SED1561 [ETC]

Low-power operation: 8 umA 1 kHz, 6V LCD; 低功耗运行: 8 UMA 1千赫, 6V液晶
SED1561
型号: SED1561
厂家: ETC    ETC
描述:

Low-power operation: 8 umA 1 kHz, 6V LCD
低功耗运行: 8 UMA 1千赫, 6V液晶

CD
文件: 总84页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SED1560/1/2  
Technical Manual  
(Preliminary)  
S-MOS Systems, Inc.  
October, 1996  
Version 3.0 (Preliminary)  
THIS PAGE INTENTIONALLY BLANK  
2
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
Table of Contents  
SED1560 Series  
TABLE OF CONTENTS  
1.0 Overview ................................................................................................................................................... 5  
1.1 Description .................................................................................................................................... 7  
1.2 Features ........................................................................................................................................ 7  
1.3 System Block Diagrams ................................................................................................................ 7  
1.4 Block Diagram ............................................................................................................................... 9  
2.0 Pin Description....................................................................................................................................... 11  
2.1 Power Supply .............................................................................................................................. 13  
2.2 LCD Driver Power Supplies......................................................................................................... 13  
2.3 Microprocessor Interface ............................................................................................................. 14  
2.4 Oscillator and Display Timing Control ......................................................................................... 15  
2.5 LCD Driver Outputs ..................................................................................................................... 16  
3.0 Electrical Characteristics ...................................................................................................................... 17  
3.1 Absolute Maximum Ratings......................................................................................................... 19  
3.2 DC Characteristics ...................................................................................................................... 20  
3.3 AC Characteristics........................................................................................................................ 24  
3.3.1 Reset ............................................................................................................................ 24  
3.4 Display Control Timing ................................................................................................................ 25  
3.5 System Buses: Read/Write Characteristics I (80-Series MPU)................................................... 27  
3.6 System Buses: Read/Write Characteristics II (68-Series MPU).................................................. 28  
3.7 Serial Interface ............................................................................................................................ 30  
4.0 Functional Description .......................................................................................................................... 33  
4.1 Microprocessor Interface ............................................................................................................. 35  
4.1.1 Parallel/Serial Interface ................................................................................................ 35  
4.1.2 Parallel Interface........................................................................................................... 35  
4.1.3 Serial Interface ............................................................................................................. 35  
4.1.4 Chip Select Inputs ........................................................................................................ 36  
4.2 Data Transfer .............................................................................................................................. 36  
4.3 Status Flag .................................................................................................................................. 38  
4.4 Display Data RAM ....................................................................................................................... 38  
4.5 Column Address Counter ............................................................................................................ 38  
4.6 Page Address Register ............................................................................................................... 38  
4.7 Initial Display Line Register ......................................................................................................... 40  
4.8 Output Selection Circuit............................................................................................................... 40  
4.9 SED1560 Output Status .............................................................................................................. 42  
4.10 SED1561 Output Status ............................................................................................................ 42  
4.11 SED1562 Output Status ............................................................................................................ 43  
4.12 Display Timers........................................................................................................................... 43  
4.12.1 Line Counter and Display Data Latch Timing ............................................................. 43  
4.12.2 FR and SYNC ............................................................................................................. 43  
4.12.3 Common Timing Signals ............................................................................................ 43  
4.13 Two-frame AC Driver Waveform (SED1561, 1/32 duty)............................................................ 44  
4.14 n Line Inverse Driver Waveform (n-5, line inverse register 4) .................................................. 45  
4.15 Display Data Latch .................................................................................................................... 46  
174-3.0  
3
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
SED1560 Series  
Table of Contents  
4.16 LCD Driver................................................................................................................................. 46  
4.17 Display Data Latch Circuit ......................................................................................................... 46  
4.18 LCD Driver Circuit ..................................................................................................................... 46  
4.19 Oscillator Circuit ........................................................................................................................ 46  
4.20 FR Control Circuit ......................................................................................................................46  
4.21 Power Supply Circuit ................................................................................................................. 48  
4.22 Tripler Boosting Circuit .............................................................................................................. 48  
4.23 Voltage Regulation Circuit (Software Contrast Adjustment Function is Not Used) ................... 49  
4.24 Voltage Regulation Circuit Using Software Contrast Adjustment Control Function .................. 50  
4.25 Precautions on Using the SED1560 Series Software Contrast Adjustment Control Function .. 51  
4.26 Liquid Crystal Voltage Generating Circuit ................................................................................. 54  
4.27 Reset ......................................................................................................................................... 56  
5.0 Commands.............................................................................................................................................. 57  
5.1 Command Summary .................................................................................................................. 59  
5.2 Command Definitions ................................................................................................................. 60  
5.3 Software Contrast Control Register............................................................................................. 67  
5.4 Microprocessor Interface ............................................................................................................. 69  
5.5 LCD Panel Interface Examples ................................................................................................... 70  
5.6 Special Common Driver Configurations ...................................................................................... 72  
6.0 Packaging ............................................................................................................................................... 73  
6.1 Pad Layout .................................................................................................................................. 75  
6.2 SED1560/1/2 TAB Pin Layout ..................................................................................................... 77  
6.3 TCP Dimensions (2-sided) .......................................................................................................... 78  
6.4 TCP Dimensions (4-sided) .......................................................................................................... 79  
6.5 TCP Dimensions (D1561TOC) .................................................................................................... 80  
6.6 Pad Profile................................................................................................................................... 81  
6.7 BGA Package Dimensions .......................................................................................................... 82  
6.8 BGA Pin Assignment ................................................................................................................... 83  
6.9 SED1560TQA OL Dimensions .................................................................................................... 84  
4
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
1.0  
Overview  
174-3.0  
5
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
6
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
1.0 Overview  
1.0 – 1.3  
1.1 DESCRIPTION  
1.2 FEATURES  
TheSED1560SeriesareintelligentCMOSLCDdriver-  
controllers with the ability to drive alphanumeric and  
graphic displays. The SED1560 Series communicates  
with a high-speed microprocessor, such as the Intel  
80XX family or the Motorola 68XX family, through  
either a serial or an 8-bit parallel interface. It stores the  
datasentfromthemicroprocessorinthebuilt-indisplay  
data RAM (166 × 65 bits) and generates an LCD drive  
signal. These devices incorporate an internal DC/DC  
converter to generate the negative voltage needed for  
LCDcontrast.Thecontrollersfeaturesoftwarecontrast  
adjustment by command setting.  
• Low-power operation: 8 µA @ 1 kHz, 6V LCD  
• 350µAcurrentconsumptionduringCPUaccess  
@ 200 kHz  
• Direct interface to both 80XX and 68XX, 5 MHz,  
zero wait-state  
• On-chip display data RAM (166 × 65 bits)  
• On-chip DC/DC converter for LCD voltage  
• On-chip voltage regulator and low-power volt-  
age follower  
• –.17% / °C temperature gradient  
• On-chip oscillator with external resistor  
• 32 levels of contrast adjustment by software  
• Supports master/slave operation  
• Selectable output configuration  
• 2.4V to 6.0V supply voltage  
The three different versions of the SED1560 Series  
support the following duty ratios and display sizes:  
Model  
SED1560  
SED1561  
SED1562  
Duty Ratio  
1/65, 1/64, 1/49, 1/48  
1/33, 1/32, 1/25, 1/24  
1/17, 1/16  
SEG × COM  
102 × 65  
• 3.5V to 16V LCD voltage  
134 × 33  
• Package: TAB 2 side  
TAB 4 side  
T0B  
TQA  
D*A  
D*B  
B0A  
150 × 17  
Al pad  
Au bump  
BGA 225 pad  
1.3 SYSTEM BLOCK DIAGRAMS  
20 CHAR × 8 LINES  
RES  
SED1560  
CS  
CPU  
D0 ~ D7  
80xx  
68xx  
174-3.0  
7
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
1.3  
1.0 Overview  
1.3 SYSTEM BLOCK DIAGRAMS (cont.)  
COM0~COM32  
26 CHAR × 4 LINES  
SEG0~SEG133  
RES  
SED1561  
CS  
CPU  
D0 ~ D7  
80xx  
68xx  
30 CHAR × 2 LINES  
RES  
SED1562  
CS  
CPU  
D0 ~ D7  
80xx  
68xx  
8
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
1.0 Overview  
1.4  
1.4 BLOCK DIAGRAM  
O00 to O31 O32  
to O101 O102 to O165 COM1  
VSS  
VDD  
V1  
V2  
V3  
V4  
V5  
VDD  
V1  
V2  
V3  
V4  
V5  
Common  
and  
segment  
drivers  
Common  
Segment  
driver  
and  
segment  
drivers  
Commons  
only  
Frame  
control  
Shift  
Shift  
register  
register  
CAP1+  
LCD  
CAP1–  
CAP2+  
CAP2–  
VR  
supply  
voltage  
generator  
166-bit display data latch  
Line  
address  
decoder  
I/O  
buffer  
166 x 65-bit display  
data RAM  
Line  
counter  
Output  
status  
select  
T1, T2  
Display  
initial line  
register  
166-bit column address decoder  
8-bit column address counter  
8-bit column address register  
FR  
SYNC  
CL  
Page  
address  
register  
Display  
timing  
CLO  
DYO  
M/S  
generator  
OSC1  
OSC2  
Command  
decoder  
Bus holder  
Status flag  
Oscillator  
MPU interface  
I/O buffer  
CS1 CS2 A0 RD WR C86 SI SCL P/S RES  
D7 D6 D5 D4 D3 D2 D1 D0  
174-3.0  
9
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
10  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
2.0  
Pin Description  
174-3.0  
11  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
12  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
2.0 Pin Description  
2.1 – 2.2  
2.1 POWER SUPPLY  
Number of Pins  
I/O  
Name  
VDD  
Description  
Common to MPU power supply pin VCC  
Ground  
2
2
Supply  
Supply  
VSS  
11  
V1 to V5 LCD driver supply voltages. The voltage determined by the LCD  
cell is impedance-converted by a resistive divider or an operational  
amplifier for application. Voltage levels are based on VDD. The  
voltages must satisfy the following relationship:  
Supply  
LCD  
voltage  
VDD V1 V2 V3 V4 V5  
Master mode select: bias voltages are generated on-chip.  
SED1560  
1/9 V5  
2/9 V5  
7/9 V5  
8/9 V5  
SED1561  
1/7 V5  
2/7 V5  
5/7 V5  
6/7 V5  
SED1562  
1/5 V5  
2/5 V5  
3/5 V5  
4/5 V5  
V1  
V2  
V3  
V4  
2.2 LCD DRIVER POWER SUPPLIES  
Number of Pins  
I/O  
O
O
O
O
O
I
Name  
Description  
1
1
1
1
1
1
CAP1+ DC/DC voltage converter capacitor 1 positive connection  
CAP1– DC/DC voltage converter capacitor 1 negative connection  
CAP2+ DC/DC voltage converter capacitor 2 positive connection  
CAP2– DC/DC voltage converter capacitor 2 negative connection  
VOUT  
VR  
DC/DC voltage converter output  
Voltage adjustment pin. Applies voltage between VDD and V5 using  
a resistive divider.  
2
I
T1, T2 Liquid crystal power control terminals  
Voltage  
Regulation  
Circuit  
Boosting  
Circuit  
T1  
T2  
V/F Circuit  
L
L
L
H
L
Valid  
Valid  
Valid  
Valid  
Valid  
Valid*  
Valid  
Valid  
H
H
Invalid  
Invalid  
Valid  
H
Invalid  
* V/F circuit current capacity enhancement  
174-3.0  
13  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
2.3  
2.0 Pin Description  
2.3 MICROPROCESSOR INTERFACE  
Number of Pins  
I/O  
I/O  
I
Name  
Description  
8
1
D0 to D7 Data is transferred between the controller and MPU via these pins  
A0  
Control/display data flag input. This is connected to the LSB of the  
microprocessor address bus.  
• When LOW, the data on D0 to D7 is command data  
• When HIGH, the data on D0 to D7 is display data  
Reset input. Setting this pin low initializes the SED156X.  
1
2
I
I
RES  
CS1,  
CS2  
Chip select inputs. Data input/output is enabled when CS1 is LOW  
and CS2 is HIGH.  
1
1
1
I
I
I
RD  
WR  
C86  
Read enable input. See note 1.  
Write enable input. See note 2.  
Microprocessor interface select input.  
• LOW when interfacing to 8080-series  
• HIGH when interfacing to 6800-series  
Serial data input  
1
1
I
I
SI  
SCL  
Serial clock input. Data is read on the rising edge of SCL and  
converted to 8-bit parallel data.  
1
I
P/S  
Parallel/serial data input select  
Data/  
com-  
mand  
Operating  
Mode  
Chip  
Select  
Data  
I/O  
Read/  
write  
Serial  
Clock  
P/S  
D0 to  
D7  
HIGH  
LOW  
Parallel  
Serial  
CS1, CS2  
CS1, CS2  
A0  
A0  
RD, WR  
SI  
Write only  
SCL  
In serial mode, data cannot be read from the RAM, and D0 to D7, HZ,  
RD and WR must be HIGH or LOW. In parallel mode, SI and SCL  
must be HIGH or LOW.  
Notes:  
1. Wheninterfacingto8080-seriesmicroprocessors, RDisactive-LOW. Wheninterfacingto6800-seriesmicroprocessors, theyare  
active-HIGH.  
2. When interfacing to 8080-series microprocessors, WR is active-LOW. When interfacing to 6800-series microprocessors, read  
mode is selected when WR is HIGH, and write mode is selected when WR is LOW.  
14  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
2.0 Pin Description  
2.4  
2.4 OSCILLATOR AND DISPLAY TIMING CONTROL  
Number of Pins  
I/O  
Name  
Description  
2
I
OSC1 Using internal oscillator when M/S = “H”, connect resistor Rf to the  
OSC1 and OSC2 pins. The OSC2 pin is used for output of the  
oscillator amplifier.  
2
1
I/O  
I
OSC2 When M/S = “L”: the OSC2 pin is used for input of oscillation signal.  
TheOSC1pinshouldbeleftopen.FixtheCL pintotheVSS levelwhen  
using the internal oscillator circuit as the display clock.  
CL  
Display clock input. The line counter increments on the rising edge of  
CL, and the display pattern is output on the falling edge. When using  
theexternaldisplayclock, OSC1=H”, OSC2=L”, andresetthisLSI  
by RES pin.  
1
1
O
I
CLO  
M/S  
Display clock output. When using the internal oscillator, the clock  
signal is output on this pin. Connect CLO to YSCL on the common  
driver.  
Master/slave select input. Master produces signals for display, and  
slave receives them. This is for display synchronization.  
Operating Internal Power  
Device  
M/S  
FR SYNC OSC1 OSC2 DYO  
Mode  
Oscillator Supply  
LOW  
HIGH  
Slave  
OFF  
ON  
OFF  
ON  
I
I
Open  
I
I
O
O
156X  
Master  
O
O
O
Note:  
I = input mode  
O = output mode  
1
1
1
I/O  
I/O  
O
FR  
LCD AC drive signal input/output. Output is selected when M/S is  
HIGH, and input is selected when M/S is LOW.  
SYNC Display sync input/output. Output is selected when M/S is HIGH, and  
input is selected when M/S is LOW.  
DYO  
Start-up output for common driver. Connect to DIO of the common  
driver, such as the SED1630.  
* SED1630 has a DIO input.  
174-3.0  
15  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
2.5  
2.0 Pin Description  
2.5 LCD DRIVER OUTPUTS  
Number of Pins  
I/O  
Name  
Description  
166  
O
O0 to  
O165  
LCD driver outputs. O0 to O31 and O102 to O165 are selectable  
segment or common outputs, determined by a selection command.  
O32 to O101 are segment outputs only.  
For segment outputs, the ON voltage level is given as shown in the  
following table:  
LCD ON Voltage  
RAM Data  
LOW  
FR  
Normal Display  
Inverse Display  
LOW  
HIGH  
LOW  
HIGH  
V3  
V2  
V5  
VDD  
V3  
V5  
HIGH  
VDD  
V2  
For common outputs, the ON voltage is given as shown in the follow-  
ing table:  
Scan Data  
FR  
LCD ON Voltage  
LOW  
HIGH  
LOW  
HIGH  
V4  
V1  
LOW  
VDD  
V5  
HIGH  
1
O
COM1 LCD driver common output. Common outputs when the “DUTY + 1”  
command is executed are as follows:  
Device  
SED1560  
SED1561  
SED1562  
“DUTY + 1” ON  
COM64, COM48  
COM32, COM24  
COM16  
“DUTY + 1” OFF  
V1 or V4  
V1 or V4  
V1 or V4  
Common output special for the indicator.  
16  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0  
Electrical Characteristics  
174-3.0  
17  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
18  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.1  
3.1 ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
Unit  
–7.0 to 0.03  
Supply voltage range  
VSS  
V
–6.0 to 0.3  
(when triple voltage conversion)  
Driver supply voltage range (1)  
Driver supply voltage range (2)  
Input voltage range  
V5  
–18.0 to 0.3  
V5 to 0.3  
V
V
V1, V2, V3, V4  
VIN  
V0  
VSS–0.3 to 0.3  
VSS–0.3 to 0.3  
–30 to 85  
V
Output voltage range  
V
Operating temperature range  
Storage temperature range (TCP)  
Notes:  
Topr  
Tstr  
°C  
°C  
–55 to 125  
1. The voltages shown are based on VDD = 0V.  
2. Always keep the condition VDD V1 V2 V3 V4 V5 for voltages V1, V2, V3 and V4.  
3. If devices are used over the absolute maximum rating, the LSIs may be destroyed permanently. It is desirable to use them under  
theelectricalcharacteristicconditionsforgeneraloperation. Otherwise, amalfunctionoftheLSImaybecausedandLSIreliability  
may be affected.  
4. For operating temperatures below –30°C, please consult an S-MOS engineer.  
174-3.0  
19  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.2  
3.0 Electrical Characteristics  
3.2 DC CHARACTERISTICS  
VDD = 0V, VSS = –5 ± 10%, Ta = –30 to +85°C unless otherwise noted.  
Applicable  
Parameter  
Recommended  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Pin  
–5.5  
–5.0  
–4.5  
VSS  
Power  
operation  
VSS  
V
voltage (1)  
Operational  
Operational  
Operational  
Operational  
–6.0  
–16.0  
–2.4  
–3.5  
VSS *1  
V5 *2  
V1, V2  
V3, V4  
*3  
V5  
V
V
V
V
V
V
V
V
V
V
V
Operating  
voltage (2)  
V1, V2  
V3, V4  
VIHC1  
VIHC2  
VIHC1  
VIHC2  
VILC1  
VILC2  
VILC1  
VILC2  
VOHC1  
VOHC2  
0.4 × V5  
V5  
VDD  
0.6 × V5  
VDD  
0.3 × VSS  
0.15 × VSS  
0.2 × VSS  
0.15 × VSS  
VSS  
VDD  
*4  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
VSS = –2.7V  
VDD  
*3  
VSS = –2.7V  
VDD  
*4  
0.7 × VSS  
0.85 × VSS  
0.8 × VSS  
0.85 × VSS  
VDD  
*3  
VSS  
*4  
VSS = –2.7V  
VSS = –2.7V  
VSS  
*3  
VSS  
*4  
IOH = –1 mA  
0.2 × VSS  
*5  
OSC2  
V
V
V
V
IOH = –120 µA 0.2 × VSS  
VDD  
VOHC1 VSS = –2.7V IOH = –0.5 mA 0.2 × VSS  
VDD  
*5  
OSC2  
VOHC2 VSS = –2.7V IOH = –50 µA  
0.2 × VSS  
VSS  
VSS  
VSS  
VSS  
–1.0  
–3.0  
VDD  
VOLC1  
VOLC2  
IOL = 1 mA  
0.8 × VSS  
0.8 × VSS  
0.8 × VSS  
0.8 × VSS  
1.0  
*5  
OSC2  
IOL = 120 µA  
VOLC1 VSS = –2.7V IOL = 0.5 mA  
*5  
OSC2  
VOLC2 VSS = –2.7V IOL = 50 µA  
Input leakage current  
Output leakage current  
ILI  
VIN = VDD or VSS  
µA  
µA  
*6  
*7  
ILO  
3.0  
V5 = –14.0V  
V5 = –8.0V  
2.0  
3.0  
0.00  
0.01  
5.0  
18  
16  
3.0  
O0 ~ O166  
*8  
LCD driver ON resistance  
RON  
Ta = 25°C  
kΩ  
4.5  
ISSQ  
I5Q  
5.0  
µA  
µA  
pF  
VSS  
V5  
Static power consumption  
Input terminal capacity  
Oscillator frequency  
V5 = –18.0V  
15.0  
CIN  
Ta = 25°C  
f = 1 MHz  
8.0  
*3 *4  
VSS = –5V  
VSS = –2.7V  
15  
22  
Rf = 1 MΩ  
±2%  
fOSC  
kHz  
*9  
11  
21  
Reset time  
tR  
1.0  
10  
µs  
µs  
*10  
*11  
Reset “L” pulse width  
(continued)  
tRW  
20  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.2  
(continued)  
VDD = 0V, VSS = –5 ± 10%, Ta = –30 to +85°C unless otherwise noted.  
Applicable  
Parameter  
Input voltage  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Pin  
VSS  
–6.0  
–2.4  
V
V
*12  
Amplified output voltage  
VOUT  
If amplified 3 times  
–18.0  
VOUT  
Voltage regulator  
circuit operation voltage  
VOUT  
–18.0  
–6.0  
V
VOUT  
V5 1 Supplied to SED1560  
V5 2 Supplied to SED1561  
V5 3 Supplied to SED1562  
–16.0  
–16.0  
–16.0  
–2.35  
–6.0  
–5.0  
V
V
V
V
Voltage follower  
operation voltage  
*13  
–4.5  
Reference voltage  
VREG  
Ta = 25°C  
–2.5  
–2.65  
Notes:  
* See Notes on page 22.  
When dynamic current consumption (I) is displayed; the built-in power supply is on and T1 = T2 = Low.  
Test conditions, unless otherwise specified: VDD = 0V, VSS = –5V ±10%, Ta = –30 to 85°C  
Parameter  
SED1560  
Symbol  
Condition  
Min  
Typ  
169  
124  
53  
Max  
340  
250  
110  
130  
Unit Remarks  
V5 = –12.5V; 3 times amplified  
V5 = –8.0V; 3 times amplified  
V5 = –6.0V; 2 times amplified  
VSS = –2.7V; 3 times amplified  
V5 = –6.0V  
µA  
µA  
SED1561  
SED1562  
IDD (1)  
*16  
µA  
66  
µA  
Typical current consumption characteristics  
Dynamic current consumption (I), if an external clock and an external power supply are used.  
Conditions: The built-in power supply is off but  
the external one is used.  
(µA) 40  
SED1560  
SED1560 .........V5 = –12.5V  
SED1561 .........V5 = –8.0V  
SED1562 .........V5 = –6.0V  
30  
IDD (1)  
(ISS +I5)  
20  
SED1561  
SED1562  
External clock:  
10  
0
SED1560 .........fCL = 4 kHz  
SED1561 .........fCL = 2 kHz  
SED1562 .........fCL = 1 kHz  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
Remarks:  
*14  
VSS  
(V)  
174-3.0  
21  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.2  
3.0 Electrical Characteristics  
Dynamic current consumption (I), if the built-in oscillator and the external power supply are used.  
Conditions: The built-in power supply is off but the  
external one is used.  
80  
60  
40  
20  
0
(µA)  
SED1560 .........V5 = –12.5V  
SED1561 .........V5 = –8.0V  
SED1562 .........V5 = –6.0V  
SED1560  
SED1561  
IDD (1)  
(ISS +I5)  
Internal oscillation:  
SED1562  
SED1560 .........Rf = 1 MΩ  
SED1561 .........Rf = 1 MΩ  
SED1562 .........Rf = 1 MΩ  
Remarks:  
*15  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
VSS  
(V)  
Dynamic current consumption (I), if the built-in power supply is used.  
Conditions: The built-in power supply is on and  
T1 = T2 = Low.  
200  
(µA)  
SED1560 .........V5 = –12.5V;  
3 times amplified  
SED1560  
SED1561  
150  
IDD (1)  
SED1561 .........V5 = –8.0V;  
3 times amplified  
100  
50  
0
SED1562 .........V5 = –6.0V;  
2 times amplified  
SED1562  
Internal oscillation:  
SED1560 .........Rf = 1 MΩ  
SED1561 .........Rf = 1 MΩ  
SED1562 .........Rf = 1 MΩ  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
VSS  
(V)  
Remarks:  
*16  
Notes:  
the SED156* is usually operable after “tr” time.  
*1. A wide range of operating voltage is possible, but considerable  
voltage variation during MPU access is not guaranteed.  
*11. Specifies the minimum pulse width of RES signal. The Low pulse  
greater than “tRW” must be entered for reset.  
*2. TheoperatingvoltagerangeoftheVSS andV5systems(seeFigure  
3.3). The operating voltage range is applied if an external power  
supply is used.  
*12. If the voltage is amplified three times by the built-in power circuit,  
theprimarypowerVSS mustbeusedwithintheinputvoltagerange.  
*3. Pins A0, D0 to D7, RD (E),WR (R/W), CS1, CS2, FR, SYNC, M/S,  
C86, SI, P/S, T1 AND T2.  
*13. The V5 voltage can be adjusted within the voltage follower operat-  
ing range by the voltage regulator circuit.  
*4. Pins CL, SCL, and RES.  
*14, 15, 16. Indicates the current consumed by the separate IC. The  
current consumption due to the LCD panel capacity and wiring  
capacity is not included.  
*5. Pins D0 to D7, FR, SYNC, CL0, and DY0  
*6. Pins A0, RD (E), WR (R/W), CS1, CS2, CL, M/S, RES, C86, SI,  
SCL, P/S, T1, and T2.  
The current consumption is shown if the checker is used, the  
displayisturnedon, theoutputstatusofCase6isselected, andthe  
SED1560 is set to 1/64 duty, the SED1561 is set to 1/32 duty, and  
the SED1562 is set to 1/64 duty.  
*7. Applied if pins D0 to D7, FR, and SYNC are high impedance.  
*8. The resistance when the 0.1 -volt voltage is applied between the  
“On” output terminal and each power terminal (V1, V2, V3 or V4).  
It must be within the operating voltage (2).  
*14. AppliedifanexternalclockisusedandifnotaccessedbytheMPU.  
*15. Applied if the built-in oscillation circuit is used and if not accessed  
by the MPU.  
*9. The relationship between the oscillation frequency, frame and Rf  
value (see Figure 3.2).  
*16. Applied if the built-in oscillation circuit and the built-in power circuit  
are used (T1 = T2 = Low) and if not accessed by the MPU.  
*10. “tr(resettime)indicatestheperiodbetweenthetimewhentheRES  
signalrisesandwhentheinternalcircuithasbeenreset. Therefore,  
22  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.2  
The relationship between oscillator frequency fOSC  
and LCD frame frequency fF is obtained from the  
following expression:  
Ta = 25°C  
VSS = –5V  
40  
30  
20  
10  
Table 3.1  
[KHz]  
Device  
Duty  
1/64  
1/48  
1/32  
1/24  
1/16  
fF  
fOSC  
fOSC/256  
fOSC/192  
fOSC/256  
fOSC/192  
fOSC/256  
SED1560  
0
0.5  
1.0  
Rf [M ]  
1.5  
2.0  
2.5  
SED1561  
SED1562  
Figure 3.1  
Oscillator frequency vs. frame vs. Rf  
[SED1560 Series]  
(fF indicates not fF signal cycle but cycle of LCD AC.)  
200  
duty 1/64 SED1560  
duty 1/48  
[Hz]  
duty 1/32 SED1561  
duty 1/24  
100  
f
F
duty 1/16 SED1562  
0
2
4
6
8
fCL [KHz]  
Figure 3.2 External clock (fCL) vs. frame frequency [SED1560 Series]  
174-3.0  
23  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.2 – 3.3.1  
3.0 Electrical Characteristics  
10  
–20  
5.0V  
1
–16  
–15  
2.7V  
–13  
[mA]  
DD (2)  
[V]  
–10  
V5  
0.1  
I
–5  
0
0.01  
0
–2  
–2.4 –3.0  
–4  
–6  
–8  
0.01  
0.1  
1
10  
V
SS [V]  
fcyc [MHz]  
Figure 3.3  
Figure 3.4  
Operating voltage range for VSS and V5  
Power consumption during CPU access cycle  
(IDD [2])  
3.3 AC CHARACTERISTICS  
3.3.1 Reset  
Table 3.5 Reset  
Rating  
Parameter  
Symbol  
Condition  
Unit  
µs  
Min  
Typ  
Max  
tR is measured from the rising edge  
of RES. The SED156X resumes  
normal operating mode after a reset.  
Reset time  
tR  
1.0  
Reset LOW-level  
pulsewidth  
t
1.0  
µs  
RW  
24  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.4  
3.4 DISPLAY CONTROL TIMING  
CL  
tf  
tWLCL  
tWHCL  
tr  
tDFR  
tDSNC  
tDOL  
FR  
SYNC  
tDOH  
DYO  
tCDH  
tCDL  
CLO  
Figure 3.5 Display control timing  
Display Control Input Timing  
Parameter  
VSS = –5.5 to –4.5V, Ta = –30 to 85°C  
Rating  
Unit  
Symbol  
Condition  
Min  
35  
Typ  
Max  
CL LOW-level pulsewidth  
CL HIGH-level pulsewidth  
CL rise time  
tWLCL  
tWHCL  
tr  
µs  
µs  
ns  
ns  
µs  
µs  
35  
30  
30  
CL fall time  
tf  
FR delay time  
tDFR  
tDSNC  
–1.0  
–1.0  
1.0  
1.0  
SYNC delay time  
VSS = –4.5 to –2.7V, Ta = –30 to 85°C  
Rating  
Unit  
Parameter  
Symbol  
Condition  
Min  
35  
Typ  
Max  
CL LOW-level pulsewidth  
CL HIGH-level pulsewidth  
CL rise time  
tWLCL  
tWHCL  
tr  
µs  
µs  
ns  
ns  
µs  
µs  
35  
40  
40  
CL fall time  
tf  
FR delay time  
tDFR  
tDSNC  
–1.0  
–1.0  
1.0  
1.0  
SYNC delay time  
1. Effective only when the SED156X is in the master mode.  
The FR/SYNC delay time output timing is provided in the  
master operation.  
2. The FR/SYNC delay time input timing is provided in the  
slave operation.  
3. Each timing is based on 20% and 80% of VSS.  
174-3.0  
25  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.4  
3.0 Electrical Characteristics  
Display Control Output Timing  
Parameter  
VSS = –5.5 to –4.5V, Ta = –30 to 85°C  
Rating  
Symbol  
Condition  
Unit  
Min  
Typ  
60  
Max  
150  
150  
160  
160  
FR delay time  
tDFR  
tDSNC  
tDOL  
CL = 50 pF  
ns  
ns  
ns  
ns  
SYNC delay time  
CL = 100 pF  
60  
DYO LOW-level delay time  
DYO HIGH-level delay time  
70  
tDOH  
70  
CLO to DYO LOW-level  
delay time  
SED156X operating in  
master mode only  
tCDL  
40  
40  
100  
100  
ns  
ns  
CLO to DYO HIGH-level  
delay time  
SED156X operating in  
master mode only  
t
CDH  
VSS = –4.5 to –2.7V, Ta = –30 to 85°C  
Rating  
Unit  
Parameter  
Symbol  
Condition  
Min  
Typ  
120  
120  
140  
140  
Max  
240  
240  
250  
250  
FR delay time  
tDFR  
tDSNC  
tDOL  
CL = 50 pF  
ns  
ns  
ns  
ns  
SYNC delay time  
CL = 100 pF  
DYO LOW-level delay time  
DYO HIGH-level delay time  
tDOH  
CLO to DYO LOW-level  
delay time  
SED156X operating in  
master mode only  
t
100  
100  
200  
200  
ns  
ns  
CDL  
CLO to DYO HIGH-level  
delay time  
SED156X operating in  
master mode only  
t
CDH  
26  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.5  
3.5 SYSTEM BUSES: READ/WRITE CHARACTERISTICS I (80-SERIES MPU)  
tAH8  
A0  
tAW8  
tCYC8  
tr  
tCCLR  
tCCLW  
tCCHR  
tCCHW  
WR, RD, (CS)  
tf  
tDS8  
tDH8  
D0 to D7  
(Write)  
tACC8  
tCH8  
D0 to D7  
(Read)  
VSS = –5.0 ± 10%, Ta = –30 to 85°C  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Signal  
Symbol  
tAH8  
Condition  
Min  
10  
Max  
70  
50  
15  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A0, CS  
tAW8  
10  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
200  
22  
Control L pulse width (WR)  
Control L pulse width (RD)  
Control H pulse width (WR)  
Control H pulse width (RD)  
Data setup time  
WR  
RD  
WR  
RD  
77  
172  
117  
20  
Data hold time  
tDH8  
10  
RD access time  
D0 ~ D7  
tACC8  
tCH8  
CL = 100pF  
Output disable time  
10  
Input signal change time  
tr, tf  
174-3.0  
27  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.5 – 3.6  
3.0 Electrical Characteristics  
VSS = –2.7 to –4.5V, Ta = –30 to 85°C  
Parameter  
Signal  
Symbol  
tAH8  
Condition  
Min  
25  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
A0, CS  
Address setup time  
System cycle time  
tAW8  
25  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
450  
44  
Control L pulse width (WR)  
Control L pulse width (RD)  
Control H pulse width (WR)  
Control H pulse width (RD)  
Data setup time  
WR  
RD  
WR  
RD  
194  
394  
244  
40  
Data hold time  
tDH8  
20  
RD access time  
D0 ~ D7  
tACC8  
tCH8  
CL = 100pF  
140  
100  
15  
Output disable time  
Input signal change time  
10  
tr, tf  
Notes: 1. When using the system cycle time in the high-speed mode, it is limited by tr + tf (tCYC8 – tCCLW – tCCHW) or tr + tf (tCYC8 –  
tCCLR – tCCHR)  
2. All signal timings are limited based on 20% and 80% of VSS voltage.  
3. Read/write operation is performed while CS (CS1 and CS2) is active and the RD or WR signal is in the low level.  
Ifread/writeoperationisperformedbytheRDorWRsignalwhileCSisactive, itisdeterminedbytheRDorWRsignaltiming.  
If read/write operation is performed by CS while the RD or WR signal is in the low level, it is determined by the CS active  
timing.  
3.6 SYSTEM BUSES: READ/WRITE CHARACTERISTICS II (68-SERIES MPU)  
tCYC6  
tEWLR  
tEWLW  
E
tEWHR  
tEWHW  
tr  
tAW6  
tAH6  
tf  
A0, RW  
tAH6  
tDH6  
tDS6  
D0 ~ D7  
(WRITE)  
tACC6  
tOH6  
D0 ~ D7  
(READ)  
28  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.6  
VSS = –5.0 ± 10%, Ta = –30 to 85°C  
Parameter  
System cycle time  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
Signal  
Symbol  
tCYC6  
tAW6  
Condition  
Min  
200  
10  
Max  
50  
70  
15  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(A0)  
R/W  
tAH6  
10  
tDS6  
20  
tDH6  
10  
D0 ~ D7  
Output disable time  
Access time  
tOH6  
CL = 100pF  
10  
tACC6  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
tr, tf  
READ  
WRITE  
READ  
WRITE  
77  
Enable H pulse  
width  
E
E
22  
117  
172  
Enable L pulse  
width  
Input signal change time  
VSS = –2.7 to +4.5V, Ta = –30 to 85°C  
Parameter  
System cycle time  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
Signal  
A0, CS  
(CS1, CS2)  
R/W  
Symbol  
tCYC6  
tAW6  
Condition  
Min  
450  
25  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH6  
25  
tDS6  
40  
tDH6  
20  
D0 ~ D7  
Output disable time  
Access time  
tOH6  
CL = 100pF  
20  
100  
140  
tACC5  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
tr, tf  
READ  
154  
44  
Enable H pulse  
width  
E
E
WRITE  
READ  
244  
394  
Enable L pulse  
width  
WRITE  
Input signal change time  
15  
Notes: 1. When using the system cycle time in the high-speed mode, it is limited by tr + tf (tCYC6 – tEWLW – tEWHW) or tr + tf (tCYC6  
– tEWLR – tEWHR)  
2. All signal timings are limited based on 20% and 80% of VSS voltage.  
3. Read/write operation is performed while CS (CS1 and CS2) is active and the E signal is in the high level.  
If read/write operation is performed by the E signal while CS is active, it is determined by the E signal timing.  
If read/write operation is performed by CS while the E signal is in the high level, it is determined by the CS active timing.  
174-3.0  
29  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.7  
3.0 Electrical Characteristics  
3.7 SERIAL INTERFACE  
tCSS  
tCSH  
CS  
A0  
tSAS  
tSAH  
tSCYC  
tSLW  
SCL  
tf  
tr  
tSHW  
tSDH  
tSDS  
SI  
30  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
3.0 Electrical Characteristics  
3.7  
VSS = –5.0 ± 10%, Ta = –30 to 85°C  
Parameter  
Serial clock cycle  
Signal  
Symbol  
tSCYC  
tSHW  
tSLW  
tSAS  
Condition  
Min  
500  
150  
150  
120  
200  
120  
50  
Max  
50  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL high pulse width  
SCL low pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
A0  
SI  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
tr, tf  
Data hold time  
30  
CS-SCL time  
CS  
400  
Input signal change time  
VSS = –2.7 to –4.5V, Ta = –30 to 85°C  
Parameter  
Serial clock cycle  
SCL high pulse width  
SCL low pulse width  
Address setup time  
Address hold time  
Data setup time  
Signal  
Symbol  
tSCYC  
tSHW  
tSLW  
tSAS  
Condition  
Min  
1000  
300  
300  
250  
400  
250  
100  
60  
Max  
50  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
A0  
SI  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
tr, tf  
Data hold time  
CS-SCL time  
CS  
800  
Input signal change time  
Note:  
*2. All signal timings are limited based on 20% and 80% of VSS voltage.  
174-3.0  
31  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
32  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0  
Functional  
Description  
174-3.0  
33  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
34  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.0 – 4.1.3  
4.1 MICROPROCESSOR INTERFACE  
4.1.1 Parallel/Serial Interface  
Table 4.1 Parallel/serial Interface Selection  
P/S  
Input Type  
Parallel  
Serial  
CS1  
CS1  
CS1  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RD  
RD  
×
WR  
WR  
×
C86  
C86  
×
SI  
×
SCL  
×
D0 to D7  
D0 to D7  
(Hi-Z)  
HIGH  
LOW  
SI  
SCL  
× = don’t care  
Parallel data can be transferred in either direction  
between the controlling microprocessor and the  
SED1560 Series via an 8-bit I/O buffer (D0 to D7).  
Serialdatacanbesentfromthemicroprocessortothe  
SED1560Seriesthroughtheserialdatainput(SI), but  
not from the SED1560 Series to the microprocessor.  
The parallel or serial interface is selected by  
setting P/S as shown in Table 4.1.  
Table 4.3 Parallel Data Transfer  
Com-  
mon Series  
6800  
8080 Series  
Description  
A0  
1
R/W  
RD  
0
WR  
1
1
0
1
Display data read out  
Display data write  
Status read  
1
1
0
0
0
1
Write to internal register  
(command)  
0
0
1
0
For the parallel interface, the type of microprocessor  
is selected by C86 as shown in Table 4.2.  
Table 4.2 Microprocessor Selection for Parallel  
Interface  
4.1.3 Serial Interface  
The serial interface consists of an 8-bit shift register and  
a 3-bit counter. These are reset when CS1 is HIGH and  
CS2 is LOW. When these states are reversed, serial  
data and clock pulses can be received from the micro-  
processor on SI and SCL respectively.  
MPU  
Bus Type  
C86  
CS1 CS2 A0 RD WR D0 to D7  
HIGH 6800-series CS1 CS2 A0  
E
R/W D0 to D7  
LOW 8080-series CS1 CS2 A0 RD WR D0 to D7  
Serial data is read on the rising edge of SCL and must  
be input at SI in the sequence D7 to D0. On every  
eighth clock pulse, the data is transferred from the  
shift register and processed as 8-bit parallel data.  
4.1.2 Parallel Interface  
A0, WR (or R/W) and RD (or E) determine the type of  
parallel data transfer. See Table 4.3.  
Input data is display data when A0 is HIGH and com-  
mand data when A0 is LOW. A0 is read on the rising  
edge of every eighth clock signal. See Figure 4.1.  
174-3.0  
35  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.1.3 – 4.2  
4.0 Functional Description  
CS1  
CS2  
SI  
SCL  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
1
2
3
4
5
6
7
8
9
10  
Figure 4.1 Serial interface timing  
4.1.4 Chip Select Inputs  
Likewise, when the microprocessor writes data to dis-  
play data RAM, the data is first stored in the bus buffer  
before being written to RAM at the next write cycle.  
Data transfer between the microprocessor and the  
SED1560 Series is enabled when CS1 is LOW and  
CS2 is HIGH. If these pins are set to any other values,  
D0 to D7 are in high impedance state and will not  
accept data.  
When writing data from the microprocessor to RAM,  
there is no delay since data is automatically trans-  
ferred from the bus buffer to the display data RAM. If  
the data rate is required to slow down, the micropro-  
cessor can insert a NOP instruction which has the  
same effect as executing a wait procedure.  
4.2 DATA TRANSFER  
To match the timing of the display data RAM and  
registers to that of the controlling microprocessor, the  
SED1560 Series uses an internal data bus and bus  
buffer. When the microprocessor reads the contents  
of RAM, the data for the initial read cycle is first stored  
inthebusbuffer(dummyreadcycle).Onthenextread  
cycle, the data is read from the bus buffer onto the  
microprocessor bus. At the same time, the next block  
of data is transferred from RAM to the bus buffer.  
When a sequence of address sets is executed, a  
dummy read cycle must be inserted between each  
pair of address sets. This is necessary because the  
addresseddatafromtheRAMisdelayedonecycleby  
the bus buffer, before it is sent to the microprocessor.  
A dummy read cycle is thus necessary after an  
address set and after a write cycle.  
36  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.2  
WR  
MPU  
N
N+1  
N+2  
N+3  
DATA  
Bus  
holder  
N
N+1  
N+2  
N+3  
Internal  
timing  
WR  
Figure 4.2 Write timing  
WR  
RD  
MPU  
N
N
n
n+1  
Data read n Data read (n+1)  
DATA  
Address set  
Dummy read  
WR  
RD  
Internal  
timing  
Column  
address  
N
N+1  
N+2  
Bus  
holder  
N
n
N+1  
N+2  
Figure 4.3 Read timing  
174-3.0  
37  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.3 – 4.6  
4.0 Functional Description  
4.3 STATUS FLAG  
4.5 COLUMN ADDRESS COUNTER  
The SED1560 Series has a single bit status flag, D7.  
When D7 is HIGH, the device is busy and will accept  
only a Status Read command. It is not necessary for  
the microprocessor to check the status of this bit  
before each command, if enough time is allowed for  
the last cycle to be completed.  
The column address counter is an 8-bit presettable  
counter that provides the column address to display  
dataRAM. SeeFigure4.4. Itisincrementedby1each  
timeareadorwritecommandisreceived.Thecounter  
automatically stops at the highest address, A6H. The  
contents of the column address counter are changed  
bytheColumnAddressSetcommand. Thiscounteris  
independent of the page address register.  
4.4 DISPLAY DATA RAM  
When the Select ADC command is used to select  
inverse display operation, the column address de-  
coder inverts the relationship between the RAM col-  
umn data and the display segment outputs.  
The SED1560 Series stores the display data sent  
from the microcomputer in the built-in display data  
RAM (166 × 65 bits) and generates the LCD drive  
signals.Itisa166-column×65-rowaddressablearray  
as shown in Figure 4.4.  
4.6 PAGE ADDRESS REGISTER  
The 65 rows are divided into 8 pages of 8 lines and a  
ninth page with a single line (D0 only). Data is read  
from or written to the 8 lines of each page directly  
through D0 to D7.  
The 4-bit page address register provides the page  
address to display data RAM. The contents of the  
register are changed by the Page Address Set com-  
mand.  
The microprocessor reads from and writes to RAM  
through the I/O buffer. Since the LCD controller oper-  
ates independently, data can be written to RAM at the  
sametimeasdataisbeingdisplayed, withoutcausing  
the LCD to flicker.  
Page address 8 (1000) is a special use RAM area for  
the indicator.  
The time taken to transfer data is very short, because  
the microprocessor inputs D0 to D7 correspond to the  
LCD common lines as shown in Figure 4.5. Large  
display configuration can thus be created using mul-  
tiple SED1560 Series devices.  
38  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.6  
Page  
DATA  
Line  
address  
Common  
address  
COM 0  
COM 1  
COM 2  
COM 3  
COM 4  
COM 5  
COM 6  
COM 7  
COM 8  
COM 9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM 1  
Column address  
address  
D0  
D1  
D2  
00H  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
1/64  
Start  
1/32  
Note:  
For 1/65  
and 1/33 display  
duty cycles, page 9  
is accessed follow-  
ing 1BH and 3BH,  
respectively.  
0
1
1
0
1
0
1
0
Page 7  
Page 8  
to  
to  
to  
Figure 4.4 Display data RAM addressing  
D0 1  
D1 0  
D2 1  
D3 0  
D4 0  
COM0  
COM1  
COM2  
COM3  
COM4  
Figure 4.5 RAM-to-LCD data transfer  
174-3.0  
39  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.7 – 4.8  
4.0 Functional Description  
4.7 INITIAL DISPLAY LINE REGISTER  
The Initial Display Line register stores the address of  
the RAM line that corresponds to the first (normally  
the top) line (COM0) of the display. See Figure 4.4.  
The contents of this 6-bit register are changed by the  
InitialDisplayLinecommand. AtthestartofeachLCD  
frame, synchronized with SYNC, the initial line is  
copied to the line counter. The line counter is then  
incremented on the CL clock signal once for every  
display line. This generates the line addresses for the  
transferofthe166bitsofRAMdatatotheLCDdrivers.  
the six different LCD driver arrangements.  
The necessary LCD driver voltage is automatically  
allocated to the COM/SEG dual outputs when their  
function is determined by the output selection circuit.  
The SED1560 selects Case 1, 2 or 6 while the  
SED1561 selects Case 3, 4, 5 or 6. The COM/SEG  
output status for the SED1562 is fixed and so cannot  
be selected.  
If a 1/65 or 1/33 display duty cycle is selected by the  
DUTY+1 command, the line address corresponding  
to the 65th or 33rd SYNC signal is changed and the  
indicator special-use line address is selected. If the  
DUTY+1 command is not used, the indicator special-  
use line address is not selected.  
When COM outputs are assigned to the output driv-  
ers, the unused RAM area is not available. However,  
all RAM column addresses can still be accessed by  
the microprocessor.  
Since duty setting and output selection are inde-  
pendent, the appropriate duty must be selected for  
each case.  
Cases 1 to 6 are determined according to the three  
lowest bits in the output status register in the output  
selection circuit. The COM output scanning direction  
can be selected by setting bit D3 in the output status  
register to “H” or “L”.  
4.8 OUTPUT SELECTION CIRCUIT  
The number of common (COM) and segment (SEG)  
driver outputs can be selected to fit different LCD  
panel configurations by the output selection circuit.  
There are 70 segment-only outputs (O32 to O101)  
and 96 common or segment dual outputs (O0 to O31  
and O102 to O165). A command selects the status of  
the dual common/segment outputs. Figure 4.6 shows  
When the DUTY+1 command is executed, pin  
COM1 becomes as shown in Figure 4.4 irrel-  
evant to output selection.  
ADC  
(D0)  
L
H
0
165  
165  
Column address  
0
Display data RAM  
Case 1  
Case 2  
Case 3  
Case 4  
Case 5  
Case 6  
SED1562  
102 segments  
64 commons  
32 commons  
32 commons  
32 commons  
102 segments  
134 segments  
134 segments  
32 commons  
134 segments  
166 segments  
150 segments  
16 commons  
16 commons  
16 commons  
O0  
O15  
O31  
O101  
O133  
O149  
O165  
Figure 4.6 Output configuration selection  
40  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.8  
Since master/slave operation and the output selec-  
tion circuit are completely independent in the  
SED1560 Series, a chip on either the master or  
slave side can be allocated to the COM output  
function in multi-chip configuration.  
The LCD driver outputs shown in Table 4.5 become  
ineffective when the SED1560 or SED1561 is used  
with 1/48 or 1/24 duty, respectively. In this case,  
ineffective outputs are used in the open state.  
Table 4.4  
SED1560  
SED1561  
SED1562  
1/16  
Duty  
1/64  
1/48  
1/32  
1/24  
COMI function  
COM64  
COM48  
COM32  
COM24  
COM16  
Table 4.5  
Output Status Register  
Ineffective Output  
D3  
0
D2  
1
D1  
0
D0  
1
O150 ~ O165  
O102 ~ O117  
O150 ~ O165  
O16 ~ O31  
Case 1  
1
1
0
1
SED1560  
0
1
1
0
Case 2  
Case 3  
Case 4  
Case 5  
1
1
1
0
0
0
1
1
O0 ~ O7  
1
0
1
1
O23 ~ O31  
0
0
1
0
O158 ~ O165  
O134 ~ O141  
O158 ~ O165  
O8 ~ O15  
SED1561  
1
0
1
0
0
0
0
1
1
0
0
1
174-3.0  
41  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.9 – 4.10  
4.0 Functional Description  
4.9 SED1560 OUTPUT STATUS  
The SED1560 selects any output status from Cases 1, 2 and 6.  
1/64 Duty (Display Area 102 × 64)  
Status Register  
LCD Driver Output  
Case  
D3 D2 D1 D0 O0  
O31 O32  
O101 O102  
COM0  
O133 O134  
O165  
COM63  
COM0  
0
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
1
COM63  
0
COM31  
COM32  
COM0  
COM63  
SEG102  
SEG102  
SEG166  
COM32  
COM31  
COM63  
COM0  
2
6
1
1/48 Duty (Display Area 102 × 48)  
Status Register  
Case  
LCD Driver Output  
O101 O102  
COM0  
D3 D2 D1 D0 O0  
O31 O32  
O133 O134  
COM47  
O165  
COM0  
COM0  
0
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
1
COM47  
0
COM31  
COM0  
SEG102  
SEG102  
SEG166  
COM32 47  
COM31  
2
6
1
COM32 47  
4.10 SED1561 OUTPUT STATUS  
The SED1561 selects any output status from Cases 3, 4, 5 and 6.  
1/32 Duty (Display Area 134 × 32)  
Status Register  
LCD Driver Output  
Case  
D3 D2 D1 D0 O0 O15 O16 O31 O32  
O133 O134 149 150 O165  
0
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
COM31  
COM0  
COM0  
SEG134  
SEG134  
3
4
COM31  
0
SEG134  
SEG134  
COM0  
COM31  
COM0  
1
COM31  
0
15 COM0  
COM16 31  
SEG134  
SEG134  
SEG166  
COM16 31  
15 COM0  
5
6
1
42  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.10 – 4.12.3  
1/24 Duty (Display Area 134 × 24)  
Status Register  
Case  
LCD Driver Output  
D3 D2 D1 D0 O0 O15 O16 O31 O32  
O133 O134 149 150 O165  
0
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
COM23  
COM0  
SEG134  
SEG134  
3
4
COM0 COM23  
0
SEG134  
SEG134  
COM0  
COM23  
1
COM23 COM0  
0
15 COM0  
16 23  
SEG134  
SEG134  
SEG166  
16 23  
5
6
1
15 COM0  
4.11 SED1562 OUTPUT STATUS  
COM/SEG output status of the SED1562 is fixed.  
1/16 Duty (Display Area 150 × 16)  
LCD Driver Output  
SEG150  
O0  
O149 O150  
O165  
15  
COM0  
4.12 DISPLAY TIMERS  
4.12.1 Line Counter and Display Data Latch  
Timing  
SYNC synchronizes the timing of the line counter and  
common timers. It is also needed to synchronize the  
frame period and a 50% duty clock.  
The display clock, CL, provides the timing signals for  
the line counter and the display data latch. The RAM  
line address is generated synchronously using the  
displayclock. Thedisplaydatalatchsynchronizesthe  
166-bit display data with the display clock.  
In a multiple-chip configuration, FR and SYNC are  
inputs. The SYNC signal from the master synchro-  
nizesthelinecounterandcommontimingoftheslave.  
4.12.3 Common Timing Signals  
The timing of the LCD panel driver outputs is  
independent of the timing of the input data from  
the microprocessor.  
The internal common timing and the special-use  
common driver start signal, DYO, are generated from  
CL. As shown in Figures 4.7 and 4.8, DYO outputs a  
HIGH-level pulse on the rising edge of the CL clock  
pulse that precedes a change on SYNC. DYO is  
generated by both the SED1560 Series devices,  
regardless of whether the device is in master or slave  
mode. However, when operating in slave mode, the  
devicedutyandtheexternalSYNCsignalmustbethe  
same as that of the master. In a multiple-chip configu-  
ration, FR and SYNC must be supplied to the slave  
from the master.  
4.12.2 FR and SYNC  
The LCD AC signal, FR, and the synchronization  
signal, SYNC, are generated from the display clock.  
The FR controller generates the timing for the LCD  
panel driver outputs. Normally, 2-frame wave pat-  
terns are generated, but n-line inverse wave patterns  
can also be generated. These produce a high-quality  
display if n is based on the LCD panel being used.  
174-3.0  
43  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.13  
4.0 Functional Description  
Table 4.6 Master and Slave Timing Signal Status  
Part Number  
Mode  
FR  
SYNC  
CLO  
DYO  
CL  
Output  
Master Output Output  
Output  
SED1560  
Series  
High  
Slave  
Input  
Input Imped- Output  
ance  
4.13 TWO-FRAME AC DRIVER WAVEFORM (SED1561, 1/32 DUTY)  
31 32  
1
2
3
4
5
6
27 28 29 30 31 32  
1
2
3
4
5
CL  
SYNC  
FR  
DYO  
VDD  
V1  
V2  
COM0  
COM1  
V3  
VDD  
V1  
V2  
V3  
RAM  
data  
VDD  
V2  
V3  
SEG n  
V5  
Figure 4.7 Frame driver timing for duty 1/32  
44  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.14  
4.14 n LINE INVERSE DRIVER WAVEFORM (n=5, LINE INVERSE REGISTER 4)  
31 32  
1
2
3
4
5
6
27 28 29 30 31 32  
1
2
3
4
5
CL  
SYNC  
FR  
DYO  
VDD  
V1  
V4  
V5  
COM0  
COM1  
VDD  
V1  
V4  
V5  
RAM  
data  
VDD  
V2  
V3  
SEG n  
V5  
Note: When n = 5, the line inversion register is set to 4.  
Figure 4.8 Line inverse driver timing  
174-3.0  
45  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.15 – 4.20  
4.0 Functional Description  
4.15 DISPLAY DATA LATCH  
4.19 OSCILLATOR CIRCUIT  
Display data is transferred from RAM to the LCD  
drivers through the display data latch. This latch is  
controlled by the Display ON/OFF, Display All Points  
ON/OFF and Normal/Inverse Display commands.  
The low power consumption type CR oscillator  
adjusting the oscillator frequency by use of only  
oscillator resistor Rf is used as a display timing  
signal source or clock for the voltage raising circuit  
of the LCD power supply.  
These commands do not alter the data.  
The oscillator circuit is available only in the master  
operationmode.Whenasignalfromtheoscillatorcircuit  
is used for display clock, fix the CL pin to the VSS level.  
When the oscillator circuit is not used, fix the OSC1 or  
OSC2 pin to the VDD or VSS level, respectively.  
4.16 LCD DRIVER  
The LCD driver converts RAM data into the 167  
outputs that drive the LCD panel. There are 70 seg-  
ment outputs, 96 segment or common dual outputs,  
and a COM1 output for the indicator display.  
The oscillator signal frequency is divided and output  
from the CL0 pin as display clock. The frequency is  
divided to one-fourth, one-eighth, or one-sixteenth in  
the SED1560, SED1561, or SED1562, respectively.  
Two shift registers for the common/segment drivers  
are used to ensure that the common outputs are out-  
put in the correct sequence. The driver output volt-  
ages depend on the display data, the common scan-  
ning signal and FR.  
4.20 FR CONTROL CIRCUIT  
The LCD driver voltage supplied to the LCD driver  
outputs is selected using FR signal.  
4.17 DISPLAY DATA LATCH CIRCUIT  
The display data latch circuit temporarily stores the  
output display data from the display data RAM to  
the LCD driver circuit in each common period.  
Since the Normal/Inverse Display, Display ON/  
OFF and Display All Points ON/OFF commands  
control the data in this latch, the data in the display  
data RAM remains unchanged.  
4.18 LCD DRIVER CIRCUIT  
This multiplexer generates 4-value levels for the LCD  
driver, having 167 outputs of 70 SEG outputs, 96  
SEG/COM dual outputs and a COM output for the  
indicator display. The SEG/COM dual outputs have a  
shift register and sequentially transmit COM scan-  
ning signals. The LCD driver voltage is output accord-  
ing to the combination of display data, COM scanning  
signal and FR signal. Figure 4.9 shows a typical SEG/  
COM output waveform.  
46  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.20  
VDD  
VSS  
VDD  
V1  
V2  
V3  
V4  
V5  
VDD  
V1  
V2  
V3  
V4  
V5  
VDD  
V1  
V2  
V3  
V4  
V5  
VDD  
V1  
V2  
V3  
V4  
V5  
VDD  
V1  
V2  
V3  
FR  
(SYNC)  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
SEG0SEG1SEG2SEG3SEG4  
V4  
V5  
V5  
V4  
V3  
V2  
V1  
COM0  
to  
SEG0  
VDD  
–V1  
–V2  
–V3  
–V4  
–V5  
V5  
V4  
V3  
V2  
V1  
COM0  
to  
VDD  
–V1  
–V2  
–V3  
–V4  
–V5  
SEG1  
Figure 4.9 Example of segment and common timing  
174-3.0  
47  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.21 – 4.22  
4.0 Functional Description  
When (T1, T2) = (H, L), the boosting circuit does not  
work and open the boosting circuit terminals (CAP1+,  
CAP1–, CAP2+ and CAP2–) and apply liquid crystal  
driving voltage to the VOUT terminals from outside.  
4.21 POWER SUPPLY CIRCUIT  
The SED1560 Series has an internal DC/DC con-  
verter to generate LCD bias voltages. The internal  
power supply circuit can be used only when the  
controlleroperatesinmastermode. Thepowercircuit  
consists of a triple boosting circuit, a voltage regula-  
tion circuit and a low power voltage follower circuit.  
When (T1, T2) = (H, H), the boosting circuit and  
voltage regulation circuit do not work and open the  
boosting circuit terminals and the VR terminals and  
applyliquidcrystaldrivingvoltagetotheV5,andleave  
the VOUT pin open.  
The power circuit built into SED1560 Series is set for  
smaller scale liquid crystal panels and it is not suit-  
able when the picture element is larger or to drive a  
liquid crystal panel with larger indication capacity  
using multiple chips. It is recommended that an exter-  
nal power supply is used when using a liquid crystal  
panel with a larger load capacity.  
4.22 TRIPLER BOOSTING CIRCUIT  
By connecting capacitors C1 between CAP1+ and  
CAP1–, CAP2+ and CAP2– and VSS – VOUT, the  
electric potential between VDD – VSS is boosted to the  
triple toward negative side and outputted from the  
VOUT terminal. When a double boosting is required,  
disconnectthecapacitorbetweenCAP2+andCAP2–  
and short-circuit the CAP2– and VOUT terminals to  
obtainoutputboostedtothedoubleoutoftheVOUT (or  
CAP2–) terminal.  
Thepowersupplycircuitcanbecontrolledbythebuilt-  
in power ON/OFF command. When the built-in power  
is turned off, the boosting circuit, voltage regulation  
circuit and voltage follower circuit all go open. In this  
case, the liquid crystal driving voltage V1, V2, V3, V4  
and V5 should be supplied from outside and the  
terminalsCAP1+, CAP1–, CAP2+, CAP2–, VOUT and  
VR should be kept opened.  
Signals from the oscillation circuit are used in the  
boosting circuit and it then is necessary that the  
oscillation circuit is in operation.  
Various functions of the power circuit can be selected  
by combinations of the setting of the T1 and T2. It is  
also possible to make a combined use of the external  
powersupplyandaportionofthefunctionsofthebuilt-  
in power supply.  
Electricpotentialsbytheboostingfunctionsareshown  
in Figure 4.10 and 4.11.  
Table 4.7  
Voltage  
Converter  
Circuit  
Voltage  
Converter  
Circuit  
Voltage  
Regulation  
Circuit  
External  
Voltage  
Input  
Voltage  
Regulation  
Terminals  
V/F  
Circuit  
T1  
T2  
Terminals  
L
L
L
H
L
O
O
X
X
O
O
O
X
O
O
O
O
H
H
VOUT  
V5  
OPEN  
OPEN  
H
OPEN  
48  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.22 – 4.23  
VDD = 0V  
(VCC = +5V) VDD = 0V  
(GND) VSS = –5V  
VSS = –5V  
VOUT = 2vss = –10V  
V
OUT = 3  
v
= –15V  
ss  
Figure 4.10  
Electric potentials of double boosting  
Figure 4.11  
Electric potentials of triple boosting  
4.23 VOLTAGE REGULATION CIRCUIT (SOFTWARE CONTRAST ADJUSTMENT FUNCTION IS  
NOT USED)  
The voltage regulation circuit renders a temperature  
gradient, after VREG output, of about –0.17% /°C, but  
when any other temperature gradient is needed,  
connect a thermistor in series with the output voltage  
regulating resistors.  
The boosted voltage coming out from VOUT is ad-  
justed to become the liquid crystal driving voltage V5  
via the voltage regulation circuit. V5 voltage can be  
regulated within a range of |V5| < |VOUT| by adjust-  
ment of resistors Ra and Rb and it may be calculated  
by the following equation:  
Since the VR terminal has a high input impedance, it  
is necessary to take some noise suppression mea-  
sures, such as using the shortest length wiring or  
shielded wiring.  
Rb  
Ra  
V5 = (1 +  
) VREG  
Equation 4.1  
wherein VREG is the constant voltage source inside  
the IC and the voltage is constant at VREG 2.5V.  
Voltage regulation of the V5 output is made by con-  
necting variable resistors between VR, VDD and V5.  
For fine adjustment of the V5 voltage, a combination  
of fixed resistors R1 and R3 and a variable resistor R2  
is needed.  
VDD  
VREG  
Ra  
+
Examples of settings of R1, R2, and R3:  
V5  
VR  
• R1 + R2 + R3 = 5 M(determined by the  
current required to flow between VDD and V5)  
• Voltage variation range by R2: –11V ~ –13V  
(determined based on the characteristics of  
the liquid crystal being used)  
Rb  
Figure 4.12  
Voltage regulation circuit  
Using the above conditions and Equation 4.1, the  
following calculations can be made:  
R1 = 0.947 MΩ  
R2 = 0.174 MΩ  
R3 = 3.879 MΩ  
174-3.0  
49  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.24  
4.0 Functional Description  
4.24 VOLTAGE REGULATION CIRCUIT USING SOFTWARE CONTRAST ADJUSTMENT  
CONTROL FUNCTION  
By using software contrast adjustment control function, it is possible to control the liquid crystal driving  
voltage V5 by inputting corresponding commands to adjust the contrast of the liquid crystal display.  
With such an electronic contrast control function, setting 5-bit data to the electronic contrast control  
register will make available 32 states of voltages from which one voltage level can be selected for the  
liquid crystal driving voltage V5.  
When using the software contrast control function, it is necessary to execute built-in power supply on  
command after one of (T1, T2) = (L, L), (T1, T2) = (L, H), or (T1, T2) = (H, L) is set.  
Example of Constant Setting When Using the Software Contrast Adjustment Control Function  
(1) Determine a V5 voltage setting range by the electronic contrast control.  
Liquid crystal driving voltage ...........................V5 – 10V max. to –15V min.  
V5 variable voltage width ................................4V  
(2) Determine Rb.  
Rb = V5 variable voltage width / IREF  
Rb = 4V / 6.5µA  
(32 states IREF 6.5µA constant-current value)  
(16 states IREF 3.2µA constant-current value)  
= 615 kΩ  
(3) Determine Ra.  
VREG  
(For VREG and V5 set voltage, absolute values are used.)  
Ra =  
(V5 set voltage max – VREG) / Rb  
2.5V  
Ra =  
(10V – 2.5V) / 615Ω  
= 205 kΩ  
(4) Adjust Ra.  
Set the electronic contrast control register value to (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0) or (0, 1, 1,  
1, 1), and adjust the Ra value to the optimum contrast.  
To set the voltage value by the software contrast adjustment control to the 16 states, fix the data D4 of  
the electronic contrast control register to L and set data in D3 to D0. At this time, set IREF 3.2µA and  
determine Ra and Rb according to the above steps (1) to (4).  
Because IREF is a simplified constant-current source, it is necessary to consider the variation of  
maximum ±40% as manufacturing dispersion. The temperature dependency of IREF becomes IREF ≈  
–0.0525µA/°C (in the variable voltage 32 states) or IREF –0.0234 µA/°C (variable voltage 16 states).  
Determine Ra and Rb for the LCD to be used, by taking the above dispersion and variations due to  
temperatures into consideration.  
When using the software contrast adjustment control function, Ra must be a variable resistance and the  
50  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.24 – 4.25  
optimum contrast adjustment described in (4) must be made for each IC chip in order to compensate  
the V5 voltage value due to the dispersion of VREG and IREF.  
When the contrast control function is not used, set the register value to (D4, D3, D2, D1, D0) = (0, 0,  
0, 0, 0) by the RES signal or electronic contrast control register set command.  
4.25 PRECAUTIONS ON USING THE SED1560 SERIES SOFTWARE CONTRAST ADJUSTMENT  
CONTROL FUNCTION  
The SED1560 Series is provided with a software contrast adjustment control function having up to 32  
levels to control the regulator. The V5 voltage, when the software contrast control function is used, is  
represented by the following expression:  
V5 = (1 + Rb / Ra). VREG + Rb × ∆IREF  
By this expression, the software contrast control function controls an increment of V5 voltage by means  
of the current source IREF built into the IC. (In the case of 32 levels, IREF = IREF / 32).  
The V5 minimum voltage is set by the resistance ratio of the externally-installed Ra and Rb, and the  
voltage step width by the software contrast control is determined by the resistance value of Rb.  
The reference voltage VREG and current source IREF built into the SED1560 Series are kept constant  
against voltage variations.  
However, IC manufacturing dispersion and variations due to temperatures are caused as shown below.  
VREG = 2.5V ± 0.15V  
VREG = –0.17%/°C  
IREF = –0.0234 µA/°C  
IREF = –0.0525 µA/°C  
IREF = 3.2µA ± 40% (for 16 levels)  
6.5µA ± 40% (for 32 levels)  
Example of Constant Setting  
Conditions: Center value .............................VDD – V5 = 8.5V  
Variable voltage width...............3.2V  
Variable voltage level................32 levels  
(1) Determination of Rb.  
VDD  
Rb = V5 variable voltage width / IREF  
= 3.2V / 6.5µA  
VREG  
= 492 kΩ  
Ra  
VR  
+
V5  
Rb  
174-3.0  
51  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.25  
4.0 Functional Description  
(2) Determination of Ra.  
VREG  
Ra =  
(V5 minimum set voltage – VREG) / Rb  
2.5V  
=
{(8.5V – 3.2V/2) – 2.5V} / 492kΩ  
= 280 kΩ  
(3) Temperature dependency of V5 when VREG = 2.5V and IREF = 6.5µA (32 levels).  
V5 minimum set voltage (V5 min) = 8.5V – 3.2V/2 = 6.9V  
Ta = 25°C  
V5 max = V5 minimum set voltage + Rb × IREF  
= 6.9V + 492kΩ × 6.5 µA  
= 10.1V ....................................... 1  
V5 typ  
= (V5 max + V5 min) / 2  
= (10.1V + 6.9V) / 2  
= 8.5V ......................................... 2  
Ta = –10°C  
V5 min = (1 + Rb / Ra) × VREG (Ta = –10°C)  
= (1 + 492k/ 280k) × 2.5V × {1 + (–0.17%/°C) × (–10°C – 25°C)}  
= 7.3V ......................................... 3  
V5 max = V5 min + Rb × IREF (Ta = –10°C)  
= 7.3V + 492kΩ × {6.5µA + (–0.0525 µA/°C) × (–10°C – 25°C)}  
= 11.4V ....................................... 4  
V5 typ  
= (V5 max + V5 min) / 2  
= (11.4V + 7.3V) / 2  
= 9.35V ....................................... 5  
Ta = 50°C  
V5 min = (1 + Rb / Ra) × VREG (Ta = 50°C)  
= (1 + 492k/ 280k) × 2.5V × {1 + (–0.17%/°C) × (50°C – 25°C)}  
= 6.6V ......................................... 6  
V5 max = V5 min + Rb × IREF (Ta = 50°C)  
= 6.6V + 492kΩ × {6.5µA + (–0.0525 µA/°C) × (50°C – 25°C)}  
= 9.15V ....................................... 7  
V5 typ  
= (V5 max + V5 min) / 2  
= (9.15V + 6.6V) / 2  
= 7.9V ......................................... 8  
52  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.25  
To set the number of variable voltage levels to 16, specify IREF = 3.2µA.  
Margin calculation is performed by considering the dispersion of VREG and VREF according to the  
same procedure as (3). From this margin calculation, it is made clear that the center value of V5 is  
affected by variations of VREG and IREF.  
Accordingly, it is necessary to set the electronic contrast control register value to (D4, D3, D2, D1,  
D0) = (1, 0, 0, 0, 0) or (0, 1, 1, 1, 1) and adjust the Ra value to the optimum contrast.  
The voltage step width by the electronic contrast control is changed by the dispersion of IREF. It is  
necessary to consider that supposing that 0.2V/STEP is set by TYP value, the maximum variation  
of 0.12V to 0.28V occurs.  
SED 1560 Series  
14  
(V)  
12  
4
1
10  
2
5
8
°
°
7
8
°
3
6
V5  
6
4
2
0
V5 max  
V5 typ  
V5 min  
°
–20  
–10  
0
10  
20  
Ta  
30  
40  
50  
60  
(°C)  
Example of V5 voltage when using SED1560 Series electronic contrast control  
174-3.0  
53  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.25 – 4.26  
4.0 Functional Description  
Since the IREF is a simplified constant current source,  
when using the electronic contrast control function, it  
becomes necessary to make adjustment to the opti-  
mumcontrastasgivenintheaboveitem(4),witheach  
of the IC chips, using the Ra as a variable resistor.  
Table 4.8  
Type  
Liquid Crystal Driving Voltage  
1/9 of the bias voltage  
SED1560  
SED1561  
SED1562  
1/7 of the bias voltage  
1/5 of the bias voltage  
When not using the software contrast adjustment  
control function, set the register to (D3, D2, D1, D0)  
= (0, 0, 0, 0) using the RES signal or by means of the  
software contrast adjustment control register set-  
ting command.  
Table 4.9 Reference Setting Value  
Reference set values:  
SED1560 .....V5 –11 ~ –13V  
4.26 LIQUID CRYSTAL VOLTAGE  
GENERATING CIRCUIT  
SED1561 .....V5 –7 ~ –9V  
SED1562 .....V5 –5 ~ –7V (Variable)  
A V5 potential is resistively divided within the IC to  
causeV1, V2, V3andV4potentialsneededfordriving  
ofliquidcrystals.TheV1,V2,V3andV4potentialsare  
further converted in the impedance by the voltage  
follower before being supplied to the liquid crystal  
driving circuit.  
SED1560  
0.47µF~  
1.0µF~  
1.0µF~  
1MΩ  
SED1561  
0.47µF~  
0.47µF~  
0.47µF~  
700KΩ  
SED1562  
0.47µF~  
0.47µF~  
0.47µF~  
500KΩ  
C1  
C2  
R1  
R2  
R3  
200KΩ  
4MΩ  
200KΩ  
200KΩ  
1.6MΩ  
700KΩ  
The liquid crystal driving voltage is fixed with each  
type (see Table 4.8).  
LCD  
SIZE  
32 × 51  
mm  
16 × 67  
mm  
8 × 75  
mm  
DOT  
64 × 102  
32 × 134  
16 × 150  
As shown in Figure 4.13, it needs to connect, exter-  
nally, 5unitsofvoltagestabilizingcapacitorsC2tothe  
liquid crystal power terminals. When selecting such  
capacitor C2, make actual liquid crystal displays  
matching to the display capacity of the liquid crystal  
display panel, before determining the capacitance as  
the constant value for voltage stabilization.  
54  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.0 Functional Description  
4.26  
Rf  
Rf *1  
VDD  
VDD  
OSC1 OSC2  
M/S  
OSC1 OSC2  
M/S  
VSS  
CL  
VSS  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
VOUT  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
VOUT  
C1  
C1  
VSS  
C1  
R3  
R1  
V5  
VR  
V5  
SED156X  
V
R
R2  
SED156X  
*2  
VDD  
VDD  
V1  
V2  
V3  
V4  
V5  
V1  
V2  
V3  
V4  
V5  
External  
supply  
voltage  
C2  
Figure 4.14  
Figure 4.13  
When external LCD power supply is used  
When the built-in power supply is used  
*1 Connect oscillator feedback resistor Rf as  
short as possible and place it close to the  
IC for preventing a malfunction.  
*2 Use short wiring or shielded cables for the  
VR pin due to high input impedance.  
*3 Determine C1 and C2 depending on the  
sizeoftheLCDpaneldriven. Youmustset  
these values so that the LCD driving volt-  
age becomes stable. Set (T1, T2) = (H, L)  
and supply an external voltage to VOUT.  
Display the LCD heavy load pattern and  
determine C2 so that the LCD driving  
voltages (V1 to V5) become stable. How-  
ever, it is necessary to make every C2  
capacitance value equal. Then, set (T1,  
T2) = (L, L) and determine C1.  
*4 The “LCD SIZE” indicates the vertical  
and horizontal length of the LCD panel  
display area.  
174-3.0  
55  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
4.27  
4.0 Functional Description  
4.27 RESET  
When power is turned ON, the SED1560 Series is  
initializedontherisingedgeofRES.Initialsettingsare  
as follows:  
1. Display  
: OFF  
2. Display mode  
: Normal  
: OFF  
3. n-line inversion  
4. Duty cycle  
: 1/64  
5. ADC select  
: Normal  
: OFF  
6. Read/write modify  
7. On-chip power supply  
8. Serial interface register  
9. Display initial line register  
10. Column address counter  
11. Page address register  
12. Output selection circuit  
13. n-line inversion register  
14. Software contrast setting  
: OFF  
: Cleared  
: Line 1  
: 0  
: Page 0  
: Case 6  
: 16  
: zero  
TheRESpinshouldbeconnectedtothemicroproces-  
sor reset terminal so that both devices are reset at the  
same time. RES must be LOW for at least 1 µs to  
correctly reset the SED1560 Series. Normal opera-  
tion starts 1 µs after the rising edge on RES.  
If the SED1560 Series is not properly initialized when  
power is turned ON, it can lock itself into a state that  
cannot be cancelled.  
When the Reset command is used, only initial set-  
tings 9 to 14 are active.  
56  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.0  
Commands  
174-3.0  
57  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
58  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.0 Commands  
5.1  
5.1 COMMAND SUMMARY  
A0, RD and WR identify the data bus commands.  
Interpretation and execution of commands are syn-  
chronized to the internal clock. Since a busy check is  
normallynotneeded,commandscanbeprocessedat  
high speed. When the serial interface is used, the  
order of data entry is D7 to D0.  
Table 5.1  
Code  
Command  
Description  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Turns the display ON and OFF.  
D = 0 OFF  
Display ON/OFF  
0
1
0
1
0
1
0
1
1
1
D
D = 1 ON  
Sets the display RAM line address for  
COM0.  
Initial display line  
Page address set  
0
0
0
1
1
1
0
0
0
0
1
0
1
0
0
Display line address  
1
0
1
1
Page address  
Sets the RAM page address register.  
Column address set  
(upper four bits)  
Column address  
upper four bits  
Sets the column address register upper  
four bits.  
Column address set  
(lower four bits)  
Column address  
lower four bits  
Sets the column address register lower  
four bits.  
0
1
0
0
0
0
0
Read status  
0
1
1
0
1
0
1
0
1
Status  
0
0
0
0
Reads out status information.  
Writes to display RAM.  
Write display data  
Read display data  
Write data  
Read data  
Reads from display RAM.  
Sets the display RAM segment output.  
Select ADC  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
1
0
1
D
D
D = 0 Normal  
D = 1 Inverse  
Normal/inverse  
display  
Sets the LCD display mode.  
D = 0 Normal  
D = 1 Inverse  
Sets the segments display mode.  
D = 0 Normal  
D = 1 All display segments ON  
Display all points  
ON/OFF  
0
1
0
1
0
1
0
0
1
0
D
Sets the LCD controller duty (1).  
D = 0, D=1 See Table 5.3  
Select duty  
Duty + 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
D
D
Sets the LCD controller duty (2).  
D = 0 Normal  
D = 1 Duty + 1  
Number of  
inverted items  
Sets the number of inverted lines in the in-  
versionregisterfortheinversioncontroller.  
Set n-line inversion  
Cancel n-line inversion  
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
Cancels line inversion display mode.  
Sets modified read mode. The column  
address counter is not incremented when  
reading.  
Read Modify Write  
End  
0
1
0
1
1
1
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
Cancels modified read mode.  
Power-on  
completion  
Completes the turn-on sequence of built-  
in power supply  
Reset  
0
0
1
1
0
0
1
1
1
1
1
0
0
0
0
0
1
0
Resets the internal registers.  
Sets the common and segment output  
status register.  
Output status set  
Output status  
LCD power supply  
ON/OFF  
Turns the power supply ON and OFF.  
0
0
1
1
0
0
0
1
0
0
1
0
0
0
1
0
D
D = 0 OFF  
D = 1 ON  
Software contrast  
setting  
Electronic contrast control Setting the V5 output voltage to the elec-  
tronic contrast control register.  
resistance value  
A complex command to turn off the display  
and light all indicators.  
Power save  
174-3.0  
59  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2 – 5.2.4  
5.2 Command Definitions  
5.2 COMMAND DEFINITIONS  
5.2.1 Display ON/OFF  
A3  
0
A2  
0
A1  
0
A0  
0
Page  
Alternately turns the display ON and OFF.  
R/W  
0
1
2
3
4
5
6
7
8
0
0
0
1
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
1
0
0
1
0
1
0
1
0
1
1
1
D
0
0
1
1
Note:  
D = 0 Display OFF  
D = 1 Display ON  
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
5.2.2 Initial Display Line  
1
0
0
0
Loads the RAM line address of the initial display line,  
COM0, into the initial display line register. The RAM  
display data becomes the top line of the LCD screen.  
It is followed by the higher number lines in ascending  
order, corresponding to the duty cycle. The screen  
can be scrolled using this command by incrementing  
the line address.  
5.2.4 Column Address Set  
Loads the RAM column address from the micropro-  
cessor into the column address register. The column  
address is divided into two parts—4 high-order bits  
and 4 low-order bits.  
R/W  
When the microprocessor reads or writes display  
data to or from RAM, column addresses are auto-  
matically incremented, starting with the address  
stored in the column address register and ending  
with address 166.  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
0
1
A5 A4 A3 A2 A1 A0  
A5  
0
A4  
0
A3  
0
A2  
A1  
0
A0 Line Address  
0
0
0
0
1
0
0
1
0
0
0
0
The page address is not incremented automatically.  
R/W  
0
0
0
1
2
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
1
1
1
0
1
62  
63  
0
1
0
0
0
0
1
A7 A6 A5 A4  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
5.2.3 Page Address Set  
0
1
0
0
0
0
0
A3 A2 A1 A0  
Loads the RAM page address from the microproces-  
sor into the page address register. A page address,  
along with a column address, defines a RAM location  
for writing or reading display data. When the page  
address is changed, the display status is not affected.  
Column  
Address  
A7 A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
Page address 8 is a special use RAM area for the  
indicator. Only D0 is available for data exchange.  
1
0
1
0
0
1
0
1
165  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
1
A3 A2 A1 A0  
60  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2 Command Definitions  
5.2.5 – 5.2.9  
5.2.5 Read Status  
5.2.7 Read Display Data  
Indicates to the microprocessor the SED1560 Series  
status conditions.  
Sends bytes of display data to the microprocessor  
from the RAM location specified by the column ad-  
dress and page address registers. The column ad-  
dress is incremented automatically so that the micro-  
processor can continuously read data from the ad-  
dressedpage. Adummyreadisrequiredafterloading  
an address into the column address register.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
ON/  
OFF SET  
RE-  
BUSY ADC  
0
0
1
0
0
0
0
BUSY - Indicates whether or not the SED1560  
Series will accept a command. If BUSY is 1,  
thedeviceiscurrentlyexecutingacommand  
or is resetting, and no new commands can  
be accepted. If BUSY is 0, a new command  
can be accepted. It is not necessary for the  
microprocessortocheckthestatusofthisbit  
if enough time is allowed for the last cycle to  
be completed.  
Displaydatacannotbereadthroughtheserialinterface.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
Read data  
5.2.8 Select ADC  
Selects the relationship between the RAM column  
addresses and the segment drivers. When reading or  
writingdisplaydata,thecolumnaddressisincremented  
as shown in Figure 5.4.  
ADC -IndicatestherelationshipbetweenRAM  
column addresses and the segment drivers.  
If ADC is 1, the relationship is normal and  
column address n corresponds to segment  
driver n. If ADC is 0, the relationship is  
inverted and column address (165 – n) cor-  
responds to segment driver n.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
0
0
D
Note:  
ON/OFF - Indicates whether the display is  
ON or OFF. If ON/OFF is 1, the display is  
OFF. If ON/OFF is 0, the display is ON.  
Note that this is the opposite of the Display  
ON/OFF command.  
D = 0 Rotate right (normal direction)  
D = 1 Rotate left (reverse direction)  
The output pin relationship can also be changed by the  
microprocessor. There are very few restrictions on pin  
assignments when constructing an LCD module.  
RESET - Indicates whether initialization is  
in process as the result of RES or the  
Reset command.  
5.2.9 Normal/Inverse Display  
Determines whether the data in RAM is displayed  
normally or inverted.  
5.2.6 Write Display Data  
Writes bytes of display data from the microproces-  
sor to the RAM location specified by the column  
address and page address registers. The column  
address is incremented automatically so that the  
microprocessor can continuously write data to the  
addressed page.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
1
1
D
Note:  
D = 0 LCD segment is ON when RAM data is 1 (normal).  
D = 1 LCD segment is ON when RAM data is 0 (inverse).  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
1
0
Write data  
174-3.0  
61  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2.10 – 5.2.14  
5.2 Command Definitions  
5.2.10 Display All Points ON/OFF  
the RAM area corresponding to page address 8, D0.  
(Refer to Figure 5.4.)  
Turns all LCD points ON independently of the display  
data in RAM. The RAM contents are not changed.  
In multi-chip configuration, the Duty + 1 command  
must be executed to both the master and slave sides.  
This command has priority over the normal/inverse  
display command.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
0
1
0
1
0
1
0
1
0
1
D
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
1
0
D
Table 5.3  
Note:  
D = 0 Normal display status  
D = 1 All display segments ON  
Model  
D
Duty  
0
1
0
1
0
1
1/48 or 1/64  
1/49 or 1/65  
1/24 or 1/32  
1/25 or 1/33  
1/16  
SED1560  
If this command is received when the display status is  
OFF, the Power Save command is executed.  
SED1561  
SED1562  
5.2.11 Select Duty  
1/17  
Selects the LCD driver duty.  
5.2.13 Set n-line Inversion  
Since this is independent from the contents of the  
output status register, the duty must be selected  
according to the LCD output status.  
Selects the number of inverse lines for the LCD AC  
controller. The value of n is set between 2 and 16 and  
is stored in the n-line inversion register.  
In multi-chip configuration, the master and slave de-  
vices must have the same duty.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
0
1
0
0
0
1
1
A3 A2 A1 A0  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
1
0
0
D
A3  
0
A2  
0
A1  
A0  
0
Number of Inverted Lines  
0
0
1
2
Table 5.2  
0
0
1
0
0
0
3
Model  
D
Duty  
1/48  
1/64  
1/24  
1/32  
1/16  
1/16  
0
1
0
1
0
1
SED1560  
1
1
1
1
1
1
0
1
15  
16  
SED1561  
SED1562  
5.2.14 Cancel n-line Inversion  
Cancels n-line inversion and restores the normal 2-  
frame AC control. The contents of the n-line inversion  
register are not changed.  
5.2.12 Duty + 1  
R/W  
Increasesthedutyby1. If1/48or1/64dutyisselected  
in the SED1560, for example, 1/49 or 1/65 is set,  
respectively,andCOM1functionsaseithertheCOM48  
or COM64 output. The display line always accesses  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
0
0
1
0
0
0
0
0
62  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2 Command Definitions  
5.2.15 – 5.2.17  
5.2.15 Modify Read  
Following this command, the column address is no  
longer incremented automatically by a Read Display  
Data command. The column address is still  
incremented by the Write Display Data command.  
This mode is cancelled by the End command. The  
column address is then returned to its value prior to  
the Modify Read command. This command makes it  
easy to manage the duplication of data from a particu-  
lar display area for features such as cursor blinking.  
Page address set  
Column address set  
R/W  
Read–modify–write cycle  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
0
0
Note: the Column Address Set command cannot be used in  
modify-read mode.  
Dummy read  
Data read  
5.2.16 End  
Cancels the modify read mode. The column address  
prior to the Modify Read command is restored.  
Data write  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
1
1
1
0
No  
Changes  
finished?  
5.2.17 Reset  
Resets the initial display line, column address, page  
address, and n-line inversion registers to their initial  
values. This command does not affect the display  
data in RAM.  
Yes  
R/W  
END  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
1
0
Figure 5.1  
Command sequence for cursor blinking  
The reset command does not initialize the LCD power  
supply. Only hardware RES can be used to initialize  
the power supplies.  
Return  
Column  
address  
N
N+1  
N+2  
N+3  
N+m  
N
End  
Read–modify–write mode set  
Figure 5.2  
174-3.0  
63  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2.18 – 5.2.20  
5.2 Command Definitions  
5.2.18 Output Status Set  
5.2.20 LCD Power Supply ON/OFF  
Selects the common or segment output state of the  
LCD driver dual outputs. The A3 bit selects the scan  
direction of the outputs.  
Turns the SED1560 Series LCD power supply ON or  
OFF. When the power supply is ON, the voltage  
converter, the voltage regulator circuit and the volt-  
age followers are operating. In order for the converter  
to function, the oscillator must also be operating.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
0
1
0
1
1
0
0
A3 A2 A1 A0  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
0
0
1
2
0
0
1
4
0
0
5.2.19 Output Status Register  
OFF  
Available only in the SED1560 and SED1561.  
Note:  
D = 0 Supply OFF (24H)  
D = 1 Supply ON (25H)  
This command selects the role of the COM/SEG dual  
pins and determines the LCD driver output status.  
When an external power supply is used with the  
SED1560 Series, the internal supply must be OFF.  
The COM output scanning direction can be selected  
by setting A3 to “H” or “L”. For details, refer to the  
Output Status Circuit in each function description.  
If the SED1560 Series is used in a multiple-chip  
configuration, an external power supply that meets  
the specifications of the LCD panel must be used. An  
SED1560 Series operating as a slave must have its  
internal power supply turned OFF.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
0
0
A3 A2 A1 A0  
A3: Selection of the COM output scanning direction  
Table 5.4  
Sequence in the Built-In Power ON/OFF Status  
Number of  
Output  
To turn on internal power supply, execute the follow-  
ing built-in power supply ON sequence. To turn off  
internal power supply, execute the power save se-  
quence as shown in the following power supply OFF  
status.  
A2 A1 A0  
COM/SEG  
Remarks  
Status  
Output Pins  
Applies to the  
SED1560/61  
0
0
0
Case 6  
SEG 166  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Case 5  
Case 4  
Case 3  
Case 2  
Case 1  
Case 6  
Case 6  
SEG 134, COM 32  
SEG 134, COM 32  
SEG 134, COM 32  
SEG 102, COM 64  
SEG 102, COM 64  
SEG 166  
Applies to the  
SED1561  
Accordingly, to turn on internal power supply again  
afterturnitoff(powersave), executethePowerSave  
Clear Sequence” that is described below.  
Applies to the  
SED1560  
Applies to the  
SED1560/61  
SEG 166  
64  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2 Command Definitions  
5.2.20  
Sequence in the Power Save Status  
PowerSaveandPowerSaveClearmustbeexecuted  
according to the following sequence.  
When using an external power supply, likewise, its  
function must be stopped before or concurrently  
with putting the SED1560 Series into the power  
save status so that it may be fixed to the floating or  
VDD level. In a configuration in which an exclusive  
common driver such as SED1630 is combined with  
the SED1560 Series, it is necessary to stop the  
external power supply function after putting all the  
common output into non-selection level.  
To give a liquid crystal driving voltage level by the  
externally-installed resistance dividing circuit, the  
current flowing in this resistance must be cut before  
or concurrently with putting the SED1560 Series  
into the power save status so that it may be fixed to  
the floating or VDD level.  
Power Save Sequence  
Power Save Clear Sequence  
*3  
*2  
Output Status Select  
command  
command  
command  
C*(H)  
AB(H)  
25(H)  
Display OFF  
command  
AE(H)  
*DUTY+1  
Output Status case 6 command  
CF(H)  
AA(H)  
A5(H)  
*3  
*2  
*1  
Internal Power Supply ON  
*DUTY+1 Clear  
Display all ON  
command  
command  
*1  
*6  
*5  
Display All ON Status OFF  
(Waiting time)  
Power Supply Startup End  
command  
ED(H)  
*1. In the power save sequence, the power  
save status is provided after the display all  
ON command. In the power save clear se-  
quence, the power save status is cleared  
after the display all ON status OFF com-  
mand.  
*5. When internal power supply startup end  
command is not executed, current is con-  
sumed stationarily. Internal power supply  
startup end command must always be used  
in a pair with internal power supply ON  
command.  
*2. When the COMI pin is not used, it is not  
necessary to enter the DUTY + 1 command  
and DUTY + 1 clear command.  
*6. The waiting time depends on the externally-  
installedcapacitanceC2(refertoTable5.9).  
After the waiting time shown in the graph  
above (see bottom of previous page), the  
power supply can be started surely.  
*3. In the SED1562, it is not necessary to ex-  
ecute a command to decide an output sta-  
tus.  
*4. The display ON command can be executed  
anywhere if it is later than the display all ON  
status OFF command.  
174-3.0  
65  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.2.20  
5.2 Command Definitions  
Internal Power Supply ON Status  
Internal Power Supply OFF Status  
Reset by RES signal  
Display OFF  
command  
AE(H)  
*1  
*2  
Output Status Select  
command  
command  
command  
A*(H)  
AB(H)  
25(H)  
Output Status case 6 command  
CF(H)  
AA(H)  
A5(H)  
*DUTY+1  
*2  
*DUTY+1 Clear  
Display all ON  
command  
command  
Internal Power Supply ON  
(Waiting time)  
*4,5  
*3  
Power Supply Startup End  
command  
ED(H)  
*1. Regarding the SED1562, it is not neces-  
sary to execute a command to decide an  
output status.  
After the waiting time shown in the graph  
below,thepowersupplycanbestartedsurely.  
*5. Within the waiting time in internal power  
supply ON status, any command other than  
internal power supply control commands  
such as Power Save, and display ON/OFF  
command, display normal rotation/reverse  
command, display all ON command, output  
status select command and DUTY + 1 clear  
command can accept another command  
without any problem. RAM read and write  
operations can be freely performed.  
*2. When the COMI pin is not used, it is not  
necessary to enter the DUTY + 1 and DUTY  
+ 1 Clear commands.  
*3. When the built-in power supply startup  
end command is not executed, current is  
consumed stationarily. Internal power sup-  
ply startup end command must always be  
used in a pair with internal power supply  
ON command.  
*4. The waiting time depends on the externally-  
installedcapacitanceC2(refertoTable5.9).  
120  
(mS)  
100  
V5 voltage conditions  
80  
Waiting  
1/9 bias  
1/9 bias V5 = –6.0 to –16.0 V  
1/7 bias V5 = –5.0 to –12.0 V  
1/5 bias V5 = –4.5 to –8.0 V  
time  
60  
40  
20  
1/7 bias  
1/5 bias  
0
0.5  
1.0  
Capacitance C2  
(µF)  
66  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.3 Software Contrast Control Register  
5.3 – 5.3.2  
(a) The oscillator and power supply circuits are  
stopped.  
5.3 SOFTWARE CONTRAST CONTROL  
REGISTER  
(b) The LCD driver is stopped and segment and  
commondriveroutputsoutputtheVDD level.  
Through these commands, the liquid crystal driving  
voltage V5 is output from the voltage regulation circuit  
of the built-in liquid crystal power supply, in order to  
adjust the contrast of the liquid crystal display.  
(c) An input of an external clock is inhibited and  
OSC2 enters the high-impedance state.  
(d) The display data and operation mode be-  
fore execution of the power save com-  
mand are held.  
By setting data to the 5-bit register, one of the 32  
voltage statuses may be selected for the liquid crystal  
driving voltage V5. External resistors are used for  
setting the voltage regulation range of the V5. For  
details refer to the paragraph of the voltage regulation  
circuit in the clause for the explanation of functions.  
(e) All LCD driver voltages are fixed to the  
VDD level.  
The power save mode is cancelled by entering either  
the Display ON command or the Display All Points  
OFFcommand(displayoperationstate). Whenexter-  
nalvoltagedriverresistorsareusedtosupplytheLCD  
driver voltage level, the current through them must be  
cut off by the power save signal.  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
0
A4 A3 A2 A1 A0  
A4 A3 A2 A1 A0  
| V5 |  
0
0
0
1
0
0
Small (as the absolute value)  
If an external power supply is used, it must be  
turned OFF using the power save signal in the  
same manner, and voltage levels must be fixed to  
the floating or VDD level.  
1
1
1
1
Large (as the absolute value)  
When not using the electronic contrast control func-  
tion, set to (0, 0, 0, 0).  
5.3.2 Connection between LCD Drivers  
The LCD display area can be increased by using  
the SED1560 Series in a multiple-chip configura-  
tion or with the SED1560 Series special common  
driver (SED1630).  
5.3.1 Power Save (Complex Command)  
If the Display All Points ON command is specified in  
the display OFF state, the system enters the power  
save status, reducing the power consumption to ap-  
proximate the static power consumption value. The  
internal state in the power save status is as follows:  
VDD  
FR  
FR  
M/S  
SED156X  
(Master)  
SED1630  
SYNC  
DIO  
YSCL  
OSC1 OSC2 CL CLO DYO  
Rf  
VSS  
Figure 5.3 Application with external driver: SED156X – SED1630  
174-3.0  
67  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.3.2  
5.3 Electronic Contrast Control Register  
VDD  
SED156X  
(Master)  
SED156X  
(Slave)  
M/S  
FR  
FR  
M/S  
SYNC  
SYNC  
VSS  
OSC1 OSC2 CL CLO DYO  
OSC1 OSC2 CL CLO DYO  
VSS  
VSS  
Rf  
VDD  
SED156X  
(Master)  
SED156X  
(Slave)  
M/S  
FR  
FR  
M/S  
SYNC  
SYNC  
OSC1 OSC2 CL CLO DYO  
OSC1 OSC2 CL CLO DYO  
VSS  
VDD  
VSS  
Rf  
Figure 5.4 SED156X – SED156X (when oscillator circuit is used)  
VDD  
SED156X  
(Master)  
SED156X  
(Slave)  
M/S  
FR  
FR  
M/S  
SYNC  
SYNC  
VSS  
OSC1 OSC2 CL CLO DYO  
VSS  
OSC1 OSC2 CL CLO DYO  
VSS  
VDD  
External clock  
Figure 5.5 SED156X – SED156X (External clock)  
68  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.4 Microprocessor Interface  
5.4  
5.4 MICROPROCESSOR INTERFACE  
The SED1560 Series communicates with a high-  
speed microprocessor, such as the Intel 80XX family  
or the Motorola 68XX family, through 8-bit parallel  
data transfer. The number of connections to the  
microprocessor can be minimized by using a serial  
interface. When used in a multiple-chip configuration,  
the SED1560 Series is controlled by the chip select  
signals from the microprocessor.  
VCC  
A0  
VDD  
A0  
C86  
A0 to A7  
CS1  
CS2  
Decoder  
MPU  
SED156X  
IORQ  
D0 to D7  
D0 to D7  
RD  
WR  
RES  
RD  
WR  
RES  
P/S  
GND  
VSS  
RESET  
Figure 5.6 8080-series microprocessors  
VCC  
VDD  
A0  
A0  
C86  
A0 to A15  
CS1  
CS2  
Decoder  
MPU  
SED156X  
VMA  
D0 to D7  
D0 to D7  
E
R/W  
RES  
E
R/W  
RES  
P/S  
GND  
VSS  
RESET  
Figure 5.7 6800-series microprocessors  
174-3.0  
69  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.4 – 5.5  
5.4 Microprocessor Interface  
VCC  
VDD  
A0  
A0  
C86  
A0 to A7  
CS1  
CS2  
Decoder  
VDD  
or  
MPU  
SED156X  
GND  
PORT1  
PORT2  
SI  
SCL  
P/S  
RES  
RES  
GND  
VSS  
RESET  
Figure 5.8 Serial interface  
5.5 LCD PANEL INTERFACE EXAMPLES  
65 × 102  
Segments  
SED1560  
Commons  
(Master)  
Case 1  
33 × 134  
17 × 150  
Segments  
SED1562  
Segments  
SED1561  
Commons  
Commons  
(Master)  
Case 4  
Figure 5.9 Single-chip configurations  
70  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.5 LCD Panel Interface Examples  
5.5  
65 × 268  
Segments  
SED1560  
Segments  
SED1560  
Commons  
(Master)  
(Slave)  
Case 1  
Case 6  
33 × 300  
Segments  
Segments  
SED1561  
SED1561  
(Master)  
Commons  
(Slave)  
Case 4  
Case 6  
Figure 5.10 Multiple-chip combinations  
174-3.0  
71  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
5.6  
5.6 Special Common Driver Configurations  
5.6 SPECIAL COMMON DRIVER CONFIGURATIONS  
Commons  
SED1630  
65 × 166  
Segments  
SED1560  
(Master)  
Case 6  
Case 6  
SED1560  
(Master)  
Segments  
Commons  
SED1631  
128 × 166  
Commons  
Segments  
SED1560  
(Slave)  
Case 6  
Figure 5.11 Special common driver configurations  
72  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.0  
Packaging  
174-3.0  
73  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
THIS PAGE INTENTIONALLY BLANK  
74  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.0 Pad Layout  
6.1  
6.1 PAD LAYOUT  
O46  
V5  
V4  
V3  
V2  
V1  
V
V
DD  
R
V5  
VOUT  
CAP2–  
CAP2+  
CAP1–  
CAP1+  
VSS  
T1  
T2  
OSC1  
OSC2  
CL  
FR  
SYNC  
CLO  
DYO  
D7  
SED156X  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
V
SS  
RD  
WR  
A0  
C86  
CS2  
CS1  
P/S  
SI  
SCL  
RES  
M/S  
V
DD  
V1  
V2  
V3  
V4  
V5  
O120  
Chip Size  
Pad Pitch  
: 8.08 × 5.28 mm  
: 100 µm (min)  
Chip thickness : 625 µm ± 25 µm  
Figure 6.1 Pad layout  
174-3.0  
75  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.1  
6.0 Pad Layout  
Table 6.1 SED1560 Series Pad Center Coordinates  
Pad  
No. Name  
Pin  
Pad  
No. Name  
Pin  
Pad  
No. Name  
Pin  
Pad  
No. Name  
Pin  
X
Y
X
Y
X
Y
X
Y
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
O59 –2411 –2487  
O60 –2311 –2487  
O61 –2211 –2487  
O62 –2111 –2487  
O63 –2011 –2487  
O64 –1911 –2487  
O65 –1811 –2487  
O66 –1711 –2487  
O67 –1611 –2487  
O68 –1511 –2487  
O69 –1411 –2487  
O70 –1311 –2487  
O71 –1211 –2487  
O72 –1111 –2487  
O73 –1011 –2487  
163 O113 2989 –2487  
164 O114 3089 –2487  
165 O115 3189 –2487  
166 O116 3289 –2487  
167 O117 3389 –2487  
168 O118 3489 –2487  
169 O119 3589 –2487  
170 O120 3689 –2487  
171 O121 3887 –2206  
172 O122 3887 –2106  
173 O123 3887 –2006  
174 O124 3887 –1906  
175 O125 3887 –1806  
176 O126 3887 –1706  
177 O127 3887 –1606  
178 O128 3887 –1506  
179 O129 3887 –1406  
180 O130 3887 –1306  
181 O131 3887 –1206  
182 O132 3887 –1106  
183 O133 3887 –1006  
184 O134 3887 –906  
185 O135 3887 –806  
186 O136 3887 –706  
187 O137 3887 –606  
188 O138 3887 –506  
189 O139 3887 –406  
190 O140 3887 –306  
191 O141 3887 –206  
192 O142 3887 –106  
1
2
3
4
5
6
7
8
V5  
V4  
V3  
V2  
V1  
VDD  
M/S  
RES  
SCL  
SI  
P/S  
CS1  
CS2  
C86  
A0  
WR  
RD  
VSS  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
3640 2487  
3489 2487  
3339 2487  
3188 2487  
3037 2487  
2889 2487  
2755 2487  
2604 2487  
2453 2487  
2302 2487  
2151 2487  
2001 2487  
1850 2487  
1699 2487  
1548 2487  
1397 2487  
1247 2487  
1077 2487  
945 2487  
794 2487  
643 2487  
493 2487  
342 2487  
191 2487  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
O5  
O6  
O7  
O8  
O9  
–3887 1794  
–3887 1694  
–3887 1594  
–3887 1494  
–3887 1394  
O10 –3887 1294  
O11 –3887 1194  
O12 –3887 1094  
O13 –3887 994  
O14 –3887 894  
O15 –3887 794  
O16 –3887 694  
O17 –3887 594  
O18 –3887 494  
O19 –3887 394  
O20 –3887 294  
O21 –3887 194  
O22 –3887 94  
O23 –3887 –6  
O24 –3887 –106  
O25 –3887 –206  
O26 –3887 –306  
O27 –3887 –406  
O28 –3887 –506  
O29 –3887 –606  
O30 –3887 –706  
O31 –3887 –806  
O32 –3887 –906  
O33 –3887 –1006  
O34 –3887 –1106  
O35 –3887 –1206  
O36 –3887 –1306  
O37 –3887 –1406  
O38 –3887 –1506  
O39 –3887 –1606  
O40 –3887 –1706  
O41 –3887 –1806  
O42 –3887 –1906  
O43 –3887 –2006  
O44 –3887 –2106  
O45 –3887 –2206  
O46 –3711 –2487  
O47 –3611 –2487  
O48 –3511 –2487  
O49 –3411 –2487  
O50 –3311 –2487  
O51 –3211 –2487  
O52 –3111 –2487  
O53 –3011 –2487  
O54 –2911 –2487  
O55 –2811 –2487  
O56 –2711 –2487  
O57 –2611 –2487  
O58 –2511 –2487  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
O74  
O75  
O76  
O77  
O78  
O79  
O80  
O81  
O82  
O83  
O84  
O85  
O86  
O87  
O88  
O89  
O90  
O91  
O92  
O93  
O94  
O95  
O96  
O97  
O98  
O99  
–911 –2487  
–811 –2487  
–711 –2487  
–611 –2487  
–511 –2487  
–411 –2487  
–311 –2487  
–211 –2487  
–111 –2487  
–11 –2487  
89 –2487  
189 –2487  
289 –2487  
389 –2487  
489 –2487  
589 –2487  
689 –2487  
789 –2487  
889 –2487  
989 –2487  
1089 –2487  
1189 –2487  
1289 –2487  
1389 –2487  
1489 –2487  
1589 –2487  
40  
2487  
D7  
DYO  
CLO  
–111 2487  
–261 2487  
–412 2487  
29 SYNC –563 2487  
30  
31  
32 OSC2 –1015 2487  
33 OSC1 –1166 2487  
34  
35  
36  
37 CAP1+ –1789 2487  
38 CAP1– –1939 2487  
39 CAP2+ –2090 2487  
40 CAP2– –2241 2487  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
FR  
CL  
–714 2487  
–865 2487  
193 O143 3887  
194 O144 3887  
–6  
94  
195 O145 3887 194  
196 O146 3887 294  
197 O147 3887 394  
198 O148 3887 494  
199 O149 3887 594  
200 O150 3887 694  
201 O151 3887 794  
202 O152 3887 894  
203 O153 3887 994  
204 O154 3887 1094  
205 O155 3887 1194  
206 O156 3887 1294  
207 O157 3887 1394  
208 O158 3887 1494  
209 O159 3887 1594  
210 O160 3887 1694  
211 O161 3887 1794  
212 O162 3887 1894  
213 O163 3887 1994  
214 O164 3887 2094  
215 O165 3887 2194  
216 COMI 3887 2294  
T2  
T1  
VSS  
–1317 2487  
–1468 2487  
–1638 2487  
VOUT  
V5*  
VR  
VDD  
V1  
V2  
V3  
V4  
V5  
O0  
O1  
O2  
O3  
O4  
–2392 2487  
–2543 2487  
–2674 2487  
–2844 2487  
–2995 2487  
–3146 2487  
–3297 2487  
–3447 2487  
–3598 2487  
–3887 2294  
–3887 2194  
–3887 2094  
–3887 1994  
–3887 1894  
150 O100 1689 –2487  
151 O101 1789 –2487  
152 O102 1889 –2487  
153 O103 1989 –2487  
154 O104 2089 –2487  
155 O105 2189 –2487  
156 O106 2289 –2487  
157 O107 2389 –2487  
158 O108 2489 –2487  
159 O109 2589 –2487  
160 O110 2689 –2487  
161 O111 2789 –2487  
162 O112 2889 –2487  
* One V5 output is used for the LCD driver supply voltage; the other is used for the electronic volume control.  
76  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.2 SED1560 Series TAB Pin Layout  
6.2  
6.2 SED1560/1/2 TAB PIN LAYOUT  
This drawing is not for specifying the TAB outline shape.  
O0  
V5  
V4  
V3  
V2  
V1  
V
V
DD  
R
V5  
V
OUT  
CAP2–  
CAP2+  
CAP1–  
CAP1+  
V
SS  
T1  
T2  
OSC1  
OSC2  
CL  
FR  
SYNC  
CLO  
DYO  
D7  
D6  
D5  
SED156X  
TOP  
VIEW  
D4  
D3  
D2  
D1  
D0  
V
SS  
RD  
WR  
A0  
C86  
CS2  
CS1  
P/S  
SI  
SCL  
RES  
M/S  
V
DD  
V1  
V2  
V3  
V4  
V5  
O165  
COMI  
Figure 6.2 SED1560 Series TAB pin layout  
174-3.0  
77  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.3  
6.3 TCP Dimensions (2-sided)  
6.3 TCP DIMENSIONS (2-SIDED) SED156XT0B  
NC x 2  
00  
8.8  
NC  
V5  
V4  
V3  
V2  
V1  
1.5  
V
DD  
R
V
V5  
VOUT  
CAP2–  
CAP2+  
CAP1–  
CAP1+  
VSS  
T1  
T2  
OSC1  
OSC2  
CL  
FR  
SYNC  
CLO  
DYO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VSS  
RD  
WR  
A0  
C86  
CS2  
CS1  
P/S  
SI  
SCL  
RES  
M/S  
VDD  
V1  
V2  
V3  
V4  
V5  
NC  
4.40  
NC x 2  
COM1  
0165  
0.5  
5.34  
15.16  
28.98 ± 0.04  
2.70  
Figure 6.3 TCP dimensions (2-sided)  
78  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.4 TCP Dimensions (4-sided)  
6.4  
6.4 TCP DIMENSIONS (4-SIDED) SED156XT0A  
0.30  
D1560  
0.60  
D1560  
25.95  
31.82  
34.9750  
Figure 6.4 TCP dimensions (4-sided)  
174-3.0  
79  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.5  
6.5 TCP Dimensions (D1561TOC)  
6.5 TCP DIMENSIONS (SED1561TOC)  
0.01  
28.98±  
0.07  
8.50 (SR)  
10.23 (SR)  
6.66 (SR)  
5.34  
2.54  
(SR)  
2.39  
(SR)  
NCX2  
COM1  
0165  
4.40  
NC  
V5  
V4  
V3  
V2  
V1  
VDD  
M/S  
RES  
SCL  
SI  
P/S  
CS1  
CS2  
C86  
A0  
WR  
RD  
VSS  
D0  
D1  
D2  
D3  
5.28 (IC)  
D4  
D5  
D6  
D7  
DYO  
CLO  
SYNC  
FR  
MAX 8.28  
1.98±0.01  
CL  
OSC2  
OSC1  
T2  
T1  
VSS  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
VOUT  
V5  
VR  
VDD  
V1  
1.5  
V2  
V3  
V4  
V5  
NC  
00  
NCX2  
MAX 1.50  
MAX 1.50  
MAX 1.50  
MAX 1.50  
Figure 6.5 TCP dimensions (D1561TOC)  
80  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.6 Pad Profile  
6.6  
6.6 PAD PROFILE  
TBD  
174-3.0  
81  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.7  
6.7 BGA Package Dimensions  
6.7 BGA PACKAGE DIMENSIONS  
D
D1  
15  
14  
13  
12  
11  
10  
9
SED1560BOA  
8
7
6
5
4
INDEX  
3
4–C2  
2
1
4–C1  
Q P N M L K J H G F E D C B A  
Ø2  
A2  
A1  
A
e
øb  
Figure 6.7 Plastic BGA 225pin  
Table 6.2 BGA 225pin package dimensions  
Dimension in Millimeters  
Symbol  
Dimension in inches*  
Nom.  
Min.  
0.6  
Nom.  
0.75  
2.13  
0.6  
1.53  
25°  
1.5  
1.2  
1.5  
24  
Max.  
0.90  
Min.  
Max.  
øb  
(0.024)  
(0.030)  
(0.084)  
(0.024)  
(0.060)  
(25°)  
(0.035)  
A
A1  
0.5  
0.7  
(0.020)  
(0.057)  
(0.027)  
(0.064)  
A2  
1.43  
1.63  
θ2  
C1  
(0.059)  
(0.047)  
(0.059)  
(0.945)  
(0.945)  
(1.063)  
(1.063)  
C2  
e
D1  
23.9  
23.9  
24.1  
24.1  
(0.941)  
(0.941)  
(0.948)  
(0.948)  
E1  
24  
D
E
27  
27  
* for reference  
82  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.8 BGA Pin Assignment  
6.8  
6.8 BGA PIN ASSIGNMENT  
SED1560 SED1560 BGA225 SED1560 SED1560 BGA225 SED1560 SED1560 BGA225 SED1560 SED1560 BGA225 N/C  
pad# pin name  
pin#  
B-2  
D-4  
B-1  
C-2  
F-6  
D-3  
C-1  
D-2  
G-6  
E-4  
D-1  
E-3  
E-2  
F-5  
E-1  
F-4  
F-3  
F-2  
F-1  
G-4  
G-3  
G-2  
G-1  
G-5  
H-3  
H-1  
H-2  
H-4  
J-5  
pad# pin name  
pin#  
R-2  
P-3  
K-6  
N-4  
R-3  
P-4  
K-7  
M-5  
R-4  
N-5  
P-5  
L-6  
R-5  
M-6  
N-6  
P-6  
R-6  
M-7  
N-7  
P-7  
R-7  
L-7  
M-8  
P-8  
R-8  
N-8  
L-9  
pad# pin name  
pin#  
K-10  
M-13  
N-15  
M-14  
J-10  
L-12  
M-15  
L-13  
L-14  
K-11  
L-15  
K-12  
K-13  
K-14  
K-15  
J-12  
J-13  
J-14  
J-15  
J-11  
L-8  
pad# pin name  
pin#  
D-12  
B-14  
A-15  
C-13  
A-14  
B-13  
E-11  
C-12  
A-13  
B-12  
F-9  
D-11  
A-12  
C-11  
B-11  
E-10  
A-11  
D-10  
C-10  
B-10  
A-10  
D-9  
C-9  
B-9  
A-9  
E-9  
D-8  
B-8  
A-8  
C-8  
E-7  
A-7  
B-7  
C-7  
D-7  
A-6  
B-6  
C-6  
D-6  
A-5  
E-6  
B-5  
C-5  
A-4  
D-5  
F-7  
B-4  
A-3  
C-4  
E-5  
B-3  
A-2  
C-3  
A-1  
1
2
V5  
V4  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
05  
06  
07  
08  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
0100  
0101  
0102  
0103  
0104  
0105  
0106  
0107  
0108  
0109  
0110  
0111  
0112  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
0113  
0114  
0115  
0116  
0117  
0118  
0119  
0120  
0121  
0122  
0123  
0124  
0125  
0126  
0127  
0128  
0129  
0130  
0131  
0132  
0133  
0134  
0135  
0136  
0137  
0138  
0139  
0140  
0141  
0142  
0143  
0144  
0145  
0146  
0147  
0148  
0149  
0150  
0151  
0152  
0153  
0154  
0155  
0156  
0157  
0158  
0159  
0160  
0161  
0162  
0163  
0164  
0165  
COMI  
J-7  
H-7  
G-7  
J-8  
H-8  
G-8  
J-9  
3
V3  
4
V2  
5
V1  
09  
6
7
8
9
VDD  
M/S  
/RES  
SCL  
SI  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
054  
055  
056  
057  
058  
H-9  
G-9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
P/S  
/CS1  
CS2  
C86  
A0  
/WR  
/RD  
VSS  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DYO  
CLO  
SYNC  
FR  
K-8  
H-10  
H-11  
H-6  
H-5  
F-8  
R-9  
P-9  
N-9  
E-8  
H-12  
H-14  
H-15  
H-13  
G-11  
G-15  
G-14  
G-13  
G-12  
F-15  
F-14  
F-13  
F-12  
E-15  
F-11  
E-14  
E-13  
D-15  
E-12  
G-10  
D-14  
C-15  
D-13  
F-10  
C-14  
B-15  
J-1  
J-2  
J-3  
J-4  
CL  
M-9  
R-10  
P-10  
N-10  
M-10  
R-11  
L-10  
P-11  
N-11  
R-12  
M-11  
K-9  
P-12  
R-13  
N-12  
L-11  
P-13  
R-14  
N-13  
R-15  
P-14  
M-12  
P-15  
N-14  
OSC2  
OSC1  
T2  
K-1  
K-2  
K-3  
K-4  
L-1  
K-5  
L-2  
L-3  
M-1  
L-4  
J-6  
M-2  
N-1  
M-3  
L-5  
N-2  
P-1  
N-3  
R-1  
P-2  
M-4  
T1  
VSS  
CAP1+  
CAP1−  
CAP2+  
CAP2−  
VOUT  
V5  
VR  
VDD  
V1  
V2  
V3  
V4  
V5  
00  
01  
02  
03  
04  
174-3.0  
83  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  
6.9  
6.9 SED1560TQA OL Dimensions  
6.9 SED1560TQA OL DIMENSIONS  
100% Sn  
110 +/– 15uM  
[90(+10,–20uM)]  
190uM  
0.5 +/–0.1uM  
25 +/–1uM  
CU  
CU  
Adhesive  
300uM  
Polymide Film  
Figure 6.8 SED1560TQA OL Dimensions  
S-MOS assumes no responsibility or liability for (1) any errors or inaccuracies contained in the  
information herein and (2) the use of the information or a portion thereof in any application,  
including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or  
consequential damages. There are no warranties extended or granted by this document. The  
information herein is subject to change without notice from S-MOS.  
October 1996  
© Copyright 1996 S-MOS Systems, Inc.  
Printed in U.S.A.  
174-3.0  
84  
174-3.0  
S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY