TSA1005-40IF [ETC]

Analog to Digital Converter ; 模拟数字转换器\n
TSA1005-40IF
型号: TSA1005-40IF
厂家: ETC    ETC
描述:

Analog to Digital Converter
模拟数字转换器\n

转换器
文件: 总19页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSA1005-40  
DUAL-CHANNEL, 10-BIT, 40MSPS, 150mW A/D CONVERTER  
Preliminary Data  
10-bit, dual-channel A/D converter in deep  
submicron CMOS technology  
PIN CONNECTIONS (top view)  
Single supply voltage: 2.5V  
Independent supply for CMOS output stage  
with 2.5V/3.3V capability  
ENOB=9.4 @ 40Msps, Fin=10MHz  
SFDR typically up to 73dB @ 40Msps,  
Fin=10MHz.  
40Msps sampling frequency  
1GHz analog bandwidth Track-and-Hold  
Common clocking between channels  
Multiplexed outputs  
index  
corner  
48 47 46 45 44 43 42 41 40 39 38 37  
D0(LSB)  
D1  
36  
35  
AGND  
INI  
1
2
3
D2  
34  
AGND  
INIB  
4
5
D3  
D4  
33  
32  
AGND  
6
7
31  
D5  
IPOL  
30 D6  
AVCCB  
TSA1005-40  
D7  
29  
8
9
AGND  
INQ  
D8  
28  
D9(MSB)  
10  
AGND  
27  
DESCRIPTION  
26 VCCBE  
INBQ 11  
AGND  
25 GNDBE  
12  
The TSA1005-40 is a new generation of high  
speed, dual-channel Analog to Digital converter  
processed in a mainstream 0.25µm CMOS tech-  
nology yielding high performances.  
13 14 15 16 17 18 19 20 21 22 23 24  
The TSA1005-40 is specifically designed for appli-  
cations requiring very low noise floor, high SFDR  
and good isolation between channels. It is based  
on a pipeline structure and digital error correction  
to provide high static linearity at Fs=40Msps, and  
Fin=10MHz.  
BLOCK DIAGRAM  
SELECT  
OEB  
VCCBE  
+2.5V/3.3V  
CLK  
For each channel, a voltage reference is integrat-  
ed to simplify the design and minimize external  
components. It is nevertheless possible to use the  
circuit with external references.  
Timing  
VINI  
10  
AD 10  
I channel  
VINBI  
Each ADC outputs are multiplexed in a common  
VINCMI  
common mode  
bus with small number of pins.  
VREFPI  
REF I  
VREFMI  
Differential or single-ended analog inputs can be  
applied. A tri-state capability is available for the  
outputs, allowing chip selection.  
The TSA1005-40 is available in extended (0 to  
+85°C) temperature range, in a small 48 pins  
TQFP package.  
10  
10  
D0  
TO  
D9  
M
U
X
Buffers  
Polar.  
IPOL  
VREFPQ  
VREFMQ  
VINCMQ  
REF Q  
common mode  
VINQ  
AD 10  
Q channel  
10  
APPLICATIONS  
VINBQ  
Medical imaging and ultrasound  
I/Q signal processing applications  
High speed data acquisition system  
Portable instrumentation  
GND  
GNDBE  
PACKAGE  
High resolution fax and scanners  
ORDER CODE  
7 × 7 mm TQFP48  
Temperature  
Range  
Part Number  
Package  
Condition ing  
Marking  
TSA1005-40IF  
0°C to +85°C  
TQFP48  
TQFP48  
Tray  
SA1005I  
SA1005I  
TSA1005-40IFT 0°C to +85°C  
Tape & Reel  
EVAL1005/BA  
Evaluation board  
September 2002  
1/19  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice  
TSA1005-40  
ELECTRICAL CHARACTERISTICS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps, Fin=10.13MHz, Vin@ -1dBFS, VREFP=0.8V, VREFM=0V  
Tamb = 25°C (unless otherwise specified)  
DYNAMIC CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
SFDR Spurious Free Dynamic Range  
-73  
59  
dBc  
dB  
SNR  
THD  
Signal to Noise Ratio  
Total Harmonics Distortion  
-73  
58.5  
dBc  
dB  
SINAD Signal to Noise and Distortion Ratio  
TIMING CHARACTERISTICS  
Symbol  
Parameter  
Sampling Frequency  
Test conditions  
Min  
Typ  
Max  
Unit  
FS  
DC  
0.5  
45  
40  
55  
MHz  
%
Clock Duty Cycle  
50  
12.5  
12.5  
5
TC1  
TC2  
Tod  
Clock pulse width (high)  
Clock pulse width (low)  
ns  
ns  
Data Output Delay (Clock edge to Data Valid) 10pF load capacitance  
Data Pipeline delay for I channel  
ns  
Tpd I  
7
cycles  
cycles  
ns  
Tpd Q Data Pipeline delay for Q channel  
7.5  
1
Ton  
Toff  
Falling edge of OEB to digital output valid data  
Rising edge of OEB to digital output tri-state  
1
ns  
TIMING DIAGRAM  
Simultaneous sampling  
on I/Q channels  
N+4  
N+5  
N+13  
N+3  
N+6  
N+12  
I
N+11  
N+7  
N+2  
N-1  
N
N+1  
N+8  
N+10  
N+9  
Q
CLK  
Tpd I + Tod  
Tod  
SELECT  
OEB  
CLOCK AND SELECT CONNECTED TOGETHER  
sample N+2  
Q channel  
sample N-6  
Q channel  
sample N-8  
I channel  
sample N+1  
Q channel  
sample N  
Q channel  
DATA  
OUTPUT  
sample N-9  
I channel  
sample N-7  
Q channel  
sample N+3  
I channel  
sample N+1  
I channel  
sample N+2  
I channel  
2/19  
TSA1005-40  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Values  
Unit  
1)  
AVCC  
DVCC  
0 to 3.3  
0 to 3.3  
0 to 3.6  
V
V
V
Analog Supply voltage  
1)  
Digital Supply voltage  
1)  
1)  
VCCBE  
Digital buffer Supply voltage  
VCCBI  
IDout  
Tstg  
0 to 3.3  
-100 to 100  
+150  
V
Digital buffer Supply voltage  
Digital output current  
mA  
°C  
Storage temperature  
2)  
HBM: Human Body Model  
2
ESD  
kV  
3)  
1.5  
CDM: Charged Device Model  
4)  
Latch-up  
A
Class  
1). All voltages values, except differential voltage, are with respect to network ground terminal .The magnitude of input and output voltages must not exceed -0.3V or VCC  
2). ElectroStati cDischarge pulse (ESD pulse) simulating a human body discharge of 100 pF through 1.5kΩ  
3). Discharge to Ground of a device that has been previously charged.  
4). Corporate ST Microelectronics procedu renumber 0018695  
PIN CONNECTIONS (top view)  
i
nd ex  
c
orner  
37  
48 47 46 45 44 4 3 42 4 1 40 39 3 8  
D0( L SB)  
D1  
A GND  
INI  
1
36  
3 5  
34  
2
3
D2  
A GND  
INIB  
4
5
33 D3  
3 2 D4  
A GND  
IPO L  
6
7
31 D5  
D6  
D7  
30  
29  
A V CCB  
TSA1005-40  
8
9
A GND  
INQ  
28 D8  
D9( MSB)  
10  
A GND  
2 7  
2 6 VC CB E  
INB Q 11  
A GND  
GND BE  
25  
12  
1 3 14 1 5 1 6 1 7 1 8 1 9 20 2 1 22 23 2 4  
PIN DESCRIPTION  
Pin No  
Name  
Description  
Analog ground  
Observation  
Pin No  
Name  
Description  
Digital buffer ground  
Observation  
1
2
AGND  
INI  
0V  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
GNDBE  
VCCBE  
D9(MSB)  
D8  
0V  
I channel analog input  
Analog ground  
1Vpp  
0V  
Digital Buffer power supply  
Most Significant Bit output  
Digital output  
2.5V/3.3V  
3
AGND  
INBI  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
CMOS output (2.5V/3.3V)  
4
I channel inverted analog input  
Analog ground  
1Vpp  
0V  
5
AGND  
IPOL  
D7  
Digital output  
6
Analog bias current input  
Analog power supply  
Analog ground  
D6  
Digital output  
7
AVCC  
AGND  
INQ  
2.5V  
0V  
D5  
Digital output  
8
D4  
Digital output  
9
Q channel analog input  
Analog ground  
1Vpp  
0V  
D3  
Digital output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AGND  
INBQ  
D2  
Digital output  
Q channel inverted analog input  
Analog ground  
1Vpp  
0V  
D1  
Digital output  
AGND  
REFPQ  
REFMQ  
INCMQ  
AGND  
AVCC  
DVCC  
DGND  
CLK  
D0(LSB)  
NC  
Least Significant Bit output  
Non connected  
Q channel top reference voltage  
Q channel bottom reference voltage  
Q channel input common mode  
Analog ground  
1V  
0V  
NC  
Non connected  
0.5V  
0V  
VCCBE  
GNDBE  
VCCBI  
VCCBI  
OEB  
Digital Buffer power supply  
Digital buffer ground  
Digital Buffer power supply  
Digital Power Supply  
Output Enable input  
Analog power supply  
Analog power supply  
I channel input common mode  
I channel bottom reference voltage  
I channel top reference voltage  
2.5V/3.3V - See Application Note  
0V  
Analog power supply  
Digital power supply  
Digital ground  
2.5V  
2.5V  
0V  
2.5V  
2.5V  
2.5V/3.3V CMOS input  
Clock input  
2.5V CMOS input  
AVCC  
AVCC  
INCMI  
REFMI  
REFPI  
2.5V  
2.5V  
0.5V  
0V  
SELECT  
DGND  
DVCC  
GNDBI  
Channel selection  
2.5V CMOS input  
Digital ground  
0V  
Digital power supply  
Digital buffer ground  
2.5V  
0V  
1V  
3/19  
TSA1005-40  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps, Fin=2MHz, Vin@ -1dBFS, VREFM=0V  
Tamb = 25°C (unless otherwise specified)  
OPERATING CONDITIONS  
Symbol  
Parameter  
Analog Supply voltage  
Min  
Typ  
Max  
Unit  
AVCC  
DVCC  
2.25  
2.25  
2.25  
2.25  
2.5  
2.5  
2.5  
2.5  
2.7  
2.7  
3.5  
2.7  
V
V
V
V
Digital Supply voltage  
VCCBE  
VCCBI  
External Digital buffer Supply voltage  
Internal Digital buffer Supply voltage  
VREFPI  
1)  
0.6  
0
0.88  
0
1.4  
0.4  
1
V
V
V
Forced top voltage reference  
VREFPQ  
VREFMI  
1)  
Forced bottom reference voltage  
VREFMQ  
INCMI  
Forced input common mode voltage  
0.2  
0.46  
INCMQ  
1)  
Condition VRefP-VRefM>0.3V  
ANALOG INPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VIN-VINB Full scale reference voltage  
0.3  
2.0  
7
2.8  
Vpp  
pF  
Cin  
Req  
BW  
Input capacitance  
Equivalent input resistor  
Analog Input Bandwidth  
Effective Resolution Bandwidth  
1.6  
1000  
70  
KΩ  
Vin@Full Scale, Fs=40Msps  
MHz  
MHz  
ERB  
DIGITAL INPUTS AND OUTPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Clock and Select inputs  
VIL  
Logic ”0” voltage  
Logic ”1” voltage  
0
0.8  
V
V
VIH  
2.0  
2.5  
OEB input  
0.25 x  
VCCBE  
VIL  
Logic ”0” voltage  
Logic ”1” voltage  
0
V
V
0.75 x  
VCCBE  
VIH  
VCCBE  
Digital Outputs  
VOL  
Iol=10µA  
Ioh=10µA  
0.1 x  
VCCBE  
Logic ”0” voltage  
Logic ”1” voltage  
0
V
V
VOH  
IOZ  
0.9 x  
VCCBE  
-1.67  
VCCBE  
0
High Impedance leakage current OEB set to VIH  
Output Load Capacitance  
1.67  
15  
µA  
C
pF  
L
4/19  
TSA1005-40  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps, Fin=2MHz, Vin@ -1dBFS, VREFP=0.8V, VREFM=0V  
Tamb = 25°C (unless otherwise specified)  
REFERENCE VOLTAGE  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VREFPI  
Top internal reference voltage  
0.81  
0.88  
0.94  
V
VREFPQ  
VINCMI  
Input common mode voltage  
0.41  
0.46  
0.50  
V
VINCMQ  
POWER CONSUMPTION  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
ICCA  
ICCD  
ICCBE  
ICCBI  
Pd  
Analog Supply current  
Digital Supply Current  
50  
4
mA  
mA  
Digital Buffer Supply Current (10pF load)  
Digital Buffer Supply Current  
6
mA  
274  
150  
80  
uA  
Power consumption in normal operation mode  
Thermal resistance (TQFP48)  
mW  
°C/W  
Rthja  
ACCURACY  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
OE  
GE  
DNL  
INL  
-
Offset Error  
LSB  
%
Gain Error  
Differential Non Linearity  
Integral Non Linearity  
Monotonicity and no missing codes  
±0.5  
±0.7  
LSB  
LSB  
Guaranteed  
MATCHING BETWEEN CHANNELS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
GM  
OM  
Gain match  
0.04  
0.5  
1
1
%
LSB  
dg  
Offset match  
Phase match  
Crosstalk rejection  
PHM  
XTLK  
85  
dB  
5/19  
TSA1005-40  
Static parameter: Integral Non Linearity  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
200  
400  
600  
800  
1000  
Output Code  
Static parameter: Differential Non Linearity  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
800  
1000  
Output Code  
Linearity vs. Fin  
Distortion vs. Fin  
Fs=40MHz; Icca=45mA  
Fs=40MHz; Icca=45mA  
0
-20  
-40  
100  
90  
10  
9
ENOB_Q  
SNR_Q  
ENOB_I  
80  
8
THD_I  
SFDR_I  
70  
60  
50  
SINAD_Q  
7
-60  
-80  
6
SFDR_Q  
THD_Q  
SNR_I  
SINAD_I  
20  
5
-100  
-120  
40  
30  
4
0
40  
60  
0
20  
40  
60  
Fin (MHz)  
Fin (MHz)  
6/19  
TSA1005-40  
Linearity vs. AVCC  
Fs=40MSPS; Icca=45mA; Fin=5MHz  
Distortion vs. AVCC  
Fs=40MSPS; Icca=45mA; Fin=5MHz  
-30  
-40  
-50  
100  
90  
10  
9.5  
9
SFDR_Q  
THD_Q  
ENOB_Q ENOB_I  
80  
8.5  
8
-60  
-70  
SFDR_I  
70  
7.5  
7
-80  
SNR_Q  
SINAD_Q  
SNR_I  
-90  
60  
50  
40  
THD_I  
6.5  
6
-100  
-110  
-120  
SINAD_I  
2.35  
5.5  
5
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.45  
2.55  
2.65  
AVCC (V)  
AVCC (V)  
Linearity vs. DVCC  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
Distortion vs. DVCC  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
0
-20  
-40  
100  
10  
9.5  
9
90  
80  
70  
60  
50  
40  
ENOB_Q  
ENOB_I  
8.5  
8
SFDR_I  
SFDR_Q  
-60  
-80  
7.5  
7
SINAD_Q  
SNR_Q  
6.5  
6
THD_I  
THD_Q  
SNR_I  
-100  
-120  
SINAD_I  
5.5  
5
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
DVCC (V)  
DVCC (V)  
Linearity vs. VCCBI  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
Distortion vs. VCCBI  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
-40  
90  
10  
9.5  
9
-50  
85  
THD_Q  
ENOB_Q  
-60  
-70  
SFDR_Q  
ENOB_I  
80  
8.5  
8
75  
-80  
70  
7.5  
7
-90  
SINAD_Q  
THD_I  
SNR_Q  
65  
60  
55  
50  
SFDR_I  
6.5  
6
-100  
-110  
-120  
SINAD_I  
2.35  
5.5  
5
SNR_I  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.45  
2.55  
2.65  
VCCBI (V)  
VCCBI (V)  
7/19  
TSA1005-40  
Linearity vs. VCCBE  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
Distortion vs. VCCBE  
Fs=40MSPS; Icca=45mA; Fin=10MHz  
-30  
-40  
90  
85  
80  
10  
9.8  
9.6  
9.4  
9.2  
9
-50  
-60  
SFDR_Q  
THD_Q  
ENOB_Q  
ENOB_I  
75  
70  
-70  
-80  
8.8  
8.6  
8.4  
8.2  
8
65  
THD_I  
SNR_I  
SINAD_I  
-90  
SFDR_I  
60  
-100  
-110  
-120  
SINAD_Q  
3.25  
55  
50  
SNR_Q  
2.25  
2.75  
3.25  
2.25  
2.75  
VCCBE (V)  
VCCBE (V)  
Linearity vs. Duty Cycle  
Fs=40MHz; Icca=45mA; Fin=5MHz  
Distortion vs. Duty Cycle  
Fs=40MHz; Icca=45mA; Fin=5MHz  
-40  
100  
10  
9.5  
9
-50  
SFDR  
90  
ENOB  
-60  
-70  
8.5  
8
80  
70  
60  
50  
40  
7.5  
7
-80  
SNR  
SINAD  
THD  
-90  
-100  
-110  
-120  
6.5  
6
5.5  
5
45  
47  
49  
51  
53  
55  
45  
47  
49  
51  
53  
55  
Positive Duty Cycle (%)  
Positive Duty Cycle (%)  
Single-tone 8K FFT at 39.7Msps - Q Channel  
Fin=10MHz; Icca=45mA, Vin@-1dBFS  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (MHz)  
8/19  
TSA1005-40  
DEFINITIONS OF SPECIFIED PARAMETERS  
STATIC PARAMETERS  
Signal to Noise Ratio (SNR)  
The ratio of the rms value of the fundamental  
component to the rms sum of all other spectral  
Static measurements are performed through  
method of histograms on a 2MHz input signal,  
sampled at 40Msps, which is high enough to fully  
characterize the test frequency response. The  
input level is +1dBFS to saturate the signal.  
components in the Nyquist band (f /2) excluding  
s
DC, fundamental and the first five harmonics.  
SNR is reported in dB.  
Signal to Noise and Distortion Ratio (SINAD)  
Differential Non Linearity (DNL)  
Similar ratio as for SNR but including the harmonic  
distortion components in the noise figure (not DC  
signal). It is expressed in dB.  
The average deviation of any output code width  
from the ideal code width of 1 LSB.  
From the SINAD, the Effective Number of Bits  
(ENOB) can easily be deduced using the formula:  
SINAD= 6.02 × ENOB + 1.76 dB.  
Integral Non linearity (INL)  
An ideal converter presents a transfer function as  
being the straight line from the starting code to the  
ending code. The INL is the deviation for each  
transition from this ideal curve.  
When the applied signal is not Full Scale (FS), but  
has an A amplitude, the SINAD expression  
0
becomes:  
SINAD =SINAD  
+ 20 log (2A /FS)  
0
2Ao  
Full Scale  
SINAD =6.02 × ENOB + 1.76 dB + 20 log (2A /  
2Ao  
0
FS)  
DYNAMIC PARAMETERS  
The ENOB is expressed in bits.  
Dynamic measurements are performed by  
spectral analysis, applied to an input sine wave of  
various frequencies and sampled at 40Msps.  
Analog Input Bandwidth  
The maximum analog input frequency at which the  
spectral response of a full power signal is reduced  
by 3dB. Higher values can be achieved with  
smaller input levels.  
The input level is -1dBFS to measure the linear  
behavior of the converter. All the parameters are  
given without correction for the full scale ampli-  
tude performance except the calculated ENOB  
parameter.  
Effective Resolution Bandwidth (ERB)  
The band of input signal frequencies that the ADC  
is intended to convert without loosing linearity i.e.  
the maximum analog input frequency at which the  
SINAD is decreased by 3dB or the ENOB by 1/2  
bit.  
Spurious Free Dynamic Range (SFDR)  
The ratio between the power of the worst spurious  
signal (not always an harmonic) and the amplitude  
of fundamental tone (signal power) over the full  
Nyquist band. It is expressed in dBc.  
Pipeline delay  
Delay between the initial sample of the analog  
input and the availability of the corresponding  
digital data output, on the output bus. Also called  
data latency. It is expressed as a number of clock  
cycles.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first five harmonic  
distortion components to the rms value of the  
fundamental line. It is expressed in dB.  
9/19  
TSA1005-40 APPLICATION NOTE  
DETAILED INFORMATION  
The TSA1005-40 is a dual-channel, 10-bit resolu-  
tion analog to digital converter based on a pipeline  
structure and the latest deep sub micron CMOS  
process to achieve the best performances in  
terms of linearity and power consumption.  
Each channel achieves 10-bit resolution through  
the pipeline structure. A latency time of 7 clock pe-  
riods is necessary to obtain the digitized data on  
the output bus.  
The input signals are simultaneously sampled on  
both channels on the rising edge of the clock. The  
output data is valid on the rising edge of the clock  
for I channel and on the falling edge of the clock  
for Q channel. The digital data out from the differ-  
ent stages must be time delayed depending on  
their order of conversion. Then a digital data cor-  
rection completes the processing and ensures the  
validity of the ending codes on the output bus.  
The structure has been specifically designed to  
accept differential signals. In this case, you will ob-  
tain the best performances. Nevertheless, sin-  
gle-ended signals can drive the ADC with few lin-  
earity degradation.  
SELECT  
The digital data out from each ADC core are mul-  
tiplexed together to share the same output bus.  
This prevents from increasing the number of pins  
and enables to keep the same package as single  
channel ADC like TSA1002.  
The selection of the channel information is done  
through the ”SELECT” pin. When set to high level  
(VIH), the I channel data are present on the bus  
D0-D9. When set to low level (VIL), the Q channel  
data are on the output bus D0-D9.  
Connecting SELECT to CLK allows I and Q chan-  
nels to be simultaneously present on D0-D9; I  
channel on the rising edge of the clock and Q  
channel on the falling edge of the clock. (see tim-  
ing diagram page 2).  
REFERENCES AND COMMON MODE  
CONNECTION  
VREFM must be always connected externally.  
The TSA1005-20 is pin to pin compatible with the  
dual 10bits/40Msps TSA1005, the dual 12bits/  
20Msps TSA1204 and the dual 12bits/40Msps  
TSA1203.  
Internal reference and common mode  
In the default configuration, the ADC operates with  
its own reference and common mode voltages  
generated by its internal bandgap. VREFM pins  
are connected externally to the Analog Ground  
while VREFP (respectively INCM) are set to their  
internal voltage of 0.88V (respectively 0.46V). It is  
recommended to decouple the VREFP and INCM  
in order to minimize low and high frequency noise  
(refer to Figure 1)  
COMPLEMENTARY FUNCTIONS  
Some functionalities have been added in order to  
simplify as much as possible the application  
board. These operational modes are described as  
followed.  
Output Enable (OEB)  
Figure 1 : Internal reference and common mode  
setting  
When set to low level (VIL), all digital outputs  
remain active and are in low impedance state.  
When set to high level (VIH), all digital outputs  
buffers are in high impedance state while the  
converter goes on sampling. When OEB is set to a  
low level again, the data are then present on the  
output with a very short Ton delay.  
Therefore, this allows the chip select of the device.  
The timing diagram summarizes this functionality.  
In order to remain in the normal operating mode,  
this pin should be grounded through a low value of  
resistor.  
330pF 10nF 4.7uF  
VREFP  
VIN  
TSA1005  
INCM  
330pF 10nF 4.7uF  
VINB  
VREFM  
10/19  
TSA1005-40  
External reference and common mode  
might also use a higher impedance ratio (1:2 or  
1:4) to reduce the driving requirement on the  
analog signal source.  
Each analog input can drive a 1Vpp amplitude in-  
put signal, so the resultant differential amplitude is  
2Vpp.  
Each of the voltages VREFP and INCM can be  
fixed externally to better fit to the application  
needs  
(Refer  
to  
table  
’OPERATING  
CONDITIONS’ page 4 for min/max values).  
The VREFP, VREFM voltages set the analog  
dynamic at the input of the converter that has a full  
scale amplitude of 2*(VREFP-VREFM). Using  
internal references, the dynamic range is 1.8V.  
The INCM is the mid voltage of the analog input  
signal.  
Figure 3 : Differential input configuration with  
transformer  
ADT1-1  
Analog source  
1:1  
VIN  
TSA1005  
50Ω  
33pF  
I or Q ch.  
VINB  
It is possible to use an external reference voltage  
device for specific applications requiring even  
INCM  
better  
linearity,  
accuracy  
or  
enhanced  
temperature behavior.  
330pF  
10nF  
470nF  
Using the STMicroelectronics TS821 or  
TS4041-1.2 Vref leads to optimum performances  
when configured as shown on Figure 2 .  
Figure 4 represents the biasing of a differential  
input signal in AC-coupled differential input  
configuration. Both inputs VIN and VINB are  
centered around the common mode voltage, that  
can be let internal or fixed externally.  
Figure 2 : External reference setting  
1kΩ  
330pF 10nF 4.7uF  
VCCA VREFP  
Figure 4 : AC-coupled differential input  
TS821  
TS4041  
VIN  
TSA1005  
VINB  
external  
reference  
VIN  
VREFM  
10nF  
50Ω  
100kΩ  
TSA1005  
33pF  
INCM  
common  
mode  
100kΩ  
VINB  
10nF  
50Ω  
DRIVING THE ANALOG INPUT  
Differential inputs  
Figure 5 shows a DC-coupled configuration with  
forced VREFP and INCM to the 1V DC analog  
input while VREFM is connected to ground; we  
achieve a 2Vpp differential amplitude.  
The TSA1005-40 has been designed to obtain  
optimum performances when being differentially  
driven. An RF transformer is a good way to  
achieve such performances.  
Figure 3 describes the schematics. The input  
signal is fed to the primary of the transformer,  
while the secondary drives both ADC inputs. The  
common mode voltage of the ADC (INCM) is  
connected to the center-tap of the secondary of  
the transformer in order to bias the input signal  
around this common voltage, internally set to  
0.46V. It determines the DC component of the  
analog signal. As being an high impedance input,  
it acts as an I/O and can be externally driven to  
adjust this DC component. The INCM is  
decoupled to maintain a low noise level on this  
node. Our evaluation board is mounted with a 1:1  
ADT1-1WT transformer from Minicircuits. You  
Figure 5 : DC-coupled 2Vpp differential analog  
input  
analog  
analog  
AC+DC  
VREFP  
VIN  
DC  
DC  
TSA1005  
VINB  
VREFM  
INCM  
330pF 10nF  
4.7uF  
VREFP-VREFM = 1 V  
11/19  
TSA1005-40  
Single-ended input configuration  
- The transition to single-ended configuration  
implies to connect the unused input (VINB for  
instance) to the DC component of the single input  
(VIN) and also to the input common mode in order  
to be well balanced. The mid-code is achieved at  
the crossing between VIN and VINB, therefore  
inputs are conveniently biased.  
- Unlikely other structures of converters in which  
the unused input can be grounded; in our case it  
will end with unbalanced inputs and saturation of  
the internal amplifiers leading to a non respect of  
the output codes.  
The single-ended input configuration of the  
TSA1005-40 requires particular biasing and driv-  
ing. The structure being fully differential, care has  
to be taken in order to properly bias the inputs in  
single-ended mode. Figure 6 summarizes the link  
from the differential configuration to the sin-  
gle-ended one; a wrong configuration is also pre-  
sented.  
- With differential driving, both inputs are centered  
around the INCM voltage.  
Figure 6 : Input dynamic range for the various configurations  
Differential configuration  
Single-ended configuration:  
balanced inputs  
Single-ended configuration:  
unbalanced inputs  
+FS : code 1023  
+FS + offset : code > 1023  
VIN - VINB  
+FS : code 1023  
VIN - VINB  
VIN - VINB  
VIN  
VINB  
VIN  
VIN  
0 : code 511  
INCM  
INCM  
INCM  
0 : code 511  
-FS : code 0  
-FS + offset : code > 0  
-FS : code 0  
Ao + ac  
Ao + ac  
Ao + ac  
Ao + ac  
VIN  
VIN  
VIN  
VINB  
VINB  
VINB  
INCM  
INCM  
INCM  
Ao  
Ao  
Ao  
Wrong configuratio n !  
The applications requiring single-ended inputs  
can be configured like reported on Figure 7 for an  
AC-coupled input or on Figure 8 for a DC-coupled  
input.  
Figure 7 : AC-coupled Single-ended input  
Signal source  
10nF  
VIN  
In the case of AC-coupled analog input, the  
analog inputs VIN and VINB are biased to the  
same voltage that is the common mode voltage of  
the circuit (INCM). The INCM and reference  
voltages may remain at their internal level but can  
also be fixed externally.  
100kΩ  
50Ω  
TSA1005  
INCM  
33pF  
100kΩ  
VINB  
In the case of DC-coupled analog input with 1V  
DC signal, the DC component of the analog input  
set the common mode voltage. As an example  
figure 8, VREFP and INCM are set to the 1V DC  
12/19  
TSA1005-40  
analog input while VREFM is connected to  
ground; we achieve a 2Vpp differential amplitude.  
The figure 9 sums up the relevant data.  
Figure 9 : analog current consumption  
optimization depending on Rpol value  
Figure 8 : DC-coupled 2Vpp analog input  
100  
90  
250  
200  
150  
100  
50  
Analog  
AC+DC  
VREFP  
VIN  
80  
DC  
TSA1005  
70  
VINB  
60  
VREFM  
ICCA  
50  
INCM  
40  
30  
20  
330pF  
10nF  
4.7uF  
VREFP-VREFM = 1 V  
10  
RPOL  
0
0
5
15  
25  
35  
45  
55  
Dynamic characteristics, while not being as  
remarkable as for differential configuration, are  
still of very good quality.  
Fs (MHz)  
APPLICATION  
Clock input  
Layout precautions  
The TSA1005-40 performance is very dependant  
on your clock input accuracy, in terms of aperture  
jitter; the use of low jitter crystal controlled  
oscillator is recommended.  
To use the ADC circuits in the best manner at high  
frequencies, some precautions have to be taken  
for power supplies:  
- First of all, the implementation of 4 separate  
proper supplies and ground planes (analog,  
digital, internal and external buffer ones) on the  
PCB is recommended for high speed circuit  
applications to provide low inductance and low  
resistance common return.  
The duty cycle must be between 45% and 55%.  
The clock power supplies must be separated from  
the ADC output ones to avoid digital noise  
modulation at the output.  
The separation of the analog signal from the  
digital part is mandatory to prevent noise from  
coupling onto the input signal. The best  
compromise is to connect from one part AGND,  
DGND, GNDBI in a common point whereas  
GNDBE must be isolated. Similarly, the power  
supplies AVCC, DVCC and VCCBI must be  
separated from the VCCBE one.  
It is recommended to always keep the circuit  
clocked, even at the lowest specified sampling  
frequency of 0.5Msps, before applying the supply  
voltages.  
Power consumption  
- Power supply bypass capacitors must be placed  
as close as possible to the IC pins in order to  
improve high frequency bypassing and reduce  
harmonic distortion.  
- Proper termination of all inputs and outputs must  
be incorporated with output termination resistors;  
then the amplifier load will be only resistive and  
the stability of the amplifier will be improved. All  
leads must be wide and as short as possible  
especially for the analog input in order to decrease  
parasitic capacitance and inductance.  
So as to optimize both performance and power  
consumption of the TSA1005-40 according the  
sampling frequency, a resistor is placed between  
IPOL and the analog Ground pins. Therefore, the  
total dissipation is adjustable from 35Msps up to  
50Msps.  
The TSA1005-40 will combine highest perfor-  
mances and lowest consumption at 40Msps when  
Rpol is equal to 30k. This value is nevertheless  
dependant on application and environment.  
At lower sampling frequency range, this value of  
resistor may be adjusted in order to decrease the  
analog current without any degradation of  
dynamic performances.  
- To keep the capacitive loading as low as  
possible at digital outputs, short lead lengths of  
routing are essential to minimize currents when  
the output changes. To minimize this output  
13/19  
TSA1005-40  
capacitance, buffers or latches close to the output  
pins will relax this constraint.  
- Choose component sizes as small as possible  
(SMD).  
The transducer is a piezoelectric ceramic such as  
zirconium titanate. The whole array can reach up  
to 512 channels.  
The TX beam former, amplified by the HV TX  
amps, delivers up to 100V amplitude excitation  
pulses with phase and amplitude shifts.  
The mux and T/R switch is a two way input signal  
transmitter/ output receiver.  
Digital Interface application  
Thanks to its wide external buffer power supply  
range, the TSA1005-40 is perfectly suitable to  
plug in to 2.5V low voltage DSPs or digital interfac-  
es as well as to 3.3V ones.  
To compensate for skin and tissues attenuation  
effects, The Time Gain Compensation (TGC) am-  
plifier is an exponential amplifier that enables the  
amplification of low voltage signals to the ADC in-  
put range. Differential output structure with low  
noise and very high linearity are mandatory fac-  
tors.  
Medical Imaging application  
Driven by the demand of the applications requiring  
nowadays either portability or high degree of par-  
allelism (or both), this product has been devel-  
oped to satisfy medical imaging, and telecom in-  
frastructures needs.  
These applications need high speed, low power  
and high performance ADCs. 10-12 bit  
resolution is necessary to lower the quantification  
noise. As multiple channels are used, a dual con-  
verter is a must for room saving issues.  
The input signal is in the range of 2 to 20MHz  
(mainly 2 to 7MHz) and the application uses most-  
ly a 4 over-sampling ratio for Spurious Free Dy-  
namic Range (SFDR) optimization.  
As a typical system diagram shows figure 10, a  
narrow input beam of acoustic energy is sent into  
a living body via the transducer and the energy re-  
flected back is analyzed.  
Figure 10 : Medical imaging application  
The next RX beam former and processing blocks  
enable the analysis of the outputs channels ver-  
sus the input beam.  
HV TX amps  
TX  
beamformer  
Mux and  
T/R  
switches  
RX  
beamformer  
ADC  
TGC amplifie r  
Processing  
and display  
14/19  
TSA1005-40  
EVAL1005/BA evaluation board  
The dataready signal is the acquisition clock of the  
logic analyzer.  
The ADC digital outputs are latched by the octal  
buffers 74LCX573.  
All characterization measurements have been  
made with:  
- SFSR=1dB for static parameters.  
- SFSR=-1dB for dynamic parameters.  
The EVAL1005/BA is a 4-layer board with high  
decoupling and grounding level. The schematic of  
the evaluation board is reported figure 14 and its  
top overlay view figure 13.The characterization of  
the board has been made with a fully ADC  
devoted test bench as shown on Figure 11. The  
analog input signal must be filtered to be very  
pure.  
Figure 11 : Analog to Digital Converter characterization bench  
HP8644  
Data  
ADC  
evaluation  
board  
Vin  
Sine Wave  
Generator  
Logic  
Analyzer  
PC  
Clk  
Clk  
Pulse  
HP8133  
HP8644  
Generator  
Sine Wave  
Generator  
Operating conditions of the evaluation board:  
Find below the connections to the board for the  
power supplies and other pins:  
board  
internal  
voltage (V)  
external  
connection  
voltage (V)  
notation  
GB1  
VB1  
board  
internal  
external  
GNDBI  
VCCBI  
0
2.5  
0
connection  
voltage (V)  
voltage (V)  
notation  
AV  
AG  
AVCC  
AGND  
REFPI  
REFMI  
INCMI  
REFPQ  
REFMQ  
INCMQ  
DVCC  
2.5  
0
GB2  
VB2  
GNDBE  
VCCBE  
GNDB3  
VCCB3  
2.5/3.3  
0
0.89  
0.6 to 1.4  
0 to 0.4  
0.2 to 1  
0.6 to 1.4  
0 to 0.4  
0.2 to 1  
2.5  
RPI  
GB3  
VB3  
RMI  
CMI  
RPQ  
RMQ  
CMQ  
DV  
2.5  
0.46  
0.89  
Care should be taken for the evaluation board  
considering the fact that the outputs of the con-  
verter are 2.5V/3.3V (VB2) tolerant whereas the  
74LCX573 external buffers are operating up to  
2.5V.  
0.46  
The ADC outputs on the connector J6 are D11  
(MSB) to D2 (LSB).  
DG  
DGND  
0
15/19  
TSA1005-40  
Single and Differential Inputs:  
With the strap connected:  
The ADC board components are mounted to test  
the TSA1005-40 with single analog input; the  
ADT1-1WT transformer enables the differential  
drive into the converter; in this configuration, the  
resistors RSI6, RSI7, RSI8 for I channel (respec-  
tively RSQ6, RSQ7, RSQ8 for Q one) are con-  
nected as short circuits whereas RSI5, RSI9 (re-  
spectively RSQ5, RSQ9) are open circuits.  
The other way is to test it via JI1 and JI1B differen-  
tial inputs. So, the resistances RSI5, RSI9 for I  
channel (respectively RSQ5, RSQ9 for Q one) are  
connected as short circuits whereas RSI6, RSI7,  
RSI8 (respectively RSQ6, RSQ7, RSQ8 for Q  
one) are open circuits.  
- to the upper connectors, the I channel at the out-  
put is selected.  
- horizontally, the Q channel at the output is se-  
lected.  
- to the lower connectors, both channels are se-  
lected, relative to the clock edge.  
Figure 12 : mode select  
SELECT  
I channel  
SELECT  
Grounding consideration  
Q channel  
So as to better reject noise on the board, connect  
on the bottom overlay AG (AGND), DG(DGND),  
GB1(GNDBI) together from one part, and  
GB2(GNDBE) with GB3(GNDB3) from the other  
part.  
I/Q channels  
CLK  
DGND DVCC  
schematic  
board  
Mode select  
Consumption adjustment  
So as to evaluate a single channel or the dual  
ones, you have to connect on the board the  
relevant position for the SELECT pin.  
Before any characterization, care should be taken  
to adjust the Rpol (Raj1) and therefore Ipol value  
in function of your sampling frequency.  
Figure 13 : Printed circuit of evaluation board.  
16/19  
TSA1005-40  
Figure 14 : TSA1005-40 Evaluation board schematic  
+
c B V 3 c  
G n d B 3  
c B V 2 c  
G n d B 2  
c B V 1 c  
G n d B 1  
+
+
N C  
N C  
G N D B I  
D V C C  
D G N D  
S E L E C T  
C L K  
D G N D  
D V C C  
A V C C  
A G N D  
3 7  
3 8  
2 4  
2 3  
2 2  
V C C B E  
G N D B E  
V C C B I  
V C C B I  
+
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
O E B  
A V C C  
A V C C  
I N C M I  
R E F M I  
R E F P I  
I N C M Q  
1 5  
R E F M Q  
1 4  
R E F P Q  
1 3  
N D  
C C  
+
+
I N C M  
R E F M  
R E F P  
I N C M  
R E F M  
R E F P  
17/19  
TSA1005-40  
Figure 15 : Printed circuit board - List of components  
Name Part Footprint Name Part  
Footprint Name Part  
Type  
Footprint Name Part  
Type  
Footprint  
Type  
0
0
0
0
0
0
47  
47  
Type  
10nF  
10nF  
10nF  
RSQ6  
RSQ7  
RSQ8  
RSI6  
RSI7  
RSI8  
R3  
805  
805  
805  
805  
805  
805  
603  
603  
603  
603  
603  
603  
CD2  
C40  
C39  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
603  
C26  
C20  
C33  
C25  
CI1  
CQ1  
C34  
C42  
C35  
C44  
C36  
C32  
C37  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
33pF 603  
33pF 603  
47µF RB.1  
47µF RB.1  
47µF RB.1  
47µF RB.1  
47µF RB.1  
47µF RB.1  
470nF 805  
CQ6 NC  
805  
805  
TSSOP20  
TSSOP20  
SOT23-6  
CI6  
U2  
U3  
NC  
74LCX573  
74LCX573  
STG719  
CQ12 10nF  
CQ9  
C52  
C18  
C21  
C4  
C15  
C27  
C11  
CI9  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
U1  
JA  
ANALOGIC connector  
J17  
J25  
J4  
BUFPOW  
CKDATA  
CLK  
connector  
SMA  
SMA  
SIP2  
SIP2  
connector  
SMA  
SMA  
SMA  
SMA  
R5  
RQ19 47  
47  
47  
RI1  
RQ1  
J27  
J26  
JD  
JI1  
JI1B  
JQ1  
CON2  
CON2  
DIGITAL  
InI  
InIB  
InQ  
RI19 47  
RSI9 0NC 805  
RSQ5 0NC 805  
CI12 10nF  
CI31 10nF  
CQ31 10nF  
CQ30 330pF 603  
CI11 330pF 603  
CQ10 470nF 805  
C28  
CI10  
0NC  
0NC  
0NC 805  
0NC  
0NC 805  
0NC 805  
1K  
47K 603  
RSQ9  
RSI5  
R24  
R23  
R21  
R22  
R2  
R12  
R11  
Raj1  
805  
805  
470nF 805  
470nF 805  
JQ1B InQB  
SW1 SWITCH  
CQ32 470nF 805  
CQ13 470nF 805  
connector  
connector  
connector  
805  
S5  
S4  
SW-SPST  
SW-SPST  
C51  
C2  
C17  
CD3  
C10  
CQ8  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
330pF 603  
CI32  
C13  
C53  
C16  
C3  
C22  
CI13  
C38  
CD1  
C19  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
470nF 805  
TI2  
TQ2  
JI2  
JQ2  
J6  
T2-AT1-1WT ADT  
T2-AT1-1WT ADT  
VREFI  
VREFQ  
32Pin  
603  
connector  
connector  
IDC-32  
47K  
200K  
603  
VR5  
trimmer  
1210  
10µF 1210  
10µF 1210  
CQ11 330pF 603  
connector  
10µF  
C23  
C41  
C29  
CI8  
C14  
330pF 603  
330pF 603  
NC: non soldered  
CI30 330pF 603  
18/19  
TSA1005  
PACKAGE MECHANICAL DATA  
48 PINS - PLASTIC PACKAGE  
A
A2  
A1  
e
48  
37  
0,10 mm  
.004 inch  
SEATING PLANE  
1
36  
25  
12  
13  
24  
D3  
D1  
D
0,25 mm  
.010 inch  
GAGE PLANE  
K
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Min.  
Max.  
Min.  
Max.  
A
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
A1  
A2  
B
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
5.50  
0.50  
9.00  
7.00  
5.50  
0.60  
1.00  
0.354  
0.276  
0.216  
0.0197  
0.354  
0.276  
0.216  
0.024  
0.039  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0.75  
0.018  
0.030  
L1  
K
0° (min.), 7° (max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2002 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
http://www.st.com  
19/19  

相关型号:

TSA1005-40IFT

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA1005I-40IF

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA100A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA100C

Trans Voltage Suppressor Diode, 400W, Bidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA1015

PNP SILICON TRANSISTOR
ETC

TSA1036

General Purpose PNP Transistor
TSC

TSA1036CX

General Purpose PNP Transistor
TSC

TSA1036CXRF

General Purpose PNP Transistor
TSC

TSA1036D

General Purpose Dual PNP Transistor
TSC

TSA1036DCU6

General Purpose Dual PNP Transistor
TSC

TSA1041IF

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48
STMICROELECTR

TSA1041IFT

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48
STMICROELECTR