TPS5300DAP [ETC]

Analog IC ; 模拟IC\n
TPS5300DAP
型号: TPS5300DAP
厂家: ETC    ETC
描述:

Analog IC
模拟IC\n

模拟IC 开关 光电二极管
文件: 总16页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
DAP PACKAGE  
(TOP VIEW)  
D
D
Single-Chip Speed Step Solution  
Hysteretic Controller Provides Fast  
Transient Response Time and Reduced  
Output Capacitance  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
DRV_CLK  
VSENSE_CLK  
DT_SET  
ANAGND  
VSENSE_CORE  
SLOWST  
VREFB  
DRV_IO  
VSENSE_IO  
VBIAS  
ENABLE_EXT  
RAMP  
VID0  
VID1  
VID2  
VID3  
VID4  
2
3
D
D
Two Linear Regulator Controllers  
Regulating Clock and I/O Voltages  
4
5
Internal 2-A (Typ) Gate Drivers With  
Bootstrap Diode Which Increase Efficiency  
6
7
D
5-Bit Dynamic VID  
8
VHYST  
OCP  
DROOP  
9
D
Active Droop Compensation Enables Tight  
Dynamic Regulation for Reduced Output  
Capacitance  
10  
11  
12  
13  
14  
15  
16  
IOUT  
PSM/LATCH  
IS–  
VR_ON  
BOOT  
TG  
D
Power Saving Mode (PSM) Promotes Long  
Battery Life  
IS+  
VGATE  
DRVGND  
PH  
D
High Bandwidth Current Sense Amplifier  
V
CC  
D
Adaptive Dead-Time Control Circuit  
Prevents Cross Conduction  
BG  
D
D
OVP, OCP, UVLO, UVP, and Thermal System  
Protection  
VGATE Terminal Provides Power-Good  
Signal for All Three Outputs  
D
Enable External Terminal (ENABLE_EXT)  
D
32-Pin TSSOP PowerPAD Enhances  
Thermal Performance  
D
1% Reference Voltage Accuracy  
description  
The TPS5300 is a hysteretic synchronous-buck controller, with two on-chip linear regulator controllers,  
incorporating speed-step output voltage positioning technology. The TPS5300 provides a precise,  
programmable supply voltage to a mobile processor. A ripple regulator provides the core voltage, while two  
linear regulator drivers regulate external NPN power transistors for the I/O and CLK voltages. A 5-bit voltage  
identification (VID) DAC allows programming for the ripple regulator voltage to values between 0.925 V to  
1.275 V in 25 mV steps and 1.30 V to 2 V in 50 mV. The fast transient response time and active voltage DROOP  
positioning reduce the number of output capacitors required to keep the output voltage within tight dynamic  
voltage regulation limits. The power saving mode (PSM) allows the user to select a single operating ramp or  
allows the controller to automatically switch to lower frequencies at low loads. The high-gain current sense  
differential amplifier allows the use of small-value sense resistors that minimize conduction losses. The  
TPS5300 includes high-side and low-side gate drivers rated at 2 A typical, that enable efficient operation at  
higher frequencies and drive larger or multiple power MOSFETs. An adaptive dead-time circuit minimizes  
dead-time losses while preventing cross-conduction of high-side and low-side switches. All three outputs power  
up together as they track the same user programmable slowstart voltage. The enable external (ENABLE_EXT)  
terminal allows the TPS5300 to activate external switching controllers for additional system power  
requirements. The TPS5300 features undervoltage lockout, overvoltage, undervoltage, and  
user-programmable overcurrent protection, and is packaged in a small 32-pin TSSOP PowerPAD package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
functional schematic  
32  
31  
29  
15  
1
2
9
11  
10  
Protection Circuitry  
V
V
is dominant if  
< V CLK  
ref  
SS  
SS  
22  
VR_ON  
UVLO Enables  
IC When  
VR_ON > 2.5 V  
and  
UVLO  
V
SS  
V
> 4.46 V  
BIAS  
13  
14  
V
CLK  
IS–  
IS+  
ref  
x 25  
OCP_OVP  
Enables Device  
When  
Shutdown  
PWRGD  
is LOW if  
OCP Core > 200 mV  
Vss is dominant  
OCP_OVP  
V
Vsense Core  
or Vsense IO  
or Vsense CLK  
> 0.93 of their  
BIAS  
or Vsense Core  
if Vss < V IO  
PWRGD  
ref  
or Vsense IO  
30  
or Vsense CLK  
> 1.15 of their Vref  
BIAS  
V
SS  
V
ref  
V
CC  
V
ref  
IO  
UVP is  
Enabled When  
SS  
18  
V
V
> V CLK,  
Q
S
ref  
Shutdown  
(+5 V)1  
CC  
and  
Vsense Core  
or Vsense IO  
or Vsense CLK  
< 0.75 of their  
Vref  
ShutdownB  
Clock and IO  
Regulator  
Drivers  
Q
R
UVP  
21  
Latch  
BOOT  
disabled  
20  
19  
TG  
PH  
Core Voltage  
Regulator  
Controller  
V
is dominant if V  
< V  
SS ref  
SS  
_
27  
26  
VID0  
VID1  
VID2  
VID3  
V
ref  
+
V
17  
16  
SS  
BG  
V
CC  
Bandgap  
25  
24  
23  
V
ref  
DRVGND  
and DAC  
Power  
Save  
Mode  
4
ANAGND  
Hyst.  
Set  
VID4  
Control  
7
8
6
3
5
12  
28  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
Terminal Functions  
TERMINAL  
NAME  
ANAGND  
I/O  
DESCRIPTION  
NO.  
4
Analog ground  
BG  
17  
21  
O
I
Bottom gate drive. BG is an output drive to the low-side synchronous rectifier FET.  
BOOT  
Bootstrap. Connect a 1-µF low ESR ceramic capacitor to PH to generate a floating drive for the high-side  
FET driver.  
DROOP  
10  
1
I
Active voltage droop position voltage. DROOP is a voltage input used to set the amount of output-voltage,  
set-pointdroop as a function of load current. The amount of droop compensation is set with a resistor divider  
between IOUT and ANAGND. A voltage divider from V to VSENSE_CORE sets the no load offset.  
O
DRV_CLK  
O
CLK voltage regulator. DRV_CLK drives an external NPN bipolar power transistor for regulating CLK  
voltage to VREF_CLK.  
DRVGND  
DRV_IO  
DT_SET  
16  
32  
3
Drive ground. Ground for FET drivers. Connect to FET PWRGND  
O
I
Drives an external NPN bipolar power transistor for regulating IO voltage to VREF_IO.  
DT_SET sets the transition time for speed step output voltage positioning. Attach a capacitor from DT_SET  
to ground to program time.  
ENABLE_EXT  
29  
O
Open drain output. ENABLE_EXT enables external converters when the internal enable signal is high  
(good),anddisableswhenthereisafaultwithanyregulator(OVP, UVP, OCPrr), VR_ON UVLO is low, orthe  
VBIAS UVLO is low. Can be connected to the enable terminal of an external linear regulator or switching  
controller. A pullup resistor is required to set the desired voltage rail.  
IS–  
IS+  
13  
14  
I
I
Current sense negative Kelvin connection. Connect to the node between the current sense resistor and the  
output capacitors. Keep the PCB trace short and route trace next to the IS+ trace to help reduce loop  
inductance noise pickup and cancel common mode noise through mutual coupling.  
Current sense positive Kelvin connection. Connect to the node between the output inductor and the current  
sense resistor. Keep the PCB trace short and route trace next to the IS-trace to help reduce loop inductance  
noise and cancel common mode noise through mutual coupling.  
IOUT  
11  
9
O
I
Current sense differential amplifier output. The voltage on IOUT equals 25 x (V  
– V ) = 25 x  
I(–)  
I(+)  
(R  
x I ).  
L
(sense)  
Overcurrentprotection. CurrentlimittrippointissetwitharesistordividerbetweenIOUTandANAGND. The  
typicalOCPtrippointshouldbesetat1.30×I .TheOCPvoltagealsosetsthePSMautomatictrippoints.  
OCP  
(max)  
PH  
19  
12  
I/O Phasevoltagenode. PHisusedforbootstraplowreference. PHconnectstothejunctionofthehigh-sideand  
low-side FET’s.  
PSM/LATCH  
I
PSM. Power saving mode boosts efficiency at low load current by automatically decreasing the switching  
frequency toward the natural converter operating frequency. A logic low (<1.8) disables PSM, maintaining  
the higher switching frequency range set by CT.  
LATCH. Allows disabling fault latch. Recommend enabling fault latch protection  
RAMP  
28  
6
I
I
Setsaramponthefeedbacksignaltoincreasetheswitchingfrequency.AddaresistorfromPHtoRAMPand  
connect RAMP to VSENSE_CORE for a dc-coupled ramp. Add a capacitor from RAMP to VSENSE_CORE  
to set an ac-coupled ramp.  
SLOWST  
Slow start (soft start). A capacitor from SLOWST to GND sets the slowstart time for the ripple regulator and  
the two linear regulators. The three converters will ramp up together while tracking the output voltage. A  
current equal to IVrefb/5 charges the capacitor.  
TG  
20  
30  
18  
15  
O
I
Top gate drive. TG is an output drive to the high-side power switching FET’s. It is also used in the  
anticross-conduction circuit to eliminate shoot-through current.  
VBIAS  
AnalogVBIAS.Itisrecommendedthatatleasta1-µFcapacitorbeconnectedtoANAGND.SupplyfromV  
through RC filter  
CB  
V
CC  
Supply voltage. V  
is the supply voltage for the FET drivers. Add an external resistor/capacitor filter from  
VCC to VBIAS. It is recommended that a 1-µF capacitor be connected to the DRVGND terminal.  
CC  
VGATE  
O
Logical and output of the combined core, IO, and CLK powergoods. VGATE outputs a logic high when all  
(core, IO, CLK)outputvoltagesarewithin7%ofthereferencevoltage. Anopendrainoutputallowssettingto  
desired voltage level through a pullup resistor.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
Terminal Functions (Continued)  
TERMINAL  
NAME  
VHYST  
I/O  
DESCRIPTION  
NO.  
8
I
Ripple regulator hysteresis set terminal. The hysteresis is set with a resistor divider from VREFB to GRD.  
The hysteresis voltage window will be ± the voltage between VREFBand VHYST.  
VID0  
VID1  
VID2  
VID3  
VID4  
VREFB  
27  
26  
25  
24  
23  
7
I
I
Voltage identification inputs 0, 1, 2, 3, and 4. These terminals are digital inputs that set the output voltage of  
theconverter. The code pattern for setting the output voltage islocatedintheterminalfunctionstable. These  
terminals are internally pulled up to VBIAS.  
I
I
I
O
I
Buffered ripple regulator reference voltage from VID network  
VR_ON  
22  
Enables the drive signals to the MOSFET drivers. It is recommended that an external pullup resistor be  
connected to 5 V.  
VSENSE_CLK  
2
5
I
I
CLK feedback voltage sense. Connect to CLK linear regulator output voltage to regulate  
VSENSE_CORE  
Feedback voltage sense input for the core. Connect to ripple regulator output voltage to sense and regulate  
output voltage. It is recommended that an RC low-pass filter be connected at this pin to filter high frequency  
noise.  
VSENSE_IO  
31  
I
I/O feedback voltage sense. Connect to I/O linear regulator output voltage to regulate  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
CC  
Input voltage, V : VBIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
I
VR_ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VID0, VID1, VID2, VID3, VID4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
PSM/LATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
IS–, IS+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
RAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V  
VSENSE_CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VSENSE_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
VSENSE_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
All other input terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
BOOT to DRVGND voltage (high-side driver on) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V  
BOOT to PH voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
BOOT to TG voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
PH to DRVGND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1 V to 35 V  
ANAGND to DRVGND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 V  
Output voltage, V : VGATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
O
ENABLE_EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Continuous power dissipation, P : Without PowerPad soldered, T = 25°C, T = 125°C . . . . . . . . . . . 1.2 W  
D
A
J
With PowerPad soldered, T = 25°C, T = 125°C . . . . . . . . . . . . . 6.25 W  
C
J
Operating junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 125°C  
J
Storage temperature, T  
Lead temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
(soldering, 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
stg  
(lead)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
dc and ac recommended operating conditions, 0 < T < 125°C (unless otherwise noted)  
J
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
batt  
3
3
12.5  
3.3  
5
28  
6
V
V
V
Linear regulator supply voltage, V  
I(IO+CLK)  
Supply voltage range, V , VBIAS  
CC  
4.5  
6
electrical characteristics over recommended operating free-air temperature range, 0 < T < 125°C,  
J
V
= 4.3 V – 28 V (unless otherwise noted)  
IN  
PARAMETER  
Reference/Voltage Identification  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-level input voltage,  
D0–D4  
V
Current source pullup to V  
CC  
2.25  
V
V
IH(VID)  
IL(VID)  
Low-level input voltage,  
D0–D4  
V
1
Cumulative Reference (see Note 1)  
0.925 V V  
ref(core)  
2 V,  
–1.5%  
–1%  
1.5%  
1%  
Hysteresis window = 30 mV  
Initial accuracy ripple regula-  
tor  
V
0.925 V V 2 V,  
(CUM_ACCRR)  
ref(core)  
T = 25°C (see Note 2)  
J
Hysteresis window = 30 mV  
Buffered Reference  
Output voltage, VREFB  
Hysteretic Comparator (core)  
V
I
= 50 µA  
V
ref  
– 5 mV  
V
ref  
V – 5 mV  
ref  
V
O(VREFB)  
(REFB)  
V
V
V
Input offset voltage  
V
V
pin grounded (see Note 2)  
–4  
–5  
60  
4
5
mV  
mV  
mV  
OS(HYSCMPrr)  
(DROOP)  
– V  
= 15 mV  
(VHYST)  
(VREFB)  
Hysteresis accuracy  
hys(ACCrr)  
(Hysteresis window = 30 mV)  
Maximum hysteresis setting  
hys(SETrr)  
Propagation delay time from  
(AC) VSENSE_CORE to TG  
or BG (excluding deadtime)  
10-mV overdrive,  
t
220  
250  
225  
ns  
PHL(HC)  
0.925 V V 2 V, (see Note 2)  
ref  
Overcurrent Protection (core)  
Trip point, OCP  
Overvoltage Protection (core, IO, CLK)  
Normal operation  
180  
112  
70  
200  
300  
V
mV  
(OCP)  
During dynamic VID change  
V
V
Trip point, OVP  
Hysteresis  
Upper threshold  
115  
10  
120 %V  
ref  
(OVP)  
Upper-lower thresholds (see Note 2)  
mV  
hys(OVP)  
Undervoltage Protection (IO, CLK)  
V
V
Trip point, UVP  
Hysteresis  
Lower threshold  
75  
10  
80 %V  
ref  
(UVP)  
Upper-lower thresholds (see Note 2)  
mV  
hys(UVP)  
NOTES: 1. Cumulative reference accuracy is the combined accuracy of the reference voltage and the input offset voltage of the hysteretic  
comparator. Cumulative accuracy equals to the average of the low-level and high-level thresholds of the hysteretic comparator.  
2. Ensured by design, not production tested.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
electrical characteristics over recommended operating free-air temperature range, 0 < T < 125°C,  
J
V
= 4.3 V – 28 V (unless otherwise noted) (continued)  
IN  
PARAMETER  
Bias UVLO (Resets fault latch)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Start threshold  
Stop threshold  
4.46  
V
V
IT(startUVLO)  
IT(stopUVLO)  
V
3.3  
VR_ON connected to GND and V above  
I
UVLO start threshold  
VBIAS quiescent current, I  
(ving1)  
10  
15  
µA  
VR_ON UVLO (Resets fault latch)  
V
V
Start threshold  
Stop threshold  
2.1  
2.5  
V
V
IT(startVRON)  
1.3  
IT(stopVRON)  
Slowstart  
V
= 0.5 V,  
I
= 65 µA VREFB  
(SS)  
= 1.3 V;  
(VREFB)  
I
Charge current (I  
= (I /5)  
(REFB)  
10.4  
13  
3
15.6  
µA  
(chg)  
(chg)  
I
= (I  
/5)  
(chg)  
= 1.3 V,  
(VREFB)  
= 4.5 V  
V
(SS)  
Design for V  
I
Discharge current  
mA  
(dischg)  
IN(min)  
VGATE (CORE, IO, CLK) (PWRGD of three outputs with open drain output)  
Undervoltage trip point  
(VSENSE_CORE, _IO, & _CLK)  
V
V
and V above UVLO thresholds  
(drv)  
87.5  
90  
92.5 %Vref  
(VGATE)  
IN  
= 2.5 mA  
O
V
Output saturation voltage  
I
0.5  
0.75  
0.75  
V
V
(olVGATE)  
Enable EXT (SHUTDOWNB of IC with open-drain output. Use pullup resistor to 5 V or 3.3 V)  
V
Output saturation voltage  
I
O
= 2.5 mA  
0.5  
(olEN_EXT)  
DROOP Compensation  
V
Initial accuracy  
V
= 50 mV  
–4  
8
mV  
ns  
(DROOP_ACC)  
(DROOP)  
15-mV to 150-mV swing,  
1.3 V V 3.3 V, V  
(see Note 2)  
t
Propagation delay  
= 5 V  
CC  
200  
25  
500  
PHL(HC)  
ref  
Current Sensing  
With chopper stabilization (backup dis-  
able with metal mask)  
G
Gain  
24  
–3  
26  
3
V/V  
mV  
(CS)  
V
IO  
Input offset  
V
IS–  
= 1.3 V,  
V
– V  
= 10 mV  
IS+  
IS–  
V
IS–  
V
IS–  
V
CC  
= 0.925 V – 2 V, V  
is pulsed from  
IS+  
Response time (measured from 50% of  
t
to (V  
+ 50 mV),  
500  
ns  
(VDSRESP)  
IS–  
= 5 V (see Note 2)  
(V  
IS+  
– V  
) to 50% of V )  
(IOUT)  
IS–  
NOTES: 2. Ensured by design, not production tested.  
3. The VBIAS voltage is required to be a quiet bias supply for the TPS5300 control logic. External noisy loads should use VCC instead  
of the VBIAS voltage.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
electrical characteristics over recommended operating free-air temperature range, 0 < T < 125°C,  
J
V
= 4.3 V – 28 V (unless otherwise noted) (continued)  
IN  
PARAMETER  
PSM/LATCH Power Saving Mode (PSM Comparator)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
V
V
PSM comparator start threshold  
PSM comparator stop threshold  
2.1  
2.3  
V
V
(startINH)  
(stopINH)  
(PSMth1)  
(PSMth2)  
(PSMth3)  
(PSMth4)  
1.8  
54  
39  
24  
9
60  
45  
30  
15  
66  
51  
36  
21  
Sweep OCP through thresholds  
PH to Ct, PSM = GND,  
OCP voltage trip points for PSM  
mV  
R
R
R
R
V
– V = 60 mV  
(IS–)  
5.3  
8
6.67  
10  
8
12  
24  
(tPSM1)  
(tPSM2)  
(tPSM3)  
(tPSM4)  
(IS+)  
(see Note 3)  
PH to Ct, PSM = GND,  
– V = 45 mV  
V
kΩ  
(IS+)  
(IS–)  
(see Note 3)  
PSM ramp timing resistance  
PH to Ct, PSM = GND,  
– V = 30 mV  
V
16  
1
20  
(IS+)  
(IS–)  
(see Note 3)  
PH to Ct, PSM = GND,  
– V = 15 mV  
V
MΩ  
(IS+)  
(IS–)  
(see Note 3)  
PSM/LATCH Fault Latch Disable  
Disable latch threshold PSM  
enabled  
V
VBIAS + 0.3  
ANAGND  
V
(No_Latch/PSM)  
Disable latch threshold PSM  
disabled  
V
V
ANAGND – 0.3  
VBIAS  
V
V
(No_Latch)  
Enable latch threshold  
(Latch_enabled)  
Thermal Shutdown  
T
T
Over temperature trip point  
Hysteresis  
See Note 2  
See Note 2  
160  
10  
°C  
°C  
(OTP)  
(hyst)  
Dynamic VID Change (No current limit)  
Voltage change timing current  
NOTES: 2. Ensured by design, not production tested.  
V
V
= 5 V,  
= 2 V,  
CC  
(ref1)  
Ι
13.3  
14  
14.7  
µA  
tSRC  
DT_SET = 0.925 V  
3. The BIAS voltage is required to be a quiet bias supply for the TPS5300 control logic. External noisy loads should use VCC instead  
of the BIAS voltage.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
electrical characteristics over recommended operating free-air temperature range, 0 < T < 125°C,  
J
V
= 4.3 V – 28 V (see test circuits) (unless otherwise noted) (continued)  
IN  
PARAMETER  
Output Drivers (see Note 4)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty cycle < 2%, tpw < 100 µs,  
I
I
V
V
– V = 4.5 V,  
(PH)  
(PH)  
1.2  
1.2  
2
A
A
O(srcTG)  
(BOOT)  
– V  
= 0.5 V (src)  
(TG)  
Duty cycle < 2%, tpw < 100 µs,  
V
V
– V = 4.5 V,  
(PH)  
3.3  
O(sinkTG)  
(BOOT)  
– V  
Peak output current (see Notes 2 and 4)  
= 4 V (sink)  
(TG)  
(PH)  
Duty cycle < 2%, tpw < 100 µs,  
= 4.5 V, V = 0.5 V (src)  
I
I
1.4  
1.3  
2
A
A
O(srcBG)  
V
CC  
(BG)  
Duty cycle < 2%, tpw < 100 µs,  
3.3  
O(sinkBG)  
V
V
V
V
V
= 4.5 V, V  
= 4 V (src)  
(BG)  
CC  
r
r
r
r
– V  
– V  
= 4.5 V, V  
= 4.5 V, V  
= 4 V  
2.5  
1.5  
2.5  
1.5  
o(srcTG)  
o(sinkTG)  
o(srcBG)  
o(sinkBG)  
f(TG)  
(BOOT)  
(BOOT)  
(PH)  
(PH)  
TG  
TG  
= 0.5 V  
Output resistance (see Note 4)  
= 4.5 V, V  
= 4.5 V, V  
= 4 V  
CC  
CC  
(BG)  
(BG)  
= 0.5 V  
t
t
t
t
TG fall time (AC) (see Note 5)  
TG rise time (AC) (see Note 5)  
BG fall time (AC) (see Note 5)  
BG rise time (AC) (see Note 5)  
C = 3.3 nF, V  
= 4.5 V,  
l
(BOOT)  
10  
10  
ns  
ns  
V
(PH)  
= GND  
r(TG)  
f(BG)  
C = 3.3 nF, V  
l CC  
= 4.5 V  
r(BG)  
High-Side DRIVER Quiescent Current  
VR_ON grounded, or VCC below  
Ihighdrq1  
HIGHDRIVE (TG) quiescent current  
UVLO threshold; V  
PH grounded  
= 5 V,  
10  
µA  
(BOOT)  
Adaptive Deadtime Circuit  
V
V
V
V
TG – PH High-level input voltage  
TG – PH Low-level input voltage  
BG High-level input voltage  
BG Low-level input voltage  
2.4  
3
IH(TG)  
IL(TG)  
IH(BG)  
IL(BG)  
1.33  
V
= 0.925 V – 2 V (see Note 2)  
V
(IS–)  
1.7  
50  
CBG = 9 nF, 10% threshold on BG,  
= 5 V  
t
Driver nonoverlap time (AC)  
ns  
(NUL)  
V
CC  
NOTES: 2. Ensured by design, not production tested.  
4. The pulldown (sink) circuit of the high-side driver is a MOSFET transistor referenced to DRVGND. The driver circuits are bipolar  
and MOSFET transistors in parallel. The peak output current rating is the combined current rating from the bipolar and MOSFET  
transistors. The output resistance is the r  
saturation voltage of the bipolar transistor.  
of the MOSFET transistor when the voltage on the driver output is less than the  
ds(on)  
5. Rise and fall times are measured from 10% to 90% of pulsed values.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
electrical characteristics over recommended operating free-air temperature range, 0 < T < 125°C,  
J
V
= 4.3 V – 28 V (see test circuits) (unless otherwise noted) (continued)  
IN  
PARAMETER  
Linear Regulator OUTPUT DRIVERs (IO, CLK) (see Note 4)  
= 5 V,  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
CC  
I
VSENSE_IO = 0.9 × V  
(see Note 2)  
134  
14  
mA  
O(srcLDODR)  
(REFIO)  
(REFIO)  
Peak output current linear  
regulator driver IO  
V
= 5 V,  
CC  
I
VSENSE_IO = 1.1 × V  
µA  
O(sinkLDODR)  
(see Note 2)  
V
V
= 5 V, V = 1.5 V, I = 1 A  
ref  
–1.65%  
–1.5%  
1.65%  
1.5%  
CC  
O
Initial accuracy IO condition:  
closed loop; linear regulator  
V
= 5 V, V = 1.5 V, I = 1 A,  
(CUM_ACC IO)  
CC  
ref  
O
T = 25°C (see Note 2)  
J
V
= 5 V,  
15, 0 I  
CC  
V
V
Load regulation IO  
25  
mV  
mV  
(Load Reg IO)  
β
2 A, (see Note 2)  
NPN  
Load  
5.5 V V  
3 V V (IO) 6 V, (see Note 2)  
IN  
4.5 V,  
CC  
VIN line regulation IO  
5
(IN Line Reg IO)  
V
= 5 V,  
CC  
I
VSENSE_IO = 0.9 × V  
10  
14  
mA  
O(srcLDODR)  
O(sinkLDODR)  
(REFIO)  
(REFIO)  
(see Note 2)  
Peak output current regulator,  
driver CLK  
V
= 5 V,  
CC  
I
VSENSE_IO = 1.1 × V  
µA  
(see Note 2)  
Initial accuracy CLK condi-  
tion: closed loop  
V
V
= 5 V, V = 2.5 V, I = 75 mA  
ref  
–1.55%  
–1.5%  
1.55%  
1.5%  
CC  
O
V
(CUM_ACCCLK)  
= 5 V, V = 2.5 V, I = 75 mA,  
CC  
ref  
O
Linear regulator  
T = 25°C, (see Note 2)  
J
V
= 5 V  
15, 0 I  
CC  
V
V
Load regulation CLK  
Line regulation CLK  
β
150 mA,  
5
5
mV  
mV  
(LoadRegCLK)  
NPN  
Load  
(see Note 2)  
5.5 V V  
4.5 V,  
CC  
IN(LineRegCLK)  
3 V V (CLK) 6 V, (see Note 2)  
IN  
NOTES: 2. Ensured by design, not production tested.  
4. The pulldown (sink) circuit of the high-side driver is a MOSFET transistor referenced to DRVGND. The driver circuits are bipolar  
and MOSFET transistors in parallel. The peak output current rating is the combined current rating from the bipolar and MOSFET  
transistors. The output resistance is the r  
saturation voltage of the bipolar transistor.  
of the MOSFET transistor when the voltage on the driver output is less than the  
ds(on)  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
Table 1. Voltage Programming Code  
VID PINS  
0 = GROUND, 1 = FLOATING, OR PULLUP TO 5 V  
V
ref  
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
VID2  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(Vdc)  
No CPU – Off  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
No CPU – Off  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
NOTE: If the VID bits are set to 11111 or 01111, then the high-side and low-side driver outputs  
will be set low..  
Table 2. PSM Program Modes  
Pin Voltage  
< (ANAGND – 0.3 V)  
ANAGND to 1.8 V  
2.3 V to VBIAS  
Function  
1
2
3
4
Disable PSM and disable fault latch  
Disable PSM and enable fault latch  
Enable PSM and enable fault latch  
Enable PSM and disable fault latch  
> (VBIAS + 0.3 V)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
detailed description  
reference/voltage identification  
The reference /voltage programming (VP) section consists of a temperature-compensated, bandgap reference  
and a 5-bit voltage selection network. The five VID pins are inputs to the VID selection network and are TTL  
compatible inputs that are internally pulled up to V  
with pullup resistors. The internal reference voltage can  
CC  
be programmed from 0.925 V to 2 V with the VID pins. The VID codes are listed in Table 1. The output voltage  
of the VP network, V , is within ±1.5% of the nominal setting. The ±1.5% tolerance is over the full VP range  
ref  
of 0.925 V to 2 V, and includes a junction temperature range of 0°C to 125°C, and a V  
range of 4.5 V to 5.5  
CC  
V. The output of the reference/VP network is indirectly brought out through a buffer to the VREFB pin. The  
voltage on this pin will be within ±5 mV of V . It is not recommended to drive loads with VREFB, other than  
ref  
setting the hysteresis of the hysteretic comparator, because the current drawn from VREFB sets the charging  
current for the slowstart capacitor. Refer to the slowstart section for additional information.  
dynamic VID change  
Dynamic VID change controls the rate of change of the programmed VID to allow transitioning within 100 µs,  
while controlling the dv/dt to avoid large input surge currents. VID could change with any input voltage, output  
voltage, or output current. A new change is ignored until the current transition is finished. Program the transition  
by adding a capacitor from DT_SET to ANAGND.  
I
  Dt  
REF  
14 µA   Dt  
* V  
Dt  
CDT_SET  
+
+
DV  
V
REF2  
REF1  
hysteretic comparator  
The hysteretic comparator regulates the output voltage of the synchronous-buck converter. The hysteresis is  
set by two external resistors and is centered around VREFB. The two external resistors form a resistor divider  
from VREFB to ANAGND, and the divided down voltage connects to the VHYST terminal. The hysteresis of the  
comparator will be equal to twice the voltage that is across the VREFB and VHYST pins. The maximum  
hysteresis setting is 60 mV.  
ramp generator  
The ramp generator circuit is partially composed of the PSM circuit. An external resistor from PH to  
VSENSE_CORE superimposes a ramp (proportional to V and V ) onto the feedback voltage. This allows  
I
O
increasing the operating frequency, and reduces frequency dependance on the output filter values. A capacitor  
can be used to provide ac-coupling. Also, connecting a resistor from V to VSENSE_CORE allows feed forward  
I
to counteract any dc offsets due to the ramp generator or propagation delays limiting duty cycle.  
power saving mode/latch  
The power saving mode circuit reduces the operating frequency of the ripple regulator during light load. This  
helps boost the efficiency during light loads by reducing the switching losses. Care should be taken to not allow  
rms current losses to exceed the switching losses. A 2-bit binary weighted resistor ramp circuit allows setting  
four operating frequencies.  
The PSM/LATCH terminal allows disabling of the fault latch (see Table 2). This allows the user to troubleshoot  
or implement an external protection circuit.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
detailed description (continued)  
active voltage DROOP positioning  
The droop compensation network reduces the load transient overshoot/undershoot on V , relative to V  
.
O
ref  
V
is programmed to a voltage greater than V in the mechanical data drawing by an external resistor  
O(max)  
ref  
divider from V to the VSENSE pin to reduce the undershoot on V  
during a low to high load transient. The  
O
OUT  
overshoot during a high to low load transient is reduced by subtracting the voltage that is on the DROOP pin  
from V . The voltage on the IOUT pin is divided down with an external resistor divider, and connected to the  
ref  
DROOP pin. Thus, under loaded conditions, V is regulated to V  
– V  
. The continuous sensing  
O
O(max)  
(DROOP)  
of the inductor current allows a fast regulating voltage adjustment allowing higher transient repetition rates.  
low-side driver  
The low-side driver is designed to drive low r  
, N-channel MOSFETs. The current of the driver is typically  
ds(on)  
2-A source and 3.3-A sink. The supply to the low-side driver is internally connected to V  
.
CC  
high-side driver  
The high-side driver is designed to drive low r  
N-channel MOSFETs. The current of the driver is typically  
ds(on)  
2-A source and 3.3-A sink. The high-side driver is configured as a floating bootstrap driver. The internal  
bootstrap diode, connected between the DRV and BOOT pins, is a Schottky diode for improved drive efficiency.  
The maximum voltage that can be applied between the BOOT pin and ground is 35 V.  
deadtime control  
The deadtime control prevents shoot-through current from flowing through the main power FET’s during the  
switching transitions by actively controlling the turnon times of the MOSFET drivers. The high-side driver is not  
allowed to turn on until the gate drive voltage to the low-side FET is below 1.7 V. The low-side driver is not  
allowed to turn on until the gate drive voltage from high-side FET to PH is below 1.3 V.  
current sensing  
Current sensing is achieved by sensing the voltage across a current-sense resistor placed in series between  
the output inductor and the output capacitors. The sensing network consists of a high bandwidth differential  
amplifier with a gain of 25x to allow using sense resistors with values as low as 1 m. Sensing occurs at all times  
toallowhavingrealtimeinformationforquickresponseduringanactivevoltagedrooppositioningtransition. The  
voltage on the IOUT pin equals 25 times the sensed voltage.  
VR_ON  
The VR_ON terminal is a TTL compatible digital pin that is used to enable the controller. When VR_ON is low,  
the output drivers are low, the linear regulator drivers are off, and the slowstart capacitor is discharged. When  
VR_ON goes high, the short across the slowstart capacitor is released and normal converter operation begins.  
When the system logic supply is connected to the VR_ON pin, the VR_ON pin can control power sequencing  
by locking out controller operation until the system logic supply exceeds the input threshold voltage of the  
VR_ON circuit. Thus, V  
and the system logic supply (either 5 V or 3.3 V) must be above UVLO thresholds  
CC  
before the controller is allowed to start up. Likewise, a microprocessor or other external logic can also control  
the sequencing through VR_ON.  
V
undervoltage lockout  
BIAS  
The VBIAS undervoltage-lockout circuit disables the controller, while VBIAS is below the 4.46-V start threshold  
during power up. The controller is disabled when VBIAS goes below 3.3 V. While the controller is disabled, the  
output drivers will be low and the slowstart capacitor will be shorted. When VBIAS exceeds the start threshold,  
the short across the slowstart capacitor is released and normal converter operation begins.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
detailed description (continued)  
IO linear regulator driver  
The IO linear regulator driver circuit drives a high power NPN external power transistor, allowing external power  
dissipation. The IO voltage is ramped up with the slowstart with the other two converters. Under voltage  
protectionprotectsagainsthardshortsorextremeloading. TheVSENSE_IOvoltageismonitoredbytheVGATE  
(powergood) circuit. A fault or shutdown on any converter will shut down the linear regulator.  
CLK linear regulator driver  
The CLK linear regulator driver circuit drives a lower power NPN external power transistor, allowing external  
power dissipation. The CLK voltage is ramped up with the slowstart with the other two converters. Under voltage  
protection protects against hard shorts or extreme loading. The VSENSE_CLK voltage is monitored by the  
VGATE (powergood) circuit. A fault or shutdown on any converter will shut down the linear regulator.  
slowstart  
The slowstart circuit controls the rate at which V  
powers up. A capacitor is connected between the SLOWST  
OUT  
and ANAGND pins and is charged by an internal current source. The value of the current source is proportional  
to the reference voltage, so that the charging rate of C is proportional to the reference voltage. By making  
slowst  
the charging current proportional to V , the power up time for V will be independent of V . Thus, C can  
ref  
O
ref  
slowst  
remain the same value for all VP settings. The slowstart charging current is determined by the following  
equation:  
I(VREFB)  
I
+
(amps)  
SLOWSTART  
5
where I  
is the current flowing out of the V  
terminal. It is recommended that no additional loads be  
(VREFB)  
REFB  
connected to VREFB, other than the resistor divider for setting the hysteresis voltage. Thus, these resistor  
values will determine the slowstart charging current. The maximum current that can be sourced by the VREFB  
circuit is 500 µA. The equation for setting the slowstart time is:  
t
= 5 × C  
× R  
(seconds)  
SLOWSTART  
SLOWSTART  
VREFB  
where R  
is the total external resistance from VREFB to ANAGND.  
(VREFB)  
VGATE  
The VGATE circuit monitors for an undervoltage condition on V  
, V  
, and V  
. If any V is  
(out_core) (out_IO)  
(out_CLK) O  
7% below its reference voltage, or if any UVLO (V , VR_ON) threshold is not reached, then the VGATE pin is  
cc  
pulled low. The VGATE terminal is an open drain output.  
overvoltage protection  
The overvoltage protection circuit monitors Vout_core, Vout_IO, and Vout_CLK for an overvoltage condition.  
If any V is 15% above its reference voltage, then a fault latch is set, then both the ripple regulator output drivers  
O
and the linear regulator drivers are turned off. The latch will remain set until V  
lockout value or until VR_ON is pulled low.  
goes below the undervoltage  
BIAS  
overcurrent protection  
The overcurrent protection circuit monitors the current through the current sense resistor. The overcurrent  
threshold is adjustable with an external resistor divider between IOUT and ANAGND terminals, with the divider  
voltage connected to the OCP terminal. If the voltage on the OCP terminal exceeds 200 mV, then a fault latch  
is set and the output drivers (ripple regulator and linear regulators) are turned off. The latch remains set until  
V
goes below the undervoltage lockout value or until VR_ON is pulled low.  
BIAS  
thermal shutdown  
Thermal shutdown disables the controller if the junction temperature exceeds the 165°C thermal shutdown trip  
point. The hysteresis is 10°C.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
APPLICATION INFORMATION  
Vout IO  
Vio 3.3/5V  
Vclk 3.3/5V  
Vout CLK  
ENABLE_EXT  
29  
DRV_CLK  
DRV_IO  
32  
DROOP  
10  
VSENSE_IO  
31  
VSENSE_CLK  
V_GATE  
OCP  
IOUT  
1
2
15  
9
11  
V
is dominant  
SS  
Protection Circuitry  
VR_ON  
22  
if V < V  
SS ref(CLK)  
UVLO Enables  
IC When  
VR_ON > 2.5V  
and  
UVLO  
V
SS  
Vcc > 4.46V  
IS–  
IS+  
13  
Vref CLK  
x 25  
OCP_OVP  
14  
Enables Device  
When  
Shutdown  
PWRGD  
is LOW if  
Vsense Core  
or Vsense IO  
or Vsense CLK  
> 0.93 of their  
Vref  
V
is dominant  
if V < V  
SS ref(IO)  
SS  
OCP Core > 200mV  
or Vsense Core  
or Vsense IO  
OCP_OVP  
PWRGD  
VBIAS  
Vcc  
VBIAS  
or Vsense CLK  
> 1.15 of their Vref  
30  
V
SS  
Vref IO  
UVP is  
Enabled When  
Vss > Vref CLK,  
and  
VCC(+5V)  
18  
Vcc (5V)  
Vbatt  
Q
Q
S
R
Shutdown  
Vsense Core  
or Vsense IO  
or Vsense CLK  
< 0.75 of their  
Vref  
ShutdownB  
Clock and IO  
Regulator  
Drivers  
UVP  
BOOT  
21  
Latch  
disabled  
TG  
PH  
20  
19  
Core Voltage  
Regulator  
Controller  
V
O
Vss is dominant if  
Vss<Vref  
Vref  
_
27  
VID0  
+
BG  
VID1 26  
VID2 25  
VID3 24  
VID4 23  
17  
16  
Vss  
Vcc  
Bandgap  
Vref  
DRVGND  
and DAC  
Power  
Save  
ANAGND  
4
Hyst.  
Set  
Mode  
Control  
3
7
8
6
5
12  
28  
RAMP  
DT_SET  
VREFB  
VSENSE_CORE  
VHYST  
SLOWST  
PSM/LATCH  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5300  
IMVP MOBILE POWER SUPPLY CONTROLLER  
SLVS334 – DECEMBER 2000  
MECHANICAL DATA  
DAP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
38 PINS SHOWN  
0,30  
0,19  
0,65  
38  
M
0,13  
20  
Thermal Pad  
(see Note D)  
6,20  
8,40  
NOM 7,80  
0,15 NOM  
Gage Plane  
1
19  
0,25  
A
0°-ā8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
28  
30  
32  
38  
DIM  
9,80  
9,60  
11,10  
10,90  
11,10  
10,90  
12,60  
12,40  
A MAX  
A MIN  
4073257/A 07/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TPS5300DAPG4

3.3A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO32, GREEN, PLASTIC, HTSSOP-32
TI

TPS5300DAPR

暂无描述
TI

TPS53014

Single Synchronous Step-down Controller for Low Voltage Power Rails
TI

TPS53014DGS

Single Synchronous Step-down Controller for Low Voltage Power Rails
TI

TPS53014DGSR

Single Synchronous Step-down Controller for Low Voltage Power Rails
TI

TPS53015

Single Synchronous Step-down Controller for Low Voltage Power Rails
TI

TPS53015DGS

Single Synchronous Step-down Controller for Low Voltage Power Rails
TI

TPS53015DGSR

Single Synchronous Step-down Controller for Low Voltage Power Rails
TI

TPS53114

SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS
TI

TPS53114PW

暂无描述
TI

TPS53114PWP

SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS
TI

TPS53114PWPR

SINGLE SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS
TI