STK1744-D35I [ETC]

32K x 8 AutoStore nvSRAM with Real-Time Clock; 32K ×8自动存储的nvSRAM具有实时时钟
STK1744-D35I
型号: STK1744-D35I
厂家: ETC    ETC
描述:

32K x 8 AutoStore nvSRAM with Real-Time Clock
32K ×8自动存储的nvSRAM具有实时时钟

存储 静态存储器 时钟
文件: 总12页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK1744  
nvTime™  
32K x 8 AutoStore™ nvSRAM  
with Real-Time Clock  
PRELIMINARY  
DESCRIPTION  
FEATURES  
• Data Integrity of Simtek nvSRAM Combined  
The Simtek STK1744 DIP module houses 256Kb of  
nonvolatile static RAM, a real-time clock (RTC) with  
crystal and a high-value capacitor to support sys-  
tems that require high reliability and ease of manu-  
facturing. READ and WRITE access to all RTC  
functions and the memory is the same as a conven-  
tional x 8 SRAM. The highest eight addresses of the  
RAM support clock registers for centuries, years,  
months, dates, days, hours, minutes and seconds.  
with Full-Featured Real-Time Clock  
• Stand-Alone Nonvolatile Memory and Time-  
Keeping SolutionNo Other Parts Required  
• No Batteries to Fail  
• Fast 25ns, 35ns and 45ns Access Times  
• Software- and AutoStore™-Controlled  
Nonvolatile Cycles  
• Year 2000 Compliant with Leap Year  
Independent data resides in the integral Nonvolatile  
Elements at all times. Automatic RECALL on power  
up transfers the Nonvolatile Elements data to the  
SRAM, while an automatic STORE on power down  
transfers SRAM data to the Nonvolatile Elements. A  
software RECALL and STORE are also possible on  
user command. nvTime™ allows unlimited READ  
and WRITE accesses to SRAM, unlimited RECALLs  
Compensation  
• 24-Hour BCD Format  
• 100-Year Data Retention over Full Industrial  
Temperature Range  
• Full 30-Day RTC Operation on Each Power  
Loss  
• Single 5V ± 10% Power Supply  
6
and 10 STOREs.  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
A14  
A12  
A7  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
W
V
CC  
QUANTUM TRAP  
3
4
5
6
7
8
9
A13  
A8  
512 x 512  
A6  
A5  
A5  
A9  
STORE/  
POWER  
A6  
A4  
A11  
G
A10  
E
RECALL  
STORE  
CONTROL  
A3  
A7  
CONTROL  
A2  
A8  
STATIC RAM  
ARRAY  
A1  
28 - 600 DIP  
Module  
RECALL  
A9  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
SOFTWARE  
DETECT  
A11  
A12  
A13  
A14  
512 x 512  
A
- A  
13  
DQ0  
DQ1  
DQ2  
VSS  
0
(See application  
note for surface  
mount)  
RTC  
MUX  
DQ  
DQ  
DQ  
0
1
2
PIN NAMES  
COLUMN I/O  
COLUMN DEC  
A
- A  
Address Inputs  
0
14  
DQ  
3
4
W
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+ 5V)  
Ground  
DQ  
A
A
-
0
DQ - DQ  
0
DQ  
DQ  
DQ  
7
5
6
7
14  
A
0
A A A  
A A  
1 4  
2 3  
10  
E
G
G
V
V
CC  
SS  
E
W
January 2003  
1
Document Control # ML0020 rev 0.0  
STK1744  
ABSOLUTE MAXIMUM RATINGSa  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . . –55°C to 85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect reliability.  
DC CHARACTERISTICS  
(VCC = 5.0V ± 10%)  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
97  
80  
70  
100  
85  
70  
mA  
mA  
mA  
t
t
t
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
I
I
Average V Current during STORE  
3
3
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
W (V  
– 0.2V)  
CC  
All Others Cycling, CMOS Levels  
Average V  
Current at t = 200ns  
AVAV  
CC  
10  
10  
mA  
5V, 25°C, Typical  
c
I
Average V Current  
30  
25  
22  
31  
26  
23  
mA  
mA  
mA  
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
SB  
CC  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
(Standby, Cycling TTL Input Levels)  
c
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
IN  
SB  
CC  
CC  
All Others V 0.2V or (V  
2
1.5  
±1  
±5  
1.5  
±1  
±5  
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
Input Leakage Current  
V
V
= max  
CC  
IN  
ILK  
= V to V  
SS  
CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
IN  
OLK  
= V to V , E or G V  
SS CC  
IH  
V
V
V
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
0.8  
CC  
0.8  
V
– .5  
V
– .5  
SS  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
0.4  
70  
0.4  
85  
V
OUT  
T
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained at minimum cycle with outputs unloaded.  
Note c: E 1VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
5.0V  
CAPACITANCEd  
(TA = 25°C, f = 1.0MHz)  
480 Ohms  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
OUTPUT  
C
Input Capacitance  
10  
pF  
IN  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
C
Output Capacitance  
12  
pF  
OUT  
Note d: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
January 2003  
2
Document Control # ML0020 rev 0.0  
 
 
 
STK1744  
READ CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK1744-25  
STK1744-35  
STK1744-45  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
e
Read Cycle Time  
25  
35  
45  
AVAV  
RC  
AA  
f
3
Address Access Time  
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
f
5
5
5
5
5
5
5
AXQX  
6
ELQX  
g
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
g
9
GHQZ  
d
10  
11  
ELICCH  
EHICCL  
,
c
d
PS  
Note e: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note f: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note g: Measured + 200mV from steady state output voltage.  
READ CYCLE #1: Address Controllede, f  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
READ CYCLE #2: E Controllede  
2
t
AVAV  
ADDRESS  
1
11  
t
ELQV  
t
6
EHICCL  
E
t
ELQX  
7
t
EHQZ  
G
9
4
t
GHQZ  
t
GLQV  
8
t
GLQX  
DATA VALID  
DQ (DATA OUT)  
10  
t
ELICCH  
ACTIVE  
STANDBY  
I
CC  
January 2003  
3
Document Control # ML0020 rev 0.0  
 
 
 
 
STK1744  
WRITE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK1744-25  
STK1744-35  
STK1744-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AVWL  
AVEL  
AS  
t
t
t
0
0
0
WHAX  
EHAX  
WR  
g, h  
t
t
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note h: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note i: E or W must be VIH during address transitions.  
WRITE CYCLE #1: W Controlledi  
12  
t
AVAV  
ADDRESS  
19  
14  
t
WHAX  
t
ELWH  
E
17  
t
AVWH  
18  
t
AVWL  
13  
W
t
WLWH  
15  
16  
t
t
DVWH  
WHDX  
DATA IN  
DATA VALID  
20  
t
WLQZ  
21  
t
WHQX  
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
WRITE CYCLE #2: E Controlledi  
12  
t
AVAV  
ADDRESS  
18  
14  
19  
t
t
t
AVEL  
ELEH  
EHAX  
E
17  
t
AVEH  
13  
t
WLEH  
W
15  
16  
t
DVEH  
t
EHDX  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
January 2003  
4
Document Control # ML0020 rev 0.0  
 
 
 
STK1744  
AutoStore™/POWER-UP RECALL  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK1744  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
V
j
RESTORE  
STORE  
f
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
SWITCH  
RESET  
3.9  
V
Note j: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStore™/POWER-UP RECALL  
VCC  
5V  
24  
VSWITCH  
25  
VRESET  
AutoStore™  
23  
t
STORE  
POWER-UP RECALL  
22  
t
RESTORE  
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE DUE TO  
NO SRAM WRITES  
BROWN OUT  
AutoStore™  
BROWN OUT  
AutoStore™  
NO RECALL  
NO RECALL  
RECALL WHEN  
(VCC DID NOT GO  
(VCC DID NOT GO  
V
RETURNS  
CC  
BELOW VRESET  
)
BELOW VRESET  
)
ABOVE VSWITCH  
January 2003  
5
Document Control # ML0020 rev 0.0  
 
 
STK1744  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
L
H
k, l  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
L
H
k, l  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
Note k: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note l: While there are 15 addresses on the STK1744, only the lower 14 are used to control software modes.  
SOFTWARE STORE/RECALL CYCLEm, n  
(VCC = 5.0V ± 10%)  
STK1744-25  
MIN MAX  
STK1744-35  
MIN MAX  
STK1744-45  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
25  
0
35  
0
ns  
ns  
ns  
ns  
µs  
AVAV  
AVEL  
m
m
20  
20  
25  
20  
30  
20  
ELEH  
ELAX  
f, m  
Address Hold Time  
RECALL Duration  
20  
20  
20  
RECALL  
Note m: The software sequence is clocked with E controlled reads.  
Note n: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
AVAV  
t
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
ELEH  
t
t
E
29  
ELAX  
t
23  
30  
t
STORE / t  
RECALL  
HIGH IMPEDANCE  
DQ (DATA OUT)  
DATA VALID  
DATA VALID  
January 2003  
6
Document Control # ML0020 rev 0.0  
 
STK1744  
DEVICE OPERATION  
The STK1744 is a 32K x 8 nonvolatile static RAM  
NOISE CONSIDERATIONS  
with a full-function real-time clock (RTC). Nonvolatile  
data is preserved in integral QuantumTrapNonvol-  
atile Elements and is not subject to battery failure or  
capacitor discharge. The real-time clock registers  
reside in the eight uppermost RAM locations, and  
contain century, year, month, date, day, hour, minute  
and second data in 24-hour BCD format. Corrections  
for the day of the month and leap years are made  
automatically. This nonvolatile time-keeping RAM is  
functionally similar to any JEDEC standard 32K x 8  
SRAM.  
Note that the STK1744 is a high-speed memory and  
so must have a high-frequency bypass capacitor of  
approximately 0.1µF connected between VCC and  
VSS, using leads and traces that are as short as pos-  
sible. As with all high-speed CMOS ICs, normal care-  
ful routing of power, ground and signals will help  
prevent noise problems.  
SRAM AND RTC READ  
The STK1744 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-14 determines which of the 32,760 data  
bytes or 8 RTC registers will be accessed. When the  
READ is initiated by an address transition, the out-  
puts will be valid after a delay of tAVQV (READ cycle  
#1). If the READ is initiated by E or G, the outputs will  
be valid at tELQV or at tGLQV, whichever is later (READ  
cycle #2). The data outputs will repeatedly respond to  
address changes within the tAVQV access time without  
the need for transitions on any control input pins, and  
will remain valid until another address change or until  
E or G is brought high or W is brought low.  
The RTC registers are double-buffered to avoid  
access of incorrect data that could otherwise occur  
during clock update cycles. The double-buffered  
system prevents time loss by maintaining internal  
clock operation while time register data is accessed.  
The STK1744 contains integral power-fail circuitry  
that deselects the device when VCC drops below  
VSWITCH  
.
The STK1744 is a pin-compatible replacement for  
the ST Microelectronics M48T35 and the Dallas  
Semiconductor DS1744, but without the limitations  
of an embedded lithium battery. The Simtek module  
uses a double-layer high-value capacitor to maintain  
RTC operation on every power down for at least 30  
days. The part can be soldered directly onto printed  
circuit boards and handled without concern for dam-  
aging or discharging internal batteries. Unlike some  
other RTCs, the STK1744 is Year 2000-compliant.  
Note that the eight most significant bytes of the  
address space are reserved for accessing the RTC  
registers, as shown in the RTC Register Map.  
While the double-buffered RTC register structure  
reduces the chance of reading incorrect data from the  
clock, the user should halt internal updates to the  
RTC REGISTER MAP  
BCD DATA  
ADDRESS  
FUNCTION/RANGE  
(HEXADECIMAL)  
D7  
W
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7FF8  
7FF9  
7FFA  
7FFB  
7FFC  
7FFD  
7FFE  
7FFF  
R
10 Centuries  
Centuries  
Seconds  
Minutes  
Hours  
Centuries: 00 - 39, Control  
Seconds: 00 - 59  
10 Seconds  
10 Minutes  
X
Minutes: 00 - 59  
X
X
FT  
X
10 Hours  
Hours:  
Days:  
Dates:  
00 - 23  
01 - 07  
01 - 31  
1
X
X
X
X
Days  
X
10 Dates  
10 Mos.  
Dates  
X
X
Months  
Years  
Months: 01 - 12  
Years: 00 - 99  
10 Years  
Key:  
R
= Read Bit  
W = Write Bit  
= Battery Flag high (there is no battery to fail)  
FT = Frequency test bit  
= Don’t Care  
1
X
January 2003  
7
Document Control # ML0020 rev 0.0  
STK1744  
STK1744 clock registers before reading clock data  
to prevent reading of data in transition. Stopping the  
internal register updates does not affect clock accu-  
racy.  
CLOCK ACCURACY  
The STK1744 is guaranteed to be accurate to  
within ± 1 minute per month at 25°C. The part  
requires no additional calibration, and temperature  
variations will have a negligible effect in most appli-  
cations.  
The updating process is stopped by writing a “1” to  
the read bit (the second most significant bit in the  
control register 7FF8), and will not restart until a “0”  
is written to the read bit. The RTC registers can  
then be read while the internal clock continues to  
run.  
DATA RETENTION MODE  
During normal operation (VCC 4.5V), the STK1744  
can be accessed with standard SRAM READ and  
WRITE cycles. However, when VCC falls below the  
power-fail voltage, VSWITCH (the voltage at which  
write protection occurs), access to the internal clock  
register and the SRAM is blocked. At this voltage,  
SRAM data is automatically stored to the integral  
Nonvolatile Elements, and power for the clock oscil-  
lator switches from the VCC pin to the internal capac-  
itor. The capacitor maintains clock activity and clock  
data until VCC returns to its nominal level.  
Within one second after a “0” is written to the read  
bit, all STK1744 registers are simultaneously  
updated.  
SRAM WRITE AND  
SETTING THE CLOCK  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of  
an E controlled WRITE.  
SOFTWARE NONVOLATILE STORE  
The STK1744 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal cir-  
cuitry will turn off the output buffers tWLQZ after W  
goes low.  
Setting the write bit (the MSB of the control register  
7FF8) to a “1” halts updates to the STK1744 regis-  
ters. The correct day, date and time can then be  
written into the registers in 24-hour BCD format.  
Resetting the write bit to “0” transfers those values  
to the actual clock counters, after which the clock  
resumes normal operation.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
FREQUENCY TEST BIT  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
As shown in the RTC Register Map, bit 6 of the day  
byte is the frequency test (FT) bit. When the FT bit  
is set to logic “1”, the LSB of the seconds register  
will toggle at 512Hz. When the seconds register is  
being read, the DQ0 line will toggle at 512Hz as  
long as conditions for access remain valid (i.e., CE  
low, OE low, WE high and the address for the sec-  
onds register valid and stable). The FT bit must be  
reset to “0” in order to resume reading the time  
from the seconds register.  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
The software sequence must be clocked with E  
controlled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
SRAM will be disabled. The clock addresses may be  
January 2003  
8
Document Control # ML0020 rev 0.0  
STK1744  
accessed during this period. It is important that  
READ cycles and not WRITE cycles be used in the  
sequence, although it is not necessary that G be  
low for the sequence to be valid. After the tSTORE  
cycle time has been fulfilled, the SRAM will again be  
activated for READ and WRITE operation.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds VSWITCH, a  
RECALL cycle will automatically be initiated and will  
take tRESTORE to complete.  
If the STK1744 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a  
sequence of READ operations in a manner similar  
to the software STORE initiation. To initiate the  
RECALL cycle, the following sequence of READ  
operations must be performed:  
V
CC or between E and system VCC.  
HARDWARE PROTECT  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
The STK1744 offers hardware protection against  
inadvertent STORE and SRAM WRITE operation dur-  
ing low-voltage conditions. When VCC < VSWITCH, all  
software STORE operations and SRAM WRITEs are  
inhibited.  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
Nonvolatile Elements. The nonvolatile data can be  
recalled an unlimited number of times. Note that  
the RTC registers are not affected by nonvolatile  
operations.  
LOW AVERAGE ACTIVE POWER  
The STK1744 draws significantly less current when  
it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK1744 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
temperature; 6) the VCC level; and 7) I/O loading.  
AutoStoreTM OPERATION  
The STK1744 uses capacitance built into the mod-  
ule to perform an automatic STORE on power down.  
In order to prevent unnecessary STORE operations,  
automatic STOREs will be ignored unless at least  
one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software-  
initiated STORE cycles are performed regardless of  
whether a WRITE operation has taken place.  
January 2003  
9
Document Control # ML0020 rev 0.0  
STK1744  
aaa  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
TTL  
CMOS  
TTL  
CMOS  
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
Figure 3: ICC (max) Writes  
January 2003  
10  
Document Control # ML0020 rev 0.0  
STK1744  
ORDERING INFORMATION  
- D 25 I  
STK1744  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns (commercial only)  
35 = 35ns  
45 = 45ns  
Package  
D = 600 mil Dual In-Line Module  
Note: See Application Note  
for surface mount.  
January 2003  
11  
Document Control # ML0020 rev 0.0  
STK1744  
Document Revision History  
Revision  
0.0  
Date  
January 2003  
Summary  
January 2003  
12  
Document Control # ML0020 rev 0.0  

相关型号:

STK1744-D45

Real Time Clock, Non-Volatile, 0 Timer(s), CMOS, 0.600 INCH, MODULE, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK1744-D45I

0 TIMER(S), REAL TIME CLOCK, DIP28, 0.600 INCH, MODULE, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK17C88-R25

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK17C88-R25

Real Time Clock, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK17C88-R25I

REAL TIME CLOCK, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK17C88-R25I

Real Time Clock, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK17C88-R35

Real Time Clock, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK17C88-R35I

REAL TIME CLOCK, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK17C88-R45

REAL TIME CLOCK, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK17C88-R45

Real Time Clock, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK

STK17C88-R45I

REAL TIME CLOCK, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CYPRESS

STK17C88-R45I

Real Time Clock, CMOS, PDSO48, 0.300 INCH, SSOP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIMTEK