SIT8008BC-11-33E-24.000000E [ETC]

OSC MEMS 24.0000MHZ LVCMOS SMD;
SIT8008BC-11-33E-24.000000E
型号: SIT8008BC-11-33E-24.000000E
厂家: ETC    ETC
描述:

OSC MEMS 24.0000MHZ LVCMOS SMD

文件: 总18页 (文件大小:1305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SiT8008B  
Low Power Programmable Oscillator  
Features  
Applications  
Any frequency between 1 MHz and 110 MHz accurate to  
6 decimal places  
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,  
SSD, GPON, EPON, etc  
100% pin-to-pin drop-in replacement to quartz-based XO  
Excellent total frequency stability as low as ±20 ppm  
Operating temperature from -40°C to 85°C. For 125°C  
and/or -55°C options, refer to SiT1618, SiT8918, SiT8920  
Low power consumption of 3.5 mA typical at 1.8 V  
Qualify just one device with 1.62 V to 3.63 V continuous  
supply voltage option  
Ideal for high-speed serial protocols such as: USB,  
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.  
Standby mode for longer battery life  
Fast startup time of 5 ms  
LVCMOS/HCMOS compatible output  
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,  
5.0 x 3.2, 7.0 x 5.0 mm x mm  
Instant samples with Time Machine II and Field  
Programmable Oscillators  
RoHS and REACH compliant, Pb-free, Halogen-free and  
Antimony-free  
For AEC-Q100 oscillators, refer to SiT8924 and SiT8925  
Electrical Characteristics  
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise  
stated. Typical values are at 25°C and nominal supply voltage.  
Table 1. Electrical Characteristics  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Frequency Range  
110 MHz  
Frequency Stability and Aging  
Unit  
Condition  
Output Frequency Range  
f
1
Frequency Stability  
F_stab  
T_use  
-20  
-25  
-50  
+20  
+25  
+50  
ppm  
ppm  
ppm  
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C, and  
variations over operating temperature, rated power supply voltage  
and load.  
Operating Temperature Range  
Operating Temperature  
Range  
-20  
-40  
+70  
+85  
°C  
°C  
Extended Commercial  
Industrial  
Supply Voltage and Current Consumption  
Supply Voltage Options  
Vdd_1.8  
Vdd_2.5  
Vdd_2.8  
Vdd_3.0  
Vdd_3.3  
Vdd_XX  
Vdd_YY  
Idd  
Contact SiTime for 1.5 V support  
1.62  
2.25  
2.52  
2.7  
1.8  
2.5  
2.8  
3.0  
3.3  
1.98  
2.75  
3.08  
3.3  
V
V
V
V
V
2.97  
3.63  
2.25  
1.62  
3.63  
3.63  
V
V
Current Consumption  
3.8  
4.5  
mA  
No load condition, f = 20 MHz, Vdd_2.8, Vdd_3.0, Vdd_3.3,  
Vdd_XX, Vdd_YY  
3.7  
3.5  
4.2  
4.1  
4.2  
mA  
mA  
mA  
No load condition, f = 20 MHz, Vdd_2.5  
No load condition, f = 20 MHz, Vdd_1.8  
OE Disable Current  
Standby Current  
I_OD  
I_std  
Vdd_2.5, Vdd_2.8, Vdd_3.0, Vdd_3.3, Vdd_XX, Vdd_YY.  
OE = GND, Output in high-Z state  
4.0  
4.3  
mA  
Vdd_1.8. OE = GND, Output in high-Z state  
2.1  
A  
ST = GND, Vdd_2.8, Vdd_3.0, Vdd_3.3, Vdd_XX, Vdd_YY.  
Output is weakly pulled down  
1.1  
0.2  
2.5  
1.3  
A  
A  
ST = GND, Vdd_2.5, Output is weakly pulled down  
ST = GND, Vdd_1.8, Output is weakly pulled down  
1.07  
3 November 2021  
www.sitime.com  
 
SiT8008B Low Power Programmable Oscillator  
Table 1. Electrical Characteristics (continued)  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Condition  
LVCMOS Output Characteristics  
Duty Cycle  
DC  
45  
1
55  
2
%
ns  
ns  
ns  
All Vdds. See Duty Cycle definition in Figure 3 and Footnote 6  
20% - 80% Vdd_2.5, Vdd_2.8, Vdd_3.0, Vdd_3.3  
20% - 80% Vdd_1.8  
Rise/Fall Time  
Tr, Tf  
1.3  
2.5  
2
20% - 80% Vdd_XX  
2.7  
ns  
20% - 80% Vdd_YY  
IOH = -4 mA (Vdd_3.0 and Vdd_3.3)  
IOH = -3 mA (Vdd_2.8 and Vdd_ 2.5)  
IOH = -2 mA (Vdd _1.8)  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
90%  
Vdd  
10%  
Vdd  
IOL = 4 mA (Vdd_3.0 and Vdd_3.3)  
IOL = 3 mA (Vdd_2.8 and Vdd_2.5)  
IOL = 2 mA (Vdd_1.8)  
Input Characteristics  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
70%  
30%  
150  
Vdd  
Vdd  
k  
Pin 1, OE or ST  
Pin 1, OE or ST  
Input Pull-up Impedance  
Z_in  
50  
2
87  
Pin 1, OE logic high or logic low, or ST logic high  
Pin 1, ST logic low  
M  
Startup and Resume Timing  
Startup Time  
T_start  
T_oe  
5
130  
5
ms  
ns  
Measured from the time Vdd reaches its rated minimum value  
f = 110 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles  
Measured from the time ST pin crosses 50% threshold  
Enable/Disable Time  
Resume Time  
T_resume  
ms  
Jitter  
RMS Period Jitter  
T_jitt  
1.8  
3
ps  
f = 75 MHz, Vdd_1.8, Vdd_2.5, Vdd_2.8, Vdd_3.0, Vdd_3.3,  
Vdd_XX,  
3.3  
25  
ps  
ps  
ps  
ps  
f = 75 MHz, Vdd_YY  
Peak-to-peak Period Jitter  
RMS Phase Jitter (random)  
T_pk  
12  
14  
0.5  
f = 75 MHz, Vdd_2.5, Vdd_2.8, Vdd_3.0, Vdd_3.3, Vdd_XX, Vdd_YY  
f = 75 MHz, Vdd_1.8  
30  
T_phj  
0.9  
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz. Vdd_1.8,  
Vdd_2.5, Vdd_2.8, Vdd_3.0, Vdd_3.3, Vdd_XX  
1.3  
2
ps  
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz. Vdd_1.8,  
Vdd_2.5, Vdd_2.8, Vdd_3.0, Vdd_3.3, Vdd_XX  
1.4  
2.3  
ps  
ps  
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz. Vdd_YY  
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz. Vdd_YY  
Table 2. Pin Description  
Top View  
Pin  
Symbol  
Functionality  
H[1]: specified frequency output  
L: output is high impedance. Only output driver is disabled.  
H[1]: specified frequency output  
Output Enable  
OE/S̅ T̅̅ /NC  
1
OE/S̅ T̅̅ /NC  
L: output is low (weak pull down). Device goes to sleep mode.  
Supply current reduces to I_std.  
Standby  
Any voltage between 0 and Vdd or Open[1]: Specified frequency  
output. Pin 1 has no function.  
No Connect  
2
3
4
GND  
OUT  
VDD  
Power  
Output  
Power  
Electrical ground  
Oscillator output  
Figure 1. Pin Assignments  
Power supply voltage[2]  
Notes:  
1. In OE or S̅ T̅̅ mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.  
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.  
1.07  
Page 2 of 18  
www.sitime.com  
 
 
SiT8008B Low Power Programmable Oscillator  
Table 3. Absolute Maximum Limits  
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance  
of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.  
Parameter  
Min.  
-65  
-0.5  
Max.  
150  
4
Unit  
°C  
V
StorageTemperature  
Vdd  
2000  
260  
150  
V
ElectrostaticDischarge  
°C  
°C  
Soldering Temperature (follow standard Pb free soldering guidelines)  
JunctionTemperature[3]  
Note:  
3. Exceeding this temperature for extended period of time may damage the device.  
Table 4. Thermal Consideration[4]  
JA, 4 Layer Board  
JA, 2 Layer Board  
JC, Bottom  
Package  
(°C/W)  
(°C/W)  
(°C/W)  
30  
7050  
5032  
3225  
2520  
2016  
142  
97  
273  
199  
212  
222  
252  
24  
109  
117  
152  
27  
26  
36  
Note:  
4. Refer to JESD51 for JA and JC definitions, and reference layout used to determine the JA and JC values in the above table.  
Table 5. Maximum Operating JunctionTemperature[5]  
Max Operating Temperature(ambient)  
Maximum Operating JunctionTemperature  
70°C  
85°C  
80°C  
95°C  
Note:  
5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.  
Table 6. Environmental Compliance  
Parameter  
Condition/TestMethod  
Mechanical Shock  
Mechanical Vibration  
TemperatureCycle  
Solderability  
MIL-STD-883F, Method2002  
MIL-STD-883F, Method 2007  
JESD22, Method A104  
MIL-STD-883F, Method2003  
MSL1 @ 260°C  
Moisture Sensitivity Level  
1.07  
Page 3 of 18  
www.sitime.com  
 
 
 
SiT8008B Low Power Programmable Oscillator  
Test Circuit and Waveform[6]  
Vdd  
Vout  
Test Point  
tr  
tf  
4
3
80% Vdd  
50%  
Power  
Supply  
0.1 uF  
15pF  
2
(including probe  
and fixture  
capacitance)  
1
20% Vdd  
High Pulse  
(TH)  
Low Pulse  
(TL)  
Vdd  
OE/ST Function  
Period  
1 kΩ  
Figure 2. Waveform  
Figure 1. Test Circuit  
Note:  
6. Duty Cycle is computed as Duty Cycle =TH/Period.  
Timing Diagrams  
Vdd  
Vdd  
90% Vdd  
50% Vdd  
[7]  
T_resume  
T_start  
No Glitch  
Pin 4 Voltage  
ST Voltage  
during start up  
CLK Output  
CLK Output  
HZ  
HZ  
T_start: Time to start from power-off  
T_resume: Time to resume from ST  
Figure 3. Startup Timing (OE/ S̅ T̅ ̅ Mode)  
Figure 4. Standby Resume Timing ( S  
̅
T
̅
̅
ModeOnly)  
Vdd  
T_oe  
Vdd  
50% Vdd  
OE Voltage  
OE Voltage  
CLK Output  
50% Vdd  
T_oe  
CLK Output  
HZ  
HZ  
T_oe: Time to re-enable the clock output  
T_oe: Time to put the output in High Z mode  
Figure 5. OE Enable Timing (OE Mode Only)  
Figure 6. OE Disable Timing (OE Mode Only)  
Note:  
7. SiT8008 has “no runt” pulses and “no glitch” output during startup or resume.  
1.07  
Page 4 of 18  
www.sitime.com  
 
 
SiT8008B Low Power Programmable Oscillator  
Performance Plots[8]  
DUT1  
DUT6  
DUT2  
DUT7  
DUT3  
DUT8  
DUT4  
DUT9  
DUT5  
1.8  
2.5  
2.8  
3.0  
3.3  
DUT10  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
Temperature (°C)  
Frequency (MHz)  
Figure 7. Idd vs Frequency  
Figure 8. Frequency vsTemperature  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
Frequency (MHz)  
Frequency (MHz)  
Figure 9. RMS Period Jitter vs Frequency  
Figure 10. Duty Cycle vs Frequency  
Temperature (°C)  
Temperature (°C)  
Figure 11. 20%-80% Rise Timevs Temperature  
Figure 12. 20%-80% Fall Time vsTemperature  
1.07  
Page 5 of 18  
www.sitime.com  
SiT8008B Low Power Programmable Oscillator  
Performance Plots[8]  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
10  
30  
50  
70  
90  
110  
10  
30  
50  
70  
90  
110  
Frequency (MHz)  
Frequency (MHz)  
Figure 14. RMS Integrated Phase Jitter Random  
(900 kHz to 20 MHz) vs Frequency[9]  
Figure 13. RMS Integrated Phase JitterRandom  
(12 kHz to 20 MHz) vs Frequency[9]  
Notes:  
8. All plots are measured with 15 pF load at room temperature, unless otherwise stated.  
9. Phase noise plots are measured with Agilent E5052B signal source analyzer. Integration range is up to 5 MHz for carrier frequencies below 40 MHz.  
1.07  
Page 6 of 18  
www.sitime.com  
 
 
SiT8008B Low Power Programmable Oscillator  
The SiT8008 can support up to 60 pF or higher in  
maximum capacitive loads with drive strength settings.  
Refer to the Rise/Fall Time Tables (Table 7 to 11) to  
determine the proper drive strength for the desired  
combination of output load vs. rise/fall time.  
Programmable Drive Strength  
The SiT8008 includes a programmable drive strength  
feature to provide a simple, flexible tool to optimize the  
clock rise/fall time for specific applications. Benefits from  
the programmable drive strength feature are:  
SiT8008 Drive Strength Selection  
Improves system radiated electromagnetic interference  
(EMI) by slowing down the clock rise/fall time.  
Improves the downstream clock receiver’s (RX) jitter by  
decreasing (speeding up) the clock rise/fall time.  
Ability to drive large capacitive loads while maintaining  
full swing with sharp edge rates.  
Tables 7 through 11 define the rise/fall time for a given  
capacitive load and supply voltage.  
1. Select the table that matches the SiT8008 nominal  
supply voltage (1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V)  
2. Select the capacitive load column that matches the  
For more detailed information about rise/fall time control and  
drive strength selection, see the SiTime Application Notes  
section.  
application requirement (5 pF to 60 pF)  
3. Under the capacitive load column, select the  
desired rise/fall times.  
EMI Reduction by Slowing Rise/Fall Time  
4. The left-most column represents the part number  
Figure 15 shows the harmonic power reduction as the  
rise/fall times are increased (slowed down). The rise/fall  
times are expressed as a ratio of the clock period. For the  
ratio of 0.05, the signal is very close to a square wave. For  
the ratio of 0.45, the rise/fall times are very close to near-  
triangular waveform. These results, for example, show that  
the 11th clock harmonic can be reduced by 35 dB if the  
rise/fall edge is increased from 5% of the period to 45% of  
the period.  
code for the corresponding drive strength.  
5. Add the drive strength code to the part number for  
ordering purposes.  
Calculating Maximum Frequency  
Any given rise/fall time in Table 7 through 11 dictates the  
maximum frequency under which the oscillator can operate  
with guaranteed full output swing over the entire operating  
temperature range. This max frequency can be calculated as  
the following:  
trise=0.05  
trise=0.1  
10  
0
trise=0.15  
trise=0.2  
trise=0.25  
trise=0.3  
trise=0.35  
trise=0.4  
trise=0.45  
1
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Max Frequency =  
5 x Trf_20/80  
where Trf_20/80 is the typical value for 20%-80% rise/fall time.  
Example 1  
Calculate fMAX for the following condition:  
Vdd = 1.8 V (Table 7)  
Capacitive Load: 30 pF  
1
3
5
7
9
11  
Harmonic number  
Figure 15. Harmonic EMI reduction as a Function  
of Slower Rise/Fall Time  
Desired Tr/f time = 3 ns  
(rise/fall time part number code = E)  
fMAX = 66.666660  
Jitter Reduction with Faster Rise/Fall Time  
Part number for the above example:  
Power supply noise can be a source of jitter for the  
downstream chipset. One way to reduce this jitter is to  
speed up the rise/fall time of the input clock. Some chipsets  
may also require faster rise/fall time in order to reduce their  
sensitivity to this type of jitter. Refer to the Rise/Fall Time  
Tables (Table 7 to Table 11) to determine the proper drive  
strength.  
SiT8008BIE12-18E-66.666660  
Drive strength code is inserted here. Default setting is “-.  
High Output Load Capability  
The rise/fall time of the input clock varies as a function of  
the actual capacitive load the clock drives. At any given  
drive strength, the rise/fall time becomes slower as the  
output load increases. As an example, for a 3.3 V SiT8008  
device with default drive strength setting, the typical rise/fall  
time is 1 ns for 15 pF output load. The typical rise/fall time slows  
down to 2.6 ns when the output load increases to 45 pF. One  
can choose to speed up the rise/fall time to 1.83 ns by then  
increasing the drive strength setting on the SiT8008.  
1.07  
Page 7 of 18  
www.sitime.com  
 
 
SiT8008B Low Power Programmable Oscillator  
Rise/Fall Time (20% to 80%) vs CLOAD Tables  
Table 7. Vdd = 1.8 V (Vdd_1.8) Rise/Fall Times  
for Specific CLOAD  
Table 8. Vdd = 2.5 V (Vdd_2.5) Rise/Fall Times  
for Specific CLOAD  
Rise/Fall Time Typ (ns)  
Rise/Fall Time Typ (ns)  
Drive Strength \CLOAD  
5 pF  
15 pF  
30 pF  
45 pF  
60 pF  
Drive Strength \CLOAD  
5 pF  
15 pF  
30 pF  
45 pF  
60 pF  
L
A
R
B
L
A
R
B
T
E
U
6.16  
3.19  
2.11  
1.65  
0.93  
0.78  
0.70  
0.65  
11.61  
6.35  
4.31  
3.23  
1.91  
1.66  
1.48  
1.30  
22.00  
11.00  
7.65  
5.79  
3.32  
2.94  
2.64  
2.40  
31.27  
16.01  
10.77  
8.18  
4.66  
4.09  
39.91  
21.52  
14.47  
11.08  
6.48  
4.13  
2.11  
1.45  
1.09  
0.62  
8.25  
4.27  
2.81  
2.20  
1.28  
12.82  
7.64  
5.16  
3.88  
2.27  
21.45  
11.20  
7.65  
5.86  
3.51  
27.79  
14.49  
9.88  
7.57  
4.45  
T
5.74  
5.09  
E or "‐": default  
0.54  
0.43  
0.34  
1.00  
0.96  
0.88  
2.01  
1.81  
1.64  
3.10  
2.79  
2.54  
4.01  
3.65  
3.32  
3.68  
U
F
F or "‐": default  
3.35  
4.56  
Table 10. Vdd = 3.0 V (Vdd_3.0) Rise/Fall Times  
for Specific CLOAD  
Table 9. Vdd = 2.8 V (Vdd_2.8) Rise/Fall Times  
for Specific CLOAD  
Rise/Fall Time Typ (ns)  
Rise/Fall Time Typ (ns)  
Drive Strength \ CLOAD  
5 pF  
3.60  
1.84  
1.22  
0.89  
0.51  
0.38  
0.30  
0.27  
15 pF  
7.21  
3.71  
2.46  
1.92  
1.00  
0.92  
0.83  
0.76  
30 pF  
11.97  
6.72  
4.54  
3.39  
1.97  
1.72  
1.55  
1.39  
45 pF  
18.74  
9.86  
6.76  
5.20  
3.07  
2.71  
2.40  
2.16  
60 pF  
24.30  
12.68  
8.62  
6.64  
3.90  
3.51  
3.13  
2.85  
Drive Strength \ CLOAD  
5 pF  
3.77  
1.94  
1.29  
0.97  
0.55  
15 pF  
7.54  
3.90  
2.57  
2.00  
1.12  
30 pF  
12.28  
7.03  
4.72  
3.54  
2.08  
45 pF  
19.57  
10.24  
7.01  
5.43  
3.22  
60 pF  
25.27  
13.34  
9.06  
6.93  
4.08  
L
A
R
B
L
A
R
B
T
T or "‐": default  
E
U
F
E or "‐": default  
0.44  
0.34  
0.29  
1.00  
0.88  
0.81  
1.83  
1.64  
1.48  
2.82  
2.52  
2.29  
3.67  
3.30  
2.99  
U
F
Table 11. Vdd = 3.3 V (Vdd_3.3) Rise/Fall Times  
for Specific CLOAD  
Rise/Fall Time Typ (ns)  
Drive Strength \ CLOAD  
5 pF  
3.39  
1.74  
1.16  
0.81  
15 pF  
6.88  
3.50  
2.33  
1.82  
30 pF  
11.63  
6.38  
4.29  
3.22  
45 pF  
17.56  
8.98  
6.04  
4.52  
60 pF  
23.59  
12.19  
8.34  
L
A
R
B
6.33  
T or “‐”: default  
0.46  
0.33  
0.28  
0.25  
1.00  
0.87  
0.79  
0.72  
1.86  
1.64  
1.46  
1.31  
2.60  
2.30  
2.05  
1.83  
3.84  
3.35  
2.93  
2.61  
E
U
F
1.07  
Page 8 of 18  
www.sitime.com  
 
SiT8008B Low Power Programmable Oscillator  
Pin 1 Configuration Options  
(OE, S̅ T̅ ̅ , or NC)  
Pin 1 of the SiT8008 can be factory-programmed to support  
three modes: Output Enable (OE), standby (S ) or  
̅ T̅ ̅  
No Connect (NC). These modes can also be programmed  
with the Time Machine using field programmable devices.  
Output Enable (OE) Mode  
In the OE mode, applying logic Low to the OE pin only  
disables the output driver and puts it in Hi-Z mode. The core  
of the device continues to operate normally. Power  
consumption is reduced due to the inactivity of the output.  
When the OE pin is pulled High, the output is typically  
enabled in <1 µs.  
Figure 16. Startup Waveform vs. Vdd  
Standby (S̅ T̅ ̅ ) Mode  
In the S mode, a device enters into the standby mode when  
̅ T̅ ̅  
Pin 1 pulled Low. All internal circuits of the device are turned  
off. The current is reduced to a standby current, typically in  
the range of a few µA. When S̅ T̅ ̅ is pulled High, the device  
goes through the “resume” process, which can take up  
to 5 ms.  
No Connect (NC) Mode  
In the NC mode, the device always operates in its normal  
mode and outputs the specified frequency regardless of the  
logic level on pin 1.  
Figure 17. Startup Waveform vs. Vdd  
(Zoomed-in View of Figure 16)  
Instant Samples with Time Machine and  
Field Programmable Oscillators  
Table 12 below summarizes the key relevant parameters in  
the operation of the device in OE, S  
̅
T
̅
̅
, or NCmode.  
SiTime supports a field programmable version of the  
SiT8008 Low Power Oscillator for fast prototyping and real  
time customization of features. The field programmable  
devices (FP devices) are available for all five standard  
SiT8008 package sizes and can be configured to one’s  
exact specification using the Time Machine II, an USB  
powered MEMS oscillator programmer.  
Table 12. OE vs. S vs. NC  
̅ T̅ ̅  
OE  
ST  
NC  
Active current 20 MHz  
(max, 1.8 V)  
4.1 mA  
4 mA  
N/A  
4.1 mA  
4.1 mA  
OE disable current  
(max. 1.8 V)  
N/A  
0.6 µA  
N/A  
N/A  
N/A  
N/A  
Standby current  
(typical 1.8 V)  
OE enable time at 77.76 MHz  
(max)  
138 ns  
Customizable Features of the SiT8008 FP Devices Include  
Resume time from standby  
(max, all frequency)  
N/A  
5 ms  
N/A  
N/A  
Frequency between 1 MHz to 110 MHz  
Three frequency stability options, ±20 ppm,  
±25 ppm, ±50 ppm  
Output driver in OE  
disable/standby mode  
High Z  
weak  
pull-down  
Two operating temperatures, -20 to 70°C or  
-40 to 85°C  
Output on Startup and Resume  
The SiT8008 comes with gated output. Its clock output is  
accurate to the rated frequency stability within the first pulse  
from initial device startup or resume from the standby mode.  
Seven supply voltage options, 1.8 V, 2.5 V, 2.8 V,  
3.0 V, 3.3 V, 2.25 to 3.63 V and 1.62 to 3.63 V  
continuous  
In addition, the SiT8008 features “no runt” pulses and “no  
glitch” output during startup or resume as shown in the wave-  
form captures in Figure 17 and Figure 18.  
Output drive strength  
OE, ST or NC mode  
For more information regarding  
SiTime’s field  
programmable solutions, see Time Machine II and Field  
Programmable Oscillators.  
SiT8008 is typically factory-programmed per customer  
ordering codes for volume delivery.  
1.07  
Page 9 of 18  
www.sitime.com  
 
SiT8008B Low Power Programmable Oscillator  
Dimensions and Patterns  
Package Size Dimensions (Unit: mm)[10]  
2.0 x 1.6 x 0.75 mm  
Recommended Land Pattern (Unit: mm)[11]  
1.5  
0.9  
2.5 x 2.0 x 0.75 mm  
1.9  
1.1  
1.07  
Page 10 of 18  
www.sitime.com  
SiT8008B Low Power Programmable Oscillator  
Dimensions and Patterns (continued)  
Package Size Dimensions (Unit: mm)[10]  
3.2 x 2.5 x 0.75 mm  
Recommended Land Pattern (Unit: mm)[11]  
2.2  
1.4  
5.0 x 3.2 x 0.75 mm  
2.54  
1.5  
1.07  
Page 11 of 18  
www.sitime.com  
SiT8008B Low Power Programmable Oscillator  
Dimensions and Patterns (continued)  
Package Size Dimensions (Unit: mm)[10]  
7.0 x 5.0 x 0.90 mm  
Recommended Land Pattern (Unit: mm)[11]  
5.08  
2.2  
Notes:  
10. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of “Y” will depend on the assembly location of  
the device.  
11. A capacitor of value 0.1 µF or higher between Vdd and GND is required.  
1.07  
Page 12 of 18  
www.sitime.com  
 
SiT8008B Low Power Programmable Oscillator  
Ordering Information  
The Part No. Guide is for reference only.  
To customize and build an exact part number, use the SiTime Part Number Generator.  
SiT8008BC-12-18E-66.666660D  
Packing Method  
D”: 8 mm Tape & Reel, 3 kureel  
“E”: 8 mm Tape & Reel, 1 ku reel  
“T”: 12/16 mm Tape & Reel, 3 ku reel  
“Y”: 12/16 mm Tape & Reel, 1 ku reel  
Blank for Bulk  
Revision Letter  
Temperature Range  
C” Commercial, -20°C to 70°C  
“I” Industrial, -40°C to 85°C  
See Tables 7 to 11 for  
rise/fall times  
Supply Voltage  
Package Size  
Frequency Stability  
Table 13. Ordering Codes for Supported Tape & Reel Packing Method  
Device Size  
16 mm T&R (3 ku)  
16 mm T&R (1 ku)  
12 mm T&R (3 ku)  
12 mm T&R (1 ku)  
8 mm T&R (3 ku)  
8 mm T&R (1 ku)  
(mm x mm)  
2.0 x 1.6  
2.5 x 2.0  
3.2 x 2.5  
5.0 x 3.2  
7.0 x 5.0  
T
Y
T
Y
D
D
D
E
E
E
1.07  
Page 13 of 18  
www.sitime.com  
 
SiT8008B Low Power Programmable Oscillator  
Table 14. Additional Information  
Document  
Description  
Download Link  
Time Machine II  
MEMS oscillator programmer  
http://www.sitime.com/support/time-machine-oscillator-programmer  
Field Programmable  
Oscillators  
Devices that can be programmable in the http://www.sitime.com/products/field-programmable-oscillators  
field by Time Machine II  
Manufacturing Notes  
Qualification Reports  
Performance Reports  
Tape & Reel dimension, reflow profile and https://www.sitime.com/sites/default/files/gated/Manufacturing-Notes-for-SiTime-  
other manufacturing related info  
Products.pdf  
RoHS report, reliability reports,  
composition reports  
http://www.sitime.com/support/quality-and-reliability  
Additional performance data such as  
phase noise, current consumption and  
jitter for selected frequencies  
http://www.sitime.com/support/performance-measurement-report  
Termination Techniques  
Layout Techniques  
Termination design  
recommendations  
http://www.sitime.com/support/application-notes  
http://www.sitime.com/support/application-notes  
Layout recommendations  
Table 15. Revision History  
Revision  
Release Date  
Change Summary  
1.0  
10-Jun-2014  
First Production Release  
1.01  
7-May-2015  
Revised the Electrical Characteristics, Timing Diagrams and Performance Plots  
Revised 2016 package diagram  
1.02  
18-Jun-2015  
Added 16 mm T&R information to Table 13  
Revised 12 mm T&R information to Table 13  
1.03  
1.04  
30-Aug-2016  
9-Jan-2018  
Revised part number example in the ordering information  
Updated logo and company address, other page layout changes  
Revised 2520 package land pattern  
1.05  
1.06  
8-Jul-2020  
Updated ordering information with “YY” supply voltage option  
Updated ordering information with note  
Removed note 12  
27-Jan-2021  
Added Rise/Fall Time, RMS Period Jitter, and RMS Phase Jitter specifications for “YY” voltage option  
Various formatting updates  
1.07  
3-Nov-2021  
Updated Dimensions and Patterns drawings  
Fixed Condition of Output Low Voltage in Table 1  
SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439  
© SiTime Corporation 2014-2021. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or  
defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or  
accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv)  
improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.  
Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by  
operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or  
usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by  
SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved  
or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.  
CRITICAL USE EXCLUSION POLICY  
BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR  
FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.  
SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products  
does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to  
the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be  
strictly prohibited.  
1.07  
Page 14 of 18  
www.sitime.com  
Silicon MEMS Outperforms Quartz  
Supplemental Information  
The Supplemental Information section is not part of the datasheet and is for informational purposes only.  
1.07  
Page 15 of 18  
www.sitime.com  
Silicon MEMS Outperforms Quartz  
Best Reliability  
Best Electro Magnetic Susceptibility (EMS)  
Silicon is inherently more reliable than quartz. Unlike quartz  
suppliers, SiTime has in-house MEMS and analog CMOS  
expertise, which allows SiTime to develop the most  
reliable products. Figure 1 shows a comparison with  
quartz technology.  
SiTime’s oscillators in plastic packages are up to 54 times  
more immune to external electromagnetic fields than  
quartz oscillators as shown in Figure 3.  
Why is SiTime Best in Class:  
Internal differential architecture for best common  
Why is SiTime Best in Class:  
mode noise rejection  
SiTime’s MEMS resonators are vacuum sealed using an  
advanced EpiSeal™ process, which eliminates foreign  
particles and improves long term aging and reliability  
Electrostatically driven MEMS resonator is more  
immune to EMS  
World-class MEMS and CMOS design expertise  
Reliability (Million Hours)  
SiTime  
1,140  
38  
IDT  
KYCA  
EPSN  
TXC  
CW  
SLAB  
SiTime  
28  
EPSN  
Figure 3. Electro Magnetic Susceptibility (EMS)[3]  
Best Power Supply Noise Rejection  
Figure 1. Reliability Comparison[1]  
SiTime’s MEMS oscillators are more resilient against noise  
on the power supply. A comparison is shown in Figure 4.  
Best Aging  
Unlike quartz, MEMS oscillators have excellent long term  
aging performance which is why every new SiTime product  
specifies 10-year aging. A comparison is shown in Figure 2.  
Why is SiTime Best in Class:  
On-chip regulators and internal differential architecture  
for common mode noise rejection  
Why is SiTime Best in Class:  
MEMS resonator is paired with advanced analog  
SiTime’s MEMS resonators are vacuum sealed using an  
advanced EpiSeal™ process, which eliminates foreign  
particles and improves long term aging and reliability  
CMOS IC  
SiTime  
EPSN  
KYCA  
Inherently better immunity of electrostatically driven  
MEMS resonator  
MEMS vs. Quartz Aging  
EpiSeal MEMS Oscillator  
SiTime Oscillator  
Quartz Oscillator  
Quartz Oscillator  
10  
8
8
6
4
3.5  
3
2
1.5  
Figure 4. Power Supply Noise Rejection[4]  
0
1-Year  
10-Year  
Figure 2. Aging Comparison[2]  
1.07  
Page 16 of 18  
www.sitime.com  
Silicon MEMS Outperforms Quartz  
Best Vibration Robustness  
Best Shock Robustness  
High-vibration environments are all around us. All electronics,  
from handheld devices to enterprise servers and storage  
systems are subject to vibration. Figure 5 shows a com-  
parison of vibration robustness.  
SiTime’s oscillators can withstand at least 50,000 g shock.  
They all maintain their electrical performance in operation  
during shock events. A comparison with quartz devices is  
shown in Figure 6.  
Why is SiTime Best in Class:  
Why is SiTime Best in Class:  
The moving mass of SiTime’s MEMS resonators is up  
The moving mass of SiTime’s MEMS resonators is up  
to 3000 times smaller than quartz  
to 3000 times smaller than quartz  
Center-anchored MEMS resonator is the most robust  
Center-anchored MEMS resonator is the most robust  
design  
design  
K
KYCA  
T
TX  
C
E
E
PS  
C
S
S
L
AB  
SiTime  
E
100.0  
10.0  
1.0  
0.1  
0.0  
10  
100  
1000  
KYCA  
EPSN  
TXC  
CW  
SLAB  
SiTime  
Vibration Frequency (Hz)  
Figure 6. Shock Robustness[6]  
Figure 5. Vibration Robustness[5]  
Figure labels:  
TXC = TXC  
Epson = EPSN  
Connor Winfield = CW  
Kyocera = KYCA  
SiLabs = SLAB  
SiTime = EpiSeal MEMS  
1.07  
Page 17 of 18  
www.sitime.com  
Silicon MEMS Outperforms Quartz  
Notes:  
1. Data source: Reliability documents of named companies.  
2. Data source: SiTime and quartz oscillator devices datasheets.  
3. Test conditions for Electro Magnetic Susceptibility (EMS):  
According to IEC EN61000-4.3 (Electromagnetic compatibility standard)  
Field strength: 3V/m  
Radiated signal modulation: AM 1 kHz at 80% depth  
Carrier frequency scan: 80 MHz 1 GHz in 1% steps  
Antenna polarization: Vertical  
DUT position: Center aligned to antenna  
Devices used in this test:  
Label  
Manufacturer  
SiTime  
Part Number  
Technology  
EpiSeal MEMS  
EPSN  
TXC  
SiT9120AC-1D2-33E156.250000  
EG-2102CA156.2500M-PHPAL3  
BB-156.250MBE-T  
MEMS + PLL  
Epson  
Quartz, SAW  
TXC  
Quartz, 3rd Overtone  
Quartz, 3rd Overtone  
Quartz, SAW  
CW  
Conner Winfield  
AVX Kyocera  
SiLab  
P123-156.25M  
KYCA  
KC7050T156.250P30E00  
590AB-BDG  
SLAB  
Quartz, 3rd Overtone + PLL  
4. 50 mV pk-pk Sinusoidal voltage.  
Devices used in this test:  
Label  
Manufacturer  
SiTime  
Part Number  
Technology  
MEMS + PLL  
Quartz  
EpiSeal MEMS  
SiT8208AI-33-33E-25.000000  
NZ2523SB-25.6M  
NDK  
NDK  
KYCA  
AVX Kyocera  
Epson  
KC2016B25M0C1GE00  
SG-310SCF-25M0-MB3  
Quartz  
EPSN  
Quartz  
5. Devices used in this test:  
same as EMS test stated in Note 3.  
6. Test conditions for shock test:  
MIL-STD-883F Method 2002  
Condition A: half sine wave shock pulse, 500-g, 1ms  
Continuous frequency measurement in 100 μs gate time for 10 seconds  
Devices used in this test:  
same as EMS test stated in Note 3.  
7. Additional data, including setup and detailed results, is available upon request to qualified customer. Please contact productsupport@sitime.com.  
1.07  
Page 18 of 18  
www.sitime.com  

相关型号:

SIT8008BC-11-33E-24.576000D

OSC MEMS 24.5760MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-24.576000E

OSC MEMS 24.5760MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-25.000000D

OSC MEMS 25.0000MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-25.000000E

OSC MEMS 25.0000MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-31.250000E

OSC MEMS 31.2500MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-48.000000D

OSC MEMS 48.0000MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-48.000000E

OSC MEMS 48.0000MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-48.000000G

OSC MEMS 48.0000MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-49.152000D

OSC MEMS 49.1520MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-49.152000E

OSC MEMS 49.1520MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-5.500000G

OSC MEMS 5.5000MHZ LVCMOS SMD
ETC

SIT8008BC-11-33E-6.000000E

OSC MEMS 6.0000MHZ LVCMOS SMD
ETC