SUB60N04-15L [ETC]

Temperature Sensing MOSFET N-Channel 40-V (D-S)(112.72 k) ; 温度传感MOSFET N通道40 -V ( DS ) ( 112.72 K)\n
SUB60N04-15L
型号: SUB60N04-15L
厂家: ETC    ETC
描述:

Temperature Sensing MOSFET N-Channel 40-V (D-S)(112.72 k)
温度传感MOSFET N通道40 -V ( DS ) ( 112.72 K)\n

温度传感
文件: 总8页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SUB60N04-15LT  
New Product  
Vishay Siliconix  
Temperature Sensing MOSFET, N-Channel 40-V (D-S)  
PRODUCT SUMMARY  
V(BR)DSS (V)  
rDS(on) (W)  
ID (A)  
a
0.012 @ V = 10 V  
60  
GS  
40  
0.015 @ V = 4.5 V  
60  
GS  
Notes:  
a. Package limited.  
FEATURES  
D Temperature-Sense Diodes for Thermal Shutdown  
D Logic-Level Low On-Resistance  
D Avalanche Rated  
D Low Gate Charge  
D Fast Turn-On Time  
D 5-Lead D2PAK  
D 175_C Junction Temperature  
D >2000-V ESD Rated  
DESCRIPTION  
The SUB60N04-15LT is a 40-V n-channel, 15-mW logic level  
MOSFET in a 5-lead D2PAK package built on the Vishay  
Siliconix proprietary high-cell density TrenchFET technology.  
The gate of the MOSFET is protected from high voltage  
transients by two back-to-back poly-silicon zener diodes.  
Two anti-parallel electrically isolated poly-silicon diodes are  
used to sense the temperature changes in the MOSFET.  
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION  
2
D PAK  
D
TO-263, 5 Leads  
T
T
1
D
1
D
2
G
2
1 2 3 4 5  
S
N-Channel MOSFET  
G T D T  
S
1
2
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-1  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS (T= _2C5 UNLESS OTHERWISE NOTED)  
A
Parameter  
Symbol  
Limit  
Unit  
Drain-Source Voltage  
Gate-Source Voltage  
V
V
40  
"20  
50  
DS  
GS  
V
V
GS  
Clamp Current  
I
mA  
G
a
T = 25_C  
c
60  
Continuous Drain Current (T = 175_C)  
I
D
J
T = 100_C  
c
50  
50  
A
Avalanche Current  
I
AR  
Repetitive Avalanche Energy  
Source-to-Anode Voltage  
Source-to-Cathode Voltage  
L = 0.1 mH  
E
AR  
V
SA  
V
SC  
125  
mJ  
V
100  
100  
T
= 25_C  
110  
C
a
Maximum Power Dissipation  
P
D
W
d
T = 25 _C  
A
3.75  
Operating Junction and Storage Temperature Range  
T , T  
–55 to 175  
_C  
J
stg  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Limit  
Unit  
d
Junction-to-Ambient  
R
40  
thJA  
thJC  
_C/W  
Junction-to-Case  
R
1.35  
Notes:  
a. Package limited.  
b. Duty Cycle v 1%.  
c. See SOA curve for voltage derating.  
d. When mounted on 1-inch square PCB FR4.  
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-2  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
MOSFET SPECIFICATIONS (T=2_5C UNLESS OTHERWISE NOTED)  
J
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Static  
Drain-Source Breakdown Voltage  
Clamp Voltage  
V
V
= 0 V, I = 1 mA  
GS D  
40  
10  
1
(BR)DSS  
V
V
DS  
= 0 V, I = 20 mA  
V
GS  
V
GS  
20  
2
G
V
V
= V , I = 1 mA  
GS DS  
Gate Threshold Voltage  
Gate-Body Leakage  
V
DS  
GS(th)  
= 0 V, V = "5 V  
I
"250  
1
nA  
DS  
GS  
GSS  
Zero Gate Voltage Drain Current  
I
V
= 35 V, V = 0 V  
DSS  
DSS  
DS GS  
V
V
= 35 V, V = 0 V, T = 125_C  
= 35 V, V = 0 V, T = 175_C  
50  
mA  
DS  
GS  
J
Zero Gate Voltage Drain Current  
Drain-Source On-State Resistance  
Sense Diode Forward Voltage  
I
250  
DS  
GS  
J
V
GS  
= 10 V, I = 20 A  
0.0095  
0.012  
0.012  
0.018  
0.024  
0.015  
735  
D
V
V
= 10 V, I = 20 A, T = 125_C  
GS  
D
J
a
r
W
DS(on)  
= 10 V, I = 20 A, T = 175_C  
GS  
D
J
V
GS  
= 4.5 V, I = 20 A  
D
I
I
= 250 mA  
= 250 mA  
V
FD1  
675  
675  
25  
F
V
FD2  
735  
mV  
S
F
From I = 125 mA to I = 250 mA  
Sense Diode Forward Voltage Increase  
DV  
F
50  
F
F
a
Forward Transconductance  
g
fs  
V
DS  
= 15 V, I = 20 A  
35  
D
Dynamicb  
Input Capacitance  
C
1920  
560  
210  
51  
iss  
Output Capacitance  
C
oss  
V
GS  
= 0 V, V = 25 V, f = 1 MHz  
pF  
nC  
DS  
Reverse Transfer Capacitance  
C
rss  
c
Total Gate Charge  
Q
70  
g
c
Gate-Source Charge  
Q
gs  
Q
gd  
V
DS  
= 20 V, V = 10 V, I = 25 A  
5.5  
12  
GS  
D
c
Gate-Drain Charge  
c
Turn-On Delay Time  
t
20  
40  
120  
70  
d(on)  
c
Rise Time  
t
r
70  
V
= 20 V, R = 0.8 W  
L
DD  
ns  
c
I
D
] 25 A, V  
= 10 V, R = 2.5 W  
GEN G  
Turn-Off Delay Time  
t
35  
d(off)  
c
Fall Time  
t
f
20  
40  
Source-Drain Diode Ratings and Characteristics (TC = 25_C)b  
Continuous Current  
I
60  
240  
1.4  
60  
S
A
Pulsed Current  
I
SM  
a
Forward Voltage  
V
SD  
I
F
= 60 A, V = 0 V  
V
GS  
Reverse Recovery Time  
t
rr  
I
F
= 60 A, di/dt = 100 A/ms  
40  
ns  
Notes:  
a
Pulse test; pulse width v 300 ms, duty cycle v 2%.  
b. Guaranteed by design, not subject to production testing.  
Independent of operating temperature.  
c
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-3  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (_2C5 UNLESS NOTED)  
Output Characteristics  
Transfer Characteristics  
250  
= 10 thru 7 V  
200  
V
GS  
T
C
= –55_C  
6 V  
200  
150  
100  
50  
160  
120  
80  
40  
0
25_C  
125_C  
5 V  
4 V  
1, 2 V  
3 V  
8
0
0
2
4
6
10  
0
2
4
6
8
V
DS  
– Drain-to-Source Voltage (V)  
V
GS  
– Gate-to-Source Voltage (V)  
Transconductance  
On-Resistance vs. Drain Current  
80  
60  
40  
20  
0
0.018  
0.015  
0.012  
0.009  
0.006  
0.003  
0
T
C
= –55_C  
V
= 4.5 V  
= 10 V  
GS  
25_C  
V
GS  
125_C  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
120  
I
D
– Drain Current (A)  
I
D
– Drain Current (A)  
Capacitance  
Gate Charge  
3000  
2500  
2000  
1500  
1000  
500  
15  
12  
9
V
= 20 V  
= 25 A  
GS  
I
D
C
iss  
6
C
oss  
C
rss  
3
0
0
0
8
16  
24  
32  
40  
0
15  
30  
Q – Total Gate Charge (nC)  
g
45  
60  
75  
V
– Drain-to-Source Voltage (V)  
DS  
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-4  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (_2C5 UNLESS NOTED)  
On-Resistance vs. Junction Temperature  
Source-Drain Diode Forward Voltage  
2.0  
1.6  
1.2  
0.8  
0.4  
0
100  
V
= 10 V  
= 20 A  
GS  
I
D
T = 150_C  
J
T = 25_C  
J
10  
1
–50 –25  
0
25  
50  
75 100 125 150 175  
0
0.3  
0.6  
0.9  
1.2  
1.4  
T
J
– Junction Temperature (_C)  
V
SD  
– Source-to-Drain Voltage (V)  
Drain-Source Breakdown vs.  
Junction Temperature  
Avalanche Current vs. Time  
300  
60  
50  
40  
30  
I
D
= 1 mA  
100  
10  
1
I
AV  
(A) @ T = 25_C  
J
I
(A) @ T = 150_C  
AV  
J
0.1  
–50 –25  
0
25  
50  
75 100 125 150 175  
0.00001  
0.0001  
0.001  
0.01  
(Sec)  
0.1  
1
t
in  
T
J
– Junction Temperature (_C)  
Sense Diode Forward Voltage  
vs. Temperature  
Sense Diode Forward Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2000  
I
F
(mA) @ 25_C  
1600  
1200  
800  
400  
0
V
F
(V) @ I = 250 mA  
F
V
F
(V) @ I = 125 mA  
F
–50 –25  
0
25  
50  
75 100 125 150 175  
0
0.2  
0.4  
0.6  
0.8  
1.0  
T
J
– Junction Temperature (_C)  
V (V)  
F
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-5  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
TYPICAL CHARACTERISTICS OF GĆS CLAMPING DIOD_CES U(N2L5ESS NOTED)  
Gate-Source Voltage vs. Gate Current  
10  
1
–1  
10  
I
I
(mA) @ 150_C  
(mA) @ 25_C  
G
–2  
10  
10  
–3  
G
–4  
10  
10  
–5  
–6  
10  
10  
–7  
0
4
8
12  
16  
20  
V
GS  
(V)  
THERMAL RATINGS  
Maximum Avalanche and Drain Current  
vs. Case Temperature  
Safe Operating Area  
500  
100  
75  
60  
45  
30  
15  
0
10 ms  
Limited  
by r  
DS(on)  
100 ms  
10  
1 ms  
10 ms  
100 ms  
dc  
T
= 25_C  
C
Single Pulse  
1
0.1  
0
25  
50  
75  
100  
125  
150  
175  
1
10  
100  
V
DS  
– Drain-to-Source Voltage (V)  
T
C
– Case Temperature (_C)  
Normalized Thermal Transient Impedance, Junction-to-Case  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
–5  
–4  
–3  
–2  
–1  
10  
10  
10  
10  
Square Wave Pulse Duration (sec)  
10  
1
3
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-6  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
APPLICATIONS  
+5 V  
C2  
0.1 mF  
R1  
180 kW  
1%  
C3  
0.1 mF  
R5, 18 kW  
R6, 560 W  
Gate  
Output  
Signal  
IC1, LMV321  
+
C1  
560 pF  
R7  
10 kW  
1%  
R4, 560 kW, 1%  
R3, 18 kW  
INPUT  
R2  
22 kW  
1%  
Signal Ground  
Power Ground  
FIGURE 1.  
The SUB60N04-15LT provides a non-committed diode to  
allow temperature sensing of the actual MOSFET chip. The  
addition of one simple comparator and a few other  
components is all that is required to implement a temperature  
protected MOSFET. Since it has a very tight tolerance on  
forward voltage, the forward voltage of the diode can be used  
to provide to shutdown signal. The diode forward voltage falls  
to around 0.4 V with a bias current of 250 mA when the  
MOSFET chip is close to the maximum permitted temperature  
value. The external comparator used to detect over  
temperature can also be used as a driver stage for the  
MOSFET, meaning that the on/off input is logic compatible,  
and can be driven from a logic gate.  
accepted. For PWM and other faster applications, a buffer  
should be added to drive the MOSFET, or the schematic in  
Figure 2 used to give fast switching speed.  
The reference voltage for the trip point is derived from the 5-V  
rail, which should have reasonable voltage accuracy and  
stability (" 0.5 V). A voltage reference could be added if  
required, but the circuit is only intended to make the MOSFET  
invulnerable to drastic faults that might otherwise cause it to  
fail, not to give a precise shutdown point. 1% resistors are  
used to provide a reference voltage of 0.545 V, giving a  
nominal rising trip point of around 155_C, allowing for the  
hysteresis drop over R7.  
A typical circuit is shown in Figure 1. Here a LMV321  
operational amplifier is used to drive the MOSFET, and as a  
comparator to when the maximum junction temperature is  
reached. The circuit will turn on once more when the chip has  
cooled to approximately 110_C, and can cycle on and off until  
the fault is cleared or the power is removed. This circuit has  
assumed a 5-V rail is available, but the circuit could easily be  
adapted for a 12-V rail, for example.  
A 560-pF capacitor across the inputs of the comparator  
provides some noise immunity and gives a response time of  
around a micro second, just faster than the switching speed of  
the MOSFET in this circuit (faster response has diminishing  
returns as the turn-off time is fixed). This does have a side  
effect of introducing such a delay at turn-on. If this is an issue  
(although if this delay is an issue, the switching time should be  
reviewed also), a separate driver could be added using a  
comparator for over temperature detection only as shown in  
Figure 2. The diode is then left biased whenever the power is  
appliedto the load and there is no turn-on delay. In a very noisy  
environment C1 should be increased and additional  
capacitors may also be required from each input of the  
comparator to ground and on the logic input.  
The LMV321 op amp was selected to give reasonable output  
current to drive the MOSFET at a reasonable price. The SC-70  
package means that the protection circuit uses very little board  
space. However the limited output current means that it can  
only be used in slow switching applications, where one  
microsecond switching time and limited dv/dt immunity can be  
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-7  
SUB60N04-15LT  
New Product  
Vishay Siliconix  
The bias current of 250-mA nominal is derived from the input  
signal. In this manner, a simple comparator can be used as a  
driver for normal on/off operation and a fault detector circuit.  
The circuit used to provide the input signal must therefore be  
able to source 0.25 mA with no significant voltage drop.  
and therefore should be used if input current requirements  
become a problem.  
With the input high, bias current flows and as long as the  
forward voltage of the diode is higher than 0.465 V, the  
comparatoroutputishighandtheMOSFETison.Iftheforward  
voltage of the diode drops below 0.465 V, the comparator  
output goes low and the MOSFET is turned off. The gate drive  
voltage can also be used as an output signal (if required) for  
logic to interpret and to signify that there is a fault. Note the  
cathode of the sensing diode should NOT be connected  
directly to the source of the MOSFET as the noise introduced  
by high currents in the source loop could affectoperationofthe  
sensing circuit. A separate signal ground should be used and  
connect to power ground at one point only.  
The LMV321 can provide a output current of 60-mA typical,  
which provides reasonable switching time for non-PWM  
applications. A 560-W resistor is added in series to protect the  
op amp and to prevent instability, but will result in switching  
times of several micro seconds. A lower value may be possible  
depending on layout, but may violate conditions  
recommended by the op amp manufacturer.  
Hysteresis is added by means of a resistor network around the  
comparator. Approximately 40_C hysteresis is added using  
the components shown. This hysteresis could be reduced if  
necessary by increasing the value of R4. Another means of  
implementing hysteresis is to use the output of the comparator  
toprovidesomeofthebiascurrentforthesensingdiode.When  
the comparator output is low (tripped/off), the bias current is  
reduced by, say, 150 mA, causing the forward voltage to drop  
by around 50 mV. This concept would also allow a lower  
sourcingcapabilityinthelogiccircuitprovidingtheon/offsignal  
A variation on this schematic is shown in Figure 2. Here a low  
cost comparator (again in a SOT-23 or SC-70) is used to  
provide a fault output signal only. The diode bias current is  
taken from the 5 V.Inthismannerthediodebiasisappliedatall  
times, so the noise filtering capacitor, C1 will not introduce a  
turn-on delay. The fault output signal could be used to enable  
the gate driver as shown, or fed to larger monitoring circuit to  
shutdown the MOSFET.  
+5 V  
C2  
0.1 mF  
R1  
180 kW  
1%  
C3  
0.1 mF  
R5  
10 kW  
DRIVER  
IN  
IC1, LMV331  
ENABLE  
+
C1  
560 pF  
R6  
10 kW  
1%  
R4, 560 kW, 1%  
R3, 18 kW  
R2  
22 kW  
1%  
Signal Ground  
Power Ground  
FIGURE 2.  
Document Number: 70942  
S-00718—Rev. C, 03-Apr-00  
www.vishay.com S FaxBack 408-970-5600  
2-8  

相关型号:

SUB60N04-15LT

TRANSISTOR | MOSFET | N-CHANNEL | 40V V(BR)DSS | 60A I(D) | TO-263VAR
ETC

SUB60N06-08

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

SUB60N06-14

Power Field-Effect Transistor, 60A I(D), 60V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, TO-263, 3 PIN
VISHAY

SUB60N06-18

N-Channel 60-V (D-S), 175C MOSFET
VISHAY

SUB60N06-18-E3

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

SUB60P06-20

Transistor
VISHAY

SUB610

Schottky Barrier Diode
AUK

SUB610

General Purpose Schottky Barrier Diode
KODENSHI

SUB65P04-15

P-Channel 40-V (D-S) 175C MOSFET
VISHAY

SUB65P06

P-Channel Enhancement-Mode Transistors
TEMIC

SUB65P06-20

P-Channel 60-V (D-S), 175C MOSFET
VISHAY

SUB65P06-20

P-Channel Enhancement-Mode Transistors
TEMIC