 D6, SCL 2342  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
D7, SI  
(NC)  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
(NC)  
VOUT  
VOUT  
CAP3–  
2222  
2119  
2030  
1941  
1852  
1763  
1674  
1585  
1496  
1407  
1318  
1229  
1140  
1051  
962  
104 COM25  
105 COM25  
106 COM23  
107 COM22  
108 COM21  
109 COM20  
110 COM19  
111 COM18  
112 COM17  
113 COM16  
114 COM15  
115 COM14  
116 COM13  
117 COM12  
118 COM11  
119 COM10  
872  
799  
727  
654  
581  
509  
436  
363  
291  
218  
145  
73  
0
–73  
TEST1 –2155  
TEST1 –2244  
TEST2 –2333  
TEST2 –2422  
(NC)  
–2511  
TEST3 –2600  
TEST3 –2689  
TEST4 –2778  
–145  
–218  
873  
784  
120  
COM9  
8–14  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
COM8 –5252 –291  
161 SEG22 –3127 –1246  
162 SEG23 –3055  
163 SEG24 –2983  
164 SEG25 –2912  
165 SEG26 –2840  
166 SEG27 –2768  
167 SEG28 –2696  
168 SEG29 –2624  
169 SEG30 –2552  
170 SEG31 –2480  
171 SEG32 –2408  
172 SEG33 –2336  
173 SEG34 –2265  
174 SEG35 –2193  
175 SEG36 –2121  
176 SEG37 –2049  
177 SEG38 –1977  
178 SEG39 –1905  
179 SEG40 –1833  
180 SEG41 –1761  
181 SEG42 –1689  
182 SEG43 –1618  
183 SEG44 –1546  
184 SEG45 –1474  
185 SEG46 –1402  
186 SEG47 –1330  
187 SEG48 –1258  
188 SEG49 –1186  
189 SEG50 –1114  
190 SEG51 –1042  
191 SEG52 –971  
192 SEG53 –899  
193 SEG54 –827  
194 SEG55 –755  
195 SEG56 –683  
196 SEG57 –611  
197 SEG58 –539  
198 SEG59 –467  
199 SEG60 –395  
200 SEG61 –324  
201 SEG62 –252 –1246  
202 SEG63 –180  
203 SEG64 –108  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
(NC)  
–363  
–436  
–509  
–581  
–654  
–727  
–800  
–872  
204 SEG65  
205 SEG66  
206 SEG67  
207 SEG68  
208 SEG69  
209 SEG70  
210 SEG71  
211 SEG72  
212 SEG73  
213 SEG74  
214 SEG75  
215 SEG76  
216 SEG77  
217 SEG78  
218 SEG79  
–36  
36  
108  
180  
252  
324  
395  
467  
539  
611  
683  
755  
827  
899  
971  
COM0  
(NC)  
COMS  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
–945  
–1018  
–1090  
–1163  
–1248  
–5009 –1246  
–4924  
–4853  
–4781  
SEG0 –4709  
SEG1 –4637  
SEG2 –4565  
SEG3 –4493  
SEG4 –4421  
SEG5 –4349  
SEG6 –4277  
SEG7 –4206  
SEG8 –4134  
SEG9 –4062  
219 SEG80 1042  
220 SEG81 1114  
221 SEG82 1186  
222 SEG83 1258  
223 SEG84 1330  
224 SEG85 1402  
225 SEG86 1474  
226 SEG87 1546  
227 SEG88 1618  
228 SEG89 1689  
229 SEG90 1761  
230 SEG91 1833  
231 SEG92 1905  
232 SEG93 1977  
233 SEG94 2049  
234 SEG95 2121  
235 SEG96 2193  
236 SEG97 2265  
237 SEG98 2336  
238 SEG99 2408  
239 SEG100 2480  
240 SEG101 2552  
149 SEG10 –3990  
150 SEG11 –3918  
151 SEG12 –3846  
152 SEG13 –3774  
153 SEG14 –3702  
154 SEG15 –3630  
155 SEG16 –3559  
156 SEG17 –3487  
157 SEG18 –3415  
158 SEG19 –3343  
159 SEG20 –3271  
160 SEG21 –3199  
Rev. 2.4a  
EPSON  
8–15  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
241 SEG102 2624 –1246  
242 SEG103 2696  
243 SEG104 2768  
244 SEG105 2840  
245 SEG106 2912  
246 SEG107 2983  
247 SEG108 3055  
248 SEG109 3127  
249 SEG110 3199  
250 SEG111 3271  
251 SEG112 3343  
252 SEG113 3415  
253 SEG114 3487  
254 SEG115 3558  
255 SEG116 3630  
256 SEG117 3702  
257 SEG118 3774  
258 SEG119 3846  
259 SEG120 3918  
260 SEG121 3990  
261 SEG122 4062  
262 SEG123 4134  
263 SEG124 4206  
264 SEG125 4277  
265 SEG126 4349  
266 SEG127 4421  
267 SEG128 4493  
268 SEG129 4565  
269 SEG130 4637  
270 SEG131 4709  
281 COM29 5252  
282 COM30  
283 COM31  
284 COM32  
285 COM33  
286 COM34  
287 COM35  
288 COM36  
289 COM37  
290 COM38  
291 COM39  
292 COM40  
293 COM41  
294 COM42  
295 COM43  
296 COM44  
297 COM45  
298 COM46  
299 COM47  
300 COM48  
301 COM48  
302 COM50  
303 COM51  
304 COM52  
305 COM53  
–800  
–727  
–654  
–581  
–509  
–436  
–363  
–291  
–218  
–145  
–73  
0
73  
145  
218  
291  
363  
436  
509  
581  
654  
727  
799  
872  
945  
1017  
1090  
1163  
1248  
306  
307  
308  
309  
(NC)  
COMS  
(NC)  
(NC)  
271  
272  
273  
274  
275  
276  
277 COM27  
278 (NC)  
279 COM28  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
4781  
4853  
4924  
5009  
5252 –1248  
–1163  
–1090  
–1018  
–945  
280  
(NC)  
–872  
8–16  
EPSON  
Rev. 2.4a  
S1D15605 Series  
S1D15609  
Pad Center Coordinates  
*****  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
(NC)  
FRS  
FR  
CL  
DOF  
4973  
4853  
4734  
4614  
4494  
1246  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CAP3–  
(NC)  
695  
605  
516  
427  
338  
249  
160  
71  
1246  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
TEST4 –2867 1246  
(NC)  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
–2957  
–3059  
–3179  
–3298  
–3418  
–3538  
–3657  
–3777  
–3896  
–4016  
–4136  
–4255  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
TEST0 4375  
VSS  
CS1  
CS2  
VDD  
RES  
A0  
4255  
4136  
4016  
3896  
3777  
3657  
3538  
–18  
CAP2+ –107  
VSS  
VSS  
VRS  
VRS  
VDD  
VDD  
V1  
V1  
V2  
V2  
(NC)  
V3  
V3  
V4  
V4  
V5  
V5  
(NC)  
VR  
VR  
VDD  
VDD  
–196  
–285  
–374  
–463  
–552  
–641  
–730  
–819  
–908  
VSS  
14 WR, R/W 3418  
TEST5 –4375  
TEST6 –4494  
TEST7 –4614  
TEST8 –4734  
TEST9 –4853  
15  
16  
17  
18  
19  
20  
21  
22  
RD, E  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
3298  
3179  
3059  
2940  
2820  
2700  
2581  
2461  
(NC)  
(NC)  
(NC)  
–4973  
–5252 1248  
1163  
1090  
1017  
945  
–997  
–1086  
–1176  
–1265  
–1354  
–1443  
–1532  
–1621  
–1710  
–1799  
–1888  
–1977  
–2066  
102 COM25  
103 (NC)  
104 COM24  
105 (NC)  
23 D6, SCL 2342  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
D7, SI  
(NC)  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
(NC)  
VOUT  
VOUT  
CAP3–  
2222  
2119  
2030  
1941  
1852  
1763  
1674  
1585  
1496  
1407  
1318  
1229  
1140  
1051  
962  
872  
799  
727  
654  
581  
509  
436  
363  
291  
218  
145  
73  
0
–73  
106 COM23  
107 COM22  
108 COM21  
109 COM20  
110 COM19  
111 COM18  
112 COM17  
113 COM16  
114 COM15  
115 COM14  
116 COM13  
117 COM12  
118 COM11  
119 COM10  
TEST1 –2155  
TEST1 –2244  
TEST2 –2333  
TEST2 –2422  
(NC)  
–2511  
TEST3 –2600  
TEST3 –2689  
TEST4 –2778  
873  
784  
–145  
–218  
120  
COM9  
Rev. 2.4a  
EPSON  
8–17  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
COM8 –5252 –291  
161 SEG22 –3127 –1246  
162 SEG23 –3055  
163 SEG24 –2983  
164 SEG25 –2912  
165 SEG26 –2840  
166 SEG27 –2768  
167 SEG28 –2696  
168 SEG29 –2624  
169 SEG30 –2552  
170 SEG31 –2480  
171 SEG32 –2408  
172 SEG33 –2336  
173 SEG34 –2265  
174 SEG35 –2193  
175 SEG36 –2121  
176 SEG37 –2049  
177 SEG38 –1977  
178 SEG39 –1905  
179 SEG40 –1833  
180 SEG41 –1761  
181 SEG42 –1689  
182 SEG43 –1618  
183 SEG44 –1546  
184 SEG45 –1474  
185 SEG46 –1402  
186 SEG47 –1330  
187 SEG48 –1258  
188 SEG49 –1186  
189 SEG50 –1114  
190 SEG51 –1042  
191 SEG52 –971  
192 SEG53 –899  
193 SEG54 –827  
194 SEG55 –755  
195 SEG56 –683  
196 SEG57 –611  
197 SEG58 –539  
198 SEG59 –467  
199 SEG60 –395  
200 SEG61 –324  
201 SEG62 –252 –1246  
202 SEG63 –180  
203 SEG64 –108  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
(NC)  
–363  
–436  
–509  
–581  
–654  
–727  
–800  
–872  
204 SEG65  
205 SEG66  
206 SEG67  
207 SEG68  
208 SEG69  
209 SEG70  
210 SEG71  
211 SEG72  
212 SEG73  
213 SEG74  
214 SEG75  
215 SEG76  
216 SEG77  
217 SEG78  
218 SEG79  
–36  
36  
108  
180  
252  
324  
395  
467  
539  
611  
683  
755  
827  
899  
971  
COM0  
(NC)  
COMS  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
–945  
–1018  
–1090  
–1163  
–1248  
–5009 –1246  
–4924  
–4853  
–4781  
SEG0 –4709  
SEG1 –4637  
SEG2 –4565  
SEG3 –4493  
SEG4 –4421  
SEG5 –4349  
SEG6 –4277  
SEG7 –4206  
SEG8 –4134  
SEG9 –4062  
219 SEG80 1042  
220 SEG81 1114  
221 SEG82 1186  
222 SEG83 1258  
223 SEG84 1330  
224 SEG85 1402  
225 SEG86 1474  
226 SEG87 1546  
227 SEG88 1618  
228 SEG89 1689  
229 SEG90 1761  
230 SEG91 1833  
231 SEG92 1905  
232 SEG93 1977  
233 SEG94 2049  
234 SEG95 2121  
235 SEG96 2193  
236 SEG97 2265  
237 SEG98 2336  
238 SEG99 2408  
239 SEG100 2480  
240 SEG101 2552  
149 SEG10 –3990  
150 SEG11 –3918  
151 SEG12 –3846  
152 SEG13 –3774  
153 SEG14 –3702  
154 SEG15 –3630  
155 SEG16 –3559  
156 SEG17 –3487  
157 SEG18 –3415  
158 SEG19 –3343  
159 SEG20 –3271  
160 SEG21 –3199  
8–18  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Units: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
241 SEG102 2624 –1246  
242 SEG103 2696  
243 SEG104 2768  
244 SEG105 2840  
245 SEG106 2912  
246 SEG107 2983  
247 SEG108 3055  
248 SEG109 3127  
249 SEG110 3199  
250 SEG111 3271  
251 SEG112 3343  
252 SEG113 3415  
253 SEG114 3487  
254 SEG115 3558  
255 SEG116 3630  
256 SEG117 3702  
257 SEG118 3774  
258 SEG119 3846  
259 SEG120 3918  
260 SEG121 3990  
261 SEG122 4062  
262 SEG123 4134  
263 SEG124 4206  
264 SEG125 4277  
265 SEG126 4349  
266 SEG127 4421  
267 SEG128 4493  
268 SEG129 4565  
269 SEG130 4637  
270 SEG131 4709  
281 COM28 5252  
282 COM29  
283 COM30  
284 COM31  
285 COM32  
286 COM33  
287 COM34  
288 COM35  
289 COM36  
290 COM37  
291 COM38  
292 COM39  
293 COM40  
294 COM41  
295 COM42  
296 COM43  
297 COM44  
298 COM45  
299 COM46  
300 COM47  
301 COM48  
302 COM49  
303 COM50  
–800  
–727  
–654  
–581  
–509  
–436  
–363  
–291  
–218  
–145  
–73  
0
73  
145  
218  
291  
363  
436  
509  
581  
654  
727  
799  
872  
945  
1017  
1090  
1163  
1248  
304  
(NC)  
305 COM51  
306  
307  
308  
309  
(NC)  
COMS  
(NC)  
(NC)  
271  
272  
273  
274  
275  
276  
277 COM26  
278 (NC)  
279 COM27  
280 (NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
(NC)  
4781  
4853  
4924  
5009  
5252 –1248  
–1163  
–1090  
–1018  
–945  
–872  
Rev. 2.4a  
EPSON  
8–19  
S1D15605 Series  
5. PIN DESCRIPTIONS  
Power Supply Pins  
No. of  
Pins  
Pin Name  
I/O  
Function  
VDD  
Power Shared with the MPU power supply terminal VCC.  
Supply  
13  
VSS  
VSS2  
VRS  
Power This is a 0V terminal connected to the system GND.  
Supply  
9
Power This is the reference power supply for the step-up voltage circuit for the  
Supply liquid crystal drive.  
4
Power This is the externally-input VREG power supply for the LCD power supply  
Supply voltage regulator.  
2
These are only enabled for the models with the VREG external input option.  
V1, V2,  
V3, V4,  
V5  
Power This is a multi-level power supply for the liquid crystal drive. The voltage  
Supply applied is determined by the liquid crystal cell, and is changed through the  
use of a resistive voltage divided or through changing the impedance using  
an op. amp. Voltage levels are determined based on VDD, and must  
maintain the relative magnitudes shown below.  
10  
VDD (= V0) V1 V2 V3 V4 V5  
Master operation: When the power supply turns ON, the internal power  
supply circuits produce the V1 to V4 voltages shown below. The voltage  
settings are selected using the LCD bias set command.  
S1D15605***** S1D15606***** S1D15607***** S1D15608***** S1D15609*****  
V1 1/9•V5 1/7•V5 1/8•V5 1/6•V5 1/6•V5 1/5•V5 1/8•V5 1/6•V5 1/8•V5 1/6•V5  
V2 2/9•V5 2/7•V5 2/8•V5 2/6•V5 2/6•V5 2/5•V5 2/8•V5 2/6•V5 2/8•V5 2/6•V5  
V3 7/9•V5 5/7•V5 6/8•V5 4/6•V5 4/6•V5 3/5•V5 6/8•V5 4/6•V5 6/8•V5 4/6•V5  
V4 8/9•V5 6/7•V5 7/8•V5 5/6•V5 5/6•V5 4/5•V5 7/8•V5 5/6•V5 7/6•V5 5/6•V5  
LCD Power Supply Circuit Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
CAP1+  
O
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP1- terminal.  
2
2
2
2
2
2
2
CAP1–  
CAP2+  
CAP2–  
CAP3–  
VOUT  
O
O
O
O
I/O  
I
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP1+ terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP2- terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP2+ terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP1+ terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
VSS2.  
VR  
Output voltage regulator terminal. Provides the voltage between VDD and  
V5 through a resistive voltage divider.  
These are only enabled when the V5 voltage regulator internal resistors are  
not used (IRS = LOW).  
These cannot be used when the V5 voltage regulator internal resistors are  
used (IRS = HIGH).  
8–20  
EPSON  
Rev. 2.4a  
S1D15605 Series  
System Bus Connection Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
D7 to D0  
I/O  
This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit  
standard MPU data bus.  
8
(SI)  
(SCL)  
When the serial interface is selected (P/S = LOW), then D7 serves as the  
serial data input terminal (SI) and D6 serves as the serial clock input  
terminal (SCL). At this time, D0 to D5 are set to high impedance.  
When the chip select is inactive, D0 to D7 are set to high impedance.  
A0  
I
This is connect to the least significant bit of the normal MPU address bus,  
and it determines whether the data bits are data or a command.  
A0 = HIGH: Indicates that D0 to D7 are display data.  
1
A0 = LOW: Indicates that D0 to D7 are display control data.  
RES  
I
I
I
When RES is set to LOW, the settings are initialized.  
The reset operation is performed by the RES signal level.  
1
2
1
CS1  
CS2  
This is the chip select signal. When CS1 = LOW and CS2 = HIGH, then the  
chip select becomes active, and data/command I/O is enabled.  
RD  
(E)  
• When connected to an 8080 MPU, this is active LOW.  
This pin is connected to the RD signal of the 8080 MPU, and the  
S1D15605 series data bus is in an output status when this signal is LOW.  
• When connected to a 6800 Series MPU, this is active HIGH.  
This is the 6800 Series MPU enable clock input terminal.  
WR  
(R/W)  
I
• When connected to an 8080 MPU, this is active LOW.  
This terminal connects to the 8080 MPU WR signal. The signals on  
the data bus are latched at the rising edge of the WR signal.  
• When connected to a 6800 Series MPU:  
1
This is the read/write control signal input terminal.  
When R/W = HIGH: Read.  
When R/W = LOW: Write.  
C86  
P/S  
I
I
This is the MPU interface switch terminal.  
C86 = HIGH: 6800 Series MPU interface.  
C86 = LOW: 8080 MPU interface.  
1
1
This is the parallel data input/serial data input switch terminal.  
P/S = HIGH: Parallel data input.  
P/S = LOW: Serial data input.  
The following applies depending on the P/S status:  
P/S Data/Command  
Data  
Read/Write Serial Clock  
HIGH  
LOW  
A0  
A0  
D0 to D7  
SI (D7)  
RD, WR  
Write only  
SCL (D6)  
When P/S = LOW, D0 to D5 are HZ. D0 to D5 may be HIGH, LOW or Open.  
RD (E) and WR (P/W) are fixed to either HGIH or LOW.  
With serial data input, RAM display data reading is not supported.  
CLS  
I
Terminal to select whether or enable or disable the display clock internal  
oscillator circuit.  
1
CLS = HIGH: Internal oscillator circuit is enabled  
CLS = LOW: Internal oscillator circuit is disabled (requires external input)  
When CLS = LOW, input the display clock through the CL terminal.  
When using the S1D15605 Series as a master or slave, set respective  
CLS pins at the same level.  
Display clock  
Built-in oscillator circuit used  
External input  
Master  
HIGH  
LOW  
Slave  
HIGH  
LOW  
Rev. 2.4a  
EPSON  
8–21  
S1D15605 Series  
No. of  
Pins  
Pin Name  
I/O  
Function  
M/S  
I
This terminal selects the master/slave operation for the S1D15605 Series  
chips. Master operation outputs the timing signals that are required for the  
LCD display, while slave operation inputs the timing signals required for the  
liquid crystal display, synchronizing the liquid crystal display system.  
M/S = HIGH: Master operation  
1
M/S = LOW: Slave operation  
The following is true depending on the M/S and CLS status:  
Power  
Supply  
Circuit  
Oscillator  
Circuit  
M/S CLS  
CL  
FR  
FRS  
DOF  
HIGH HIGH Enabled  
LOW Disabled  
Enabled  
Enabled  
Output Output Output Output  
Input Output Output Output  
LOW HIGH Disabled  
LOW Disabled  
Disabled  
Disabled  
Input  
Input  
Input Output Input  
Input Output Input  
CL  
I/O  
This is the display clock input terminal  
The following is true depending on the M/S and CLS status.  
1
M/S CLS CL  
HIGH HIGH Output  
LOW  
Input  
LOW HIGH  
LOW  
Input  
Input  
When the S1D15605 Series chips are used in master/slave mode, the  
various CL terminals must be connected.  
FR  
I/O  
I/O  
This is the liquid crystal alternating current signal I/O terminal.  
M/S = HIGH: Output  
M/S = LOW: Input  
When the S1D15605 Series chip is used in master/slave mode, the various  
FR terminals must be connected.  
1
1
DOF  
This is the liquid crystal display blanking control terminal.  
M/S = HIGH: Output  
M/S = LOW: Input  
When the S1D15605 Series chip is used in master/slave mode, the various  
DOF terminals must be connected.  
FRS  
IRS  
O
I
This is the output terminal for the static drive.  
This terminal is only enabled when the static indicator display is ON when  
in master operation mode, and is used in conjunction with the FR terminal.  
1
1
This terminal selects the resistors for the V5 voltage level adjustment.  
IRS = HIGH: Use the internal resistors  
IRS = LOW: Do not use the internal resistors. The V5 voltage level is  
regulated by an external resistive voltage divider attached to the VR  
terminal.  
This pin is enabled only when the master operation mode is selected.  
It is fixed to either HIGH or LOW when the slave operation mode is selected.  
HPM  
I
This is the power control terminal for the power supply circuit for liquid  
crystal drive.  
1
HPM = HIGH: Normal mode  
HPM = LOW: High power mode  
This pin is enabled only when the master operation mode is selected.  
It is fixed to either HIGH or LOW when the slave operation mode is selected.  
8–22  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Liquid Crystal Drive Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
SEG0  
to  
SEG131  
O
These are the liquid crystal segment drive outputs. Through a combination 132  
of the contents of the display RAM and with the FR signal, a single level is  
selected from VDD, V2, V3, and V5.  
RAM DATA  
FR  
Output Voltage  
Normal Display Reverse Display  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
VDD  
V5  
V2  
V3  
LOW  
V2  
VDD  
V5  
LOW  
V3  
Power save  
VDD  
COM0  
to  
O
These are the liquid crystal common drive outputs.  
Part No.  
COM  
Part No.  
No. of pins  
COMn  
COM 0 ~ COM 63  
COM 0 ~ COM 47  
COM 0 ~ COM 31  
COM 0 ~ COM 53  
COM 0 ~ COM 51  
64  
48  
32  
54  
52  
S1D15605*****  
S1D15606*****  
S1D15607*****  
S1D15608*****  
S1D15609*****  
S1D15605*****  
S1D15606*****  
S1D15607*****  
S1D15608*****  
S1D15609*****  
Through a combination of the contents of the scan data and with the  
FR signal, a single level is selected from VDD, V1, V4, and V5.  
Scan Data  
HIGH  
FR  
HIGH  
LOW  
HIGH  
LOW  
Output Voltage  
V5  
VDD  
V1  
HIGH  
LOW  
LOW  
V4  
Power Save  
VDD  
COMS  
O
These are the COM output terminals for the indicator. Both terminals  
output the same signal.  
2
Leave these open if they are not used.  
When in master/slave mode, the same signal is output by both master and  
slave.  
Test Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
TEST0 to 9  
I/O  
These are terminals for IC chip testing.  
TEST0 to 4 and 7 to 9 should be open, TEST 5 and 6 should be fixed to  
HIGH.  
14  
.
.
.
.
.
Total: 288 pins for the S1D15605*****  
272 pins for the S1D15606*****  
256 pins for the S1D15607*****  
278 pins for the S1D15608*****  
276 pins for the S1D15609*****  
Rev. 2.4a  
EPSON  
8–23  
S1D15605 Series  
through a serial data input (SI). Through selecting the P/  
S terminal polarity to the HIGH or LOW it is possible to  
select either parallel data input or serial data input as  
shown in Table 1.  
6. DESCRIPTION OF FUNCTIONS  
The MPU Interface  
Selecting the Interface Type  
With the S1D15605 Series chips, data transfers are done  
through an 8-bit bi-directional data bus (D7 to D0) or  
Table 1  
P/S  
HIGH: Parallel Input CS1 CS2  
LOW: Serial Input CS1 CS2  
CS1 CS2  
A0  
A0  
A0  
RD  
RD  
WR C86  
D7  
D7  
SI  
D6  
D6  
D5~D0  
D5~D0  
(HZ)  
WR C86  
SCL  
“—” indicates fixed to either HIGH or to LOW. HZ is in the state of High Impedance.  
8080-system MPU or a 6800 Series MPU (as shown in  
Table 2) by selecting the C86 terminal to either HIGH  
or to LOW.  
The Parallel Interface  
When the parallel interface has been selected (P/S =  
HIGH), then it is possible to connect directly to either an  
Table 2  
CS1 CS2  
HIGH: 6800 Series MPU Bus CS1 CS2  
LOW: 8080 MPU Bus CS1 CS2  
P/S  
A0  
A0  
A0  
RD  
E
WR  
D7~D0  
R/W D7~D0  
RD  
WR  
D7~D0  
Moreover, data bus signals are recognized by a  
combination of A0, RD (E), WR (R/W) signals, as  
shown in Table 3.  
Table 3  
8080 Series  
Shared 6800 Series  
Function  
A0  
1
R/W  
RD  
0
WR  
1
1
0
1
0
Reads the display data  
Writes the display data  
Status read  
1
1
0
0
0
1
0
1
0
Write control data (command)  
8–24  
EPSON  
Rev. 2.4a  
S1D15605 Series  
of the eighth serial clock for the processing.  
The Serial Interface  
The A0 input is used to determine whether or the serial  
data input is display data or command data; when A0 =  
HIGH, the data is display data, and when A0 = LOW  
then the data is command data. The A0 input is read and  
used for detection every 8th rising edge of the serial  
clock after the chip becomes active.  
When the serial interface has been selected (P/S =  
LOW) then when the chip is in active state (CS1 = LOW  
and CS2 = HIGH) the serial data input (SI) and the serial  
clock input (SCL) can be received. The serial data is  
read from the serial data input pin in the rising edge of  
the serial clocks D7, D6 through D0, in this order. This  
data is converted to 8 bits parallel data in the rising edge  
Figure 1 is a serial interface signal chart.  
CS1  
CS2  
SI  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
D0 D7  
D6  
10  
D5  
D4  
D3  
13  
D2  
14  
SCL  
8
9
11  
12  
A0  
Figure 1  
* When the chip is not active, the shift registers and the counter are reset to their initial states.  
* Reading is not possible while in serial interface mode.  
* Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that  
operation be rechecked on the actual equipment.  
LSIs is performed through the bus holder attached to the  
internal data bus.  
The Chip Select  
The S1D15605 Series chips have two chip select  
terminals: CS1 and CS2. The MPU interface or the  
serial interface is enabled only when CS1 = LOW and  
CS2 = HIGH.  
When the chip select is inactive, D0 to D7 enter a high  
impedance state, and the A0, RD, and WR inputs are  
inactive. When the serial interface is selected, the shift  
register and the counter are reset.  
For example, when the MPU writes data to the display  
data RAM, once the data is stored in the bus holder, then  
it is written to the display data RAM before the next data  
write cycle. Moreover, when the MPU reads the display  
data RAM, the first data read cycle (dummy) stores the  
read data in the bus holder, and then the data is read from  
the bus holder to the system bus at the next data read  
cycle.  
There is a certain restriction in the read sequence of the  
display data RAM. Please be advised that data of the  
specified address is not generated by the read instruction  
issued immediately after the address setup. This data is  
generated in data read of the second time. Thus, a  
dummy read is required whenever the address setup or  
write cycle operation is conducted.  
Accessing the Display Data RAM and the  
Internal Registers  
Data transfer at a higher speed is ensured since the MPU  
is required to satisfy the cycle time (tCYC) requirement  
alone in accessing the S1D15605 Series. Wait time may  
not be considered.  
And, in the S1D15605 Series chips, each time data is  
sent from the MPU, a type of pipeline process between  
This relationship is shown in Figure 2.  
Rev. 2.4a  
EPSON  
8–25  
S1D15605 Series  
The Busy Flag  
read instruction. If the cycle time (tCYC) is maintained,  
it is not necessary to check for this flag before each  
command. This makes vast improvements in MPU  
processing capabilities possible.  
When the busy flag is “1” it indicates that the S1D15605  
Series chip is running internal processes, and at this  
time no command aside from a status read will be  
received. The busy flag is outputted to D7 pin with the  
Writing  
WR  
DATA  
N
N+1  
N+2  
N+3  
Latch  
N
N+1  
N+2  
N+3  
BUS Holder  
Write Signal  
Reading  
WR  
RD  
DATA  
N
N
n
n+1  
Address Preset  
Read Signal  
Column Address  
Bus Holder  
Preset N  
Increment N+1  
n
N+2  
N
n+1  
n+2  
Address Set  
#n  
Dummy  
Read  
Data Read  
#n  
Data Read  
#n+1  
Figure 2  
8–26  
EPSON  
Rev. 2.4a  
S1D15605 Series  
the time of display data transfer when multiple S1D15605  
series chips are used, thus and display structures can be  
created easily and with a high degree of freedom.  
Moreover, reading from and writing to the display  
RAM from the MPU side is performed through the I/O  
buffer, which is an independent operation from signal  
reading for the liquid crystal driver. Consequently, even  
if the display data RAM is accessed asynchronously  
during liquid crystal display, it will not cause adverse  
effects on the display (such as flickering).  
Display Data RAM  
Display Data RAM  
The display data RAM is a RAM that stores the dot data  
for the display. It has a 65 (8 page × 8 bit +1) × 132 bit  
structure. It is possible to access the desired bit by  
specifying the page address and the column address.  
Because, as is shown in Figure 3, the D7 to D0 display  
data from the MPU corresponds to the liquid crystal  
display common direction, there are few constraints at  
D0 0 1 1 1  
D1 1 0 0 0  
D2 0 0 0 0  
D3 0 1 1 1  
D4 1 0 0 0  
0
0
0
0
0
COM0  
COM1  
COM2  
COM3  
COM4  
Display data RAM  
Liquid crystal display  
Figure 3  
Table 4  
The Page Address Circuit  
SEG  
Output  
As shown in Figure 6-4, page address of the display data  
RAM is specified through the Page Address Set  
Command. The page address must be specified again  
when changing pages to perform access.  
SEG0  
SEG 131  
ADC “0” 0 (H) Column Address 83 (H)  
(D0) “1” 83 (H) Column Address 0 (H)  
Page address 8 (D3, D2, D1, D0 = 1, 0, 0, 0) is the page  
for the RAM region used only by the indicators, and  
only display data D0 is used.  
The Line Address Circuit  
The line address circuit, as shown in Table 4, specifies  
the line address relating to the COM output when the  
contents of the display data RAM are displayed. Using  
the display start line address set command, what is  
normally the top line of the display can be specified (this  
is the COM0 output when the common output mode is  
normal, and the COM63 output for S1D15605 Series,  
COM47 output for S1D15606 Series, COM31 output for  
The Column Addresses  
As is shown in Figure 4, the display data RAM column  
address is specified by the Column Address Set  
command. The specified column address is incremented  
(+1) with each display data read/write command. This  
allows the MPU display data to be accessed continuously.  
Moreover, the incrementation of column addresses stops  
with 83H. Because the column address is independent  
of the page address, when moving, for example, from  
page 0 column 83H to page 1 column 00H, it is necessary  
to respecify both the page address and the column  
address.  
the S1D15607 Series, COM53 output for S1D15608*****  
andCOM51outputforS1D15609*****)whenthecommon  
output mode is reversed. The display area is a 65 line area  
for the S1D15605 Series, a 49 line are for the S1D15606,  
a 33 line area for the S1D15607 Series , 55 line area for  
Furthermore, as is shown in Table 4, the ADC command  
(segment driver direction select command) can be used  
to reverse the relationship between the display data  
RAM column address and the segment output. Because  
of this, the constraints on the IC layout when the LCD  
module is assembled can be minimized.  
the S1D15608*****  
and 53 line area for the  
S1D15609***** from the display start line address.  
If the line addresses are changed dynamically using the  
display start line address set command, screen scrolling,  
page swapping, etc. can be performed.  
Rev. 2.4a  
EPSON  
8–27  
S1D15605 Series  
When the  
common output  
mode is normal  
Page Address  
Line  
COM  
Data  
Address  
Output  
D3  
0
D2  
D1  
D0  
0
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
COM0  
COM1  
COM2  
COM3  
0
0
Page 0  
Page 1  
Page 2  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS  
0
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
Page 3  
Page 4  
Start  
0
0
1
1
0
1
1
0
Page 5  
Page 6  
0
1
1
0
1
0
1
0
Page 7  
Page 8  
Regardless of the display  
start line address, the  
S1D15605 Series  
accesses 65th line, the  
S1D15606 Series  
accesses 49th line and  
the S1D15607 Series  
accesses 33th line and  
the S1D15608 Series  
accesses 55th line, the  
S1D15609 Series  
accesses 53 lines.  
Figure 4  
8–28  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Display Timing Generator Circuit  
The Display Data Latch Circuit  
The display data latch circuit is a latch that temporarily  
stores the display data that is output to the liquid crystal  
driver circuit from the display data RAM.  
Because the display normal/reverse status, display ON/  
OFF status, and display all points ON/OFF commands  
control only the data within the latch, they do not change  
the data within the display data RAM itself.  
The display timing generator circuit generates the timing  
signal to the line address circuit and the display data  
latch circuit using the display clock. The display data is  
latched into the display data latch circuit synchronized  
with the display clock, and is output to the data driver  
output terminal. Reading to the display data liquid  
crystal driver circuits is completely independent of  
accesses to the display data RAM by the MPU.  
Consequently, even if the display data RAM is accessed  
asynchronously during liquid crystal display, there is  
absolutely no adverse effect (such as flickering) on the  
display.  
Moreover, the display timing generator circuit generates  
the common timing and the liquid crystal alternating  
current signal (FR) from the display clock. It generates  
a drive wave form using a 2 frame alternating current  
drive method, as is shown in Figure 5, for the liquid  
crystal drive circuit.  
The Oscillator Circuit  
This is a CR-type oscillator that produces the display  
clock. The oscillator circuit is only enabled when M/S  
= HIGH and CLS = HIGH.  
When CLS = LOW the oscillation stops, and the display  
clock is input through the CL terminal.  
Two-frame alternating current drive wave form (S1D15605*****)  
64 65  
1
2
3
4
5
6
60 61 62 63 64 65  
1
2
3
4
5
6
CL  
FR  
V
V
DD  
1
COM0  
COM1  
V
V
4
5
V
V
DD  
1
V
V
4
5
RAM  
DATA  
V
V
V
V
DD  
2
SEGn  
3
5
Figure 5  
Rev. 2.4a  
EPSON  
8–29  
S1D15605 Series  
When multiple S1D15605 Series chips are used, the  
slave chips must be supplied the display timing signals  
(FR, CL, DOF) from the master chip[s].  
Table 5 shows the status of the FR, CL, and DOF  
signals.  
Table 5  
Operating Mode  
FR  
CL  
DOF  
Master (M/S = HIGH) The internal oscillator circuit is enabled (CLS = HIGH) Output Output Output  
The internal oscillator circuit is disabled (CLS = LOW) Output Input  
Output  
Slave (M/S = LOW) Set the CLS pin to the same level as with the master. Input  
Input  
Input  
Input  
Input  
Input  
The Common Output Status Select  
Circuit  
In the S1D15605 Series chips, the COM output scan  
direction can be selected by the common output status  
select command. (See Table 6.) Consequently, the  
constraints in IC layout at the time of LCD module  
assembly can be minimized.  
Table 6  
Status  
COM Scan Direction  
S1D15605***** S1D15606***** S1D15607***** S1D15608***** S1D15609*****  
Normal COM0 COM63 COM0 COM47 COM0 COM31 COM0 COM53 COM0 COM51  
Reverse COM63 COM0 COM47 COM0 COM31 COM0 COM53 COM0 COM51 COM0  
The Liquid Crystal Driver Circuits  
These are a 197-channel (S1D15605 Series), a 181-  
channel (S1D15606 Series) multiplexers 165-channel  
(S1D15607 Series), 187-channel (S1D15608 Series)  
and a 185-channel (S1D15609 Series) that generate  
four voltage levels for driving the liquid crystal. The  
combination of the display data, the COM scan signal,  
and the FR signal produces the liquid crystal drive  
voltage output.  
Figure 6 shows examples of the SEG and COM output  
wave form.  
8–30  
EPSON  
Rev. 2.4a  
S1D15605 Series  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
V
V
DD  
SS  
FR  
V
V
V
DD  
1
2
COM0  
COM1  
COM2  
V3  
V4  
V5  
V
V
V
DD  
1
2
COM8  
V3  
V4  
V5  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
V
V
V
DD  
1
2
V3  
V4  
V5  
V
V
V
DD  
1
2
SEG0  
SEG1  
SEG2  
V
V
V
3
4
5
V
V
V
DD  
1
2
V3  
V4  
V5  
V
V
V
DD  
1
2
V3  
V4  
V5  
V5  
V4  
V3  
V
V
V
2
1
COM0–SEG0  
–V  
1
2
–V  
–V3  
–V4  
–V5  
V5  
V4  
V3  
V
V
V
2
1
COM0–SEG1  
–V  
1
2
–V  
–V3  
–V4  
–V5  
Figure 6  
Rev. 2.4a  
EPSON  
8–31  
S1D15605 Series  
operation.  
The power supply circuits can turn the Booster circuits,  
the voltage regulator circuits, and the voltage follower  
circuits ON of OFF independently through the use of the  
Power Control Set command. Consequently, it is possible  
to make an external power supply and the internal  
power supply function somewhat in parallel. Table 7  
shows the Power Control Set Command 3-bit data  
control function, and Table 8 shows reference  
combinations.  
The Power Supply Circuits  
The power supply circuits are low-power consumption  
power supply circuits that generate the voltage levels  
required for the liquid crystal drivers. They comprise  
Booster circuits, voltage regulator circuits, and voltage  
follower circuits. They are only enabled in master  
Table 7 The Control Details of Each Bit of the Power Control Set Command  
Status  
Item  
“1”  
“0”  
D2 Booster circuit control bit  
D1 Voltage regulator circuit (V regulator circuit) control bit  
D0 Voltage follower circuit (V/F circuit) control bit  
ON  
ON  
ON  
OFF  
OFF  
OFF  
Table 8 Reference Combinations  
Step-up  
voltage  
system  
terminal  
V
External  
voltage  
input  
Step-up  
circuit  
V/F  
circuit  
Use Settings  
D2 D1 D0  
regulator  
circuit  
1
2
Only the internal power supply is  
used  
Only the V regulator circuit and  
the V/F circuit are used  
Only the V/F circuit is used  
Only the external power supply is  
used  
1
0
1
1
1
1
O
X
O
O
O
O
VSS2  
Used  
VOUT, VSS2 Open  
3
4
0
0
0
0
1
0
X
X
X
X
O
X
V5, VSS2  
V1 to V5  
Open  
Open  
* The “step-up system terminals” refer CAP1+, CAP1–, CAP2+, CAP2–, and CAP3–.  
* While other combinations, not shown above, are also possible, these combinations are not recommended  
because they have no practical use.  
difference between VDD and VSS2.  
Double step-up:  
Connect capacitor C1 between  
The Step-up Voltage Circuits  
CAP1+ and CAP1–, and between VSS2 and  
VOUT, leave CAP2+ open, and short  
between CAP2–, CAP3– and VOUT to  
produce a voltage in the negative direction  
at the VOUT terminal that is twice the voltage  
between VDD and VSS2.  
Using the step-up voltage circuits equipped within the  
S1D15605 Series chips it is possible to product a Quad  
step-up, a Triple step-up, and a Double step-up of the  
VDD – VSS2 voltage levels.  
Quad step-up: Connect capacitor C1 between CAP1+  
and CAP1–, between CAP2+ and CAP2–,  
between CAP1+ and CAP3–, and between  
VSS2 and VOUT, to produce a voltage level  
in the negative direction at the VOUT  
terminal that is 4 times the voltage level  
between VDD and VSS2.  
The step-up voltage relationships are shown in Figure 7.  
Triple step-up: Connect capacitor C1 between CAP1+  
and CAP1–, between CAP2+ and CAP2–  
and between VSS2 and VOUT, and short  
between CAP3– and VOUT to produce a  
voltage level in the negative direction at the  
VOUT terminal that is 3 times the voltage  
8–32  
EPSON  
Rev. 2.4a  
S1D15605 Series  
V
SS2  
V
V
SS2  
V
SS2  
+
+
+
+
C1  
C1  
C1  
C1  
VOUT  
OUT  
VOUT  
CAP3–  
CAP1+  
CAP3–  
CAP1+  
CAP3–  
CAP1+  
C1  
C1  
+
+
+
+
C1  
C1  
CAP1–  
CAP2–  
CAP1–  
CAP2–  
CAP1–  
CAP2–  
C1  
CAP2+  
CAP2+  
OPEN CAP2+  
4 x step-up voltage circuit  
3 x step-up voltage circuit  
2 x step-up voltage circuit  
V
DD = 0V  
V
V
DD = 0V  
V
V
DD = 0V  
SS2 = –5V  
V
SS2 = –3V  
SS2 = –3V  
V
OUT = 3 x VSS2 = –9V  
V
OUT = 2 x VSS2 = –10V  
V
OUT = 4 x VSS2 = –12V  
4x step-up voltage relationships  
3x step-up voltage relationships  
2x step-up voltage relationships  
Figure 7  
* The VSS2 voltage range must be set so that the VOUT terminal voltage does not exceed the absolute maximum rated  
value.  
The Voltage Regulator Circuit  
(A) When the V5 Voltage Regulator Internal  
Resistors Are Used  
The step-up voltage generated at VOUT outputs the  
liquid crystal driver voltage V5 through the voltage  
regulator circuit.  
Because the S1D15605 Series chips have an internal  
high-accuracy fixed voltage power supply with a 64-  
level electronic volume function and internal resistors  
for the V5 voltage regulator, systems can be constructed  
without having to include high-accuracy voltage  
regulator circuit components.  
Through the use of the V5 voltage regulator internal  
resistors and the electronic volume function the liquid  
crystal power supply voltage V5 can be controlled by  
commands alone (without adding any external resistors),  
making it possible to adjust the liquid crystal display  
brightness. The V5 voltage can be calculated using  
equation A-1 over the range where | V5 | < | VOUT |.  
Moreover, in the S1D15605 Series, three types of thermal  
gradients have been prepared as VREG options: (1)  
approximately -0.05%/°C (2) approximately -0.2%/°C,  
and (3) external input (supplied to the VRS terminal).  
Rev. 2.4a  
EPSON  
8–33  
S1D15605 Series  
Rb  
Ra  
V5 = 1+  
VEV  
Rb  
Ra  
α
= 1+  
1–  
VREG  
162  
α
VEV = 1−  
VREG  
(
)
(Equation A-1)  
[
]
162  
V
DD  
VEV (constant voltage supply + electronic volume)  
Internal Ra  
Internal Rb  
+
V5  
Figure 8  
VREG is the IC-internal fixed voltage supply, and its  
voltage at Ta = 25°C is as shown in Table 9.  
Table 9  
Equipment Type  
Thermal Gradient  
Units  
VREG  
Units  
(1) Internal Power Supply  
(2) Internal Power Supply  
(3) External Input  
–0.05  
–0.2  
[%/°C ]  
[%/°C ]  
–2.1  
–4.9  
VRS  
[V]  
[V]  
[V]  
α is set to 1 level of 64 possible levels by the electronic  
volume function depending on the data set in the 6-bit  
electronic volume register. Table 10 shows the value for  
α depending on the electronic volume register settings.  
Table 10  
Rb/Ra is the V5 voltage regulator internal resistor ratio,  
and can be set to 8 different levels through the V5  
voltage regulator internal resistor ratio set command.  
The (1 + Rb/Ra) ratio assumes the values shown in  
Table 11 depending on the 3-bit data settings in the V5  
voltage regulator internal resistor ratio register.  
D5 D4 D3 D2 D1 D0  
α
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
63  
62  
61  
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
2
1
0
8–34  
EPSON  
Rev. 2.4a  
S1D15605 Series  
V5 voltage regulator internal resistance ratio register  
value and (1 + Rb/Ra) ratio (Reference value)  
Table 11  
S1D15605*****  
S1D15606*****  
Register  
Equipment Type by Thermal Gradient [Units: %/°C ] Equipment Type by Thermal Gradient [Units: %/°C ]  
D2 D1 D0 (1) –0.05 (2) –0.2 (3) VREG External Input (1) –0.05 (2) –0.2 (3) VREG External Input  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.4  
1.3  
1.5  
1.8  
2.0  
2.3  
2.5  
2.8  
3.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.4  
5.9  
6.4  
1.3  
1.5  
1.8  
2.0  
2.3  
2.5  
2.8  
3.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
S1D15607*****  
S1D15608*****/S1D15609*****  
Register  
Equipment Type by Thermal Gradient [Units: %/  
°
C ] Equipment Type by Thermal Gradient [Units: %/°C ]  
D2 D1 D0 (1) –0.05 (2) –0.2 (3) VREG External Input  
–0.05  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3.0  
3.5  
4.0  
4.5  
5.0  
5.4  
5.9  
6.4  
1.3  
1.5  
1.8  
2.0  
2.3  
2.5  
2.8  
3.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
3
3.5  
4
4.5  
5
5.4  
5.9  
6.4  
For the internal resistance ratio, a manufacturing  
dispersion of up to ±7% should be taken into account.  
When not within the tolerance, adjust the V5 voltage by  
externally mounting Ra and Rb.  
Figs. 9, 10, 11 (for S1D15605 Series), 12, 13, 14 (for  
S1D15606 Series), 15, 16, 17 (for S1D15607 Series), 18  
(for S1D15608D00B ) and Figs. 19 (for  
*
S1D15609D00B ) show V5 voltage measured by values  
*
of the internal resistance ratio resistor for V5 voltage  
adjustment and electric volume resister for each  
temperature grade model, when Ta = 25 °C.  
Rev. 2.4a  
EPSON  
8–35  
S1D15605 Series  
S1D15605D00B /S1D15605D11B  
*
*
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 9: S1D15605D00B /S1D15605D11B (1) For Models Where the Thermal Gradient = -0.05%/°C  
*
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
S1D15605D01B  
*
–16  
1 1 1  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 10: S1D15605D01B (2) For Models Where the Thermal Gradient = -0.2%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
8–36  
EPSON  
Rev. 2.4a  
S1D15605 Series  
S1D15605D02B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
–8  
–7  
0 0 1  
0 0 0  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
–1  
(D2, D1, D0)  
0
Electric Volume  
Resister  
Figure 11: S1D15605D02B (3) For models with External Input  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
S1D15606D00B /S1D15606D11B  
*
*
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
The V5 voltage  
–4  
regulator internal  
resistance ratio  
registers  
–3  
(D2, D1, D0)  
–2  
–1  
0
Electric Volume  
Resister  
Figure 12: S1D15606D00B /S1D15606D11B (1) For Models Where the Thermal Gradient = -0.05%/°C  
*
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
Rev. 2.4a  
EPSON  
8–37  
S1D15605 Series  
S1D15606D01B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 13: S1D15606D01B (2) For Models Where the Thermal Gradient = -0.2%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
S1D15606D02B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
–8  
–7  
0 0 1  
0 0 0  
–6  
–5  
–4  
The V5 voltage  
–3  
regulator internal  
resistance ratio  
registers  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 14: S1D15606D02B (3) For models with External Input  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
8–38  
EPSON  
Rev. 2.4a  
S1D15605 Series  
S1D15607D00B /S1D15607D11B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
–8  
–7  
0 0 0  
–6  
–5  
The V5 voltage  
–4  
regulator internal  
resistance ratio  
registers  
–3  
(D2, D1, D0)  
–2  
–1  
0
Electric Volume  
Resister  
Figure 15: S1D15607D00B /S1D15607D11B (1) For Models Where the Thermal Gradient = -0.05%/°C  
*
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
S1D15607D01B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 16: S1D15607D01B (2) For Models Where the Thermal Gradient = -0.2%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
Rev. 2.4a  
EPSON  
8–39  
S1D15605 Series  
S1D15607D02B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
–8  
0 1 0  
0 0 1  
0 0 0  
–7  
–6  
–5  
–4  
The V5 voltage  
–3  
regulator internal  
resistance ratio  
registers  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 17: S1D15607D02B (3) For models with External Input  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
S1D15608D00B  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
–8  
0 1 0  
0 0 1  
0 0 0  
–7  
–6  
–5  
–4  
The V5 voltage  
–3  
regulator internal  
resistance ratio  
registers  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 18: S1D15608D00B (1) For Models Where the Thermal Gradient = –0.05%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
8–40  
EPSON  
Rev. 2.4a  
S1D15605 Series  
S1D15609D00B  
*
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
–8  
0 1 0  
0 0 1  
0 0 0  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 19: S1D15609D00B Temperature Gradient = –0.05%/°C Model  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
Setup example: When selecting Ta = 25°C and V5 = 7  
V for an S1D15607 model on which Temperature  
gradient = –0.05%/°C.  
At this time, the variable range and the notch width of  
the V5 voltage is, as shown Table 13, as dependent on  
the electronic volume.  
Using Figure 15 and the equation A-1, the following  
setup is enabled.  
Table 12  
Register  
Contents  
D5 D4 D3 D2 D1 D0  
For V5 voltage  
regulator  
Electronic Volume  
1
0
0
0
1
1
0
0
1
Table 13  
Typ.  
V5  
Min.  
Max.  
Units  
Variable Range  
Notch width  
–8.4 (63 levels)  
–6.8 (central value) –5.1 (0 level)  
51  
[V]  
[mV]  
Rev. 2.4a  
EPSON  
8–41  
S1D15605 Series  
respectively. When this is done, the use of the electronic  
volume function makes it possible to adjust the brightness  
of the liquid crystal display by controlling the liquid  
crystal power supply voltage V5 through commands.  
In the range where | V5 | < | VOUT |, the V5 voltage can  
be calculated using equation B-1 based on the external  
resistances Ra’ and Rb’.  
(B) When an External Resistance is Used  
(i.e., The V5 Voltage Regulator Internal  
Resistors Are Not Used) (1)  
The liquid crystal power supply voltage V5 can also be  
set without using the V5 voltage regulator internal  
resistors (IRS terminal = LOW) by adding resistors Ra’  
and Rb’ between VDD and VR, and between VR and V5,  
Rb'  
V5 = 1+  
= 1+  
VEV  
Ra'  
Rb'  
Ra'  
α
1–  
VREG  
162  
α
VEV = 1−  
VREG  
(
)
( Equation B-1)  
[
]
162  
V
DD  
V
EV (fixed voltage power supply + electronic volume)  
External  
resistor Ra'  
+
V
5
External  
resistor Rb'  
Figure 20  
Setup example: When selecting Ta = 25°C and V5 = –  
7 V for an S1D15607 Series model where the temperature  
gradient = –0.05%/°C.  
When the central value of the electron volume register  
is (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then α  
= 31 and VREG = –2.1 V so, according to equation B-1,  
Consequently, by equations B-2 and B-3,  
Rb'  
= 3.12  
Ra'  
Ra' = 340kΩ  
Rb' = 1060kΩ  
Rb'  
Ra'  
α
V5 = 1+  
1−  
1−  
VREG  
2.1  
At this time, the V5 voltage variable range and notch  
width, based on the electron volume function, is as  
given in Table 14.  
162  
Rb'  
Ra'  
31  
11V = 1+  
(
)
(Equation B-2)  
162  
Moreover, when the value of the current running through  
Ra’ and Rb’ is set to 5 µA,  
(Equation B-3)  
Table 14  
Typ.  
Ra' +Rb' = 1.4MΩ  
V5  
Min.  
Max.  
Units  
Variable Range  
Notch width  
–8.6 (63 levels)  
–7.0 (central value) –5.3 (0 level)  
52  
[V]  
[mV]  
8–42  
EPSON  
Rev. 2.4a  
S1D15605 Series  
the electronic volume function makes it possible to  
control the liquid crystal power supply voltage V5 by  
commands to adjust the liquid crystal display brightness.  
In the range where | V5 | < | VOUT | the V5 voltage can  
be calculated by equation C-1 below based on the R1  
and R2 (variable resistor) and R3 settings, where R2 can  
be subjected to fine adjustments (R2).  
(C) When External Resistors are Used  
(i.e. The V5 Voltage Regulator Internal  
Resistors Are Not Used). (2)  
When the external resistor described above are used,  
adding a variable resistor as well makes it possible to  
perform fine adjustments on Ra’ and Rb’, to set the  
liquid crystal drive voltage V5. In this case, the use of  
R3 + R2 − ∆R2  
V5 = 1+  
= 1+  
VEV  
R1 + ∆R2  
R3 + R2 − ∆R2  
R1 + ∆R2  
α
1–  
VREG  
162  
α
VEV = 1−  
VREG  
(Equation C-1)  
(
)
[
]
162  
V
DD  
V
EV (fixed voltage supply + electronic volume)  
External  
resistor R  
Ra'  
1
+
V5  
R2  
External  
resistor R  
2
VR  
External  
resistor R  
Rb'  
3
Figure 21  
When R2 = R2, in order to make V = –5 V,  
Setup example: When selecting Ta = 25°C and V5 = –  
5 to –9 V (using R2) for an S1D15607 model where the  
temperature gradient = –0.05%/°C.  
R3  
31  
5V = 1 +  
1 −  
2.1  
(
)
R + R2  
162  
1
When the central value for the electronic volume register  
is set at (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0),  
(Equation C-3)  
Moreover, when the current flowing VDD and V5 is set  
α
= 31  
to 5 µA,  
VREG = −2.1V  
R + R2 + R3 = 1.4MΩ  
(Equation C-4)  
1
so, according to equation C-1, when R2 = 0 , in order  
to make V5 = –9 V,  
With this, according to equation C-2, C-3 and C-4,  
R
= 264kΩ  
1
R3 + R2  
31  
9V = 1 +  
1 −  
2.1  
(
)
R2 = 211kΩ  
R3 = 925kΩ  
R
162  
1
(Equation C-2)  
At this time, the V5 voltage variable range and notch  
width based on the electron volume function is as shown  
in Table 15.  
Table 15  
Typ.  
V5  
Min.  
Max.  
Units  
Variable Range  
Notch width  
–8.7 (63 levels)  
–7.0 (central value) –5.3 (0 level)  
53  
[V]  
[mV]  
Rev. 2.4a  
EPSON  
8–43  
S1D15605 Series  
* When the V5 voltage regulator internal resistors or  
the electronic volume function is used, it is necessary  
to at least set the voltage regulator circuit and the  
voltage follower circuit to an operating mode using  
the power control set commands. Moreover, it is  
necessary to provide a voltage from VOUT when the  
Booster circuit is OFF.  
* The VR terminal is enabled only when the V5 voltage  
regulator internal resistors are not uesd (i.e. the IRS  
terminal = LOW). When the V5 voltage regulator  
internal resistors are uesd (i.e. when the IRS terminal  
= HIGH), then the VR terminal is left open.  
High Power Mode  
The power supply circuit equipped in the S1D15605  
Series chips has very low power consumption (normal  
mode: HPM = HIGH). However, for LCDs or panels  
with large loads, this low-power power supply may  
cause display quality to degrade. When this occurs,  
setting the HPM terminal to LOW (high power mode)  
can improve the quality of the display. We recommend  
that the display be checked on actual equipment to  
determine whether or not to use this mode.  
Moreover, if the improvement to the display is inadequate  
even after high power mode has been set, then it is  
necessary to add a liquid crystal drive power supply  
externally.  
* Because the input impedance of the VR terminal is  
high, it is necessary to take into consideration short  
leads, shield cables, etc. to handle noise.  
The Internal Power Supply Shutdown  
Command Sequence  
The Liquid Crystal Voltage Generator Circuit  
The V5 voltage is produced by a resistive voltage  
divider within the IC, and can be produced at the V1, V2,  
V3, and V4 voltage levels required for liquid crystal  
driving. Moreover, when the voltage follower changes  
the impedance, it provides V1, V2, V3 and V4 to the  
liquid crystal drive circuit. 1/9 bias or 1/7 bias for  
S1D15605 Series, 1/8 bias or 1/6 bias for S1D15606  
Series, 1/6 bias or 1/5 bias for the S1D15607 Series, 1/  
8 bias or 1/6 bias for S1D15608 Series and 1/8 bias or  
1/6 bias for S1D15609 Series can be selected.  
The sequence shown in Figure 22 is recommended for  
shutting down the internal power supply, first placing  
the power supply in power saver mode and then turning  
the power supply OFF.  
Sequence  
Details  
(Command, status)  
Command address  
D7 D6 D5 D4 D3 D2 D1 D0  
Power saver  
commands  
(compound)  
Step1  
Step2  
End  
Display OFF  
1
1
0
0
1
1
0
0
1
0
1
1
1
0
0
1
Display all points ON  
Internal power supply OFF  
Figure 22  
8–44  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Reference Circuit Examples  
Figure 22 shows reference circuit examples.  
When used all of the step-up circuit, voltage regulating circuit and V/F circuit  
(1) When the voltage regulator internal resistor  
is used.  
(2) When the voltage regulator internal resistor  
is not used.  
(Example where VSS2 = VSS, with 4x step-up)  
(Example where VSS2 = VSS, with 4x step-up)  
V
V
DD  
VDD  
IRS M/S  
IRS M/S  
V
V
SS2  
V
V
SS2  
C
1
C
1
OUT  
OUT  
SS  
V
V
SS  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
C
C
1
1
C
C
1
1
C1  
C1  
R
R
R
3
2
1
V
5
V
V
5
V
R
R
V
DD  
DD  
V
V
V
V
V
V
DD  
V
V
V
V
V
V
DD  
1
C2  
C2  
C2  
C2  
C2  
C
C
C
C
C
2
2
2
2
2
1
2
2
3
3
4
4
5
5
When the voltage regulator circuit and V/F  
circuit alone are used  
(2) When the V  
is used.  
5
voltage regulator internal resistor  
(1) When the V  
5
voltage regulator internal resistor  
is not used.  
V
DD  
VDD  
IRS M/S  
IRS M/S  
VSS2  
V
SS2  
V
OUT  
V
OUT  
V
V
SS  
V
SS  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
External  
power  
supply  
External  
power  
supply  
R3  
R2  
R1  
V5  
V5  
VR  
VR  
DD  
VDD  
V
V
V
V
V
V
DD  
V
V
V
V
V
V
DD  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
1
1
2
2
3
3
4
4
5
5
Rev. 2.4a  
EPSON  
8–45  
S1D15605 Series  
When the V/F circuit alone is used  
When the built-in power is not used  
VDD  
VSS  
V
DD  
IRS M/S  
IRS M/S  
V
V
SS2  
V
V
SS2  
OUT  
OUT  
VSS  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
External  
power  
supply  
V
V
5
V
V
5
R
R
V
DD  
VDD  
V
V
V
V
V
V
DD  
1
V
V
V
V
V
V
DD  
1
C2  
C2  
C2  
C2  
C2  
2
2
External  
power  
supply  
3
3
4
4
5
5
5 When the built-in power circuit is used to drive a  
liquid crystal panel heavily loaded with AC or DC, it  
is recommended to connect an external resistor to  
stabilize potentials of V1, V2, V3 and V4 which are  
output from the built-in voltage follower.  
Examples of shared reference settings  
When V5 can vary between –8 and 12 V  
Item  
Set value  
Units  
C1  
C2  
1.0 to 4.7  
0.01 to 1.0  
µF  
µF  
V
DD, V0  
R4  
R4  
C2  
V
V
V
V
1
2
3
4
Reference set value R4: 100k~ 1MΩ  
It is recommended to set an optimum  
resistance value R4 taking the liquid crystal  
display and the drive waveform.  
R4  
R4  
V
5
Figure 23  
* 1 Because the VR terminal input impedance is high, use short leads and shielded lines.  
* 2 C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal  
drive voltage.  
Example of the Process by which to Determine the Settings:  
• Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to VOUT from the outside.  
• Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that  
stabilizes the liquid crystal drive voltages (V1 to V5). Note that all C2 capacitors must have the same capacitance  
value.  
• Next turn all the power supplies ON and determine C1.  
8–46  
EPSON  
Rev. 2.4a  
S1D15605 Series  
* Precautions when installing the COG  
the resistance of ITO wiring is being inserted in  
series with the switching transistor, thus dominating  
the boosting ability.  
Consequently, the boosting ability will be hindered  
as a result and pay sufficient attention to the wiring  
to respective boosting capacitors.  
When installing the COG, it is necessary to duly consider  
the fact that there exists a resistance of the ITO wiring  
occurring between the driver chip and the externally  
connected parts (such as capacitors and resistors). By the  
influence of this resistance, non-conformity may occur  
with the indications on the liquid crystal display.  
Therefore, when installing the COG design the module  
paying sufficient considerations to the following three  
points.  
1. Suppress the resistance occurring between the driver  
chip pin to the externally connected parts as much as  
possible.  
2. Suppress the resistance connecting to the power  
supply pin of the driver chip.  
2. Connection of the smoothing capacitors for the  
liquid crystal drive  
The smoothing capacitors for the liquid crystal  
driving potentials (V1. V2, V3 and V4) are  
indispensable for liquid crystal drives not only for  
the purpose of mere stabilization of the voltage  
levels. If the ITO wiring resistance which occurs  
pursuant to installation of the COG is supplemented  
to these smoothing capacitors, the liquid crystal  
driving potentials become unstable to cause non-  
conformity with the indications of the liquid crystal  
display. Therefore, when using the COG module,  
we definitely recommend to connect reinforcing  
resistors externally.  
3. Make various COG module samples with different  
ITO sheet resistance to select the module with the  
sheet resistance with sufficient operation margin.  
Also, as for this driver IC, pay sufficient attention to the  
following points when connecting to external parts for  
the characteristics of the circuit.  
1. Connection to the boosting capacitors The boosting  
capacitors (the capacitors connecting to respective  
CAP pins and capacitor being inserted between  
VOUT and VSS2) of this IC are being switched over  
by use of the transistor with very low ON-resistance  
of about 10. However, when installing the COG,  
Reference value of the resistance is 100kto 1M.  
Meanwhile, because of the existence of these  
reinforcing resistors, current consumption will  
increase.  
Indicated below is an exemplary connection diagram of  
external resistors.  
Please make sufficient evaluation work for the display  
statuses with any connection tests.  
Exemplary connection diagram 1.  
Exemplary connection diagram 2.  
VDD  
VDD  
V
DD  
V
DD  
R4  
R4  
V
V
V
1
2
3
V
V
V
1
2
3
C2  
C2  
C2  
C2  
C2  
C2  
R4  
R4  
V
V
4
5
V
V
4
5
C
2
2
C
2
2
R4  
R4  
C
C
Rev. 2.4a  
EPSON  
8–47  
S1D15605 Series  
The Reset Circuit  
When the RES input comes to the LOW level, these  
LSIs return to the default state. Their default states are  
as follows:  
On the other hand, when the reset command is used, the  
above default settings from 11 to 19 are only executed.  
When the power is turned on, the IC internal state  
becomes unstable, and it is necessary to initialize it  
using the RES terminal. After the initialization, each  
input terminal should be controlled normally.  
Moreover, when the control signal from the MPU is in  
the high impedance, an overcurrent may flow to the IC.  
After applying a current, it is necessary to take proper  
measures to prevent the input terminal from getting into  
the high impedance state.  
1. Display OFF  
2. Normal display  
3. ADC select: Normal (ADC command D0 = LOW)  
4. Power control register: (D2, D1, D0) = (0, 0, 0)  
5. Serial interface internal register data clear  
6.  
LCD power supply b.i.a.s..r.a.t.e..:.............. 1/9 bias  
S1D15605*****  
S1D15606*****, 15608*****, 15609*****  
If the internal liquid crystal power supply circuit is not  
used on S1D15605D11B , S1D15606D11B ,  
................................................................................ 11//68 bbiiaass  
*
*
S1D15607*********  
S1D15607D11B , S1D15608D11B  
and  
*
*
7. All-indicator lamps-on OFF (All-indicator lamps  
ON/OFF command D0 = LOW)  
S1D15609D11B , it is necessary that RES is HIGH  
*
when the external liquid crystal power supply is turned  
on. This IC has the function to discharge V5 when RES  
is LOW, and the external power supply short-circuits to  
VDD when RES is LOW.  
8. Power saving clear  
9. V5 voltage regulator internal resistors Ra and Rb  
separation  
(In case of S1D15605D11B , S1D15606D11B ,  
S1D15607D11B , S1D15608D11B and  
*
*
While RES is LOW, the oscillator and the display  
timing generator stop, and the CL, FR, FRS and DOF  
terminals are fixed to HIGH. The terminals D0 to D7  
are not affected. The VDD level is output from the SEG  
and COM output terminals. This means that an internal  
resistor is connected between VDD and V5.  
When the internal liquid crystal power supply circuit is  
not used on other models of S1D15605 series, it is  
necessary that RE is LOWwhen the external liquid  
crystal power supply is turned on.  
*
*
S1D15609D11B , internal resistors are connected  
*
while RES is LOW.)  
10. Output conditions of SEG and COM terminals  
SEG : V2/V3, COM : V1/V4  
(In case of S1D15605D11B , S1D15606D11B ,  
S1D15607D11B , S1D15608D11B and  
*
*
*
*
S1D15609D11B , both the SEG terminal and the  
*
COM terminal output the VDA level while RES is  
LOW. In case of other models, the SEG terminal  
outputs V2 and the COM terminal outputs V1 while  
RES is LOW.)  
While RES is LOW, the oscillator works but the display  
timing generator stops, and the CL, FR, FRS and DOF  
terminals are fixed to HIGH. The terminals D0 to D7  
are not affected.  
11. Read modify write OFF  
12. Static indicator OFF  
Static indicator register : (D1, D2) = (0, 0)  
13. Display start line set to first line  
14. Column address set to Address 0  
15. Page address set to Page 0  
16. Common output status normal  
17. V5 voltage regulator internal resistor ratio set mode  
clear  
18. Electronic volume register set mode clear  
Electronic volume register : (D5, D4, D3, D2, D1,  
D0) = (1, 0. 0, 0, 0, 0)  
19. Test mode clear  
8–48  
EPSON  
Rev. 2.4a  
S1D15605 Series  
7. COMMANDS  
The S1D15605 Series chips identify the data bus signals by a combination of A0, RD (E), WR (R/W) signals. Command  
interpretation and execution does not depend on the external clock, but rather is performed through internal timing only,  
and thus the processing is fast enough that normally a busy check is not required.  
In the 8080 MPU interface, commands are launched by inputting a low pulse to the RD terminal for reading, and  
inputting a low pulse to the WR terminal for writing. In the 6800 Series MPU interface, the interface is placed in a read  
mode when an HIGH signal is input to the R/W terminal and placed in a write mode when a LOW signal is input to the  
R/W terminal and then the command is launched by inputting a high pulse to the E terminal. (See “10. Timing  
Characteristics” regarding the timing.) Consequently, the 6800 Series MPU interface is different than the 80x86 Series  
MPU interface in that in the explanation of commands and the display commands the status read and display data read  
RD (E) becomes “1(H)”. In the explanations below the commands are explained using the 8080 Series MPU interface  
as the example.  
When the serial interface is selected, the data is input in sequence starting with D7.  
<Explanation of Commands>  
(1) Display ON/OFF  
This command turns the display ON and OFF.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
1
1
1
1
0
Display ON  
Display OFF  
When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See  
the section on the power saver for details.  
(2) Display Start Line Set  
This command is used to specify the display start line address of the display data RAM shown in Figure 4. For further  
details see the explanation of this function in “The Line Address Circuit”.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Line address  
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
1
1
1
1
1
1
1
1
1
1
0
1
62  
63  
(3) Page Address Set  
This command specifies the page address corresponding to the low address when the MPU accesses the display data  
RAM (see Figure 4). Specifying the page address and column address enables to access a desired bit of the display data  
RAM. Changing the page address does not accompany a change in the status display. See the page address circuit in  
the Function Description (page 1–20) for the detail.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Page address  
0
1
0
1
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
0
1
1
0
1
0
1
0
7
8
Rev. 2.4a  
EPSON  
8–49  
S1D15605 Series  
(4) Column Address Set  
This command specifies the column address of the display data RAM shown in Figure 4. The column address is split  
into two sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the  
display data RAM is accessed, the column address automatically increments (+1), making it possible for the MPU to  
continuously read from/write to the display data. The column address increment is topped at 83H. This does not change  
the page address continuously. See the function explanation in “The Column Address Circuit,” for details.  
E
R/W  
Column  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 A7 A6 A5 A4 A3 A2 A1 A0 address  
HIGH bits →  
LOW bits →  
0
1
0
0
0
0
1 A7 A6 A5 A4 0  
0 A3 A2 A1 A0 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
130  
131  
(5) Status Read  
R/W  
E
A0 RD WR  
D7  
BUSY  
D6  
D5  
D4  
D3 D2 D1 D0  
0
0
1
ADC ON/OFF RESET  
0
0
0
0
BUSY  
When BUSY = 1, it indicates that either processing is occurring internally or a reset condition  
is in process. While the chip does not accept commands until BUSY = 0, if the cycle time can  
be satisfied, there is no need to check for BUSY conditions.  
ADC  
This shows the relationship between the column address and the segment driver.  
0: Reverse (column address 131-n SEG n)  
1: Normal (column address n SEG n)  
(The ADC command switches the polarity.)  
ON/OFF ON/OFF: indicates the display ON/OFF state.  
0: Display ON  
1: Display OFF  
(This display ON/OFF command switches the polarity.)  
RESET  
This indicates that the chip is in the process of initialization either because of a RES signal or  
because of a reset command.  
0: Operating state  
1: Reset in progress  
(6) Display Data Write  
This command writes 8-bit data to the specified display data RAM address. Since the column address is automatically  
incremented by “1” after the write, the MPU can write the display data.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
1
0
Write data  
(7) Display Data Read  
This command reads 8-bit data from the specified display data RAM address. Since the column address is automatically  
incremented by “1” after the read, the CPU can continuously read multiple-word data. One dummy read is required  
immediately after the column address has been set. See the function explanation in “Display Data RAM” for the  
explanation of accessing the internal registers. When the serial interface is used, reading of the display data becomes  
unavailable.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
Read Data  
8–50  
EPSON  
Rev. 2.4a  
S1D15605 Series  
(8) ADC Select (Segment Driver Direction Select)  
This command can reverse the correspondence between the display RAM data column address and the segment driver  
output. Thus, sequence of the segment driver output pins may be reversed by the command. See the column address  
circuit (page 1–20) for the detail. Increment of the column address (by “1”) accompanying the reading or writing the  
display data is done according to the column address indicated in Figure 4.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
0
0
0
0
1
Normal  
Reverse  
(9) Display Normal/Reverse  
This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When  
this is done the display data RAM contents are maintained.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
0
1
1
0
RAM Data HIGH  
LCD ON voltage (normal)  
RAM Data LOW  
1
LCD ON voltage (reverse)  
(10) Display All Points ON/OFF  
This command makes it possible to force all display points ON regardless of the content of the display data RAM. The  
contents of the display data RAM are maintained when this is done. This command takes priority over the display  
normal/reverse command.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
0
1
0
0
1
Normal display mode  
Display all points ON  
When the display is in an OFF mode, executing the display all points ON command will place the display in power save  
mode. For details, see the (20) Power Save section.  
(11) LCD Bias Set  
This command selects the voltage bias ratio required for the liquid crystal display. This command can be valid while  
the V/F circuit of Power Supply circuit is in operation.  
E R/W  
Select Status  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
S1D15605***** S1D15606***** S1D15607***** S1D15608***** S1D15609*****  
0
1
0
1
0
1
0
0
0
1
0
1
1/9 bias  
1/7 bias  
1/8 bias  
1/6 bias  
1/6 bias  
1/5 bias  
1/8 bias  
1/6 bias  
1/8 bias  
1/6 bias  
(12) Read/Modify/Write  
This command is used paired with the “END” command. Once this command has been input, the display data read  
command does not change the column address, but only the display data write command increments (+1) the column  
address. This mode is maintained until the END command is input. When the END command is input, the column  
address returns to the address it was at when the read/modify/write command was entered. This function makes it  
possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when  
there is a blanking cursor.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
0
0
* Even in read/modify/write mode, other commands aside from display data read/write commands can also be used.  
However, the column address set command cannot be used.  
Rev. 2.4a  
EPSON  
8–51  
S1D15605 Series  
• The sequence for cursor display  
Page address set  
Column address set  
Read/modify/write  
Dummy read  
Data read  
Data process  
Data write  
No  
Change complete?  
Yes  
End  
Figure 24  
(13) End  
This command releases the read/modify/write mode, and returns the column address to the address it was at when the  
mode was entered.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column address  
N
N+1  
N+2  
N+3  
• • •  
N+m  
N
Read/modify/write mode set  
End  
Figure 25  
(14) Reset  
This command initializes the display start line, the column address, the page address, the common output mode, the V5  
voltage regulator internal resistor ratio, the electronic volume, and the static indicator are reset, and the read/modify/  
write mode and test mode are released. There is no impact on the display data RAM. See the function explanation in  
“Reset” for details.  
The reset operation is performed after the reset command is entered.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
1
0
The initialization when the power supply is applied must be done through applying a reset signal to the RES terminal.  
The reset command must not be used instead.  
8–52  
EPSON  
Rev. 2.4a  
S1D15605 Series  
(15) Common Output Mode Select  
This command can select the scan direction of the COM output terminal. For details, see the function explanation in  
“Common Output Mode Select Circuit.”  
E
R/W  
Selected Mode  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
S1D15605***** S1D15606***** S1D15607***** S1D15608***** S1D15609*****  
Normal COM0COM63COM0COM47 COM0COM31 COM0COM53COM0COM51  
Reverse COM63COM0 COM47COM0 COM31COM0 COM53COM0 COM51COM0  
0
1
0
1
1
0
0
0
1
*
*
*
* Disabled bit  
(16) Power Controller Set  
This command sets the power supply circuit functions. See the function explanation in “The Power Supply Circuit,”  
for details  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Selected Mode  
0
1
0
0
0
1
0
1
0
1
Booster circuit: OFF  
Booster circuit: ON  
0
1
Voltage regulator circuit: OFF  
Voltage regulator circuit: ON  
0
1
Voltage follower circuit: OFF  
Voltage follower circuit: ON  
[Translator’s Note: the abbreviations explained within these parentheses for V  
and V/F have been written out in the English translation and are therefore no  
longer necessary.]  
(17) V5 Voltage Regulator Internal Resistor Ratio Set  
This command sets the V5 voltage regulator internal resistor ratio. For details, see the function explanation is “The  
Power Supply Circuits.”  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Rb/Ra Ratio  
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
Small  
1
1
1
1
0
1
Large  
(18) The Electronic Volume (Double Byte Command)  
This command makes it possible to adjust the brightness of the liquid crystal display by controlling the liquid crystal  
drive voltage V5 through the output from the voltage regulator circuits of the internal liquid crystal power supply.  
This command is a two byte command used as a pair with the electronic volume mode set command and the electronic  
volume register set command, and both commands must be issued one after the other.  
• The Electronic Volume Mode Set  
When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume  
mode has been set, no other command except for the electronic volume register command can be used. Once the  
electronic volume register set command has been used to set data into the register, then the electronic volume mode is  
released.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
0
0
0
0
0
1
Rev. 2.4a  
EPSON  
8–53  
S1D15605 Series  
• Electronic Volume Register Set  
By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V5 assumes  
one of the 64 voltage levels.  
When this command is input, the electronic volume mode is released after the electronic volume register has been set.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
| V5 |  
0
0
0
1
1
1
0
0
0
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Small  
0
0
1
1
0
0
*
*
*
*
1
1
1
1
1
1
1
1
1
1
0
1
Large  
* Inactive bit  
When the electronic volume function is not used, set this to (1, 0, 0, 0, 0, 0)  
• The Electronic Volume Register Set Sequence  
Electronic volume mode set  
Electronic volume register set  
Electronic volume mode clear  
No  
Changes complete?  
Yes  
Figure 26  
(19) Static Indicator (Double Byte Command)  
This command controls the static drive system indicator display. The static indicator display is controlled by this  
command only, and is independent of other display control commands.  
This is used when one of the static indicator liquid crystal drive electrodes is connected to the FR terminal, and the other  
is connected to the FRS terminal. A different pattern is recommended for the static indicator electrodes than for the  
dynamic drive electrodes. If the pattern is too close, it can result in deterioration of the liquid crystal and of the  
electrodes.  
The static indicator ON command is a double byte command paired with the static indicator register set command, and  
thus one must execute one after the other. (The static indicator OFF command is a single byte command.)  
• Static Indicator ON/OFF  
When the static indicator ON command is entered, the static indicator register set command is enabled. Once the static  
indicator ON command has been entered, no other command aside from the static indicator register set command can  
be used. This mode is cleared when data is set in the register by the static indicator register set command.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Static Indicator  
0
1
0
1
0
1
0
1
1
0
0
1
OFF  
ON  
8–54  
EPSON  
Rev. 2.4a  
S1D15605 Series  
• Static Indicator Register Set  
This command sets two bits of data into the static indicator register, and is used to set the static indicator into a blinking  
mode.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Indicator Display State  
0
1
0
*
*
*
*
*
*
0
0
1
1
0
1
0
1
OFF  
ON (blinking at approximately one second intervals)  
ON (blinking at approximately 0.5 second intervals)  
ON (constantly on)  
* Disabled bit  
• Static Indicator Register Set Sequence  
Static indicator mode set  
Static indicator register set  
Static indicator  
mode clear  
No  
Changes complete?  
Yes  
Figure 27  
(20) Power Save (Compound Command)  
When the display all points ON is performed while the display is in the OFF mode, the power saver mode is entered,  
thus greatly reducing power consumption.  
The power saver mode has two different modes: the sleep mode and the standby mode. When the static indicator is OFF,  
it is the sleep mode that is entered. When the static indicator is ON, it is the standby mode that is entered.  
In the sleep mode and in the standby mode, the display data is saved as is the operating mode that was in effect before  
the power saver mode was initiated, and the MPU is still able to access the display data RAM.  
Refer to figure 28 for power save off sequence.  
Static indicator OFF  
Static indicator ON  
Power saver (compound command)  
Sleep mode  
Standby mode  
Power save OFF (compound command)  
Display all points OFF command  
Static indicator ON  
Power save OFF  
(Display all points OFF command)  
(2 bytes command)  
Sleep mode cancel  
Standby mode cancel  
Figure 28  
Rev. 2.4a  
EPSON  
8–55  
S1D15605 Series  
• Sleep Mode  
This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption  
current is reduced to a value near the static current. The internal modes during sleep mode are as follows:  
1 The oscillator circuit and the LCD power supply circuit are halted.  
2 All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VDD level.  
• Standby Mode  
The duty LCD display system operations are halted and only the static drive system for the indicator continues to  
operate, providing the minimum required consumption current for the static drive. The internal modes are in the  
following states during standby mode.  
1 The LCD power supply circuits are halted. The oscillator circuit continues to operate.  
2 The duty drive system liquid crystal drive circuits are halted and the segment and common driver outputs output  
a VDD level. The static drive system does not operate.  
When a reset command is performed while in standby mode, the system enters sleep mode.  
* When an external power supply is used, it is recommended that the functions of the external power supply circuit  
be stopped when the power saver mode is started. For example, when the various levels of liquid crystal drive voltage  
are provided by external resistive voltage dividers, it is recommended that a circuit be added in order to cut the  
electrical current flowing through the resistive voltage divider circuit when the power saver mode is in effect. The  
S1D15605 series chips have a liquid crystal display blanking control terminal DOF. This terminal enters an LOW  
state when the power saver mode is launched. Using the output of DOF, it is possible to stop the function of an external  
power supply circuit.  
* When the master is turned on, the oscillator circuit is operable immediately after the powering on.  
(21) NOP  
Non-OPeration Command  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
1
1
(22) Test  
This is a command for IC chip testing. Please do not use it. If the test command is used by accident, it can be cleared  
by applying a LOW signal to the RES input by the reset command or by using an NOP.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
1
*
*
*
*
* Inactive bit  
Note: The S1D15605 Series chips maintain their operating modes until something happens to change them.  
Consequently, excessive external noise, etc., can change the internal modes of the S1D15605 Series chip. Thus  
in the packaging and system design it is necessary to suppress the noise or take measure to prevent the noise  
from influencing the chip. Moreover, it is recommended that the operating modes be refreshed periodically to  
prevent the effects of unanticipated noise.  
8–56  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Table 16 Table of S1D15605 Series Commands  
Command Code  
Command  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Function  
(1) Display ON/OFF  
0
1
0
1
0
1
0
1
1
1
0
1
LCD display ON/OFF  
0: OFF, 1: ON  
(2) Display start line set  
(3) Page address set  
0
1
0
0
1
Display start address  
Sets the display RAM display  
start line address  
0
0
1
1
0
0
1
0
0
0
1
0
1
1
Page address  
Sets the display RAM page  
address  
Sets the most significant 4 bits  
of the display RAM column  
address.  
(4) Column address  
set upper bit  
Most significant  
column address  
Column address  
set lower bit  
0
1
0
0
0
0
0
Least significant  
column address  
Sets the least significant 4 bits of  
the display RAM column address.  
(5) Status read  
0
1
1
0
0
1
0
1
1
0
1
0
Status  
0
0
0
0
Reads the status data  
(6) Display data write  
(7) Display data read  
(8) ADC select  
Write data  
Read data  
Writes to the display RAM  
Reads from the display RAM  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
Sets the display RAM address  
SEG output correspondence  
0: normal, 1: reverse  
(9) Display normal/  
reverse  
0
0
0
1
1
1
0
0
0
0
1
Sets the LCD display normal/  
reverse  
0: normal, 1: reverse  
(10) Display all points  
ON/OFF  
0
1
Display all points  
0: normal display  
1: all points ON  
(11) LCD bias set  
0
1
Sets the LCD drive voltage  
bias ratio  
S1D15605*****.. 0: 1/9, 1: 1/7  
S1D15606*****  
/S1D15608*****. 0: 1/8, 1: 1/6  
/S1D15609*****  
S1D15607*****.. 0: 1/6, 1: 1/5  
Column address increment  
At write: +1  
(12) Read/modify/write  
0
1
0
1
1
1
0
0
0
0
0
At read: 0  
(13) End  
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
1
0
*
1
1
*
0
0
*
Clear read/modify/write  
Internal reset  
(14) Reset  
(15) Common output  
mode select  
0
1
Select COM output scan  
direction  
0: normal direction,  
1: reverse direction  
(16) Power control set  
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
Operating  
mode  
Select internal power  
supply operating mode  
(17) V5 voltage  
regulator internal  
resistor ratio set  
Resistor ratio  
Select internal resistor ratio  
(Rb/Ra) mode  
(18) Electronic volume  
mode set  
0
0
1
1
0
0
1
*
0
*
0
0
0
0
0
1
Electronic volume  
register set  
Electronic volume value  
Set the V5 output voltage  
electronic volume register  
(19) Static indicator  
ON/OFF  
0
0
1
1
0
0
1
*
0
*
1
*
0
*
1
*
1
*
0
0
1
0: OFF, 1: ON  
Static indicator  
register set  
Mode  
Set the flashing mode  
(20) Power saver  
Display OFF and display all  
points ON compound command  
(21) NOP  
(22) Test  
0
0
1
1
0
0
1
1
1
1
1
1
0
1
0
*
0
*
1
*
1
*
Command for non-operation  
Command for IC test. Do not  
use this command  
(Note) *: disabled data  
Rev. 2.4a  
EPSON  
8–57  
S1D15605 Series  
8. COMMAND DESCRIPTION  
Instruction Setup: Reference (reference)  
(1) Initialization  
Note: With this IC, when the power is applied, LCD driving non-selective potentials V2 and V3 (SEG pin) and V1  
and V4 (COM pin) are output through the LCD driving output pins SEG and COM. When electric charge is  
remaining in the smoothing capacitor connecting between the LCD driving voltage output pins (V1 ~ V5) and the  
VDD pin, the picture on the display may become totally dark instantaneously when the power is turned on. To  
avoid occurrence of such a failure, we recommend the following flow when turning on the power.  
1
When the built-in power is being used immediately after turning on the power:  
Turn ON the VDD-VSS power keeping the  
RES pin = LOW.  
When the power is stabilized  
Release the reset state. (RES pin = HIGH)  
Initialized state (Default) *1  
(In case of S1D15605D11B ,  
*
Function setup by command input (User setup)  
(11) LCD bias setting *2  
(8) ADC selection *3  
(15) Common output state selection *4  
S1D15606D11B , S1D15607D11B ,  
*
*
S1D15608D11B and S1D15609D11B )  
*
*
Arrange to execute all the procedures  
from releasing the reset state through  
setting the power control within 5ms.  
(In case of other models) execute the  
procedures from turning on the power  
to setting the power control in 5ms.  
Function setup by command input (User setup)  
(17) Setting the built-in resistance radio  
for regulation of the V5 voltage *5  
(18) Electronic volume control *6  
Function setup by command input (User setup)  
(16) Power control setting *7  
This concludes the initialization  
* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing  
capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.  
Notes: Refer to respective sections or paragraphs listed below.  
*1: 6. Description of functions; “Resetting circuit” (If takes not more than 2 ms from Power Supply ON to  
the stability of internal oscillating circuit.)  
*2: 7. Command description; “(11) LCD bias setting”  
*3: 7. Command description; “(8) ADC selection”  
*4: 7. Command description; “(15) Common output state selection”  
*5: 6. Description of functions; “Power circuit” & Command description; “(17) Setting the built-in  
resistance radio for regulation of the V5 voltage”  
*6: 6. Description of functions; “Power circuit” & Command description; “(18) Electronic volume control”  
*7: 6. Description of functions; “Power circuit” & Command description; “(16) Power control setting”  
8–58  
EPSON  
Rev. 2.4a  
S1D15605 Series  
2
When the built-in power is not being used immediately after turning on the power:  
Turn ON the VDD-VSS power keeping the  
RES pin = LOW.  
When the power is stabilized  
(In case of S1D15605D11B ,  
Release the reset state. (RES pin = HIGH)  
Initialized state (Default) *1  
*
S1D15606D11B , S1D15607D11B ,  
*
*
S1D15608D11B and S1D15609D11B )  
*
*
Arrange to start the power saver within  
5ms after releasing the reset state.  
(In case of other models) execute the  
procedures from turning on the power  
to setting the power control in 5ms.  
Power saver START (multiple commands) *8  
Function setup by command input (User setup)  
(11) LCD bias setting *2  
(8) ADC selection *3  
(15) Common output state selection *4  
Function setup by command input (User setup)  
(17) Setting the built-in resistance radio  
for regulation of the V5 voltage *5  
(18) Electronic volume control *6  
Power saver OFF *8  
Arrange to start power control  
setting within 5ms after turning  
OFF the power saver.  
Function setup by command input (User setup)  
(16) Power control setting *7  
This concludes the initialization  
* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing  
capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.  
Notes: Refer to respective sections or paragraphs listed below.  
*1: 6. Description of functions; “Resetting circuit” (The contents of DDRAM can be variable even in the  
initial setting (Default) at the reset state.)  
*2: 7. Command description; “(11) LCD bias setting”  
*3: 7. Command description; “(8) ADC selection”  
*4: 7. Command description; “(15) Common output state selection”  
*5: 6. Description of functions; “Power circuit” & “(17) Command description; Setting the built-in  
resistance radio for regulation of the V5 voltage”  
*6: 6. Description of functions; “Power circuit” & “(18) Command description; Electronic volume control”  
*7: 6. Description of functions; “Power circuit” & “(16) Command description; Power control setting”  
*8: 7. The power saver ON state can either be in sleep state or stand-by state.  
Command description; “Power saver START (multiple commands)”  
Rev. 2.4a  
EPSON  
8–59  
S1D15605 Series  
(2) Data Display  
End of initialization  
Function setup by command input (User setup)  
(2) Display start line set *9  
(3) Page address set *10  
(4) Column address set *11  
Notes: Reference items  
*9: Command Description; Display start line set  
Function setup by command input (User setup)  
(6) Display data write *12  
*10: Command Description; Page address set  
*11: Command Description; Column address set  
*12: Command Description; Display data write  
*13: Command Description; Display ON/OFF  
Avoid displaying all the data at the data  
display start (when the display is ON) in  
white.  
Function setup by command input (User setup)  
(1) Display ON/OFF *13  
End of data display  
(3) Power OFF *14  
• In case of S1D15605D11B , S1D15606D11B , S1D15607D11B , S1D15608D11B and S1D15609D11B ,  
*
*
*
*
*
Optional status  
Function setup by command input (User setup)  
(20) Power save *15  
Set the time (  
the VDD - VSS power (VDD - VSS = 1.8 V) longer  
than the time ( ) when the potential of V ~ V  
becomes below the threshold voltage  
(approximately 1 V) of the LCD panel.  
t
L
) from reset active to turning off  
t
H
5
1
Reset active (RES pin = LOW)  
For  
event. When  
between V and VDD to reduce it.  
t
H
, refer to the <Reference Data> of this  
t
H
is too long, insert a resistor  
V
DD – VSS power OFF  
5
• In case of other models,  
Set the time (tL) from power save to turning off  
the VDD - VSS power (VDD - VSS = 1.8 V) longer  
than the time (tH) when the potential of V5 ~ V1  
becomes below the threshold voltage  
Optional status  
(approximately 1V) of the LCD panel.  
Function setup by command input (User setup)  
(20) Power save *15  
tH is determined depending on the voltage  
regulator external resistors Ra and Rb and the  
time constant of V5 ~ V1 smoothing capacity C2.  
• When an internal resistor is used, it is  
recommended to insert a resistor R between  
VDD and V5 to reduce tH.  
VDD – VSS power OFF  
Notes: Reference items  
*14: The logic circuit of this IC’s power supply VDD - VSS controls the driver of the LCD power supply  
VDD - V5. So, if the power supply VDD - VSS is cut off when the LCD power supply VDD - V5 has  
still any residual voltage, the driver (COM. SEG) may output any uncontrolled voltage. When turning  
off the power, observe the following basic procedures:  
• After turning off the internal power supply, make sure that the potential V5 ~ V1 has become below  
the threshold voltage of the LCD panel, and then turn off this IC’s power supply (VDD - VSS).  
6. Description of Function, 6.7 Power Circuit  
*15: After inputting the power save command, be sure to reset the function using the RES terminal until the  
power supply VDD - VSS is turned off. 7. Command Description (20) Power Save  
*16: After inputting the power save command, do not reset the function using the RES terminal until the  
power supply VDD - VSS is turned off. 7. Command Description (20) Power Save  
8–60  
EPSON  
Rev. 2.4a  
S1D15605 Series  
(4) Refresh  
It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of  
unexpected noise.  
Refresh sequence  
NOP command  
Set all commands to the ready state  
(Including default state setting.)  
Refreshing of DRAM  
Precautions on Turning off the power  
• In case of S1D15605D11B , S1D15606D11B , S1D15607D11B , S1D15608D11B and S1D15609D11B ,  
*
*
*
*
*
Observe Paragraph 1) as the basic rule.  
<Turning the power (VDD - VSS) off>  
1) Power Save (The LCD powers (VDD - V5) are off.) Reset input Power (VDD - VSS) OFF  
• Observe tL > tH.  
• When tL < tH, an irregular display may occur.  
Set tL on the MPU according to the software. tH is determined according to the external capacity C2 (smoothing  
capacity of V5 ~ V1) and the driver’s discharging capacity.  
Power  
save Reset Power Off  
t
L
VDD  
1.8 V  
RES  
V
DD  
DD  
SEG  
Since the power (VDD-VSS) is  
cut off, the output comes not  
to be fixed.  
V
COM  
V1  
V2  
V3  
V4  
V5  
About 1 V: Below Vth of the LCD panel  
t
H
For tH, see Figure 29.  
Rev. 2.4a  
EPSON  
8–61  
S1D15605 Series  
<Turning the power (VDD - VSS) off : When command control is not possible.>  
2) Reset (The LCD powers (VDD - VSS) are off.) Power (VDD - VSS) OFF  
• Observe tL > tH.  
• When tL < tH, an irregular display may occur.  
For tL, make the power (VDD - VSS) falling characteristics longer or consider any other method. tH is  
determined according to the external capacity C2 (smoothing capacity of V5 to V1) and the driver’s discharging  
capacity.  
Reset  
Power Off  
t
L
V
DD  
1.8 V  
RES  
VDD  
SEG  
Since the power (VDD-VSS) is  
cut off, the output comes not  
be fixed.  
VDD  
COM  
V
V
V
V
V
1
2
3
4
5
About 1 V: Below Vth of the LCD panel  
t
H
For tH, see Figure 29.  
<Reference Data>  
V5 voltage falling (discharge) time (tH) after the process of operation power save reset.  
V5 voltage falling (discharge) time (tH) after the process of operation reset.  
100  
V
DD-VSS(V)  
1.8  
2.4  
3.0  
50  
4.0  
5.0  
0
0.5  
1.0  
C2: V  
1
to V  
5
capacity (uF)  
Figure 29  
8–62  
EPSON  
Rev. 2.4a  
S1D15605 Series  
• In case of other models than the above  
<Turning the power (VDD - VSS) off>  
Power save (The LCD powers (VDD - VSS) are off.) -> Power (VDD - VSS) OFF  
• Observe tL > tH.  
• When tL < tH, an irregular display may occur.  
Set tL on the MPU according to the software. tH is determined according to the external capacity C (smoothing  
capacity of V5 to V1) and the external resisters Ra + Rb (for V5 voltage regulation)  
Power Power  
save  
Off  
t
L
V
DD  
1.8 V  
SEG  
Since the power (VDD-VSS) is  
cut off, the output comes not  
be fixed.  
COM  
V
V
V
V
V
1
2
3
4
5
About 1 V: Below Vth of the LCD panel  
t
H
tH is determined depending on the time  
constant of (Ra + Rb) C.  
Rev. 2.4a  
EPSON  
8–63  
S1D15605 Series  
9. ABSOLUTE MAXIMUM RATINGS  
Unless otherwise noted, VSS = 0 V  
Table 17  
Symbol  
Parameter  
Power Supply Voltage  
Conditions  
Unit  
V
VDD  
–0.3 to +7.0  
Power supply voltage (2)  
(VDD standard)  
VSS2  
–7.0 to +0.3  
–6.0 to +0.3  
–4.5 to +0.3  
V
With Triple step-up  
With Quad step-up  
Power supply voltage (3) (VDD standard)  
Power supply voltage (4) (VDD standard)  
Input voltage  
V5, VOUT  
V1, V2, V3, V4  
VIN  
–18.0 to +0.3  
V5 to +0.3  
V
V
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–40 to +85  
V
Output voltage  
VO  
V
Operating temperature  
TOPR  
°C  
Storage temperature  
TCP  
Bare chip  
TSTR  
–55 to +100  
–55 to +125  
°C  
V
CC  
V
V
DD  
SS  
V
V
DD  
GND  
SS2, V1 to V4  
V
5, VOUT  
System (MPU) side  
S1D15605 Series chip side  
Figure 30  
Notes and Cautions  
1. The VSS2, V1 to V5 and VOUT are relative to the VDD = 0V reference.  
2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VDD V1 V2 V3 V4 V5.  
3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover,  
it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of  
the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative  
impact on the LSI reliability as well.  
8–64  
EPSON  
Rev. 2.4a  
S1D15605 Series  
10. DC CHARACTERISTICS  
Unless otherwise specified, VSS = 0 V, VDD = 3.0 V ± 10%, Ta = –40 to 85°C  
Table 18  
Rating  
Typ.  
Applicable  
Units  
Item  
Symbol  
Condition  
Min.  
Max.  
Pin  
Operating Recom-  
Voltage (1) mended  
Voltage  
VDD  
2.7  
3.3  
V
V
VDD*1  
Possible  
1.8  
5.5  
VDD*1  
Operating  
Voltage  
Operating Recom-  
Voltage (2) mended  
Voltage  
VSS2  
VSS2  
(Relative to VDD)  
–3.3  
–6.0  
–2.7  
–1.8  
V
V
VSS2  
VSS2  
Possible  
(Relative to VDD)  
Operating  
Voltage  
Operating Possible  
Voltage (3) Operating  
Voltage  
V5  
(Relative to VDD)  
(Relative to VDD)  
(Relative to VDD)  
–16.0  
0.4 × V5  
V5  
–4.5  
VDD  
V
V
V
V5 *2  
V1, V2  
V3, V4  
Possible  
Operating  
Voltage  
Possible  
V1, V2  
V3, V4  
0.6 × V5  
Operating  
Voltage  
High-level Input  
Voltage  
Low-level Input  
Voltage  
VIHC  
VILC  
0.8 × VDD  
VDD  
V
V
*3  
*3  
VSS  
0.2 × VDD  
High-level Output  
Voltage  
Low-level Output  
Voltage  
VOHC  
VOLC  
IOH = –0.5 mA  
IOL = 0.5 mA  
0.8 × VDD  
VDD  
V
V
*4  
*4  
VSS  
0.2 × VDD  
Input leakage  
current  
Output leakage  
current  
ILI  
VIN = VDD or VSS  
–1.0  
–3.0  
1.0  
3.0  
µA  
µA  
*5  
*6  
ILO  
Liquid Crystal Driver  
ON Resistance  
RON  
Ta = 25°C  
(Relative To VDD) V5 = –8.0 V  
V5 = –14.0 V  
2.0  
3.2  
3.5  
5.4  
kΩ  
kΩ  
SEGn  
COMn *7  
Static Consumption  
Current  
Output Leakage  
Current  
ISSQ  
I5Q  
0.01  
5
µA  
VSS, VSS2  
V5 = –18.0 V  
(Relative To VDD)  
0.01  
15  
µA  
V5  
Input Terminal  
Capacitance  
CIN  
Ta = 25°C f = 1 MHz  
5.0  
8.0  
pF  
Oscillator  
Frequency Oscillator  
Internal  
fOSC  
fCL  
Ta = 25°C  
18  
18  
22  
22  
26  
26  
kHz  
kHz  
*8  
S1D15605*****/15607*****  
External  
Input  
CL  
Internal  
Oscillator  
External  
Input  
fOSC  
fCL  
Ta = 25°C  
27  
14  
33  
17  
39  
20  
kHz  
kHz  
*8  
S1D15606*****/15608*****/  
15609*****  
CL  
Rev. 2.4a  
EPSON  
8–65  
S1D15605 Series  
Table 19  
Rating  
Typ.  
Applicable  
Pin  
Item  
Symbol  
Condition  
Units  
Min.  
Max.  
Input voltage  
VSS2 With Triple  
(Relative To VDD)  
VSS2 With Quad  
(Relative To VDD)  
–6.0  
–1.8  
V
V
VSS2  
–4.5  
–1.8  
VSS2  
VOUT  
Supply Step-up VOUT (Relative to VDD)  
output voltage  
Circuit  
–18.0  
V
V
V
Voltage regulator VOUT (Relative to VDD)  
Circuit Operating  
Voltage  
–18.0  
–16.0  
–6.0  
–4.5  
VOUT  
V5 *9  
Voltage Follower  
Circuit Operating  
Voltage  
V5  
(Relative to VDD)  
Base Voltage  
VREG0 Ta = 25°C  
VREG1 (Relative to VDD) –0.2%/°C  
–0.05%/°C –2.04 –2.10 –2.16  
V
V
*10  
*10  
–4.65  
–4.9  
–5.15  
8–66  
EPSON  
Rev. 2.4a  
S1D15605 Series  
• Dynamic Consumption Current (1), During Display, with the Internal Power Supply OFF  
Current consumed by total ICs when an external power supply is used.  
Table 20 Display Pattern OFF  
Ta = 25°C  
Rating  
Item  
Symbol  
Condition  
Units Notes  
Min. Typ. Max.  
IDD (1)  
VDD = 5.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 5.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 5.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 5.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
18  
16  
13  
11  
9
8
7
12  
10  
30  
27  
22  
19  
15  
13  
12  
20  
17  
µA  
*11  
S1D15605*****  
S1D15606*****  
S1D15607*****  
S1D15608*****/  
S1D15609*****  
Table 21 Display Pattern Checker  
Ta = 25°C  
Rating  
Item  
Symbol  
Condition  
Units Notes  
Min. Typ. Max.  
IDD (1)  
VDD = 5.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 5.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 5.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 5.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
23  
21  
17  
14  
12  
11  
10  
15  
13  
38  
35  
29  
24  
20  
18  
17  
25  
22  
µA  
*11  
S1D15605*****  
S1D15606*****  
S1D15607*****  
S1D15608*****/  
S1D15609*****  
• Dynamic Consumption Current (2), During Display, with the Internal Power Supply ON  
The values of curret consumed in all the IC including internal power supply circuit.  
Table 22 Display Pattern OFF  
Ta = 25°C  
Rating  
Item  
Symbol  
Condition  
Units Notes  
Min. Typ. Max.  
IDD (2)  
V
V
DD = 5.0 V, Triple step-up voltage. Normal Mode  
67 112 µA *12  
114 190  
81 135  
138 230  
35 59  
64 107  
43 72  
84 140  
72 121  
128 214  
26 44  
60 100  
29 49  
73 122  
37 62  
67 112  
46 77  
87 145  
S1D15605*****  
5
– VDD = –11.0 V  
High-Power Mode  
V
DD = 3.0 V, Quad step-up voltage. Normal Mode  
V
5
– VDD = –11.0 V  
VDD = 5.0 V, Double step-up voltage. Normal Mode  
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
High-Power Mode  
S1D15606*****  
V
5
High-Power Mode  
V
V
5
– VDD = –8.0 V  
DD = 3.0 V, Quad step-up voltage. Normal Mode  
– VDD = –11.0 V  
VDD = 5.0 V, Double step-up voltage. Normal Mode  
High-Power Mode  
V
V
5
High-Power Mode  
S1D15607*****  
V
5
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
VDD = 5.0 V, Double step-up voltage. Normal Mode  
High-Power Mode  
V
V
5
High-Power Mode  
S1D15608*****/  
S1D15609*****  
V
5
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
High-Power Mode  
V
V
5
High-Power Mode  
Rev. 2.4a  
EPSON  
8–67  
S1D15605 Series  
Table 23 Display Pattern Checker  
Ta = 25°C  
Rating  
Item  
Symbol  
Condition  
Units Notes  
Min. Typ. Max.  
IDD (2)  
V
V
DD = 5.0 V, Triple step-up voltage. Normal Mode  
81 135 µA *12  
127 212  
96 160  
153 255  
41 69  
71 119  
51 85  
92 154  
85 142  
142 237  
32 53  
62 103  
44 73  
89 148  
44 74  
74 127  
54 90  
95 159  
S1D15605*****  
5
– VDD = –11.0 V  
High-Power Mode  
V
DD = 3.0 V, Quad step-up voltage. Normal Mode  
V
5
– VDD = –11.0 V  
VDD = 5.0 V, Double step-up voltage. Normal Mode  
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
High-Power Mode  
S1D15606*****  
V
5
High-Power Mode  
V
V
5
– VDD = –8.0 V  
DD = 3.0 V, Quad step-up voltage. Normal Mode  
– VDD = –11.0 V  
VDD = 5.0 V, Double step-up voltage. Normal Mode  
High-Power Mode  
V
V
5
High-Power Mode  
S1D15607*****  
V
5
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
VDD = 5.0 V, Double step-up voltage. Normal Mode  
High-Power Mode  
V
V
5
High-Power Mode  
S1D15608*****/  
S1D15609*****  
V
5
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
High-Power Mode  
V
V
5
High-Power Mode  
• Consumption Current at Time of Power Saver Mode, VSS = 0 V, VDD = 3.0 V ± 10%  
Table 24  
Ta = 25°C  
Rating  
Min. Typ. Max.  
Item  
Sleep mode  
Symbol  
Condition  
Units Notes  
IDDS1  
IDDS2  
IDDS1  
IDDS2  
IDDS1  
IDDS2  
IDDS1  
0.01  
4
5
8
5
8
5
6
5
µA  
µA  
µA  
µA  
µA  
µA  
µA  
S1D15605*****  
Standby Mode S1D15605*****  
Sleep mode  
0.01  
4
S1D15606*****  
Standby Mode S1D15606*****  
Sleep mode  
0.01  
3
S1D15607*****  
Standby Mode S1D15607*****  
S1D15608*****/  
Sleep mode  
0.01  
S1D15609*****  
IDDS2  
4
8
µA  
Standby Mode S1D15608*****/  
S1D15609*****  
TBD: To Be Determined  
8–68  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Reference Data 1  
• Dynamic Consumption Current (1) During LCD Display Using an External Power Supply  
40  
Conditions: Internal power supply OFF  
External power supply in use  
S1D15605/S1D15606 (–11.0V):  
V5 – VDD = –11.0 V  
S1D15606 (–8.0V)/S1D15607/  
S1D15608/S1D15609:  
V5 – VDD = –8.0 V  
Display pattern: OFF  
30  
20  
10  
0
S1D15605  
Ta = 25°C  
S1D15606 (–11.0V)  
S1D15608/S1D15609 (–8.0V)  
S1D15606 (–8.0V)  
S1D15607  
Note: *11  
0
2
4
6
8
V
DD [V]  
Figure 31  
40  
30  
20  
10  
0
Conditions: Internal power supply OFF  
External power supply in use  
S1D15605/S1D15606 (–11.0V):  
V5 – VDD = –11.0 V  
S1D15606 (–8.0V)/S1D15607/  
S1D15608/S1D15609:  
V5 – VDD = –8.0 V  
S1D15605  
Display pattern: Checker  
Ta = 25°C  
S1D15606 (–11.0V)  
S1D15608/S1D15609 (–8.0V)  
S1D15606 (–8.0V)  
S1D15607  
Note: *11  
0
2
4
6
8
VDD [V]  
Figure 32  
Rev. 2.4a  
EPSON  
8–69  
S1D15605 Series  
Reference Data 2  
• Dynamic Consumption Current (2) During LCD display using the internal power supply  
Conditions: Internal power supply ON  
S1D15605/S1D15606 (×4, –11.0V)/  
S1D15608/S1D15609 (×4, –11.0V):  
4× step-up voltage: V – VDD = –11.0 V  
S1D15606 (×3, –8.0V)/S1D15607/  
S1D15608/S1D15609 (×3, –8.0V):  
140  
120  
100  
80  
5
3× step-up voltage: V  
Normal mode  
5 – VDD = –8.0 V  
S1D15605  
S1D15608/15609 (x4, –11.0V)  
S1D15606 (x4, –11.0V)  
Display pattern: OFF  
Ta = 25°C  
S1D15608/S1D15609 (x3, –8.0V)  
60  
S1D15606 (x3, –8.0V)  
40  
S1D15607  
Note: *12  
20  
0
0
2
4
6
8
V
DD [V]  
Figure 33  
Conditions: Internal power supply ON  
S1D15605/S1D15606 (×4, –11.0V)/  
S1D15608/S1D15609 (×4, –11.0V):  
4× step-up voltage: V – VDD = –11.0 V  
5
120  
100  
80  
60  
40  
20  
0
S1D15606 (×3, –8.0V)/S1D15607/  
S1D15608/S1D15609 (×3, –8.0V):  
S1D15605  
3× step-up voltage: V5 – VDD = –8.0 V  
Normal mode  
Display pattern: Checker  
S1D15608/15609 (x4, –11.0V)  
S1D15606 (x4, –11.0V)  
Ta = 25°C  
S1D15608/S1D15609 (x3, –8.0V)  
S1D15606 (x3, –8.0V)  
S1D15607  
Note: *12  
0
2
4
6
8
V
DD [V]  
Figure 34  
8–70  
EPSON  
Rev. 2.4a  
S1D15605 Series  
Reference Data 3  
• Dynamic Consumption Current (3) During access  
10  
This figure indicates the consumption  
current while the checker pattern is  
constantly written through fCYC  
.
If there is no access, then only (1) remains.  
Conditions: Internal power supply OFF,  
external power supply used  
S1D15605:  
1
V
DD – VSS = 3.0 V, V5=–11.0 V  
S1D15606/S1D15607/  
S1D15608/S1D15609:  
V
DD – VSS = 3.0 V, V5=–8.0 V  
Ta = 25°C  
0.1  
S1D15605  
S1D15606  
S1D15607  
S1D15608/S1D15609  
0.01  
0.001  
0.01  
0.1  
1
10  
fCYC[MHz]  
Figure 35  
Reference Data 4  
• Operating voltage range of VSS and V5 systems  
–20  
S1D15605 Series Note: *2  
–16  
–15  
Operating range  
–10  
–7.2  
–5  
0
–4.5  
1.8  
3.0  
5.5  
0
2
4
6
8
VDD[V]  
Figure 36  
Rev. 2.4a  
EPSON  
8–71  
S1D15605 Series  
• The Relationship Between Oscillator Frequency fOSC, Display Clock Frequency fCL and the Liquid Crystal Frame  
Rate Frequency fFR  
Table 25  
Item  
fCL  
fFR  
When the internal oscillator circuit is used  
fOSC  
fOSC  
S1D15605*****  
S1D15606*****  
S1D15607*****  
S1D15608*****  
S1D15609*****  
____  
_____  
×
4
4
65  
When the internal oscillator circuit is not used External input (fCL)  
fCL  
____  
260  
When the internal oscillator circuit is used  
fOSC  
fOSC  
____  
_____  
×
8
8
49  
When the internal oscillator circuit is not used External input (fCL)  
fCL  
____  
196  
When the internal oscillator circuit is used  
fOSC  
fOSC  
____  
_____  
×
8
8
33  
When the internal oscillator circuit is not used External input (fCL)  
fCL  
____  
264  
When the internal oscillator circuit is used  
fOSC  
fOSC  
____  
_____  
×
55  
8
8
When the internal oscillator circuit is not used External input (fCL)  
fCL  
____  
220  
When the internal oscillator circuit is used  
fOSC  
fOSC  
____  
_____  
×
8
8
53  
When the internal oscillator circuit is not used External input (fCL)  
fCL  
____  
212  
(fFR is the liquid crystal alternating current period, and not the FR signal period.)  
References for items market with *  
*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are  
sudden fluctuations to the voltage while the MPU is being accessed.  
*2 The operating voltage range for the VDD system and the V5 system is as shown in Figure 36. This applies  
when the external power supply is being used.  
*3 The A0, D0 to D5, D6 (SCL), D7 (SI), RD (E), WR (R/W), CS1, CS2, CLS, CL, FR, M/S, C86, P/S, DOF,  
RES, IRS, and HPM terminals.  
*4 The D0 to D7, FR, FRS, DOF, and CL terminals.  
*5 The A0, RD (E), WR (R/W), CS1, CS2, CLS, M/S, C86, P/S, RES, IRS, and HPM terminals.  
*6 Applies when the D0 to D5, D6 (SCL), D7 (SI), CL, FR, and DOF terminals are in a high impedance state.  
*7 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or  
COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating  
voltage (3) range.  
RON = 0.1 V/I (Where I is the current that flows when 0.1 V is applied while the power supply is ON.)  
*8 See Table 9-7 for the relationship between the oscillator frequency and the frame rate frequency.  
*9 The V5 voltage regulator circuit regulates within the operating voltage range of the voltage follower.  
*10 This is the internal voltage reference supply for the V5 voltage regulator circuit. In the S1D15605/S1D15606/  
S1D15607 chips, the temperature range can come in three types as VREG options: (1) approximately–0.05%/°C,  
(2) –0.2%/°C, and (3) external input.  
*11, 12 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned  
on.  
The S1D15605 is 1/9 biased, S1D15606/S1D15608/S1D15609 is 1/8 biased and S1D15607 is 1/6 biased.  
Does not include the current due to the LCD panel capacity and wiring capacity.  
Applicable only when there is no access from the MPU.  
*12 It is the value on a model having the VREG option temperature gradient is –0.05%/°C when the V5 voltage  
regulator internal resistor is used.  
8–72  
EPSON  
Rev. 2.4a  
S1D15605 Series  
11. TIMING CHARACTERISTICS  
(1) System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)  
A0  
t
AW8  
t
AH8  
CS1  
(CS2="1")  
t
CYC8  
*1  
*2  
t
CCLR, tCCLW  
WR, RD  
t
CCHR, tCCHW  
CS1  
(CS2="1")  
t
f
t
r
WR, RD  
t
DS8  
t
DH8  
D0 to D7  
(Write)  
t
ACC8  
t
OH8  
D0 to D7  
(Read)  
Figure 37  
Table 26  
(VDD = 4.5 V to 5.5 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
ns  
System cycle time  
A0  
tCYC8  
166  
ns  
Control LOW pulse width (WR)  
Control LOW pulse width (RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
30  
70  
30  
30  
ns  
ns  
ns  
ns  
Data setup time  
Address hold time  
D0 to D7  
tDS8  
tDH8  
30  
10  
ns  
ns  
RD access time  
Output disable time  
tACC8  
tOH8  
CL = 100 pF  
5
70  
50  
ns  
ns  
Rev. 2.4a  
EPSON  
8–73  
S1D15605 Series  
Table 27  
(VDD = 2.7 V to 4.5 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
ns  
System cycle time  
A0  
tCYC8  
300  
ns  
Control LOW pulse width (WR)  
Control LOW pulse width (RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
60  
120  
60  
ns  
ns  
ns  
ns  
60  
Data setup time  
Address hold time  
D0 to D7  
tDS8  
tDH8  
40  
15  
ns  
ns  
RD access time  
Output disable time  
tACC8  
tOH8  
CL = 100 pF  
10  
140  
100  
ns  
ns  
Table 28  
(VDD = 1.8 V to 2.7 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
ns  
System cycle time  
A0  
tCYC8  
1000  
ns  
Control LOW pulse width (WR)  
Control LOW pulse width (RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
120  
240  
120  
120  
ns  
ns  
ns  
ns  
Data setup time  
Address hold time  
D0 to D7  
tDS8  
tDH8  
80  
30  
ns  
ns  
RD access time  
Output disable time  
tACC8  
tOH8  
CL = 100 pF  
10  
280  
200  
ns  
ns  
*1  
*2  
*3  
This is in the case of making the access by WR and RD,setting the CS1=LOW.  
This is the case of making the accese by CS1,setting the WR,RD=LOW.  
The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns.When using the  
system cycle time at high speed, they are specified for (tr + tf) (tCYC8-tCCLR-tCCHR).  
All timings are specified based on the 20 and 80% of VDD.  
tCCLW and tCCLR are specified for the overlap period when CS1 is at LOW (CS2=HIGH) level and  
WR,RD are at the LOW level.  
*4  
*5  
8–74  
EPSON  
Rev. 2.4a  
S1D15605 Series  
(2) System Bus Read/Write Characteristics 2 (6800 Series MPU)  
A0  
R/W  
t
AW6  
t
AH6  
CS1  
(CS2="1")  
t
CYC6  
*1  
*2  
t
EWHR, tEWHW  
E
t
EWLR, tEWLWW  
CS1  
(CS2="1")  
t
r
t
f
E
t
DS6  
t
DH6  
D0 to D7  
(Write)  
t
ACC6  
t
OH6  
D0 to D7  
(Read)  
Figure 38  
Table 29  
(VDD = 4.5 V to 5.5 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH6  
tAW6  
0
0
ns  
ns  
System cycle time  
A0  
tCYC6  
166  
ns  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
30  
10  
ns  
ns  
Access time  
Output disable time  
tACC6  
tOH6  
CL = 100 pF  
10  
70  
50  
ns  
ns  
Enable HIGH pulse Read  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
70  
30  
ns  
ns  
time  
Write  
Enable LOW pulse Read  
30  
30  
ns  
ns  
time  
Write  
Rev. 2.4a  
EPSON  
8–75  
S1D15605 Series  
Table 30  
(VDD = 2.7 V to 4.5 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH6  
tAW6  
0
0
ns  
ns  
System cycle time  
A0  
tCYC6  
300  
ns  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
40  
15  
ns  
ns  
Access time  
Output disable time  
tACC6  
tOH6  
CL = 100 pF  
10  
140  
100  
ns  
ns  
Enable HIGH pulse Read  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
120  
60  
ns  
ns  
time  
Enable LOW pulse Read  
time Write  
Write  
60  
60  
ns  
ns  
Table 31  
(VDD = 1.8 V to 2.7 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH6  
tAW6  
0
0
ns  
ns  
System cycle time  
A0  
tCYC6  
1000  
ns  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
80  
30  
ns  
ns  
Access time  
Output disable time  
tACC6  
tOH6  
CL = 100 pF  
10  
280  
200  
ns  
ns  
Enable HIGH pulse Read  
time Write  
Enable LOW pulse Read  
time Write  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
240  
120  
ns  
ns  
120  
120  
ns  
ns  
*1  
*2  
*3  
This is in the case of making the access by E, setting the CS1=LOW.  
This is the case of making the accese by CS1,setting the E=HIGH.  
The rise and fall times ((tr and tf) of the input signal are specified for less than 15 ns.When using the  
system cycle time at high speed, they are specified for (tr + tf) (tCYC6-tEWLW-tEWHW) or (tr + tf) ≤  
(tCYC6-tEWLR-tEWHR).  
All timings are specified based on the 20 and 80% of VDD.  
tEWLW and tEWLR are specified for the overlap period when CS1 is at LOW (CS2=HIGH) level and E  
is at the HIGH level.  
*4  
*5  
8–76  
EPSON  
Rev. 2.4a  
S1D15605 Series  
(3) The Serial Interface  
t
CSS  
t
CSH  
CS1  
(CS2="1")  
t
SAS  
t
SAH  
A0  
t
SCYC  
t
SLW  
SCL  
t
SHW  
t
f
t
r
t
SDS  
t
SDH  
SI  
Figure 39  
Table 32  
(VDD = 4.5 V to 5.5 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Serial Clock Period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
200  
75  
75  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
50  
100  
ns  
ns  
Data setup time  
Data hold time  
50  
50  
ns  
ns  
CS-SCL time  
CS  
tCSS  
tCSH  
100  
100  
ns  
ns  
Rev. 2.4a  
EPSON  
8–77  
S1D15605 Series  
Table 33  
(VDD = 2.7 V to 4.5 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Serial Clock Period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
250  
100  
100  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
150  
150  
ns  
ns  
Data setup time  
Data hold time  
100  
100  
ns  
ns  
CS-SCL time  
CS  
tCSS  
tCSH  
150  
150  
ns  
ns  
Table 34  
(VDD = 1.8 V to 2.7 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Serial Clock Period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
400  
150  
150  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
250  
250  
ns  
ns  
Data setup time  
Data hold time  
150  
150  
ns  
ns  
CS-SCL time  
CS  
tCSS  
tCSH  
250  
250  
ns  
ns  
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.  
*2 All timing is specified using 20% and 80% of VDD as the standard.  
8–78  
EPSON  
Rev. 2.4a  
S1D15605 Series  
(4) Display Control Output Timing  
CL  
(OUT)  
t
DFR  
FR  
Figure 40  
Table 35  
(VDD = 4.5 V to 5.5 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
FR delay time  
Signal Symbol  
FR  
Condition  
CL = 50 pF  
Min.  
Typ.  
Max.  
tDFR  
10  
40  
ns  
Table 36  
(VDD = 2.7 V to 4.5 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
FR delay time  
Signal Symbol  
FR  
Condition  
Min.  
Typ.  
Max.  
tDFR  
CL = 50 pF  
20  
80  
ns  
Table 37  
(VDD = 1.8 V to 2.7 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
FR delay time  
Signal Symbol  
FR  
Condition  
Min.  
Typ.  
Max.  
tDFR  
CL = 50 pF  
50  
200  
ns  
*1 Valid only when the master mode is selected.  
*2 All timing is based on 20% and 80% of VDD.  
Rev. 2.4a  
EPSON  
8–79  
S1D15605 Series  
Reset Timing  
t
RW  
RES  
t
R
Internal  
status  
During reset  
Reset complete  
Figure 41  
Table 38  
(VDD = 4.5 V to 5.5 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
0.5  
Reset time  
tR  
µs  
µs  
Reset LOW pulse width  
RES  
tRW  
0.5  
Table 39  
(VDD = 2.7 V to 4.5 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
1
Reset time  
tR  
µs  
µs  
Reset LOW pulse width  
RES  
tRW  
1
Table 40  
(VDD = 1.8 V to 2.7 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
1.5  
Reset time  
tR  
µs  
µs  
Reset LOW pulse width  
RES  
tRW  
1.5  
*1 All timing is specified with 20% and 80% of VDD as the standard.  
8–80  
EPSON  
Rev. 2.4a  
S1D15605 Series  
12. THE MPU INTERFACE (REFERENCE EXAMPLES)  
The S1D15605 Series can be connected to either 80 × 86 Series MPUs or to 6800 Series MPUs. Moreover, using the  
serial interface it is possible to operate the S1D15605 series chips with fewer signal lines.  
The display area can be enlarged by using multiple S1D15605 Series chips. When this is done, the chip select signal  
can be used to select the individual ICs to access.  
(1) 8080 Series MPUs  
V
DD  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
A1 to A7  
IORQ  
CS1  
CS2  
Decoder  
RESET  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
RES  
WR  
RES  
GND  
VSS  
VSS  
Figure 42-1  
(2) 6800 Series MPUs  
V
DD  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
A1 to A15  
VMA  
CS1  
CS2  
Decoder  
RESET  
D0 to D7  
E
D0 to D7  
E
R/W  
R/W  
RES  
RES  
GND  
VSS  
V
SS  
Figure 42-2  
(3) Using the Serial Interface  
VDD or  
V
SS  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
CS1  
CS2  
A1 to A7  
Decoder  
RESET  
Port 1  
Port 2  
RES  
SI  
SCL  
RES  
GND  
VSS  
V
SS  
Figure 42-3  
Rev. 2.4a  
EPSON  
8–81  
S1D15605 Series  
13. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLE)  
The liquid crystal display area can be enlarged with ease through the use of multiple S1D15605 Series chips. Use a same  
equipment type.  
(1) S1D15605 (master) S1D15605 (slave)  
V
DD  
M/S  
M/S  
FR  
CL  
FR  
CL  
DOF  
DOF  
Output  
Input  
V
SS  
Figure 43  
8–82  
EPSON  
Rev. 2.4a  
S1D15605 Series  
14. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLES)  
The liquid crystal display area can be enlarged with ease through the use of multiple S1D15605 Series chips.  
Use a same equipment type, in the composition of these chips.  
(1) Single-chip Structure  
132 x 65 Dots  
COM  
SEG  
S1D15605 Series  
COM  
Master  
Figure 44-1  
(2) Double-chip Structure, #1  
264 x 65 Dots  
COM  
SEG  
SEG  
COM  
S1D15605 Series  
Master  
S1D15605 Series  
Slave  
Figure 44-2  
Rev. 2.4a  
EPSON  
8–83  
S1D15605 Series  
15. A SAMPLE TCP PIN ASSIGNMENT  
S1D15605T00B TCP Pin Layout  
*
Note: The following does not specify dimensions of the TCP pins.  
An example  
FR  
FR  
CL  
FRS  
DOF  
CS1  
CS2  
RES  
A0  
COM S  
COM 63  
WR,R/W  
RD, E  
D0  
D1  
D2  
D3  
COM 33  
D4  
D5  
COM 32  
D6, SCL  
D7, SI  
SEG 131  
V
DD  
SS  
SS2  
OUT  
SEG 130  
V
V
V
CAP3-  
CAP1+  
CAP1-  
CAP2-  
CAP2+  
VRS  
SEG 1  
V
DD  
SEG 0  
V
V
V
V
V
1
2
3
4
5
COM S  
COM 0  
VR  
V
DD  
M/S  
CLS  
C86  
P/S  
HPM  
IRS  
COM 30  
COM 31  
8–84  
EPSON  
Rev. 2.4a  
S1D15605 Series  
16. EXTERNAL VIEW OF TCP PINS  
( M o l d , m a r k i n g a r e a ) ( M o l d , m a r k i n g a r e a )  
Rev. 2.4a  
EPSON  
8–85  

相关型号:

S1D15606D11B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15606T00

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15607D00B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15607D01B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15607D02B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15607D11B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15607T00

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15608D00B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15609D00B

Single-chip dot matrix liquid crystal display drivers
ETC

S1D15705D03B000

Liquid Crystal Driver, 233-Segment, CMOS, DIE-337
SEIKO

S1D15705D10B000

Liquid Crystal Driver, 233-Segment, CMOS, DIE-337
SEIKO

S1D15705T00A000

LIQUID CRYSTAL DISPLAY DRIVER, UUC337, TCP
SEIKO