TMS370C380AFNL [ETC]

8-Bit Microcontroller ; 8位微控制器\n
TMS370C380AFNL
型号: TMS370C380AFNL
厂家: ETC    ETC
描述:

8-Bit Microcontroller
8位微控制器\n

微控制器 外围集成电路 时钟
文件: 总44页 (文件大小:638K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
N PACKAGE  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on  
a Single Device  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
C2  
C3  
C1  
– Mask-ROM Devices for High-Volume  
Production  
– One-Time-Programmable (OTP) EPROM  
Devices for Low-Volume Production  
– Reprogrammable EPROM Devices for  
Prototyping Purposes  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 4K Bytes  
– EPROM: 16K Bytes  
– Data EEPROM: 256 Bytes  
– Static RAM: 128 or 256 Bytes Usable as  
Registers  
Flexible Operating Features  
2
C0  
3
C4  
B0  
4
C5  
B1  
5
RESET  
INT1  
INT2  
INT3  
NC  
B2  
6
B3  
7
MC  
8
XTAL2/CLKIN  
XTAL1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
B7  
CC  
A7  
30 B6  
29 B5  
28 B4  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D4  
27  
V
SS  
26 T1IC/CR  
25 T1PWM  
24 T1EVT  
D5  
D6  
D3  
23  
22  
21  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
FZ AND FN PACKAGES  
(TOP VIEW)  
– Clock Options  
– Divide-by-1 (2 MHz–5 MHz SYSCLK) PLL  
– Divide-by-4 (0.5 MHz–5 MHz SYSCLK)  
– Supply Voltage (V ) 5 V ±10%  
CC  
16-Bit General Purpose Timer  
– Software Configurable as  
6
5
4
3 2 1  
44 43 42 41 40  
39  
INT1  
INT2  
INT3  
MC  
7
8
9
XTAL2/CLKIN  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
a 16-Bit Event Counter, or  
XTAL1  
B7  
V
10  
11  
12  
13  
14  
15  
16  
17  
a 16-Bit Pulse Accumulator, or  
a 16-Bit Input Capture Functions, or  
Two Compare Registers, or a  
Self-Contained Pulse Width Modulation  
(PWM) Function  
CC  
NC  
A7  
A6  
B6  
B5  
NC  
B4  
V
SS  
A5  
A4  
A3  
C7  
C6  
On-Chip 24-Bit Watchdog Timer  
– EPROM/OTP Device: Standard  
Watchdog  
NC  
18 19 20 21 22 23 24 25 26 27 28  
– Mask-ROM Devices: Hard Watchdog,  
Simple Counter, or Standard Watchdog  
Flexible Interrupt Handling  
– Two S/W Programmable Interrupt Levels  
– Global- and Individual-Interrupt Masking  
– Programmable Rising- or Falling-Edge  
Detect  
– Individual Interrupt Vectors  
TMS370 Series Compatibility  
– Register-to-Register Architecture  
– 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
– Instructions Upwardly Compatible With  
all TMS370 Devices  
CMOS/Package/TTL Compatible I/O Pins  
– 40-Pin Plastic Dual-In-Line Packages/  
32 Bidirectional Pins, 1 Input Pin  
– 44-Pin Plastic Leaded Chip Carrier (LCC)  
Packages/34 Bidirectional Pins,  
1 Input Pin  
Workstation/PC-Based Development  
System  
– C Compiler and C Source Debugger  
– Real-Time In-Circuit Emulation  
– Extensive Breakpoint/Trace Capability  
– Multi-Window User Interface  
– Microcontroller Programmer  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions  
PINS  
TYPE†  
DESCRIPTION  
PDIP  
(40)  
LCC  
(44)  
NAME  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
18  
17  
16  
15  
14  
13  
12  
11  
20  
19  
18  
17  
16  
15  
13  
12  
I / O  
Port A is a general-purpose bidirectional I/O port.  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
38  
37  
36  
35  
28  
29  
30  
31  
43  
42  
41  
40  
32  
34  
35  
36  
I / O  
Port B is a general-purpose bidirectional I/O port.  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
39  
40  
1
2
3
4
44  
1
2
3
4
5
30  
31  
I / O  
Port C is a general-purpose bidirectional I/O port.  
D3  
D4  
D5  
D6  
D7  
21  
20  
23  
22  
19  
23  
22  
25  
24  
21  
I / O  
Port D is a general-purpose bidirectional I/O port. D3 is also configurable as SYSCLK.  
INT1  
INT2  
INT3  
6
7
8
7
8
9
I
External (non-maskable or maskable) interrupt/general-purpose input pin  
External maskable interrupt input/general-purpose bidirectional pin  
External maskable interrupt input/general-purpose bidirectional pin  
I / O  
I / O  
T1IC/CR  
T1PWM  
T1EVT  
26  
25  
24  
28  
27  
26  
Timer1 input capture/counter reset input pin /general-purpose bidirectional pin  
Timer1 PWM output pin/general-purpose bidirectional pin  
Timer1 external event input pin/general-purpose bidirectional pin  
I / O  
System reset bidirectional pin: as input pin, RESET initializes the microcontroller; as  
open-drain output, RESET indicates that an internal failure was detected by the watchdog or  
oscillator fault circuit.  
RESET  
5
6
I / O  
I
Mode control pin; enables EEPROM write-protection override (WPO) mode, also EPROM  
MC  
34  
39  
V
PP  
XTAL2/CLKIN  
XTAL1  
33  
32  
38  
37  
I
O
Internal oscillator crystal input/external clock source input  
Internal oscillator output for crystal  
V
V
10  
27  
10  
14  
Positive supply voltage  
CC  
Ground reference for digital logic  
SS  
11, 29,  
33  
NC  
9
These pins have no connection to the internal die.  
I = input, O = output  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
functional block diagram  
XTAL2/  
CLKIN  
INT1  
INT2  
INT3  
XTAL1  
MC  
RESET  
Clock Options:  
Divide-By-4 or  
Divide-By-1 (PLL)  
System  
Control  
Interrupts  
RAM  
128 or 256 Bytes  
CPU  
Program Memory  
ROM: 4K Bytes  
EPROM: 16K Bytes  
Data EEPROM  
0 or 256 Bytes  
T1IC/CR  
Timer 1  
T1EVT  
T1PWM  
Watchdog  
V
CC  
Port A  
8
Port B  
Port C  
Port D  
V
SS  
8
8/6  
5
For the 40-pin devices, there are only six pins for port C.  
description  
The TMS370C080, TMS370C380, TMS370C686, and SE370C686 devices are members of the TMS370 family  
of single-chip 8-bit microcontrollers. Unless otherwise noted, the term TMS370Cx8x refers to these devices.  
The TMS370 family provides cost-effective real-time system control through integration of advanced  
peripheral-function modules and various on-chip memory configurations.  
The TMS370Cx8x family of devices is implemented using high-performance silicon-gate CMOS EPROM and  
EEPROMtechnologies. Low-operatingpower, wideoperatingtemperaturerange, andnoiseimmunityofCMOS  
technology coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370Cx8x devices attractive for system designs for automotive electronics, industrial motors, computer  
peripheral controls, telecommunications, and consumer applications.  
All TMS370Cx8x devices contain the following on-chip peripheral modules:  
One 24-bit general-purpose watchdog timer  
One 16-bit general-purpose timer with an 8-bit prescaler  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
Table 1 provides a memory configuration overview of the TMS370Cx8x devices.  
Table 1. Memory Configurations  
PROGRAM MEMORY  
(BYTES)  
DATA MEMORY  
(BYTES)  
PACKAGES  
44-PIN PLCC/CLCC,  
OR 40-PIN PDIP  
DEVICE  
ROM  
4K  
EPROM  
RAM  
EEPROM  
TMS370C080  
TMS370C380A  
TMS370C686A  
128  
128  
256  
256  
256  
N – PDIP  
FN – PLCC  
FN – PLCC  
FZ – CLCC  
4K  
16K  
16K  
SE370C686A  
System evaluators and development are for use only in prototype environment and their reliability has not been characterized.  
The suffix letter (A) appended to the device names shown in the device column of Table 1 and Table 2 indicates  
the configuration of the device. ROM or EPROM devices have different configurations as indicated in Table 2.  
ROM devices with the suffix letter A are configured through a programmable contact during manufacture. For  
a detailed description of the differences between the TMS370C080 and TMS370Cx8xA contact options (as  
indicated by the suffix letter nomenclature), refer to Appendix A of the TMS370 Microcontroller Family User’s  
Guide (literature number SPNU127).  
For a detailed description of the differences between the TMS370C080 and the TMS370Cx8xA contact options  
(asindicatedbythesuffixletternomenclature), refertoAppendixAoftheTMS370MicrocontrollerFamilyUser’s  
Guide (literature number SPNU127).  
Table 2. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
Standard  
Standard  
Hard  
CLOCK  
LOW-POWER MODE  
EPROM A  
Divide-by-4 (Standard oscillator)  
Enabled  
ROM A  
Divide-by-4 or Divide-by-1 (PLL)  
Enabled or disabled  
Simple  
ROM without A  
Standard  
Divide-by-4 (Standard oscillator)  
Enabled  
Refer to the “device numbering conventions” section for device nomenclature and to the “device part numbers” section for ordering.  
The 4K bytes of mask-programmable ROM in the associated TMS370C380 device is replaced in the  
TMS370C686 with 16K bytes of EPROM. All other on-chip peripherals are identical. The one-time  
programmable (OTP) (TMS370C686) device and reprogrammable (SE370C686) device are available. The  
4K-byte (TMS370C080) mask-programmable ROM device relies on the 68-pin (TMS370C758) development  
devices and a converter socket (part # TMDS37788OTP) for prototyping and programming purposes.  
TMS370C686 OTP devices are available in plastic packages. This microcontroller is effective to use for  
immediate production updates for other members of the TMS370Cx8x family or for low-volume production runs  
when the mask charge or cycle time for the low-cost mask ROM devices is not practical.  
The SE370C686 has a windowed ceramic package to allow reprogramming of the program EPROM memory  
during the development/prototyping phase of design. The SE370C686 devices allow quick updates to  
breadboards and prototype systems while iterating initial designs.  
The TMS370Cx8x family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In  
the STANDBY mode, the internal oscillator and the general-purpose timer remain active. In the HALT mode,  
all device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both  
low-power modes.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
The TMS370Cx8x features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370Cx8x family is fully  
instruction-set-compatible, providing easy transition between members of the TMS370 8-bit microcontroller  
family.  
The TMS370Cx8x family provides the system designer with economical, efficient solutions to real-time control  
applications. The TMS370 family compact development tool (CDT ) solves the challenge of efficiently  
developing the software and hardware required to design the TMS370Cx8x into an ever-increasing number of  
complex applications. The application source code can be written in assembly and C languages, and the output  
code can be generated by the linker. The TMS370 family CDT development tool communicates through a  
standard RS-232-C interface with an existing personal computer. This allows the designer to use familiar  
personal computer editors and software utilities. Precise real-time, in-circuit emulation and extensive symbolic  
debug and analysis tools ensure efficient software and hardware implementation as well as reducing the  
time-to-market cycle.  
The TMS370Cx8x family together with the TMS370 family CDT370, software tools, the SE370C686 and  
SE370C758 (FZ package) reprogrammable devices, comprehensive product documentation, and customer  
support provide a complete solution to the needs of the system designer.  
central processing unit (CPU)  
The CPU on the TMS370Cx8x device is the high-performance 8-bit TMS370 CPU module. The ’x8x implements  
an efficient register-to-register architecture that eliminates the conventional accumulator bottleneck. The  
complete ’x8x instruction map is shown in Table 15 in the TMS370Cx8x instruction set overview section.  
The ’370Cx8x CPU architecture provides the following components:  
CPU registers:  
A stack pointer that points to the last entry in the memory stack  
A status register that monitors the operation of the instructions and contains the global interrupt-enable  
bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
A memory map that includes:  
128- or 256-byte general-purpose RAM that can be used for data memory storage, program  
instructions, general purpose register, or the stack  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions,  
and EEPROM/EPROM programming control  
256-byte EEPROM module, that provides in-circuit programmability and data retention in power-off  
conditions  
4K-byte ROM or 16K-byte EPROM program memory  
CDT is a trademark of Texas Instruments Incorporated.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Figure 1 illustrates the CPU registers and memory blocks.  
Program Counter  
15  
0
Legend:  
Stack Pointer (SP)  
7
0
C=Carry  
N=Negative  
Status Register (ST)  
Z=Zero  
C
7
N
6
Z
5
V
4
IE2 IE1  
V=Overflow  
IE2=Level 2 Interrupt Enable  
IE1=Level 1 Interrupt Enable  
3
2
1
0
RAM (Includes up to 256-Byte Registers File)  
0000h  
0000h  
R0(A)  
R1(B)  
128-Byte RAM (0000h–007Fh)  
256-Byte RAM (0000h–00FFh)  
007Fh  
0080h  
0001h  
0002h  
0003h  
00FFh  
0100h  
OFFFh  
1000h  
104Fh  
1050h  
1EFFh  
1F00h  
1FFFh  
2000h  
Reserved  
R2  
R3  
Peripheral File  
Reserved  
256-Byte Data EEPROM  
Not Available  
3FFFh  
4000h  
R127  
007Fh  
16K-Byte EPROM (4000h7FFFh)  
4K-Byte ROM (7000h7FFFh)  
6FFFh  
7000h  
7FBFh  
7FC0h  
Interrupts and Reset Vectors;  
Trap Vectors  
R255  
00FFh  
7FFFh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 1. Programmer’s Model  
stack pointer (SP)  
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read/write memory. Typically, the stack  
isusedtostorethereturnaddressonsubroutinecallsaswellasthestatusregister(ST)contentsduringinterrupt  
sequences.  
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed  
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the  
on-chip RAM.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
status register  
The ST monitors the operation of the instructions and contains the global interrupt-enable bits. The ST includes  
four status bits (condition flags) and two interrupt-enable bits.  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional-jump instructions) use the status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
The ST, status-bit notation, and status-bit definitions are shown in Table 3.  
Table 3. Status Registers  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH), and the program counter low (PCL). These  
registers contain the most significant byte (MSbyte) and least significant byte (LSbyte) of a 16-bit address.  
During reset, the contents of the reset vector (7FFEh, 7FFFh) are loaded into the PC. The PCH (MSbyte of the  
PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is loaded with the  
contents of memory location 7FFFh. Figure 2 shows this operation using an example value of 6000h as the  
contents of the reset vector.  
Program Counter (PC)  
Memory  
PCH  
60  
PCL  
00  
0000h  
60  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx8x architecture is based on the Von Neuman architecture, in which the program memory and  
data memory share a common address space. All peripheral input/output is memory-mapped in this same  
common address space. As shown in Figure 3, the TMS370Cx8x provides memory-mapped RAM, ROM, data  
EEPROM, I/O pins, peripheral functions, and system-interrupt vectors.  
The peripheral file contains all I/O port control, peripheral status and control, EEPROM, EPROM, and  
system-wide control functions. The peripheral file consists of 256 contiguous addresses located from 1000h to  
10FFh and is divided logically into 16 peripheral file frames of 16 bytes each. Each on-chip peripheral is  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
TMS370Cx8x CPU (continued)  
assigned to a separate frame through which peripheral control and data information is passed. The  
TMS370Cx8x has its on-chip peripherals and system control assigned to peripheral file frames 1 through 4,  
addresses 1010h through 104Fh.  
Peripheral File Control Registers  
1000h – 100Fh  
1010h – 101Fh  
1020h – 102Fh  
Reserved  
0000h  
System Control  
Digital Port Control  
Reserved  
128-Byte RAM  
(Register File/Stack)  
007Fh  
0080h  
256-Byte RAM  
1030h – 103Fh  
1040h – 104Fh  
(Register File/Stack)  
00FFh  
0100h  
0FFFh  
1000h  
Timer 1  
Reserved  
Peripheral Control  
Peripheral File  
104Fh  
1050h  
Reserved  
1EFFh  
1F00h  
256-Byte Data EEPROM  
1FFFh  
2000h  
Vectors  
Not Available  
Trap 15–0  
7FC0h – 7FDFh  
7FE0h – 7FF3h  
7FF4h – 7FF5h  
3FFFh  
4000h  
Reserved  
Timer 1  
16K-Byte EPROM  
(4000h - 7FFFh)  
6FFFh  
7000h  
Reserved  
7FF6h – 7FF7h  
7FF8h – 7FF9h  
7FFAh – 7FFBh  
7FFCh – 7FFDh  
7FFEh – 7FFFh  
4K-Byte ROM  
(7000h - 7FFFh)  
Interrupt 3  
Interrupt 2  
Interrupt 1  
Reset  
7FBFh  
7FC0h  
7FFFh  
8000h  
Interrupts and Reset Vectors;  
Trap Vectors  
Not Available  
FFFFh  
Reserved means that the address space is reserved for future expansion, means the address space is not accessible.  
Not available means that the address space is not accessible.  
Figure 3. TMS370Cx8x Memory Map  
RAM/register file (RF)  
Locations within the RAM address space can serve as the RF, general-purpose read/write memory, program  
memory, or the stack instructions. The TMS370C080 and TMS370C380 contain 128 bytes of internal RAM  
memory mapped beginning at location 0000h (R0) and continuing through location 007Fh (R127), which is  
shown in Table 4 along with ’x86 devices.  
Table 4. RAM Memory Map  
’x80  
’x86  
RAM size  
128 bytes  
256 bytes  
Memory mapped  
0000h007Fh  
0000h00FFh  
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction load SP (LDSP) assumes that the value to be loaded into the  
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
peripheral file (PF)  
The TMS370Cx8x control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or P for a decimal designator. For example, the system-control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 5  
shows the TMS370Cx8x PF address map.  
Table 5. TMS370Cx8x Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P0FF  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h10FFh  
Reserved  
System and EPROM/EEPROM control registers  
Digital I/O port control registers  
Reserved  
Timer 1 registers  
Reserved  
data EEPROM  
The TMS370C080 device, containing 256 bytes of data EEPROM, has a memory mapped beginning at location  
1F00h and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by the data  
EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm  
examples are available in the TMS370 Family User’s Guide (literature number SPNU127) or the  
TMS370FamilyDataManual(literaturenumberSPNS014B). ThedataEEPROMfeaturesincludethefollowing:  
Programming:  
Bit-, byte-, and block-write/erase modes  
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the data EEPROM control register  
(DEECTL) located in the PF frame beginning at location P01A. See Table 6.  
In-circuit programming capability. There is no need to remove the device to program.  
Write-protection. Writes to the data EEPROM are disabled during the following conditions.  
Reset. All programming of the data EEPROM module is halted.  
Write-protection active. There is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write-protection can be overridden by applying 12 V to MC.  
Table 6. Data EEPROM and PROGRAM EPROM Control Registers Memory Map  
ADDRESS  
P01A  
SYMBOL  
DEECTL  
NAME  
Data EEPROM Control Register  
Reserved  
P01B  
P01C  
EPCTL  
Program EPROM Control Register  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
program EPROM  
The TMS370C686 device contains 16K bytes of EPROM memory, mapped beginning at location 4000h and  
continuing through location 7FFFh as shown in Figure 3. Reading the program EPROM modules is identical  
to reading other internal memory. During programming, the EPROM is controlled by the EPROM control register  
(EPCTL). The program EPROM module features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register EPROM programming is controlled by the EPROM control register (EPCTL) located in  
the peripheral file (PF) frame at location P01C as shown in Table 6.  
Write-protection writes to the program EPROM are disabled under the following conditions  
Reset all programming to the EPROM module is halted  
Low-power modes  
13 V not applied to MC  
program ROM  
The program ROM consists of 4K bytes of mask-programmable read-only memory. The program ROM is used  
for permanent storage of data or instructions. Programming of the mask ROM is performed at the time of device  
fabrication.  
system reset  
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx8x CPU-based device.  
There are up to three different actions that can cause the system to reset the device. Two of these actions are  
generated internally, while one (RESET pin) is controlled externally. These actions are as follows:  
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key  
register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370 User’s  
Guide (literature number SPNU127) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside of the recommended operating range.  
See the TMS370 User’s Guide (literature number SPNU127) for more information.  
External RESET pin. A low-level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 User’s Guide (literature number SPNU127) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x8x device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs, or the RESET pin is held low, then the  
reset logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator-fault flag (OSC FLT FLAG, SCCR0.4), the cold-start flag  
(COLD START, SCCR0.7) and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 7 depicts the reset sources.  
Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments Incorporated, and 7FF4h through 7FF5h along with 7FF8h  
through 7FFFh are reserved for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located between  
addresses 7FC0h and 7FDFh.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
system reset (continued)  
Table 7. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
COLD START  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
SCCR0  
1010h  
OSC FLT FLAG  
Oscillator out of range  
Watchdog timer timeout  
T1CTL2  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Register A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode-fetch from the address pointed to the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software-programmable interrupt structure permits flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware-interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be masked independently by the global interrupt mask bits (IE1 and IE2) of  
the ST.  
EXT INT 3  
INT 3  
EXT INT 2  
TIMER1  
INT 2  
Overflow  
INT3 PRI  
Compare1  
Ext Edge  
INT2 PRI  
Compare2  
Input Capture1  
Watchdog  
EXT INT1  
CPU  
INT1  
NMI  
T1 PRI  
Priority  
Logic  
INT1 PRI  
STATUS REG  
IE1  
Level 1 INT  
Level 2 INT  
IE2  
Enable  
Figure 4. Interrupt Control  
Each system interrupt is configured independently to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is selectively configured on either the high- or  
low-priority-interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
chains is performed within the peripheral modules to support interrupt expansion for future modules. Pending  
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and  
priority conditions.  
The TMS370Cx8x has four hardware-system interrupts (plus RESET) as shown in Table 8. Each system  
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt  
service routines. A system interrupt may have multiple interrupt sources. All of the interrupt sources are  
individually maskable by local interrupt-enable control bits in the associated peripheral file. Each interrupt  
source FLAG bit is individually readable for software polling or to determine which interrupt source generated  
the associated system interrupt.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
One of the system interrupts is generated by on-chip peripheral functions, and three external interrupts are  
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3  
control registers in peripheral file frame 1. Each external interrupt is individually software configurable for input  
polarity (rising or falling edge) for ease of system interface. External interrupt INT1 is software configurable as  
either a maskable or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked  
by the individual or global enable mask bits. The INT1 NMI bit is protected during non-privileged operation. It,  
therefore, should be configured during the initialization sequence following reset. To maximize pin flexibility,  
external interrupts INT2 and INT3 can be software-configured as general-purpose input/output pins if the  
interrupt function is not required (INT1 can be similarly configured as an input pin).  
Table 8. Hardware System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
External RESET  
Watchdog Overflow  
Oscillator Fault Detect  
INTERRUPT FLAG  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
PRIORITY  
RESET  
7FFEh, 7FFFh  
1
External INT1  
External INT2  
External INT3  
INT1 FLAG  
INT2 FLAG  
INT3 FLAG  
INT1  
INT2  
INT3  
7FFCh, 7FFDh  
7FFAh, 7FFBh  
7FF8h, 7FF9h  
2
3
4
Timer 1 Overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC1 INT FLAG  
WD OVRFL INT FLAG  
Timer 1 Compare 1  
Timer 1 Compare 2  
Timer 1 External Edge  
Timer 1 Input Capture 1  
Watchdog Overflow  
§
T1INT  
7FF4h, 7FF5h  
5
Relative priority within an interrupt level  
§
Release microcontroller from STANDBY and HALT low-power modes  
Release microcontroller from STANDBY low-power mode  
privileged operation and EEPROM write-protection override  
The TMS370Cx8x family is designed with significant flexibility to enable the designer to software-configure the  
system and peripherals to meet the requirements of a variety of applications. The nonprivileged mode of  
operation ensures the integrity of the system configuration once it is defined for an application. Following a  
hardware reset, the TMS370Cx8x operates in the privileged mode, where all peripheral file registers have  
unrestricted read/write access, and the application program configures the system during the initialization  
sequence following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is  
set to 1 to enter the nonprivileged mode, thus disabling write operations to specific configuration-control bits  
within the PF. Table 9 displays the system-configuration bits, which are write-protected during the nonprivileged  
mode and must be configured by software prior to exiting the privileged mode.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write-protection override (continued)  
Table 9. Privilege Bits  
REGISTER  
CONTROL BIT  
PF AUTO WAIT  
NAME  
LOCATION  
P010.5  
P010.6  
SCCRO  
OSC POWER  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
T1PRI  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P04F.6  
P04F.7  
T1 PRIORITY  
T1 STEST  
The privilege bits are shown in a bold typeface in the peripheral file  
frame 1 section.  
The WPO mode provides an external hardware method of overriding the write-protection registers (WPRs) of  
data EEPROM on the TMS370C080. WPO mode is entered by applying a 12-V input to the MC pin after the  
RESET pin input goes high (logic 1). The high voltage on the MC pin during the WPO mode is not the  
programming voltage for the data EEPROM or program EPROM. All EEPROM programming voltages are  
generated on-chip. The WPO mode provides hardware-system-level capability to modify the content of the data  
EEPROM while the device remains in the application but only while requiring a 12-V external input on the MC  
pin (normally not available in the end application except in a service or diagnostic environment).  
low-power and IDLE modes  
The TMS370Cx8x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time when the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls the low-power mode selection.  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;  
however, the oscillator, internal clocks, and Timer 1 remain active. System processing is suspended until a  
qualified interrupt (hardware RESET, external interrupt on INT1, INT2, INT3, or timer 1 interrupt) is detected.  
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx8x is placed in its lowest power-consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET, external interrupt on the INT1, INT2, or INT3) is  
detected. The power-down mode-selection bits are summarized in Table 10.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
Table 10. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
Don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6-7 bits is ignored. In addition, if an IDLE instruction is executed when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method for always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI is generated always, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPU registers (SP, PC, and ST), I/O pin direction and output data, and status registers of all on-chip peripheral  
functions. Since all CPU instruction processing is stopped during the STANDBY and HALT modes, the clocking  
of the WD timer is inhibited.  
clock modules  
The ’x8x family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and  
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the  
manufacturing process of a TMS370 microcontroller. The ’x8x masked ROM devices offer both options to meet  
system engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’686A  
EPROM has only the divide-by-4.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 provides a one-to-one match of the external resonator frequency (CLKIN) to the internal system  
clock (SYSCLK) frequency, whereas the divide-by-4 option produces a SYSCLK which is one-fourth of the  
frequency of the external resonator. Inside of the divide-by-1 module, the frequency of the external resonator  
is multiplied by four, and the clock module then divides the resulting signal by four to provide the four-phased  
internal system clock signals. The resulting SYSCLK is equal to the resonator frequency. These are formulated  
as follows:  
external resonator frequency  
4
CLKIN  
4
Divide-by-4 option : SYSCLK  
Divide-by-1 option : SYSCLK  
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of  
low-speed resonators extend through fewer of the emissions spectrum than the harmonics of faster resonators.  
The divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a  
steeper decay of emissions produced by the oscillator.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
system configuration registers  
Table 11 contains system-configuration, control functions, and registers for controlling EEPROM programming.  
The privileged bits are shown in bold typeface in shaded areas.  
Table 11. Peripheral File Frame 1: System-Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P012  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
digital port-control registers  
Peripheralfileframe2containsthedigitalI/Opinconfigurationandcontrolregisters. Table 12 shows thespecific  
addresses, registers, and control bits within this peripheral file frame. Table 13 shows the port-configuration  
register setup.  
Table 12. Peripheral File Frame 2: Digital Port-Control Registers  
PF  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
P028  
P029  
P02A  
P02B  
P02C  
P02D  
P02E  
P02F  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
Reserved  
BIT 2  
BIT 1  
BIT 0  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2 (must be 0)  
Port B Data  
Port B Direction  
Reserved  
CPORT1  
CPORT2  
CDATA  
CDIR  
Port C Control Register 2 (must be 0)  
Port C Data  
Port C Direction  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 13. Port-Configuration Register Setup  
abcd  
00q1  
abcd  
00y0  
PORT  
PIN  
A
B
C
D
0 – 7  
0 – 7  
0 – 7  
3 – 7  
Data Out q  
Data Out q  
Data Out q  
Data Out q  
Data In y  
Data In y  
Data In y  
Data In y  
a = Port x Control Register 1  
b = Port x Control Register 2  
c = Data  
d = Direction  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1  
The programmable Timer 1 (T1) module of the TMS370Cx8x provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers, T1 and WD timer, allow program selection of input  
clock sources (real-time, external event, or pulse accumulate) with multiple 16-bit registers (input capture and  
compare) for special timer function control. The Timer 1 module includes three external device pins that can  
be used for multiple counter functions (operation-mode dependent), or used as general-purpose I/O pins. The  
T1 module block diagram is shown in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
Watchdog Counter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three Timer1 I/O pins  
T1IC/CR: T1 input capture / counter-reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: T1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: T1 event input pin, or general-purpose bidirectional I/O pin  
Two operational modes:  
Dual-compare mode: Provides PWM signal  
Capture/compare mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either  
capture or compare registers.  
One 16-bit WD counter can be used as an event counter, a pulse accumulator, or an interval timer if WD  
feature is not needed.  
Prescaler/clock sources that determines one of eight clock sources for general-purpose timer  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC/CR)  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external-edge detection  
Sixteen T1 module control registers located in the PF frame beginning at address P040  
The T1 module control registers are illustrated in Table 14.  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Table 14. Timer 1 Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Mode: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Bit 8 T1C  
Bit 0  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD OVRFL WD INPUT  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
TAP SEL  
SELECT2  
WD OVRFL WD OVRFL WD OVRFL T1 OVRFL  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
INT ENA  
INT FLAG  
INT ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
T1C2  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
INT FLAG  
T1  
T1C1  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE=0  
OUT ENA  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Mode: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
T1EVT  
T1EVT  
DATA DIR  
P04D  
P04E  
T1PC1  
T1PC2  
T1PRI  
DATA OUT FUNCTION  
T1IC/CR T1IC/CR  
DATA OUT FUNCTION  
T1PWM  
DATA IN  
T1PWM  
DATA OUT FUNCTION  
T1PWM  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA DIR  
T1  
P04F T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 6 shows the Timer 1 capture/compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the PF. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in the T1CTL2  
register.  
T1CC.15-0  
16-Bit  
LSB  
Capt/Comp  
T1C1  
MSB  
Prescale  
Clock  
Source  
Register  
OUT ENA  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15–0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 6. Capture/Compare Mode  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 7 shows the Timer 1 dual-compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in  
the T1CTL2 register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
T1CTL3.0  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CR OUT ENA  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
0
1
T1CTL4.0  
T1EDGE INT FLAG  
T1CTL3.7  
Level 1 Int  
Level 2 Int  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 7. Dual-Compare Mode  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
The TMS370Cx8x device includes a 24-bit WD timer, contained in the T1 module, which can be programmed  
as an event counter, pulse accumulator, or interval timer if the watchdog function is not used. The WD function  
is to monitor software and hardware operation and to implement a system reset when the WD counter is not  
properly serviced (WD counter overflow or WD counter is re-initialized by an incorrect value). The WD can be  
configured as one of three mask options as follows: standard watchdog, hard WD, or simple counter.  
Standard watchdog configuration (see Figure 8) for EPROM and mask-ROM devices:  
Watchdog mode  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows  
Awatchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog mode  
Watchdog timer can be configured as an event counter, pulse accumulator or an interval timer  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
T1CTL2.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog-Reset Key  
WDRST.7-0  
Figure 8. Standard Watchdog  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Hard watchdog configuration (see Figure 9) for mask-ROM devices:  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the WDRST or if the counter overflows.  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a system  
reset.  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as a nonmaskable interrupt during low-power modes.  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
Prescaler  
T1CTL1.7  
System Reset  
WD OVRFL  
TAP SEL  
Watchdog-Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Simple counter configuration (see Figure 10) for mask-ROM devices only  
Simple counter can be configured as an event counter, pulse accumulator or an internal timer.  
WDCNTR.15-0  
WD OVFL  
16-Bit  
Watchdog Counter  
T1CTL2.6  
INT FLAG  
Interrupt  
T1CTL2.5  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog-Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
instruction set overview  
Table 15 provides an opcode-to-instruction cross reference of all 73 instructions and 274 opcodes of the  
‘370Cx8x instruction set. The numbers at the top of this table represent the most significant nibble (MSN) of the  
opcode while the numbers at the left side of the table represent the least significant nibble (LSN). The instruction  
of these two opcode nibbles contains the mnemonic, operands, and byte/cycle particular to that opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 15. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC /  
TST A  
1/9  
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 01-0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ instructions  
have a relative address as the last operand.  
Table 15. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 01-0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ instructions  
have a relative address as the last operand.  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C compiler, a linker, CDT and an  
EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Includes extensive macro capability  
Provides high-speed operation  
Includes format conversion utilities for popular formats  
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3  
or Sun-4 )  
Generates assembly code for the TMS370 that can be inspected easily  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables direct reference to the TMS370’s port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (Compact Development Tool) real-time in-circuit emulation  
Base (Part Number EDSCDT370 – for PC, requires cable)  
Cable for 40-pin DIP (Part No. EDSTRG40DIL8X)  
Cable for 44-pin PLCC (Part No. EDSTRG44PLCC8X)  
Provides EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Includes compatibility to upload/download program and data memory  
Executes programs and software routines  
Includes 1024-sample trace buffer  
Includes single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
Provides timers for analyzing total and average time in routines  
Contains an eight-line logic probe for adding visibility of external signals to the breakpoint qualifier and  
to trace display  
Microcontroller programmer  
Base (Part No. TMDS3760500A – for PC, requires programmer head)  
Single unit head for 44-pin PLCC (Part No. TMDS3780510A)  
Single unit head for 40-pin DIP (Part No. TMDS3780511A)  
PC-based, window/function-key-orienteduserinterfaceforeaseofuseandrapidlearningenvironment  
Converter Socket (Part No. TMDS37788OTP)  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Incorporated.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
device numbering conventions  
Figure 11 illustrates the numbering and symbol nomenclature for the TMS370Cx8x family.  
TMS 370 C  
6
8
6
A FN L  
Prefix:  
TMS  
SE  
=
=
Standard prefix for fully qualified devices  
System evaluator (window EPROM) that is used for  
prototyping purpose.  
Family:  
370  
C
=
=
TMS370 8-Bit Microcontroller Family  
CMOS  
Technology:  
Program Memory Types:  
0
3
6
=
=
=
Mask ROM  
Mask ROM, No Data EEPROM  
EPROM, No Data EEPROM  
Device Type:  
Memory Size:  
8
=
’x8x device containing a Timer1 module  
0
6
=
=
4K bytes  
16K bytes  
Temperature Ranges:  
Packages:  
A
L
T
=
=
=
–40°C to 85°C  
0°C to 70°C  
–40°C to 105°C  
FN  
FZ  
N
=
=
=
Plastic Leaded Chip Carrier  
Ceramic Leaded Chip Carrier  
Plastic Dual-In-Line  
ROM and EPROM Option: A  
=
For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock can be either:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled  
– Disabled  
Without A = For ROM device, a standard watchdog,  
a divide-by-4 clock, and low-power modes are enabled  
A = For EPROM device, a standard watchdog,  
a divide-by-4 clock, and low-power modes are enabled  
Figure 11. TMS370Cx8x Family Nomenclature  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
device part numbers  
Table 16 provides all of the ’x8x devices available. The device part number nomenclature is designed to assist  
ordering. Upon ordering, the customer must specify not only the device part number, but also the clock and  
watchdog timer options desired. Each device can have only one of the three possible watchdog timer options  
and one of the two clock options. The options to be specified pertain solely to orders involving ROM devices.  
Table 16. Device Part Numbers  
DEVICES PART NUMBERS  
FOR 44 PINS (LCC)  
DEVICES PART NUMBERS  
FOR 40 PINS (PDIP)  
TMS370C380AFNA  
TMS370C380AFNL  
TMS370C380AFNT  
TMS370C080NA  
TMS370C080NL  
TMS370C080NT  
TMS370C686AFNT  
SE370C686AFZT  
System evaluators are for use in prototype environment and their  
reliability has not been characterized.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
new code release form  
Figure 12 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 12. Sample New Code Release Form  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
Table 17 is a collection of all the peripheral file frames used in the ’Cx8x (provided for a quick reference).  
Table 17. Peripheral File Frame Compilation  
System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
P012  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
Digital Port Control Registers  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
P028  
P029  
P02A  
P02B  
P02C  
P02D  
P02E  
P02F  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2 (must be 0)  
Port B Data  
Port B Direction  
Reserved  
CPORT1  
CPORT2  
CDATA  
CDIR  
Port C Control Register 2 (must be 0)  
Port C Data  
Port C Direction  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
Timer1 Module Register Memory Map  
Modes: Dual-Compare and Capture/Compare  
P040  
P041  
T1CNTR  
Bit 15  
Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8  
Bit 0  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
Table 17. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
Modes: Dual-Compare and Capture/Compare (Continued)  
Compare Register MSbyte  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
Bit 8 T1C  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Bit 0  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Watchdog Reset Key  
Bit 0 WDRST  
WD OVRFL  
TAP SEL  
WD INPUT  
SELECT2  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
T1CTL3  
T1CTL4  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
P04C T1 MODE=0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR DATA  
DIR  
T1  
T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range,V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC)  
Output clamp current, I  
OK  
O
O
CC  
Continuous output current per buffer, I (V = 0 to V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC)  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
SS  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature range, T : L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
2. Electrical characteristics are specified with all output buffers loaded with specified I current. Exceeding the specified I current in  
O
O
any buffer can affect the levels on other buffers.  
recommended operating conditions  
MIN  
4.5  
3
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (see Note 1)  
5
V
V
CC  
RAM data-retention supply voltage (see Note 3)  
All pins except MC  
MC, normal operation  
5.5  
V
V
SS  
0.8  
Low-level input voltage  
High-level input voltage  
V
V
IL  
V
SS  
0.3  
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC  
V
V
IH  
XTAL2/CLKIN  
0.8 V  
0.7 V  
V
CC  
CC  
CC  
RESET  
V
CC  
13  
EEPROM write protect override (WPO)  
11.7  
13  
12  
MC (mode control) voltage  
EPROM programming voltage (V  
Microcomputer  
L version  
)
13.2  
13.5  
0.3  
70  
V
MC  
PP  
V
SS  
0
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
85  
°C  
T version  
105  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
3. RESET must be externally activated when V  
CC  
or SYSCLK is not within the recommended operating range.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
I
I
= 1.4 mA  
= 50 µA  
= 2 mA  
0.4  
V
OL  
OL  
OH  
OH  
0.9 V  
CC  
High-level output voltage  
Input current  
V
OH  
2.4  
0 V < V 0.3 V  
10  
I
µA  
0.3 V < V 13 V  
650  
I
MC  
I
I
See Note 4  
50  
mA  
12 V V 13 V  
I
I/O pins  
0 V V V  
± 10  
µA  
mA  
µA  
I
CC  
I
I
Low-level output current  
High-level output current  
V
OL  
V
OH  
V
OH  
= 0.4 V  
1.4  
– 50  
– 2  
OL  
= 0.9 V  
= 2.4 V  
CC  
OH  
mA  
See Notes 5 and 6  
SYSCLK = 5 MHz  
30  
20  
7
45  
30  
11  
Supply current (operating mode)  
OSC POWER bit = 0 (see Note 7)  
See Notes 5 and 6  
SYSCLK = 3 MHz  
mA  
mA  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
See Notes 5 and 6  
SYSCLK = 5 MHz  
10  
8
17  
11  
Supply current (STANDBY mode)  
OSC POWER bit = 0 (see Note 8)  
See Notes 5 and 6  
SYSCLK = 3 MHz  
I
CC  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
2
3.5  
8.6  
3.0  
30  
See Notes 5 and 6  
SYSCLK = 3 MHz  
6
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 9)  
mA  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
2
See Note 5  
XTAL2/CLKIN < 0.2 V  
Supply current (HALT mode)  
2
µA  
NOTES: 4. Input current I  
is a maximum of 50 mA only when you are programming EPROM.  
PP  
5. Single-chip mode, ports configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2V.  
CC  
6. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
7. Maximum operating current = 7.6 (SYSCLK) + 7 mA.  
8. Maximum standby current = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).  
9. Maximum standby current = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz SYSCLK).  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C1  
(see Note B)  
C2  
C3  
Crystal/Ceramic  
Resonator  
(see Note A)  
External  
Clock Signal  
(see Note B)  
(see Note B)  
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
B. The values of C1 and C2 are typically 15 pF and the value of C3 is typically 50 pF. See the manufacturer’s recommendations for  
ceramic resonators.  
Figure 13. Recommended Crystal/Clock Connections  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 14. Typical Output Load Circuit (See Note A)  
V
CC  
V
CC  
Pin Data  
300 Ω  
30 Ω  
6 kΩ  
Output  
Enable  
I/O  
INT1  
20 Ω  
20 Ω  
GND  
GND  
Figure 15. Typical Buffer Circuitry  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
AR  
B
Array  
Byte  
CI  
XTAL2/CLKIN  
SYSCLK  
SC  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
su  
v
setup time  
valid time  
w
pulse duration (width)  
r
rise time  
The following additional letters are used with these meanings:  
H
L
High  
Low  
Valid  
V
All timings are measured between high and low measurement points as indicated in Figure 16 and Figure 17.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 16. XTAL2/CLKIN Measurement Points  
Figure 17. General Measurement Points  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
external clocking requirements for clock divided by 4 (see Note 10 and Figure 18)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 11)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
0.5  
SYSCLK = CLKIN/4  
NOTES: 10. For V and V , refer to recommended operating conditions.  
IL IH  
11. This pulse may be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 18. External Clock Timing for Divide-by-4  
external clocking requirements for clock divided by 1 (PLL) (see Note 10 and Figure 19)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 11)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
5
SYSCLK = CLKIN/1  
NOTES: 10. For V and V , refer to recommended operating conditions.  
IL IH  
11. This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
4
2
3
SYSCLK  
Figure 19. External Clock Timing for Divide-by-1  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Note 12)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide-by-4  
Divide-by-1  
5
t
c
Cycle time, SYSCLK (system clock)  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5 t –20  
0.5 t  
c
ns  
ns  
w(SCL)  
c
0.5 t  
0.5 t + 20  
c
w(SCH)  
c
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
5
7
6
SYSCLK  
Figure 20. SYSCLK Timing  
general purpose output signal switching time requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Rise time  
Fall time  
30  
30  
r
ns  
f
t
r
t
f
Figure 21. Signal Switching Timing  
recommended EEPROM timing requirements for programming  
MIN  
10  
MAX  
UNIT  
ms  
t
t
Pulse duration, programming signal to ensure valid data is stored (byte mode)  
Pulse duration, programming signal to ensure valid data is stored (array mode)  
w(PGM)B  
20  
ms  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN NOM  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
5.5  
13.2  
30  
CC  
Supply voltage at MC pin  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide-by-4  
Divide-by-1  
0.5  
2
SYSCLK  
System clock  
MHz  
5
recommended EPROM timing requirements for programming  
MIN NOM  
0.40 0.50  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 13)  
3
ms  
w(EPGM)  
NOTE 13: Programming pulse is active when both EXE (EPCTL.0) and VPPS (EPCTL.6) are set.  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
Table 18 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 18. TMS370Cx8x Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C380AFNA  
TMS370C380AFNL  
TMS370C380AFNT  
TMS370C686AFNT  
FN – 44 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 44 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C686AFZT  
TMS370C080NA  
TMS370C080NL  
TMS370C080NT  
N – 40 pin  
(100-mil pin spacing) (PDIP)  
PLASTIC DUAL-IN-LINE PACKAGE  
N(R-PDIP-T**) PLASTIC DUAL-IN-LINE  
PACKAGE  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
24  
13  
0.560 (14,22)  
0.520 (13,21)  
1
12  
0.060 (1,52) TYP  
0.200 (5,08) MAX  
0.020 (0,51) MIN  
0.610 (15,49)  
0.590 (14,99)  
Seating Plane  
0.100 (2,54)  
0.125 (3,18) MIN  
0.010 (0,25) NOM  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
PINS **  
M
24  
1.270  
28  
32  
40  
48  
52  
DIM  
1.450  
1.650  
2.090  
2.450  
2.650  
A MAX  
(32,26) (36,83) (41,91) (53,09) (62,23) (67,31)  
1.230  
1.410  
1.610  
2.040  
2.390  
2.590  
A MIN  
(31,24) (35,81) (40,89) (51,82) (60,71) (65,79)  
4040053/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-011  
D. Falls within JEDEC MS-015 (32 pin only)  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx8x  
8-BIT MICROCONTROLLER  
SPNS035B –DECEMBER 1995 – REVISED FEBRUARY 1997  
J-LEADED CERAMIC CHIP CARRIER  
Seating Plane  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
A
B
1
0.120 (3,05)  
26  
4
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TMS370C380AFNT

8-Bit Microcontroller
ETC

TMS370C380ANA

8-BIT, MROM, MICROCONTROLLER, PDIP40
TI

TMS370C380ANT

暂无描述
TI

TMS370C380AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

TMS370C3A7ANA

8-BIT, MROM, MICROCONTROLLER, PDIP40
TI

TMS370C3A7ANL

8-BIT, MROM, MICROCONTROLLER, PDIP40
TI

TMS370C3A7ANT

8-BIT, MROM, MICROCONTROLLER, PDIP40
TI

TMS370C3A7AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

TMS370C3C0A

8-BIT MICROCONTROLLER
TI

TMS370C3C0AFNA

暂无描述
TI

TMS370C3C0AFNL

8-Bit Microcontroller 28-PLCC
TI

TMS370C3C0AFNT

8-Bit Microcontroller 28-PLCC
TI