UC1697VGAA [ETC]

128 x 128RGB C-STN LCD Controller-Driver w/ 16-bit per RGB On-Chip SRAM; 128× 128RGB C- STN LCD驱动器瓦特每RGB / 16位的片上SRAM
UC1697VGAA
型号: UC1697VGAA
厂家: ETC    ETC
描述:

128 x 128RGB C-STN LCD Controller-Driver w/ 16-bit per RGB On-Chip SRAM
128× 128RGB C- STN LCD驱动器瓦特每RGB / 16位的片上SRAM

驱动器 静态存储器 CD
文件: 总77页 (文件大小:881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-VOLTAGE MIXED-SIGNAL IC  
128 x 128RGB C-STN LCD Controller-Driver  
w/ 16-bit per RGB On-Chip SRAM  
ES Specifications  
Revision 0.6  
February 7, 2007  
ULTRACHIP  
The Coolest LCD Drive, Ever!!  
Specifications and information herein are subject to change without notice.  
UC1697v  
128x128RGB CSTN Controller-Driver  
TABLE OF CONTENT  
INTRODUCTION...............................................................................................................1  
ORDERING INFORMATION ............................................................................................2  
BLOCK DIAGRAM ...........................................................................................................3  
PIN DESCRIPTION...........................................................................................................4  
RECOMMENDED COG LAYOUT ....................................................................................8  
CONTROL REGISTERS...................................................................................................9  
COMMAND TABLE........................................................................................................12  
COMMAND DESCRIPTION ...........................................................................................14  
LCD VOLTAGE SETTING..............................................................................................30  
VLCD QUICK REFERENCE .............................................................................................31  
LCD DISPLAY CONTROLS...........................................................................................33  
ITO LAYOUT AND LC SELECTION ..............................................................................35  
HOST INTERFACE.........................................................................................................37  
DISPLAY DATA RAM ....................................................................................................44  
RESET & POWER MANAGEMENT...............................................................................47  
MULTI-TIME PROGRAM NV MEMORY ........................................................................49  
MTP OPERATION FOR LCM MAKERS ........................................................................50  
ESD CONSIDERATION..................................................................................................55  
ABSOLUTE MAXIMUM RATINGS.................................................................................56  
SPECIFICATIONS..........................................................................................................57  
AC CHARACTERISTICS................................................................................................58  
PHYSICAL DIMENSIONS ..............................................................................................65  
ALIGNMENT MARK INFORMATION.............................................................................66  
PAD COORDINATES.....................................................................................................67  
TRAY INFORMATION....................................................................................................72  
REVISION HISTORY......................................................................................................73  
Revision A_0.6  
- 1 -  
UC1697v  
128x128RGB CSTN Controller-Driver  
UC1697v  
Single-Chip, Ultra-Low Power  
128COM x 128RGB Matrix  
Passive Color LCD Controller-Driver  
INTRODUCTION  
UC1697v is an advanced high-voltage mixed-  
signal CMOS IC, specially designed for the  
display needs of low power hand-held devices.  
Support both row-ordered and column-  
ordered display buffer RAM access.  
Support industry standard 4-wire, 3/4-wire,  
and 3-wire serial bus (S8, S8uc, S9) and  
16-bit/8-bit parallel bus (8080 or 6800).  
In addition to low power COM and SEG drivers,  
UC1697v contains all necessary circuits for high-  
V LCD power supply, bias voltage generation,  
temperature compensation, timing generation,  
and graphics data memory.  
Special driver structure and gray shade  
modulation scheme. Low power  
consumption under all display patterns.  
UC1697v employs UltraChip’s unique DCC  
(Direct Capacitor Coupling) driver architecture  
and LRM (Line Rate Modulation) gray-shade  
modulation scheme to achieve well balanced  
shading, vivid colors, and natural-looking images.  
Fully programmable Mux Rate, partial  
display window, Bias Ratio and Line Rate  
allow many flexible power management  
options.  
Four software programmable temperature  
compensation coefficients.  
With UC1697v, LCD makers can now achieve  
TFT-like image quality, while maintaining the  
same STN advantages in power consumption,  
unit cost, ease of customization and production  
flexibility.  
Software programmable, self-configuring  
10x charge pump.  
Flexible data addressing/mapping schemes  
to support wide ranges of software models  
and LCD layout placements.  
MAIN APPLICATIONS  
Cellular Phones and other battery operated  
hand held devices or portable Instruments  
Pad layouts support COG applications.  
VDD (digital) range: 1.8V(Typ.) ~ 3.3V  
FEATURE HIGHLIGHTS  
VDD (analog) range: 2.6V(Typ.) ~ 3.3V  
Single chip controller-driver for 128x128  
matrix C-STN LCD with comprehensive  
support for input format and color depth:  
LCD VOP range: 6.4V ~ 16.5V  
Available MTP trimming supports precise  
LCD contrast matching.  
8-bit RGB:  
12-bit RGB:  
16-bit RGB:  
256-color  
4K-color  
64K-color  
Available in gold bump dies.  
COM/SEG bump information  
A software-readable ID bit (ID0) to support  
configurable vender identification.  
Bump pitch:  
Bump gap:  
Bump surface:  
26.5 µM  
12.0 µM  
2001 µM2  
ID pin (ID1)-switched input data sets (D[7:0]  
or D[14,12,10,8,6,4,2,0]) for 8-bit mode.  
Partial scroll function and programmable  
data update window to support flexible  
manipulation of screen data.  
Revision A_0.6  
1
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
ORDERING INFORMATION  
GOLD BUMPED DIE  
Part Number  
MTP  
I2C  
Description  
UC1697vGAA  
Yes  
No  
Gold bumped die, with MTP function.  
General Notes  
APPLICATION INFORMATION  
For improved readability, the specification contains many application data points. When application information is given, it  
is advisory and does not form part of the specification for the device.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post  
waffle saw/pack testing performed on individual die. Although the latest processes are utilized for wafer sawing and die  
pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or  
assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their applications in which the  
die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after  
handling, packing or assembly of the die.  
MTP LIGHT & ESD SENSITIVITY  
The MTP memory cell is sensitive to photon excitation and ESD. Under extended exposure to strong ambient light, or  
when TST4 pin is exposed to ESD strikes, the MTP cells can lose its content before the specified memory retention time  
span. The system designer is advised to provide proper light & ESD shields to realize full MTP content retention  
performance.  
LIFE SUPPORT APPLICATIONS  
These devices are not designed for use in life support appliances, or systems where malfunction of these products can  
reasonably be expected to result in personal injuries. Customer using or selling these products for use in such  
applications do so at their own risk.  
CONTENT DISCLAIMER  
UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change  
without notice. The information and data provided herein is for reference only. No responsibility is assumed by UltraChip  
for the use of information contained in this datasheet. Always contact UltraChip for commit to mass production for the  
latest product information and operation parameters.  
CONTACT INFORMATION  
UltraChip Inc. (Headquarter)  
2F, No. 70, Chowtze Street,  
Nei Hu District, Taipei 114,  
Taiwan, R. O. C.  
Tel: +886 (2) 8797-8947  
Fax: +886 (2) 8797-8910  
Sales e-mail: sales@ultrachip.com  
Web site: http://www.ultrachip.com  
2
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
BLOCK DIAGRAM  
COLUMN ADDRESS  
GENERATOR  
POWER ON &  
RESET  
CONTROL  
CLOCK &  
TIMING  
GENERATOR  
DISPLAY DATA RAM  
CONTROL &  
STATUS  
REGISTER  
DISPLAY DATA LATCHES  
LEVEL SHIFTERS  
SEG DRIVERS  
COMMAND  
CL  
VLCD & BIAS  
GENERATOR  
HOST INTERFACE  
CB1  
CB0  
Revision A_0.6  
3
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
PIN DESCRIPTION  
Name  
Type  
# of Pads  
Description  
MAIN POWER SUPPLY  
VDD2/VDD3 is the analog power supply and it should be connected to  
the same power source. VDD is the digital power supply and it  
should be connected to a voltage source that is no higher than  
VDD  
VDD2  
VDD3  
9
9
2
VDD2/VDD3  
.
PWR  
GND  
Please maintain the following relationship:  
VDD+1.3V VDD2/3 VDD  
Minimize the trace resistance for VDD and VDD2/VDD3  
.
VSS  
VSS2  
12  
12  
Ground. Connect VSS and VSS2 to the shared GND pin.  
Minimize the trace resistance for this node.  
LCD POWER SUPPLY & VOLTAGE CONTROL  
LCD SEG driving voltages. These are the voltage sources to  
provide SEG driving currents. These voltages are generated  
internally. Connect a capacitor, CBX, between VBX+ and VBX–  
.
VB1+ , VB1–  
VB0+ , VB0–  
6, 6  
6, 6  
PWR  
PWR  
The resistance of these traces directly affects the driving strength  
of SEG electrodes and impacts the image of the LCD module.  
Minimize the trace resistance is critical in achieving high quality  
image.  
High voltage LCD Power Supply. When internal VLCD is used,  
connect these pins together. When external VLCD is used, connect  
external VLCD source to VLCDIN pins and leave VLCDOUT open.  
VLCD-IN  
VLCD-OUT  
2
2
Capacitor CL should be connected between VLCD and VSS. In COG  
applications, keep the ITO trace resistance under 30 .  
NOTE  
Recommended capacitor values:  
CBx : 2.2µF/5V or 300x LCD load capacitance, whichever is higher.  
CL : 330nF (25V) is appropriate for most applications.  
4
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
Name  
Type  
# of Pads  
Description  
HOST INTERFACE  
Bus mode: The interface bus mode is determined by BM[1:0] and  
{DB15, DB13} by the following relationship:  
BM[1:0]  
11  
{DB15, DB13}  
Mode  
Data  
Data  
0x  
6800/16-bit  
8080/16-bit  
6800/8-bit  
8080/8-bit  
10  
01  
BM0  
BM1  
1
1
00  
0x  
I
3-wire SPI w/ 9-bit token  
(S9: conventional)  
01  
00  
00  
10  
10  
11  
4-wire SPI w/ 8-bit token  
(S8: conventional)  
3/4-wire SPI w/ 8-bit token  
(S8uc: Ultra-Compact)  
CS0  
CS1  
1
1
Chip Select. Chip is selected when CS1=”H” and CS0 = “L”. When the  
chip is not selected, D[15:0] will be high impedance.  
I
I
When RST=”L”, all control registers are re-initialized by their default  
states.  
RST  
CD  
1
1
An RC Filter has been included on-chip. There is no need for external  
RC noise filter. When RST is not used, connect the pin to VDD  
.
Select Control data or Display data for read/write operation. In S9, CD  
pin is not used. Connect CD to VSS when not used.  
I
I
”L”: Control data  
”H”: Display data  
Used for production control.  
Connect ID0 to VDD for “H” or VSS for “L”.  
ID0  
ID1  
1
1
The wiring status of ID0 is available with PID[1:0] of the Get Status  
command.  
Select input data set for 8-bit mode.  
ID1=0 : 8-bit input data are D[0, 2, 4, 6, 8, 10, 12, 14]  
ID1=1 : 8-bit input data are D[0:7]  
I
I
The wiring status of ID1 is available with PID[1:0] of the Get Status  
command. Other than 8-bit mode, connect ID1 to VDD for “H” or VSS for  
“L”.  
WR[1:0] controls the read/write operation of the host interface. See  
section Host Interface for more detail.  
WR0  
WR1  
1
1
In parallel mode, the meaning of WR[1:0] depends on whether the  
interface is in the 6800 mode or the 8080 mode. In serial interface  
modes, these two pins are not used, connect them to VSS  
.
Revision A_0.6  
5
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
Name  
Type  
# of Pads  
Description  
DATA BUS  
Bi-directional bus for parallel host interfaces.  
In serial modes, connect DB[0] to SCK, DB[8] to SDA.  
BM=1x  
(16-bit)  
BM=0x  
(8-bit)  
ID1=0  
BM=0x  
(8-bit)  
ID1=1  
BM=01  
(S9)  
BM=00  
(S8/S8uc)  
DB0  
DB1  
DB2  
D0  
D1  
D2  
D0/D8  
D0/D8  
D1/D9  
D2/D10  
SCK  
SCK  
D1/D9  
DB3  
D3  
D3/D11  
DB4  
D4  
D2/D10  
D4/D12  
DB5  
DB6  
D5  
D6  
D5/D13  
D6/D14  
D0~D15  
I/O  
16  
D3/D11  
DB7  
D7  
D7/D15  
DB8  
DB9  
D8  
D9  
D4/D12  
0
SDA  
0
1
SDA  
DB10  
DB11  
DB12  
DB13  
DB14  
DB15  
D10  
D11  
D12  
D13  
D14  
D15  
D5/D13  
D6/D14  
D7/D15  
0
0:S8 / 1:S8uc  
1
Always connect unused pins to either VSS or VDD  
.
6
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
Name  
Type  
# of Pads  
Description  
HIGH VOLTAGE LCD DRIVER OUTPUT  
SEG1 ~  
SEG384  
SEG (column) driver outputs. Support up to 128xRGB pixels.  
Leave unused SEG drivers open-circuit.  
HV  
384  
COM (row) driver outputs. Support up to 128 rows.  
COM1 ~  
COM128  
When designing LCM, always start from COM1. If the LCM has N  
pixel rows and N is less than 128, set CEN to be N-1, and leave COM  
drivers [N+1 ~ 128] open-circuit.  
HV  
128  
MISC. PINS  
Auxiliary VDD. These pins are connected to the main VDD bus within  
the IC. These pads are provided to facilitate chip configurations in  
COG application.  
VDDX  
O
5
2
These pins should NOT be used to provide VDD power to the chip. It is  
not necessary to connect VDDX to main VDD externally.  
Test control. This pin has on-chip pull-up resistor. Leave it open  
during normal operation.  
TST4  
I/HV  
O
TST4 is also used as one of the high voltage power supply for MTP  
programming operation. For COG designs, please wire out TST4 with  
trace resistance between 30~50 .  
TST1  
TST2  
1
1
Test I/O pins. Leave these pins open during normal use.  
NOTE:  
Several control registers will specify “0 based index” for COM and SEG electrodes. In those situations,  
COMX or SEGX will correspond to index X-1, and the value ranges for those index registers will be 0~127  
for COM and 0~383 for SEG.  
Revision A_0.6  
7
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
RECOMMENDED COG LAYOUT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
COM<106>  
COM<108>  
COM<110>  
COM<112>  
COM<114>  
COM<116>  
COM<118>  
COM<120>  
COM<122>  
COM<124>  
COM<126>  
COM<128>  
COM<18>  
COM<16>  
COM<14>  
COM<12>  
COM<10>  
COM<8>  
COM<6>  
COM<4>  
COM<2>  
SEG<384>  
SEG<383>  
SEG<382>  
SEG<381>  
SEG<380>  
SEG<379>  
SEG<378>  
SEG<377>  
SEG<376>  
SEG<375>  
SEG<374>  
SEG<373>  
SEG<372>  
SEG<371>  
SEG<370>  
SEG<369>  
SEG<368>  
SEG<367>  
SEG<366>  
SEG<365>  
SEG<364>  
SEG<363>  
SEG<362>  
SEG<361>  
SEG<360>  
SEG<359>  
SEG<358>  
SEG<357>  
SEG<356>  
SEG<355>  
SEG<354>  
SEG<353>  
SEG<352>  
SEG<351>  
SEG<350>  
SEG<349>  
SEG<348>  
SEG<347>  
SEG<346>  
SEG<345>  
SEG<344>  
SEG<343>  
SEG<342>  
SEG<341>  
SEG<340>  
SEG<339>  
SEG<338>  
SEG<337>  
SEG<336>  
SEG<335>  
SEG<334>  
SEG<333>  
SEG<332>  
SEG<331>  
SEG<330>  
SEG<329>  
SEG<328>  
SEG<327>  
SEG<326>  
SEG<325>  
SEG<324>  
SEG<323>  
SEG<322>  
SEG<321>  
SEG<320>  
SEG<319>  
SEG<318>  
SEG<317>  
SEG<316>  
SEG<315>  
SEG<314>  
SEG<313>  
SEG<312>  
SEG<311>  
SEG<310>  
SEG<309>  
SEG<308>  
SEG<307>  
SEG<306>  
SEG<305>  
SEG<304>  
SEG<303>  
SEG<302>  
SEG<301>  
SEG<300>  
SEG<299>  
SEG<298>  
SEG<297>  
SEG<296>  
SEG<295>  
SEG<294>  
SEG<293>  
SEG<292>  
SEG<291>  
SEG<290>  
SEG<289>  
SEG<288>  
SEG<287>  
SEG<286>  
SEG<285>  
SEG<284>  
SEG<283>  
SEG<282>  
SEG<281>  
SEG<280>  
SEG<279>  
SEG<278>  
SEG<277>  
SEG<276>  
SEG<275>  
SEG<274>  
SEG<273>  
SEG<272>  
SEG<271>  
SEG<270>  
SEG<269>  
SEG<268>  
SEG<267>  
SEG<266>  
SEG<265>  
SEG<264>  
SEG<263>  
SEG<262>  
SEG<261>  
SEG<260>  
SEG<259>  
SEG<258>  
SEG<257>  
SEG<256>  
SEG<255>  
SEG<254>  
SEG<253>  
SEG<252>  
SEG<251>  
SEG<250>  
SEG<249>  
SEG<248>  
SEG<247>  
SEG<246>  
SEG<245>  
SEG<244>  
SEG<243>  
SEG<242>  
SEG<241>  
SEG<240>  
SEG<239>  
SEG<238>  
SEG<237>  
SEG<236>  
SEG<235>  
SEG<234>  
SEG<233>  
SEG<232>  
SEG<231>  
SEG<230>  
SEG<229>  
SEG<228>  
SEG<227>  
SEG<226>  
SEG<225>  
SEG<224>  
SEG<223>  
SEG<222>  
SEG<221>  
SEG<220>  
SEG<219>  
SEG<218>  
SEG<217>  
SEG<216>  
SEG<215>  
SEG<214>  
SEG<213>  
SEG<212>  
SEG<211>  
SEG<210>  
SEG<209>  
SEG<208>  
SEG<207>  
SEG<206>  
SEG<205>  
SEG<204>  
SEG<203>  
SEG<202>  
SEG<201>  
SEG<200>  
SEG<199>  
SEG<198>  
SEG<197>  
SEG<196>  
SEG<195>  
SEG<194>  
SEG<193>  
SEG<192>  
SEG<191>  
SEG<190>  
SEG<189>  
SEG<188>  
SEG<187>  
SEG<186>  
SEG<185>  
SEG<184>  
SEG<183>  
SEG<182>  
SEG<181>  
SEG<180>  
SEG<179>  
SEG<178>  
SEG<177>  
SEG<176>  
SEG<175>  
SEG<174>  
SEG<173>  
SEG<172>  
SEG<171>  
SEG<170>  
SEG<169>  
SEG<168>  
SEG<167>  
SEG<166>  
SEG<165>  
SEG<164>  
SEG<163>  
SEG<162>  
SEG<161>  
SEG<160>  
SEG<159>  
SEG<158>  
SEG<157>  
SEG<156>  
SEG<155>  
SEG<154>  
SEG<153>  
SEG<152>  
SEG<151>  
SEG<150>  
SEG<149>  
SEG<148>  
SEG<147>  
SEG<146>  
SEG<145>  
SEG<144>  
SEG<143>  
SEG<142>  
SEG<141>  
SEG<140>  
SEG<139>  
SEG<138>  
SEG<137>  
SEG<136>  
SEG<135>  
SEG<134>  
SEG<133>  
SEG<132>  
SEG<131>  
SEG<130>  
SEG<129>  
SEG<128>  
SEG<127>  
SEG<126>  
SEG<125>  
SEG<124>  
SEG<123>  
SEG<122>  
SEG<121>  
SEG<120>  
SEG<119>  
SEG<118>  
SEG<117>  
SEG<116>  
SEG<115>  
SEG<114>  
SEG<113>  
SEG<112>  
SEG<111>  
SEG<110>  
SEG<109>  
SEG<108>  
SEG<107>  
SEG<106>  
SEG<105>  
SEG<104>  
SEG<103>  
SEG<102>  
SEG<101>  
SEG<100>  
SEG<99>  
SEG<98>  
SEG<97>  
SEG<96>  
SEG<95>  
SEG<94>  
SEG<93>  
SEG<92>  
SEG<91>  
SEG<90>  
SEG<89>  
SEG<88>  
SEG<87>  
SEG<86>  
SEG<85>  
SEG<84>  
SEG<83>  
SEG<82>  
SEG<81>  
SEG<80>  
SEG<79>  
SEG<78>  
SEG<77>  
SEG<76>  
SEG<75>  
SEG<74>  
SEG<73>  
SEG<72>  
SEG<71>  
SEG<70>  
SEG<69>  
SEG<68>  
SEG<67>  
SEG<66>  
SEG<65>  
SEG<64>  
SEG<63>  
SEG<62>  
SEG<61>  
SEG<60>  
SEG<59>  
SEG<58>  
SEG<57>  
SEG<56>  
SEG<55>  
SEG<54>  
SEG<53>  
SEG<52>  
SEG<51>  
SEG<50>  
SEG<49>  
SEG<48>  
SEG<47>  
SEG<46>  
SEG<45>  
SEG<44>  
SEG<43>  
SEG<42>  
SEG<41>  
SEG<40>  
SEG<39>  
SEG<38>  
SEG<37>  
SEG<36>  
SEG<35>  
SEG<34>  
SEG<33>  
SEG<32>  
SEG<31>  
SEG<30>  
SEG<29>  
SEG<28>  
SEG<27>  
SEG<26>  
SEG<25>  
SEG<24>  
SEG<23>  
SEG<22>  
SEG<21>  
SEG<20>  
SEG<19>  
SEG<18>  
SEG<17>  
SEG<16>  
SEG<15>  
SEG<14>  
SEG<13>  
SEG<12>  
SEG<11>  
SEG<10>  
SEG<9>  
D15  
VDDX  
D14  
D8  
D7  
D13  
D12  
D6  
D11  
D10  
D5  
D4  
D9  
D8  
D3  
D2  
D7  
D6  
D1  
D5  
D4  
D0  
RST  
WR0  
WR1  
CD  
D3  
D2  
D1  
D0  
RST  
WR0  
VDDX  
WR1  
CD  
CS0  
BM0  
BM1  
TST4  
ID0  
ID1  
CS0  
VDDX  
CS1  
BM0  
VDDX  
BM1  
TST4  
TST4  
TST1  
TST2  
ID0  
VDDX  
ID1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Dummy  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
Dummy  
Dummy  
Dummy  
Dummy  
Dummy  
Dummy  
Dummy  
Dummy  
VDD  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
Dummy  
VDD3  
VDD3  
VBO+  
VBO+  
VBO+  
VBO+  
VB0+  
VB1+  
VB1-  
VB0-  
VLCd  
VB1+  
VB1+  
VB1+  
VB1+  
VB1-  
VB1-  
VB1-  
VB1-  
VB0-  
VB0-  
VB0-  
VB0-  
VLCDIN  
VLCDIN  
VLCDOUT  
VLCDOUT  
SEG<8>  
SEG<7>  
SEG<6>  
SEG<5>  
SEG<4>  
COM<127>  
COM<125>  
COM<123>  
COM<121>  
COM<119>  
COM<117>  
COM<115>  
COM<113>  
COM<111>  
COM<109>  
COM<107>  
COM<105>  
SEG<3>  
SEG<2>  
SEG<1>  
COM<1>  
COM<3>  
COM<5>  
COM<7>  
COM<9>  
COM<11>  
COM<13>  
COM<15>  
COM<17>  
Note for VDD and VSS with COG:  
The operation condition VDD=1.8V (typical) must be satisfied under all operating conditions. With its high  
speed data-write condition, UC1697v’s peak current (IDD) can be up to ~15mA range during high speed data  
write to UC1697v’s on-chip SRAM. Such high pulsing current mandates very careful design of VDD, VSS ITO  
trances in COG glass modules. When VDD and VSS trace resistance is not low enough, the pulsing IDD  
current can cause the actual on-chip VDD to drop below 1.65V and cause the IC to malfunction.  
8
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
CONTROL REGISTERS  
UC1697v contains registers which control the chip operation. The following table is a summary of these  
control registers, a brief description and the default values. These registers can be modified by commands,  
which will be described in the next two sections, starting with a summary table, followed by a detailed  
instruction-by-instruction description.  
Name:  
The Symbolic reference of the register.  
Note that, some symbol name refers to bits (flags) within another register.  
Default: Numbers shown in Bold font are default values after Power-Up-Reset and System-Reset.  
Name  
Bits  
Default  
Description  
SL  
7
0H  
Scroll Line. Scroll the displayed image up by SL rows. The valid SL value is  
between 0 (no scrolling) and (127 – 2x(FLT+FLB)). Setting SL outside of  
this range causes undefined effect on the displayed image.  
FLT  
FLB  
4
4
0H  
0H  
Fixed Lines. The top FLTx2 and bottom FLBx2 lines (relative to CEN) of  
each frame are fixed and are not affected by scrolling (SL).  
When FLT and/or FLB are non-zero, the screen is effectively separated into  
three regions: one scrollable, surrounded by two non-scrollable regions.  
When partial display mode is activated, the display of these 2xFLT and  
2xFLB lines is also controlled by LC[0]. When LC[0]=1, the display will have  
three sections: 2xFLT on one side non-scrollable, 2xFLB on the other side  
also non-scrollable, and scrollable DST~DEN in the middle.  
CA  
RA  
BR  
7
7
3
0H  
0H  
3H  
Display Data RAM Column Address (counted in RGB triplet)  
(Used in Host to Display Data RAM access)  
Display Data RAM Row Address  
(Used in Host to Display Data RAM access)  
Bias Ratio. The ratio between VLCD and VBIAS  
.
000b : 6  
100b : 9  
001b : 10  
010b : 11  
011b : 12  
TC  
2
0H  
Temperature Compensation (per oC)  
00b : -0.00%  
10b : -0.15%  
01b : -0.10%  
11b : -0.05%  
PM  
8
6
5CH  
00H  
Electronic Potentiometer to fine tune VBIAS and VLCD  
PM offset.  
PMO  
PMO[5]=1: The effective PM value, PMV = PM - PMO[4:0]  
PMO[5]=0: The effective PM value, PMV = PM + PMO[4:0]  
PC  
AC  
4
4
EH  
1H  
Power Control.  
PC[1:0] : 0xb: LCD: 13nF  
PC[3:2] : 00b: External VLCD  
1xb: 13 < LCD < 22nF  
11b: Internal VLCD (10x charge pump)  
Address Control:  
AC[0] : WA: Automatic column/row Wrap Around (1 : ON)  
AC[1] : Auto-Increment order  
0 : Column (CA) first  
1 : Row (RA) first  
AC[2] : RID: RA (row address) auto increment direction (0 : +1 1 : -1)  
AC[3] : Window Program Mode  
0 : Inside Mode: Write to SRAM within the window defined  
by (WPC0, WPP0), (WPC1, WPP1)  
1 : Outside Mode: Write to SRAM but skip the window defined  
by (WPC0, WPP0), (WPC1, WPP1)  
Revision A_0.6  
9
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
Name  
Bits  
Default  
Description  
DC  
5
18H  
Display Control:  
DC[0] : PXV: Pixels Inverse. Bit-wise data inversion. (Default 0: OFF)  
DC[1] : APO: All Pixels ON (Default 0: OFF)  
DC[2] : Display ON/OFF (Default 0: OFF)  
When DC[2] is set to 0, the IC will enter Sleep mode.  
DC[3] : Gray-shade Modulation mode.  
0 : On/Off mode  
1 : 32-shade Mode  
DC[4] : Green Enhance Mode. Only valid in 4K-color mode.  
0 : Enable. Allows an extra display bit for green color.  
1 : Disable  
LC  
10  
090H  
LCD Control:  
LC[0] : Enable the top FLTx2 and bottom FLBx2 lines in partial display  
mode (Default OFF).  
LC[1] : MX, Mirror X. SEG/Column sequence inversion (Default: OFF)  
LC[2] : MY, Mirror Y. COM/Row sequence inversion (Default: OFF)  
LC[4:3] : Line Rate (Klps: Kilo-Line-per-second)  
00b : 20.1 Klps  
10b : 29.6 Klps  
01b : 24.4 Klps  
11b : 35.8 Klps  
Line Rate (for 8-color On/Off mode)  
00b : 5.5 Klps  
10b : 8.0 Klps  
01b : 6.6 Klps  
11b : 9.7 Klps  
(Line-Rate = Frame-Rate x Mux-Rate)  
LC[5] : RGB filter order (as mapped to SEG1, SEG2, SEG3)  
0 : BGR-BGR  
LC[7:6] : Color and input mode  
when DC[4]=1:  
1 : RGB-RGB  
00b : 256 color mode  
01b : 4K color mode  
10b : 64K color mode  
3R-3G-2B ( 8-bit/RGB)  
4R-4G-4B (12-bit/RGB)  
5R-6G-5B (16-bit/RGB)  
when DC[4]=0:  
00b : 256 color mode  
01b : 4K color mode  
10b : 64K color mode  
3R-3G-2B ( 8-bit/RGB)  
4R-5G-3B (12-bit/RGB)  
5R-6G-5B (16-bit/RGB)  
LC[9:8] : Partial Display Control  
0xb: Disable Mux-Rate = CEN+1 (DST, DEN not used)  
10b: Enabled Mux-Rate = CEN+1  
11b: Enabled Mux-Rate = DEN-DST+1+LC[0] x (FLT+FLB) x 2  
NIV  
7
3
51H  
0H  
N-Line Inversion:  
NIV[5:0] :  
00000b: Disable  
00001b ~ 111111b: 1~ 63 lines ( Default: 17lines )  
NIV[6] : 0b: no-XOR 1b: XOR  
COM Scan Function  
CSF  
CSF[0] : 0b : LRM sequence: AEBCD-AEBCD  
1b : LRM sequence: AEBCD-EBCDA  
CSF[1] : 0b :FRC Disable  
1b : FRC Enable  
CSF[2] : Shade-1 / Shade-30 option  
0 : Dither directly on input data (SRAM Change)  
1 : PWM on SEG output stage  
10  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
Name  
Bits  
Default  
Description  
CEN  
DST  
DEN  
7
7
7
7FH  
00H  
7FH  
COM scanning end (last COM with full line cycle, 0 based index)  
Display start (first COM with active scan pulse, 0 based index)  
Display end (last COM with active scan pulse, 0 based index)  
Please maintain the following relationship:  
CEN = the actual number of pixel rows on the LCD - 1  
CEN DEN DST+ 9  
WPC0  
WPP0  
WPC1  
WPP1  
MTPC  
7
7
7
7
5
00H  
00H  
7FH  
7FH  
10H  
Window program starting column address. Value range: 0 ~127.  
Window program starting row address. Value range: 0~127.  
Window program ending column address. Value range: 0~127.  
Window program ending row address. Value range: 0~127.  
MTP Programming Control:  
MTPC[2:0] : MTP command  
000 : Idle  
001 : Read  
010 : Erase  
011 : Program  
1xx : For UltraChip’s debug use only  
MTPC[3] : MTP Enable (automatically cleared after each MTP command)  
MTPC[4] : Ignore/Use MTP. 0: Ignore  
1: Use  
MTP  
MTPM  
APC  
6
6
2
--  
Multiple-Time Programming. For VLCD fine tune.  
MTP Write Mask. Bit =1: program, Bit=0: no action.  
00H  
N/A  
Advanced Program Control. For UltraChip only. Please do not use.  
Status Registers  
OM  
2
Operating Modes (Read only)  
00b: Reset  
10b: Sleep  
01b: (Not used)  
11b: Normal  
MD  
MS  
WS  
ID  
1
1
1
2
MTP option flag: 1 for MTP version, 0 for non-MTP version.  
MTP programming in-progress  
MTP Operation Succeeded  
PIN  
Access the connected status of ID pins.  
Revision A_0.6  
11  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
COMMAND TABLE  
The following is a list of host commands supported by UC1697v  
C/D: 0: Control,  
1: Data  
W/R: 0: Write Cycle,  
#: Useful Data bits  
1: Read Cycle  
–: Don’t Care  
Command  
Write Data Byte  
Read Data Byte  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Action  
Write 1 byte  
Read 1 byte  
Default  
N/A  
N/A  
1
2
1
1
0
1
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
GE MX MY WA DE WS MD MS  
Get {Status, Ver,  
N/A  
3
Get Status & PM  
0
1
PMO, Product Code, Product Code  
Ver  
PMO[6:0]  
PID[2:0]  
PID, MID}  
(5h)  
Product Code  
0
#
#
#
#
#
R
#
#
#
#
#
0
#
#
#
0
#
#
0
1
#
#
0
#
0
#
#
1
1
0
#
#
#
#
#
R
#
#
#
#
#
1
#
#
#
0
#
#
#
#
#
#
0
#
#
#
#
0
1
Set Column Address LSB  
Set Column Address MSB  
Set Temp. Compensation  
Set Panel Loading  
Set Pump Control  
Set Adv. Program Control  
(double-byte command)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
#
0
0
0
0
1
#
1
1
1
#
1
1
1
1
1
1
-
1
1
1
1
1
1
#
1
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
1
-
1
-
0
0
0
0
0
0
#
1
1
1
1
0
#
0
0
0
#
0
0
0
0
1
1
#
1
1
1
1
1
1
#
1
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
0
-
0
0
1
1
1
1
#
0
0
1
1
0
#
0
0
0
#
1
1
1
1
0
0
#
0
0
0
1
1
1
#
1
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
1
-
0
1
0
0
0
1
#
0
1
0
1
0
#
0
0
1
#
0
0
0
0
0
0
#
1
1
1
0
0
0
#
0
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
1
#
1
#
#
0
0
1
1
0
#
#
0
#
0
0
#
0
1
0
#
0
0
0
1
0
1
#
0
0
1
0
0
0
#
1
0
#
0
#
0
#
0
#
0
#
0
#
0
#
1
1
#
1
#
#
#
1
0
1
0
#
#
#
#
#
0
#
1
#
0
#
0
1
1
#
#
0
#
0
1
#
0
0
1
#
#
0
#
0
#
0
#
1
#
1
#
1
#
1
#
0
0
#
0
#
Set CA[3:0]  
Set CA[6:4]  
Set TC[1:0]  
Set PC[1:0]  
Set PC[3:2]  
Set APC[R][7:0],  
R = 0, 1, or 2  
Set SL[3:0]  
Set SL[6:4]  
Set RA[3:0]  
Set RA[6:4]  
0
0
00b  
1xb  
11b  
4
5
6
7
8
9
N/A  
Set Scroll Line LSB  
0
0
0
0
Set Scroll Line MSB  
Set Row Address LSB  
Set Row Address MSB  
Set VBIAS Potentiometer  
(double-byte command)  
10  
11  
Set PM[7:0]  
5CH  
12 Set Partial Display Control  
13 Set RAM Address Control  
Set LC[9:8]  
Set AC[2:0]  
0xH  
001b  
14 Set Fixed Lines  
Set {FLT, FLB}  
0
15 Set Line Rate  
16 Set All-Pixel-ON  
17 Set Inverse Display  
18 Set Display Enable  
19 Set LCD Mapping Control  
Set LC[4:3]  
Set DC[1]  
Set DC[0]  
Set DC[4:2]  
Set LC[2:0]  
10b  
0b  
0b  
110b  
000b  
20 Set N-Line Inversion  
0
0
Set NIV[6:0]  
51H  
21 Set Color Pattern  
22 Set Color Mode  
23 Set COM Scan Function  
24 System Reset  
25 NOP  
Set Test Control  
(double-byte command)  
27 Set LCD Bias Ratio  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Set LC[5]  
Set LC[7:6]  
0 (BGR)  
10b  
000b  
N/A  
Set CSF[2:0]  
System Reset  
No operation  
For testing only.  
Do not use.  
N/A  
TT  
26  
N/A  
011b: 12  
127  
#
#
0
#
1
#
1
#
0
#
0
#
1
#
1
#
0
0
#
0
#
#
#
1
#
0
#
1
#
0
#
1
#
0
#
1
#
#
0
#
1
#
Set BR[2:0]  
28 Set COM End  
Set CEN[6:0]  
29 Set Partial Display Start  
30 Set Partial Display End  
Set DST[6:0]  
Set DEN[6:0]  
0
127  
0
Set Window Program  
31  
Set  
Starting Column Address  
WPC0  
Set  
WPP0  
Shared  
with  
MTP  
Set Window Program  
Starting Row Address  
Set Window Program  
Ending Column Address  
Set Window Program  
Ending Row Address  
32  
0
Set  
33  
127  
Commands  
WPC1  
Set  
WPP1  
Set AC[3]  
34  
127  
0: Inside  
10H  
35 Window Program Mode  
Set  
MTP  
Operation  
36  
Set MTPC[4:0]  
Set MTPM[5:0]  
control  
0
-
1
#
37 Set MTP Write Mask  
0
12  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
Command  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Action  
Default  
0
0
0
0
1
#
1
#
1
#
1
#
0
#
1
#
0
#
0
#
Set  
MTP1  
38 Set VMTP1 Potentiometer  
N/A  
Shared with  
Window  
Program  
0
0
0
0
0
0
0
0
0
0
0
0
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
#
1
#
0
#
0
#
0
#
1
#
1
#
1
#
0
#
1
#
1
#
1
#
0
#
1
#
Set  
MTP2  
Set  
MTP3  
Set  
MTP4  
39 Set VMTP2 Potentiometer  
40 Set MTP Write Timer  
41 Set MTP Read Timer  
N/A  
N/A  
N/A  
commands  
NOTE:  
All bit patterns other than commands listed above, may result in undefined behavior.  
The interpretation of commands (37)~(41) depends on the setting of register MTPC[3].  
o
Commands (38)~(41) are shared with commands (31)~(34). These two sets of commands share  
exactly the same code and control registers. When MTPC[3]=0, they are interpreted as Window  
Program commands and registers. When MTPC[3]=1, they function as MTP Control commands  
and registers.  
After MTP ERASE or PROGRAM operation, before resuming normal operation, please always  
a) Remove TST4 power source,  
b) Do a full VDD ON-OFF-ON cycle.  
Under 16-bit bus mode and CD=0, D[15:8] is ignored and only D[7:0] is used. As a result, the bus cycles  
for commands under 16-bit bus and 8-bit bus are the same, and double-byte commands still need two  
bus cycles under 16-bit bus mode.  
Example:  
8-bit bus mode:  
Set PL[1:0] = 2’b11 :  
D[7:0] = 0010 1011  
Set PM[7:0] = 8’h8b : 1st D[7:0] = 1000 0001  
2nd D[7:0] = 1000 1011  
16-bit bus mode:  
Set PL[1:0] = 2’b11:  
D[15:0] = 0000 0000 0010 1011  
Set PM[7:0] = 8’h8b: 1st D[15:0] = 0000 0000 1000 0001  
2nd D[15:0] = 0000 0000 1000 1011  
Revision A_0.6  
13  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
COMMAND DESCRIPTION  
(1) WRITE DATA TO DISPLAY MEMORY  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
8-bit data write to SRAM  
Write data  
1
0
UC1697v will convert input RAM data to 16-bit of RGB data. Please refer to command Set Color Mode  
for detail of data-write sequence.  
(2) READ DATA FROM DISPLAY MEMORY  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
8-bit data from SRAM  
Read data  
1
1
Each RGB triplet is stored as 16-bit in the display RAM. Each 16-bit of RGB data takes 1 / 2 RAM read  
cycles for 16 / 8 – bit bus mode, respectively. The read out RGB data is after-extension for 64K color mode.  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
1st 8-bit Read  
2nd 8-bit Read  
Write/Read Data Byte (command (1) / (2)) operation uses internal Row Address register (RA) and Column  
Address register (CA). RA and CA can be programmed by issuing commands Set Row Addressand Set  
Column Address. If wrap-around (WA, AC[0]) is OFF (0), CA will stop incrementing after reaching the CA  
boundary, and system programmers need to set the values of RA and CA explicitly. If WA is ON (1), when  
CA reaches end of column address, CA will be reset to 0 and RA will be increased or decreased, depending  
on the setting of Row Increment Direction (RID, AC[2]). When RA reaches the boundary of RAM (i.e. RA = 0  
or 127), RA will be wrapped around to the other end of RAM and continue.  
(3) GET STATUS & PM  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
1
1
1
GE MX MY WA DE WS MD MS  
Get Status & PM  
Ver  
PMO[5:0]  
PID[2:0]  
Product Code  
0
0
Status1 definitions:  
GE: Green Enhancing enable flag. Green Enhance Mode is disabled when GE = 1.  
MX: Status of register LC[1], mirror X.  
MY: Status of register LC[2], mirror Y.  
WA: Status of register AC[0]. Automatic column/row wrap around.  
DE: Display enable flag. DE=1 when display is enabled  
WS: MTP Operation succeeded  
MD: MTP Option (1 for MTP version, 0 for non-MTP version)  
MS: MTP action status  
Status2 definitions:  
Ver:  
Version Code. 00 ~ 11.  
PMO[5:0]: PM offset value.  
Status3 definitions:  
Product Code: 1110b (Eh)  
PID[1:0]: Provide access to ID pins connection status.  
If multiple Get Statuscommands are issued consecutively within one single CD 1Ö0Ö1 transaction, the  
Get Statuscommand will return {Status1, Status2, Status3, Status1, Status2, Status3, Status1..}  
alternately.  
14  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(4) SET COLUMN ADDRESS  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set Column Address LSB CA[3:0]  
Set Column Address MSB CA[6:4]  
0
0
0
0
0
0
0
0
0
0
0
1
CA3 CA2 CA1 CA0  
CA6 CA5 CA4  
0
Set SRAM column address for read/write access. CA is counted in RGB triplets, not individual SEG  
electrode.  
CA value range: 0~127  
(5) SET TEMPERATURE COMPENSATION  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set Temperature Comp. TC[1:0]  
0
0
0
0
1
0
0
1
TC1 TC0  
Set VBIAS temperature compensation coefficient (%-per-degree-C)  
Temperature compensation curve definition:  
00b = -0.00%/oC  
01b = -0.10%/oC  
10b = -0.15%/oC  
11b = -0.05%/oC  
(6) SET PANEL LOADING  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
PC1 PC0  
Set Panel Loading PC[1:0]  
0
0
0
0
1
0
1
0
Set PC[1:0] according to the capacitance loading of LCD panel.  
Panel loading definition:  
0xb: LCD: 13nF  
1xb: LCD: 13~22nF  
(7) SET PUMP CONTROL  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
PC3 PC2  
Set Pump Control PC[3:2]  
0
0
0
0
1
0
1
1
Set PC[3:2] to program the build-in charge pump stages. Always make sure the IC is in a RESET state  
before changing PC[3:2] value. Avoid changing PC[3:2] setting when the display is enabled.  
Pump control definition:  
00b = External VLCD  
11b = Internal VLCD (x10)  
(8) SET ADVANCED PROGRAM CONTROL  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set APC[R][7:0]  
0
0
0
0
0
0
1
1
0
0
R
R
(Double-byte command)  
APC register parameter  
For UltraChip only. Please do NOT use.  
Revision A_0.6  
15  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
(9) SET SCROLL LINE  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set Scroll Line LSB SL[3:0]  
0
0
0
0
0
0
1
1
0
0
0
1
SL3 SL2 SL1 SL0  
SL6 SL5 SL4  
Set Scroll Line MSB SL[6:4]  
0
Set the number of lines for scroll area.  
Scroll line setting will scroll the displayed image up by SL rows. The valid value for SL is between  
0 (no scrolling) and 127-2x(FLT+FLB) (full scrolling). FLT and FLB are the register values programmed by  
the Set Fixed Linescommand.  
row 0  
row 0  
Fixed Area  
(2xFLT rows)  
Fixed Area  
(2xFLT rows)  
:
:
row 2xFLT-1  
row 2xFLT-1  
Image row 0  
row 2xFLT  
Image row N  
row 2xFLT  
:
Scroll Area  
:
:
:
:
Scroll Area  
:
:
Image row N-1  
Image row N  
Image row 127-2xFL  
Image row 0  
:
:
:
Image row 127-2xFL  
row 127  
Image row N-1  
row 127  
SL=0  
SL=N  
(10) SET ROW ADDRESS  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set Row Address LSB RA [3:0]  
Set Row Address MSB RA [6:4]  
0
0
0
0
0
0
1
1
1
1
0
1
RA3 RA2 RA1 RA0  
RA6 RA5 RA4  
0
Set SRAM row address for read/write access.  
Possible value = 0~127  
(11) SET VBIAS POTENTIOMETER  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set VBIAS Potentiometer. PM [7:0]  
(Double-byte command)  
0
0
0
0
1
0
0
0
0
0
0
1
PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0  
Program VBIAS Potentiometer (PM[7:0]). See section LCD Voltage Setting for more detail.  
Effective range: 0 ~ 255  
16  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(12) SET PARTIAL DISPLAY CONTROL  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
LC9 LC8  
Set Partial Display Enable LC [9:8]  
0
0
1
0
0
0
0
1
This command is used to enable partial display function.  
LC[9:8] : 0xb: Disable Partial Display, Mux-Rate = CEN+1 (DST, DEN not used.)  
10b: Enable Partial Display, Mux-Rate = CEN+1  
11b: Enable Partial Display, Mux-Rate = DEN-DST+1+ LC[0]x(FLT+FLB)x2  
(13) SET RAM ADDRESS CONTROL  
Action  
Set AC [2:0]  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
AC2 AC1 AC0  
0
0
1
0
0
0
1
Program registers AC[2:0] for RAM address control.  
AC[0]: WA, Automatic column/row wrap around.  
0: CA or RA (depends on AC[1]= 0 or 1) will stop incrementing after reaching boundary  
1: CA or RA (depends on AC[1]= 0 or 1) will restart, and RA or CA will increment by one step.  
AC[1]: Auto-Increment order  
0 : column (CA) increment (+1) first until CA reaches CA boundary, then RA will increment by (+/-1).  
1 : row (RA) increment (+/-1) first until RA reach RA boundary, then CA will increment by (+1).  
AC[2]: RID, row address (RA) auto increment direction ( 0/1 = +/- 1 )  
When WA=1 and CA reaches CA boundary, RID controls whether row address will be adjusted by  
+1 or -1.  
AC[2:0] controls the auto-increment behavior of CA and RA. For Window Program enabling (AC[3]=ON), see  
section Command Description (34) ~ (37) for more details. If WPC[1:0] and WPP[1:0] values are the default  
values, the behavior of CA, RA auto-increment will be the same, no matter what the setting of AC[3] is.  
Revision A_0.6  
17  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
(14) SET FIXED LINES  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set Fixed Lines {FLT, FLB}  
(Double-byte command)  
0
0
0
0
1
0
0
1
0
0
0
0
FLT[3:0]  
FLB[3:0]  
The fixed line function is used to implement the partial scroll function by dividing the screen into scroll and  
fixed area. The Set Fixed Linescommand will define the fixed area, which will not be affected by the SL  
scroll function. The fixed area covers the top 2xFLT and bottom 2xFLB rows for mirror Y (MY) is 0, or covers  
the top 2xFLB and bottom 2xFLT rows for MY=1. One example of the visual effect on LCD is illustrated in  
the figure below.  
Fixed Area  
(2xFLT)  
1
Fixed Area  
(2xFLB)  
1
Scroll Area  
Scroll Area  
Fixed Area  
(2xFLB)  
Fixed Area  
128  
(2xFLT) 128  
MY = 0  
MY = 1  
When partial display mode is activated, the display of these 2x(FLT+FLB) lines is also controlled by LC[0].  
Before turning on LC[0], please make sure  
MY=0 DST FLTx2  
DEN (CEN-FLBx2).  
MY=1 DST FLBx2  
DEN (CEN-FLTx2)  
(15) SET LINE RATE  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
LC4 LC3  
Set Line Rate LC [4:3]  
0
0
1
0
1
0
0
0
Program LC [4:3] for line rate setting (Frame-Rate = Line-Rate / Mux-Rate). The line rate is automatically  
scaled down by 2/3, 1/2, 1/3 and 1/4 at Mux-Rate = 87, 65, 44 and 33.  
The following are line rates at Mux Rate = 88 ~ 128.  
00b: 20.1 Klps  
In On/Off Mode  
00b: 5.5 Klps  
01b: 24.4 Klps  
10b: 29.6 Klps  
10b: 8.0 Klps  
11b: 35.8 Klps  
11b: 9.7 Klps  
01b: 6.6 Klps  
(Klps: Kilo-Line-per-second)  
(16) SET ALL PIXEL ON  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
DC1  
Set All Pixel ON DC [1]  
0
0
1
0
1
0
0
1
0
Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data  
stored in display RAM.  
(17) SET INVERSE DISPLAY  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
DC0  
Set Inverse Display DC [0]  
0
0
1
0
1
0
0
1
1
Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This  
function has no effect on the existing data stored in display RAM.  
18  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(18) SET DISPLAY ENABLE  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
DC4 DC3 DC2  
Set Display Enable DC [4:2]  
0
0
1
0
1
0
1
This command is for programming register DC[4:2].  
When DC[2] is set to 0, the IC will put itself into Sleep mode. All drivers, voltage generation circuit and timing  
circuit will be halted to conserve power. When DC[2] is set to 1, UC1697v will first exit from Sleep mode,  
restore the power and then turn on COM drivers and SEG drivers. There is no other explicit user action or  
timing sequence required to enter or exit the Sleep mode.  
DC[3] controls the gray shade modulation modes. UC1697v has two gray shade modulation modes: an  
On/Off mode and a 32-shade mode. The modulation curves are shown below. Horizontal axes are the gray  
shade data. The vertical axes are the ON-OFF ratio.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
4
8
12  
16 20  
24  
28  
DC[4] Green Enhance Mode. Refer to command Set Color Modefor more information.  
0b: Green Enhancing Mode enabled 1b: Green Enhancing Mode disabled  
NOTE:  
1. For red and blue colors, shades mapped to data 1 and 30 (shown as red points above) are achieved by  
special dithering. This will be solved when the PWM function is enabled.  
2. Green shades are created by combining FRC and special dithering. Six of the shades (1, 2, 3, 59, 60,  
and 61) are created by special dithering. This will be solved when the PWM function is enabled. Data 62  
and 63 are mapped to the same shade.  
3. When the internal DC-DC converter starts to operate and pump out current to VLCD, there will be an in-  
rush pulse current between VDD2 and VSS2 initially. To avoid this current pulse from causing potential  
harmful noise, do NOT issue any command or write any data to UC1697v for 5~10mS after setting DC[2]  
to 1.  
Revision A_0.6  
19  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
(19) SET LCD MAPPING CONTROL  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
MY MX LC0  
Set LCD Mapping Control LC [2:0]  
0
0
1
1
0
0
0
This command is used for programming LC[2:0] to control COM (row) mirror (MY), SEG (column) mirror  
(MX).  
LC[2] controls Mirror Y (MY): MY is implemented by reversing the mapping order between RAM and COM  
electrodes. The data stored in RAM is not affected by the MY action. MY will have immediate effect on  
the display image.  
LC[1] controls Mirror X (MX): MX is implemented by selecting the CA or 127-CA as write/read (from host  
interface) display RAM column address so this function will only take effect after rewriting the RAM  
data.  
LC[0] controls whether soft icon sections (2xFLT, 2xFLB) are displayed during partial display mode.  
(20) SET N-LINE INVERSION  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set N-line Inversion, NIV[4:0]  
(Double-byte command)  
0
0
0
0
1
1
0
0
1
0
0
0
NIV6 NIV5 NIV4 NIV3 NIV2 NIV1 NIV0  
-
N-Line Inversion:  
NIV[5:0]: 000000b: Disable  
000001b ~ 111111b: 1~63 lines ( Default : 17 lines )  
NIV[6]: 0b: non-XOR 1b: XOR  
13  
13  
2
13  
13  
13  
13  
11  
11  
NIV[6]=0  
13  
13  
13  
13  
NIV[6]=1  
2
Frame 1  
Frame 2  
(21) SET COLOR PATTERN  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
LC5  
Set Color Pattern LC [5]  
0
0
1
1
0
1
0
0
0
UC1697v supports on-chip swapping of RÙB data mapping to the SEG drivers.  
SEG388 SEG389 SEG390  
LC[5]  
0
1
SEG1 SEG2 SEG3 SEG4 SEG5 SEG6  
B
R
G
G
R
B
B
R
G
G
R
B
B
R
G
G
R
B
The definition of R/G/B input data is determined by LC[7:6], as described in Set Color Modebelow.  
20  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(22) SET COLOR MODE  
Action  
Set Color Mode LC [7:6]  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
LC7 LC6  
0
0
1
1
0
1
0
1
Program color mode and RGB input pattern. Color mode (LC[7:6]) definition:  
Note: For serial bus modes, please refer to 8-bit tables below.  
Green Enhance Mode disabled (DC[4] = 1):  
LC[7:6] = 00b ( RRR-GGG-BB, 256-color )  
8 bits of input RGB data are stored to 16 RAM bits. No dither is performed.  
Data Write Sequence (8-bit)  
1st Write Data Cycle  
D[7:0]  
R2 R1 R0 G2 G1 G0 B1 B0  
Data Write Sequence (16-bit)  
1st Write Data Cycle  
D[15:0]  
0
0
0
0
0
0
0
0
R2 R1 R0 G2 G1 G0 B1 B0  
LC[7:6] = 01b ( RRRR-GGGG-BBBB, 4K-color )  
12 bits of input RGB data are stored to 16 RAM bits. No dither is performed. Every 3 bytes of input data  
will be merged into 2 sets of RGB data.  
Data Write Sequence (8-bit)  
1st Write Data Cycle  
2nd Write Data Cycle  
3rd Write Data Cycle  
D[7:0]  
R3 R2 R1 R0 G3 G2 G1 G0  
B3 B2 B1 B0 R3 R2 R1 R0  
G3 G2 G1 G0 B3 B2 B1 B0  
Data Write Sequence (16-bit)  
1st Write Data Cycle  
2nd Write Data Cycle  
D[15:0]  
0
0
0
0
0
0
0
0
R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0  
R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0  
LC[7:6] = 10b ( RRRRR-GGGGGG-BBBBB, 64K-color )  
16 bits of input data are stored to 16 RAM bits directly.  
Data Write Sequence (8-bit)  
1st Write Data Cycle  
2nd Write Data Cycle  
D[7:0]  
R4 R3 R2 R1 R0 G5 G4 G3  
G2 G1 G0 B4 B3 B2 B1 B0  
Data Write Sequence (16-bit)  
1st Write Data Cycle  
D[15:0]  
R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0  
Revision A_0.6  
21  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
Green Enhance Mode enabled (DC[4]=0):  
LC[7:6] = 00b ( RRR-GGG-BB, 256-color )  
8 bits of input RGB data are stored to 16 RAM bits. No dither is performed.  
Data Write Sequence (8-bit)  
1st Write Data Cycle  
D[7:0]  
R2 R1 R0 G2 G1 G0 B1 B0  
Data Write Sequence (16-bit)  
1st Write Data Cycle  
D[15:0]  
0
0
0
0
0
0
0
0
R2 R1 R0 G2 G1 G0 B1 B0  
LC[7:6] = 01b ( RRRR-GGGGG-BBB, 4K-color )  
12 bits of input data are extended and stored to 16 RAM bits. Every 3 bytes of input data will be merged  
into 2 sets of RGB data.  
Data Write Sequence (8-bit)  
1st Write Data Cycle  
2nd Write Data Cycle  
3rd Write Data Cycle  
D[7:0]  
R3 R2 R1 R0 G4 G3 G2 G1  
G0 B2 B1 B0 R3 R2 R1 R0  
G4 G3 G2 G1 G0 B2 B1 B0  
Data Write Sequence (16-bit)  
1st Write Data Cycle  
2nd Write Data Cycle  
D[15:0]  
0
0
0
0
0
0
0
0
R3 R2 R1 R0 G4 G3 G2 G1 G0 B2 B1 B0  
R3 R2 R1 R0 G4 G3 G2 G1 G0 B2 B1 B0  
LC[7:6] = 10b ( RRRRR-GGGGGG-BBBBB, 64K-color )  
The behaviors of 8-bit input mode and 16-bit input mode do not change with DC[4] setting. Refer to  
previous section for more information on these two input modes.  
(23) SET COM SCAN FUNCTION  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
CSF2 CSF1 CSF0  
Set COM Scan Function CSF[2:0]  
0
0
1
1
0
1
1
COM scan function  
CSF[0]: LRM sequence option  
0b: LRM sequence: AEBCD-AEBCD  
1b : LRM sequence: AEBC-EBCDA  
CSF[1]: FRC option  
0b: FRC Disable  
1b: FRC Enable  
CSF[2]: Shade-1, Shade-30 option  
0 : Dither directly on input data(SRAM Change)  
1 : PWM on SEG output stage  
(24) SYSTEM RESET  
Action  
System Reset  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
1
1
1
0
0
0
1
0
This command will activate the system reset. Control register values will be reset to their default values.  
Data stored in RAM will not be affected.  
(25) NOP  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
No Operation  
0
0
1
1
1
0
0
0
1
1
This command is used for “no operation”.  
22  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(26) SET TEST CONTROL  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set TT  
0
0
0
0
1
1
1
0
0
1
TT  
(Double-byte command)  
Testing parameter  
This command is used for UltraChip production testing. Do NOT use.  
(27) SET LCD BIAS RATIO  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
BR2 BR1 BR0  
Set Bias Ratio BR [2:0]  
0
0
1
1
1
0
1
Bias ratio definition:  
000b = 6  
100b = 9  
001b = 10  
010b = 11  
011b = 12  
(28) SET COM END  
Action  
Set CEN [6:0]  
(Double-byte command)  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
0
0
1
-
CEN register parameter  
This command programs the ending COM electrode. CEN defines the number of used COM electrodes, and  
it should correspond to the number of pixel-rows in the LCD. When the LCD has less than 128 pixel rows,  
the LCM designer should set CEN to N-1 (where N is the number of pixel rows) and use COM1 through  
COM-N as COM driver electrodes.  
(29) SET PARTIAL DISPLAY START  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set DST [6:0]  
0
0
0
0
1
1
1
1
0
0
1
0
(Double-byte command)  
-
DST register parameter  
This command programs the starting COM electrode, which has been assigned a full scanning period and  
will output an active COM scanning pulse.  
Revision A_0.6  
23  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
(30) SET PARTIAL DISPLAY END  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Set DEN [6:0]  
0
0
0
0
1
1
1
1
0
0
1
1
(Double-byte command)  
-
DEN register parameter  
This command programs the ending COM electrode, which has been assigned a full scanning period and  
will output an active COM scanning pulse.  
CEN, DST, and DEN are 0-based indexes of COM electrodes. They control only the COM electrode activity,  
and do not affect the mapping of display RAM to each COM electrodes. The image displayed by each pixel  
row is therefore not affected by the setting of these three registers.  
When LC[9]=1, two partial display modes are possible with UC1697v:  
LC[8]=1: ON-OFF only, ultra-low-power mode (if Mux-Rate 33, set BR=6).  
LC[8]=0: Full gray shade low power mode (BR and PM stays the same)  
When LC[9:8]=10b, the Mux-Rate is still CEN+1. This is achieved by suppressing only the scanning pulses,  
but not the scanning time slots, for COM electrodes that is outside of DST~DEN. Under this mode, the gray-  
scale quality of the display is preserved, while the power can be reduced significantly.  
When LC[9:8]=11b, the Mux-Rate is narrowed down DEN-DST +1 + 2x(FLT+FLB)xLC[0]. When MUX rate is  
reduced, reduce the line rate accordingly to reduce power. Changing MUX rate also require BR and VLCD to  
be readjusted. When Mux-Rate is under 33, it is recommend to set BR=6.  
For minimum power consumption, set LC[9:8]=11b, set (DST, DEN, FL, CEN) to minimize MUX rate, use  
slowest line rate which satisfies the flicker requirement, use On-Off mode, set PC[1:0]=00b, and use lowest  
BR, lowest VLCD which satisfies the contrast requirement.  
In either case, DST/DEN defines a small subsection of the display which will remain active while shutting  
down all the rest of the display to conserve energy.  
Scan Method  
Scan Method  
when LC[9:8]=10b  
when LC[9:8]=11b:  
Display Result:  
0
..  
Not scanned  
Pulse Disable  
DST  
DEN  
CEN  
..  
Display segment  
Pulse Enable  
Not scanned  
Not scanned  
Pulse Enable  
Pulse Disable  
Not Scanned  
127  
24  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(31) SET WINDOW PROGRAM STARTING COLUMN ADDRESS  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
0
0
Set WPC0 [6:0]  
(Double-byte command)  
-
WPC0 register parameter  
This command is to program the starting column address of RAM program window.  
(32) SET WINDOW PROGRAM STARTING ROW ADDRESS  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
0
1
Set WPP0 [6:0]  
(Double-byte command)  
-
WPP0 register parameter  
This command is to program the starting row address of RAM program window.  
(33) SET WINDOW PROGRAM ENDING COLUMN ADDRESS  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
1
0
Set WPC1 [6:0]  
(Double-byte command)  
-
WPC1 register parameter  
This command is to program the ending column address of RAM program window.  
(34) SET WINDOW PROGRAM ENDING ROW ADDRESS  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
1
1
Set WPP1 [6:0]  
(Double-byte command)  
-
WPP1 register parameter  
This command is to program the ending row address of RAM program window.  
Revision A_0.6  
25  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
(35) SET WINDOW PROGRAM MODE  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
AC3  
Set Window Program Enable AC[3]  
0
0
1
1
1
1
1
0
0
This command controls the Window Program function.  
AC[3]=0: Inside Mode  
When Window Programming is under “Inside” mode , the CA and RA increment and wrap-around will  
be performed automatically around the boundaries as defined by registers WPC0, WPC1, WPP0, and  
WPP1, so that the CA/RA address will stay within the defined window of SRAM address, and therefore  
allow effective data update within the window.  
AC[3]=1: Outside Mode  
When Window Programming is under “Outside” mode, the CA and RA increment and wrap-around  
boundary will cover the entire UC1697v SRAM map (CA: 0~127, RA:0~127). However, when CA/RA  
points to a memory location within the window defined by registers WPC0, WPC1, WPP0, and WPP1,  
the SRAM data update operation will be suspended, the existing data will be retained and the input data  
will be ignored.  
The direction of Window Program will depend on the WA (AC[0]), RID (AC[2]), auto-increment order (AC[1])  
and MX (LC[1]) register setting.  
y
y
WA decides whether the program RAM address advances to next row/column after reaching the  
specified window column / row boundary.  
RID controls the RAM address incrementing from WPP0 toward WPP1 (RID=0) or reverse the direction  
(RID=1).  
y
y
Auto-increment order directs the RAM address increment vertically (AC[1]=1) or horizontally (AC[1]=0).  
MX results the RAM column address incrementing from 127-WPC0 to 127-WPC1 (MX=1) or WPC0 to  
WPC1 (MX=0).  
By different combination of RID, AC[1], MX, and by setting CA, RA at proper corners of the “window”, effects  
such as mirrors and rotations can be easily achieved.  
Setting or resetting AC[3] does not affect the values of CA and RA. So, always remember to reposition CA  
and RA properly after changing the setting of AC[3].  
26  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
Function Setting  
AIO MX RID  
Image in the Host (MPU)  
Image in Display Data Ram  
Display Data  
Direction  
(Start : ●)  
(Physical origin: upper left corner)  
AC[1] LC[1] AC[2]  
Normal  
0
0
0
0
0
1
Y-mirror  
X-mirror  
0
1
0
X-mirror  
Y-mirror  
0
1
1
1
0
0
1
0
1
X-Y Exchange  
X-Y Exchange  
Y-mirror  
X-Y Exchange  
X-mirror  
1
1
1
1
0
1
X-Y Exchange  
X-mirror  
Y-mirror  
Revision A_0.6  
27  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
(36) SET MTP OPERATION CONTROL  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
1
0
1
1
1
0
0
0
Set MTPC [4:0]  
(Double-byte command)  
MTPC register  
0
0
-
-
-
parameter  
This command is for MTP operation control:  
MTPC[2:0] : MTP command  
000 : Sleep  
010 : MTP Erase  
001 : MTP Read  
011 : MTP Program  
1xx : For UltraChip use only.  
MTPC[3] : MTP Enable ( automatically cleared each time after MTP command is done )  
MTPC[4] : MTP value valid (ignore MTP value when L )  
DC[2] and MTPC[3] are mutually exclusive. Only one of these two control flags can be set to ON at any time.  
In other words, when DC[2] is ON, all MTP operations will be blocked, and, when MTP operation is active,  
set DC[2] to 1 will be blocked.  
28  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
The following commands, (37) ~ (41), are used as MTP commands only when MTPC[3]=1.  
(37) SET MTP WRITE MASK  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
0
1
1
1
0
0
1
Set MTPM [6:0]  
(Triple-byte command)  
-
MTPM register parameter  
This command enables Write to each of the 7 individual MTP bits.  
When MTPM[x]=1, the x-th bit of the MTP memory will be programmed to “1”. MTPM[x]=0 means no Write  
action for x-th bit. And the content of this bit will not change.  
The amount of “programming current” increases with the number of 1’s in MTPM. If the “programming  
current” appears to be too high for the LCM design (e.g. TST4 ITO trace is not wide enough to supply the  
current), use multiple write cycles and distribute the 1’s evenly into these cycles.  
MTPM[6:0] : Set PMO value  
MTPM1[1:0]: Set MID value  
This command is only valid when MTPC[3]=1.  
(38) SET VMTP1 POTENTIOMETER  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
0
0
Set MTP1  
(Double-byte command)  
Shared register parameter  
This command is for fine tuning VOPT1 setting (use with BR=000) and is only valid when MTPC[3]=1.  
(39) SET VMTP2 POTENTIOMETER  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
0
1
Set MTP2  
(Double-byte command)  
Shared register parameter  
This command is for fine tuning VMTP2 PM setting (use with BR=001) and is only valid when MTPC[3]=1.  
(40) SET MTP WRITE TIMER  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
1
0
Set MTP3  
(Double-byte command)  
Shared register parameter  
This command is only valid when MTPC[3]=1.  
(41) SET MTP READ TIMER  
Action  
C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
1
1
1
Set MTP4  
(Double-byte command)  
Shared register parameter  
This command is only valid when MTPC[3]=1.  
Revision A_0.6  
29  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
LCD VOLTAGE SETTING  
MULTIPLEX RATES  
VLCD GENERATION  
VLCD may be supplied either by internal charge  
pump or by external power supply. The source of  
VLCD is controlled by PC[3:2].  
Multiplex Rate is completely software  
programmable in UC1697v via registers CEN,  
DST, DEN, FLT, FLB, and partial display control  
flags LC[9:8] and LC[0].  
When VLCD is generated internally, the voltage  
level of VLCD is determined by three control  
registers: BR (Bias Ratio), PM (Potentiometer),  
and TC (Temperature Compensation), with the  
following relationship:  
Combined with low power partial display mode  
and a low bias ratio of 6, UC1697v can support  
wide variety of display control options. For  
example, when a system goes into stand-by  
mode, a large portion of LCD screen can be  
turned off to conserve power.  
VLCD = (CV 0 + CPM × PM ) × (1+ (T 25) × CT %)  
BIAS RATIO SELECTION  
where  
Bias Ratio (BR) is defined as the ratio between  
CV0 and CPM are two constants, whose value  
depends on the setting of BR register, as  
illustrated in the table on the next page,  
V
LCD and VBIAS, i.e.  
BR = VLCD /VBIAS  
where VBIAS = VB1+ – VB1– = VB0+ – VB0–  
The theoretical optimum Bias Ratio can be  
estimated by . BR of value 15~20%  
,
.
PM is the numerical value of PM register,  
T is the ambient temperature in OC, and  
Mux +1  
CT is the temperature compensation coefficient  
lower/higher than the optimum value calculated  
above will not cause significant visible change in  
image quality.  
as selected by TC register.  
VLCD AND CONTRAST FINE TUNING  
Due to the nature of STN operation, an LCD  
designed for good gray-shade performance at  
high Mux Rate (e.g. MR=128), can generally  
perform very well as a black and white display, at  
lower Mux Rate. However, it is also true that such  
technique generally can not maintain LCD’s  
quality of gray shade performance, since the  
contrast of the LCD will increase as Mux Rate  
decreases, and the shades near the two ends of  
the spectrum will start to lose visibility.  
Color STN LCD is sensitive to even a 0.5%  
mismatch between IC driving voltage and the VOP  
of LCD. It is very difficult for LCD makers to  
guarantee such high precision matching of parts  
from different venders. It is therefore necessary  
to adjust VLCD to precisely match the actual VOP  
of each LCD.  
For the best results, software or MTP based VLCD  
adjustment is the recommended method for VLCD  
fine tuning. System designers should always  
consider the contrast fine tuning requirement  
before finalizing on the LCM design.  
UC1697v supports five BR as listed below. BR  
can be selected by software program.  
BR  
0
1
2
3
4
LOAD DRIVING STRENGTH FOR COG  
Bias Ratio  
6
10  
11  
12  
9
The power supply circuit of UC1697v is designed  
to handle LCD panels with loading up to ~16nF  
using 7-/Sq ITO glass with VDD2/3 2.8V. For  
larger LCD panels, use lower resistance ITO  
glass.  
Table 1: Bias Ratios  
TEMPERATURE COMPENSATION  
Four different temperature compensation  
coefficients can be selected via software. The  
four coefficients are given below:  
Due to crosstalk consideration, ~16nF is also the  
recommended maximum LCD panel loading for  
COG applications. Using 4.5-/Sq low resistance  
ITO glass for the IC bonding substrate can help  
improve image quality and operation tolerance.  
TC  
% per oC  
0
1
2
3
-0.00 -0.10 -0.15 -0.05  
Table 2: Temperature Compensation  
.
30  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
VLCD QUICK REFERENCE  
16  
14  
12  
10  
8
6
4
0
32  
64  
96  
PM  
128  
160  
192  
BR  
CV0 (V)  
CPM (mV)  
PM_reg  
VLCD (V)  
0
255  
0
6.40  
9.75  
6
6.402  
13.14  
10.67  
16.25  
11.74  
16.51  
12.80  
16.51  
9.60  
10  
11  
12  
9
10.670  
11.737  
12.804  
9.603  
21.90  
24.09  
26.28  
19.71  
255  
0
198  
0
141  
0
255  
14.63  
VLCD-PM-BR relationship at 25oC  
NOTE:  
1. For good product reliability, please keep VLCD under 16.5V over all temperature.  
2. The integer values of BR above are for reference only and may have slight shift.  
Revision A_0.6  
31  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
HI-V GENERATOR REFERENCE CIRCUIT  
VDD  
VB0+  
VDD  
CB0  
CB1  
VB0-  
VB1+  
VDD2/VDD3  
VDD2  
VDD3  
VB1-  
VLCDOUT  
VLCDIN  
VSS  
VSS2  
CL  
RL  
(OPTIONAL)  
FIGURE 1: Sample circuit using internal Hi-V generator circuit  
NOTE:  
Sample component values: (The illustrated circuit and component values are for reference only. Please  
optimize for specific requirements of each application.)  
CB0~1 : 2.2 µF/5V or 300 x LCD load capacitance, whichever is higher.  
CL : 330 nF (25V) is appropriate for most applications.  
RL : 3.3~10 Mto act as a draining circuit when VDD is shut down abruptly.  
32  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
LCD DISPLAY CONTROLS  
CLOCK & TIMING GENERATOR  
DRIVER ENABLE (DE)  
UC1697v contains a built-in system clock. All  
required components for the clock oscillator are  
built-in. No external parts are required.  
Driver Enable is controlled by the value of DC[2]  
via the Set Display Enablecommand. When  
DC[2] is set to OFF (logic “0”), both COM and  
SEG drivers will become idle and UC1697v will  
put itself into Sleep mode to conserve power.  
Four different line rates are provided for system  
design flexibility. The line rate is controlled by  
register LC[4:3]. When Mux-Rate is above 88,  
frame rate is calculated as:  
When DC[2] is set to ON, the DE flag will become  
“1”, and UC1697v will first exit from Sleep mode,  
restore the power (VLCD, VD etc.) and then turn on  
COM and SEG drivers.  
Line-Rate = Frame Rate x Mux-Rate.  
When Mux-Rate is lowered to 87, 65, 44 and 33,  
line rate will be scaled down automatically by 1.5,  
2, 3 and 4 times to reduce power consumption.  
ALL PIXELS ON (APO)  
When set, this flag will force all SEG drivers to  
output ON signals, disregarding the data stored  
in the display buffer.  
Flicker-free frame rate is dependent on LC  
material and gray-shade modulation scheme.  
Line rate 30 Klps or higher is recommended for  
32-shade mode. Choose lower frame rate for  
lower power, and choose higher frame rate to  
improve LCD contrast and minimize flicker.  
This flag has no effect when Display Enable is  
OFF and it has no effect on data stored in RAM.  
INVERSE (PXV)  
When switching from 32-shade modulation to  
On/Off mode, line rate will be scaled down  
automatically by ~30% to reduce power.  
When this flag is set to ON, SEG drivers will  
output the inverse of the value it received from  
the display buffer RAM (bit-wise inversion). This  
flag has no impact on data stored in RAM.  
Under most situations, flicker behavior is similar  
between these two modulation schemes.  
However, it is recommended to test each mode  
to make sure the result is as expected.  
PARTIAL SCROLL  
Control register FLT and FLB specify two regions  
of rows which are not affected by the SL register.  
Since SL register can be used to implement scroll  
function. FLT and FLB registers can be used to  
implement fixed regions when the other part of  
the display is scrolled by SL.  
DRIVER MODES  
COM and SEG drivers can be in either Idle mode  
or Active mode, controlled by Display Enable flag  
(DC[2]). When SEG drivers are in Idle mode, they  
will be connected together to ensure zero DC  
condition on the LCD.  
PARTIAL DISPLAY  
DRIVER ARRANGEMENTS  
UC1697v provides flexible control of Mux Rate  
and active display area. Please refer to  
commands Set COM End, Set Partial  
Display Start, and Set Partial Display  
Endfor more detail.  
The naming convention is COM(X), where  
X =1~128, referring to the COM driver for the  
X-th row of pixels on the LCD panel.  
The mapping of COM(x) to LCD pixel rows is  
fixed and it is not affected by SL, CST, CEN, DST,  
DEN, MX or MY settings.  
GRAY-SHADE MODULATION MODE  
UC1697v has two gray-shade modulation modes:  
32-shade and On/Off mode.  
DISPLAY CONTROLS  
There are three groups of display control flags in  
the control register DC: Driver Enable (DE), All-  
Pixel-ON (APO) and Inverse (PXV). DE has the  
overriding effect over PXV and APO.  
The On/Off mode will consume roughly 40~45%  
less power than the 32-shade mode, and can be  
used for situations where power consumption is  
more critical than color fidelity.  
Changing gray-shade modulation mode does not  
affect the content of SRAM display buffer, and  
the image data will remain the same after  
switching back and forth between On/Off mode  
and 32-shade mode.  
Revision A_0.6  
33  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
INPUT COLOR FORMATS  
UC1697v supports the following two different  
input color formats.  
256C (8-bit/RGB): In this color mode, R/G/B will  
be extended and the input data will be converted  
into 3R-3G-2B format before they are stored to  
display RAM.  
4KC (12-bit/RGB): In this color mode, R/G/B will  
be extended and the input data will be converted  
into 5R-6G-5B format before they are stored to  
display RAM.  
64KC (16-bit/RGB): This is the native color mode.  
Data will be stored directly to on-chip SRAM in  
5R-6G-5B (16-bit) format (except shade1 and  
shade30, which are achieved by special dithering.  
See command Set Display Enablefor more  
details). This is the default input format mode.  
Changing color mode does not affect the content  
already stored in the display buffer RAM. Users  
can mix several color modes together and switch  
among them in real time.  
For example, the menu portion can be painted in  
4K-color mode for fast update speed, and then  
switch to 64K-color mode, together with window  
programming function to effectively produce  
smooth graphics images.  
34  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
ITO LAYOUT AND LC SELECTION  
Since COM scanning pulses of UC1697v can be as short as 15µS, it is critical to control the RC delay of  
COM and SEG signal to minimize crosstalk and maintain good mass production consistency.  
where  
COM TRACES  
CCOL: LCD loading capacitance of one pixel  
Excessive COM scanning pulse RC decay can  
cause fluctuation of contrast and increase COM  
direction crosstalk.  
column. It can be calculated by CLCD  
#_column, where CLCD is the LCD panel  
capacitance.  
/
Please limit the worst case of COM signals RC  
delay (RCMAX) as calculated below  
RCOL: ITO resistance over one column of  
pixels within the active area  
RSEG: SEG routing resistance from IC to the  
active area + SEG driver output  
impedance.  
(RROW / 2.7 + RCOM) x CROW < 0.9µS  
where  
CROW: LCD loading capacitance of one row of  
pixels. It can be calculated by CLCD/Mux-  
Rate, where CLCD is the LCD panel  
capacitance.  
(Use worst case values for all calculations)  
SELECTING LIQUID CRYSTAL  
The selection of LC material is crucial to achieve  
the optimum image quality of finished LCM.  
RROW: ITO resistance over one row of pixels  
within the active area  
When (V90-V10)/V10 is too high, image contrast  
and color saturation will deteriorate, and images  
will look murky and dull.  
R
COM: COM routing resistance from IC to the  
active area + COM driver output  
impedance.  
When (V90-V10)/V10 is too small, image contrast  
will become too strong, visibility of shades will  
suffer, and crosstalk may increase sharply for  
medium shades.  
In addition, please limit the min-max spread of  
RC decay to be:  
| RCMAX – RCMIN | < 0.22µS  
so that the COM distortions on the top of the  
screen to the bottom of the screen are uniform.  
For the best result, it is recommended the LC  
material has the following characteristics:  
(Use worst case values for all calculations)  
(V90-V10)/V10 = (VON-VOFF)/VOFF x 0.72~0.80  
where V90 and V10 are the LC characteristics, and  
VON and VOFF are the ON and OFF VRMS voltage  
produced by LCD driver IC at the specific Mux-  
rate.  
SEG TRACES  
Excessive SEG signal RC decay can cause  
image dependent changes of medium gray  
shades and sharply increase of SEG direction  
crosstalk.  
Two examples are provided below:  
For good image quality, please minimize SEG  
ITO trace resistance and limit the worst case of  
SEG signal RC delay as calculated below.  
Duty  
1/128  
1/128  
Bias  
1/12  
1/11  
VON/VOFF -1 x0.80  
x0.72  
6.4%  
6.4%  
8.95%  
8.85%  
7.2%  
7.1%  
(RCOL / 2.7 + RSEG) x CCOL < 0.25µS  
Revision A_0.6  
35  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
RAM  
W/R  
POL  
COM1  
COM2  
COM3  
SEG1  
SEG2  
FIGURE 2: COM and SEG Driving Waveform  
36  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
HOST INTERFACE  
As summarized in the table below, UC1697v supports two parallel bus protocols, in either 8-bit or 16-bit bus  
width, and three serial bus protocols.  
Designers can either use parallel buses to achieve high data transfer rate, or use serial buses to create  
compact LCD modules.  
Bus Type  
8080  
6800  
S8 (4wr)  
S8uc (3/4wr)  
Serial  
S9 (3 wr)  
Width  
16-bit  
8-bit  
16-bit  
8-bit  
Access  
Read/Write  
Write Only  
00  
BM[1:0]  
10  
00  
0x  
11  
01  
0x  
00  
10  
01  
10  
{DB[15], DB[13]}  
CS[1:0]  
CD  
Data  
Data  
11  
Chip Select  
Control / Data  
0
___  
__  
_
_
WR0  
WR1  
0
WR  
R/W  
EN  
___ __  
0
RD  
DB[1,3,5,7,9,11]  
Data  
Data  
Data  
Data  
DB[0,2,4,6,8,10,12,14]  
Data  
Data  
DB[8]=SDA, DB[0]=SCK  
* Connect unused control pins and data bus pins to VDD or VSS  
CS  
Disable  
Interface  
CS  
Init bus  
state  
CD 1Ù0  
Init bus  
state  
CD 1Ö0  
Init color  
mapping  
RESET  
Init bus  
state  
RESET  
Init color  
mapping  
16-bit  
8-bit  
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
S8 or S9  
S8uc  
9
9
CS disable bus interface – CS can be used to disable Bus Interface Write / Read Access.  
CD refers to CD transitions within valid CS window. CD = 0 means write command or read status.  
CS Sync / RESET can be used to initialize bus state machine (like 8-bit / S8 / S9).  
RESET can be pin reset / soft reset / power on reset.  
CD can be used to initialize the multi-byte input RGB format to/from on-chip SRAM mapping.  
Table 3: Host interfaces Summary  
Revision A_0.6  
37  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
PARALLEL INTERFACE  
The timing relationship between UC1697v internal control signal RD, WR and their associated bus actions  
are shown in the figure below.  
The Display RAM read interface is implemented as a two-stage pipe-line. This architecture requires that,  
every time memory address is modified, either in 8-bit mode or 16-bit mode, by either Set CA, or Set RA  
command, a dummy read cycle needs to be performed before the actual data can propagate through the  
pipe-line and be read from data port D.  
There is no pipeline in write interface of Display RAM. Data is transferred directly from bus buffer to internal  
RAM on the rising edges of write pulses.  
16-BIT & 8-BIT BUS OPERATION  
UC1697v supports both 8-bit and 16-bit bus width.  
The bus width is determined by pin BM[1].  
LSB, including the dummy read, which also  
requires two clock cycles. The bus cycle of 8-bit  
mode is reset each time CD pin changes state  
(when CS is active).  
8-bit bus operation exactly doubles the clock  
cycles of 16-bit bus operation, MSB followed by  
External  
CD  
___  
WR  
__  
RD  
D[15:0]  
LLSB  
DL  
DL+K  
CMSB  
CLSB  
Dummy  
DC  
DC+1  
MMSB  
MLSB  
Internal  
Write  
Read  
Data  
Latch  
DL  
L+K  
DL+K  
L+K+1  
Dummy  
DC  
C+1  
DC+1  
C+2  
DC+2  
C+3  
Column  
Address  
L
C
M
FIGURE 3: 16-bit Parallel Interface & Related Internal Signals  
38  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
SERIAL INTERFACE  
UC1697v supports three serial modes, a 4-wire SPI mode (S8), a compact 3/4-wire mode (S8uc), and a 3-  
wire mode (S9). Bus interface mode is determined by the wiring of the BM[1:0], DB[15] and DB[13]. See  
table on last page for more detail.  
S8 (4-WIRE) INTERFACE  
Only write operations are supported in 4-wire serial  
mode. Pin CS[1:0] are used for chip select and bus  
cycle reset. Pin CD is used to determine the  
content of the data been transferred. During each  
write cycle, 8 bits of data, MSB first, are latched on  
eight rising SCK edges into an 8-bit data holder.  
If CD=0, the data byte will be decoded as  
command. If CD=1, this 8-bit will be treated as data  
and transferred to proper address in the Display  
Data RAM on the rising edge of the last SCK pulse.  
Pin CD is examined when SCK is pulled low for the  
LSB (D0) of each token.  
CS0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
SDA  
SCK  
CD  
FIGURE 4.a: 4-wire Serial Interface (S8)  
S8UC (3/4-WIRE) INTERFACE  
Only write operations are supported in this 3/4-wire  
serial mode. The data format is identical to S8. The  
CD pin transitions will reset the bus cycle in this  
mode. So, if CS pins are hardwired to enable chip-  
select, the bus can work properly with only three  
signal pins.  
CS0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
SDA  
SCK  
CD  
FIGURE 4.b: 3/4-wire Serial Interface (S8uc)  
S9 (3-WIRE) INTERFACE  
Only write operations are supported in this 3-wire  
serial mode. Pin CS[1-0] are used for chip select  
and bus cycle reset. On each write cycle, the first  
bit is CD, which determines the content of the  
following 8 bits of data, MSB first. These 8  
command/data bits are latched on rising SCK  
edges into an 8-bit data holder. If CD=0, the data  
byte will be decoded as command. If CD=1, this  
8-bit will be treated as data and transferred to  
proper address in the Display Data RAM at the  
rising edge of the last SCK pulse.  
By sending CD information explicitly in the bit  
stream, control pin CD is not used, and should be  
connected to either VDD or VSS. The toggle of CS0  
or CS1 for each byte of data/command is  
recommended but optional.  
CS0  
CD D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CD D7  
D6  
SDA  
SCK  
FIGURE 4.c: 3-wire Serial Interface (S9)  
Revision A_0.6  
39  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
HOST INTERFACE REFERENCE CIRCUIT  
VDD  
VDD  
VCC  
D15~D0  
DB15~DB0  
CD  
WR  
RD  
CD  
WR0(WR)  
WR1(RD)  
ADDRESS  
CS0  
CS1  
MPU  
UC1697v  
IORQ  
DECODER  
VDD  
RST  
ID0  
ID1  
VDD  
BM1  
BM0  
GND  
VSS  
FIGURE 5: 8080/16-bit parallel mode example  
VDD  
VDD  
VDD  
VCC  
DB15  
DB13  
DB7~DB0  
DB7  
~
DB0  
CD  
CD  
WR  
RD  
WR0(WR)  
WR1(RD)  
ADDRESS  
IORQ  
CS0  
CS1  
MPU  
UC1697v  
DECODER  
VDD  
RST  
ID0  
ID1  
BM1  
BM0  
GND  
VSS  
FIGURE 6: 8080/8-bit parallel mode example  
40  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
VDD  
VDD  
VCC  
D15-D0  
DB15~DB0  
CD  
R/W  
E
CD  
WR0(R/W)  
WR1(E)  
ADDRESS  
IORQ  
CS0  
MPU  
UC1697v  
DECODER  
CS1  
VDD  
RST  
ID0  
ID1  
VDD  
BM1  
BM0  
GND  
VSS  
FIGURE 7: 6800/16-bit parallel mode example  
VDD  
VDD  
VDD  
VCC  
DB15  
DB13  
DB7-DB0  
DB7  
~
DB0  
CD  
CD  
R/W  
E
WR0(R/W)  
WR1(E)  
ADDRESS  
IORQ  
CS0  
MPU  
UC1697v  
DECODER  
CS1  
VDD  
RST  
ID0  
ID1  
BM1  
BM0  
GND  
VSS  
FIGURE 8: 6800/8-bit parallel mode example  
Revision A_0.6  
41  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
VDD  
VDD  
VCC  
DB15  
DB13  
SCK  
SDA  
CD  
SCK(DB0)  
SDA(DB8)  
CD  
WR0  
WR1  
ADDRESS  
IORQ  
CS0  
CS1  
MPU  
UC1697v  
DECODER  
VDD  
RST  
ID0  
ID1  
BM1  
BM0  
GND  
VSS  
FIGURE 9: 4-Wires SPI (S8) serial mode example  
VDD  
VDD  
VDD  
VCC  
DB15  
DB13  
SCK  
SDA  
CD  
SCK(DB0)  
SDA(DB8)  
CD  
WR0  
WR1  
CS0  
MPU  
UC1697v  
VDD  
RST  
ID0  
ID1  
CS1  
BM1  
BM0  
GND  
VSS  
FIGURE 10: 3/4-Wires SPI (S8uc) serial mode example  
42  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
VDD  
VDD  
VDD  
VCC  
DB15  
DB13  
SCK  
SDA  
SCK(DB0)  
SDA(DB8)  
CD  
WR0  
WR1  
ADDRESS  
IORQ  
CS0  
CS1  
MPU  
UC1697v  
DECODER  
VDD  
RST  
ID0  
ID1  
VDD  
BM1  
BM0  
GND  
VSS  
FIGURE 11: 3/4-Wires SPI (S9) serial mode example  
Revision A_0.6  
43  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
DISPLAY DATA RAM  
DATA ORGANIZATION  
ROW MAPPING  
The input display data (depend on color mode)  
are stored to a dual port static RAM (RAM, for  
Display Data RAM) organized as 128x128x16.  
COM electrode scanning orders are not affected  
by Scroll Line (SL), Fixed Line (FLT & FLB) or  
Mirror Y (MY, LC[3]). Visually, register SL having  
a non-zero value is equivalent to scrolling the  
LCD display up or down (depends on MY) by SL  
rows.  
After setting CA and RA, the subsequent data  
write cycles will store the data for the specified  
pixel to the proper memory location.  
Please refer to the map in the following page  
between the relation of COM, SEG, SRAM, and  
various memory control registers.  
RAM ADDRESS GENERATION  
The mapping of the data stored in the display  
SRAM and the scanning COM electrodes can be  
obtained by combining the fixed COM scanning  
sequence and the following RAM address  
generation formula.  
DISPLAY DATA RAM ACCESS  
The Display RAM is a special purpose dual port  
RAM which allows asynchronous access to both  
its column and row data. Thus, RAM can be  
independently accessed both for Host Interface  
and for display operations.  
When FLT & FLB=0, during the display operation,  
the RAM line address generation can be  
mathematically represented as following:  
For the 1st line period of each field  
DISPLAY DATA RAM ADDRESSING  
Line = SL  
A Host Interface (HI) memory access operation  
starts with specifying Row Address (RA) and  
Column Address (CA) by issuing Set Row  
Addressand Set Column Address  
commands.  
Otherwise  
Line = Mod(Line+1, 128)  
Where Mod is the modular operator, and Line is  
the bit slice line address of RAM to be outputted  
to SEG drivers. Line 0 corresponds to the first bit-  
slice of data in RAM.  
If wrap-around (WA, AC[0]) is OFF (0), CA will  
stop incrementing after reaching the end of row  
(127), and system programmers need to set the  
values of RA and CA explicitly.  
The above Line generation formula produces the  
“loop around” effect as it effectively resets Line to  
0 when Line+1 reaches 128. Effects such as  
scrolling can be emulated by changing SL  
dynamically.  
If WA is ON (1), when CA reaches the end of a  
row, CA will be reset to 0 and RA will increment  
or decrement, depending on the setting of row  
Increment Direction (RID, AC[2]). When RA  
reaches the boundary of RAM (i.e. RA = 0 or  
127), RA will be wrapped around to the other end  
of RAM and continue.  
MY IMPLEMENTATION  
Row Mirroring (MY) is implemented by reversing  
the mapping order between COM electrodes and  
RAM, i.e. the mathematical address generation  
formula becomes:  
MX IMPLEMENTATION  
For the 1st line period of each field  
Column Mirroring (MX) is implemented by  
selecting either (CA) or (127–CA) as the RAM  
column address. Changing MX affects the data  
written to the RAM.  
Line = Mod(SL + MUX-1, 128)  
where MUX = CEN + 1  
Otherwise  
Since MX has no effect on the data already  
stored in RAM, changing MX does not have  
immediate effect on the displayed pattern. To  
refresh the display, refresh the data stored in  
RAM after setting MX.  
Line = Mod(Line-1, 128)  
Visually, the effect of MY is equivalent to flipping  
the display upside down. The data stored in  
display RAM are not affected by MY.  
44  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
WINDOW PROGRAM  
Window program is designed for data-write in a  
specified window range of SRAM address. The  
procedure should start with window boundary  
registers setting (WPP0, WPP1, WPC0 and WPC1)  
and AC[3] setting for inside/outside window mode.  
When AC[3] is set to ‘0’ (default value), data can  
be written to SRAM within the window address  
range which is specified by (WPP0, WPC0) and  
(WPP1, WPC1). When AC[3] is set to ‘1’, data will  
be written to whole SRAM excluding the specified  
window area.  
data-write can be consecutive within the range of  
the specified window. AC[1] will control the data  
write in either column or row direction. AC[2] will  
result the data write starting either from row  
WPP0 or WPP1. MX is for the initial column  
address either from WPC0 to WPC1 or from (MC-  
WPC0 to MC-WPC1).  
Specify the starting point of data-write by issuing  
commands Set Window Program Starting  
Column Address, and Set Window Program  
Starting Row Address.  
The data-write direction will be determined by  
AC[2:0] and MX settings. When AC[0]=1, the  
Example1 (AC[2:0] = 001) :  
AC[3]=0 MX=0  
column  
Example 2 (AC[2:0] = 111) :  
AC[3] = 0 MX = 0  
(0, 0)  
(127, 0)  
(WPP0, WPC0)  
(WPP0, WPC0)  
row  
(WPP1,WPC1)  
(WPP1,WPC1)  
(0, 127)  
Example1-1 :  
Example 2-1 :  
AC[3]=1 MX=0  
AC[3] = 1 MX = 0  
column  
0
(127, 0)  
(WPP0, WPC0)  
(WPP0, WPC0)  
row  
(WPP1,WPC1)  
(WPP1,WPC1)  
(0, 127)  
Revision A_0.6  
45  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
Row  
Adderss  
RAM  
MY=0  
SL=0 SL=16  
MY=1  
SL=0  
SL=16  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM17 COM128 COM16  
COM18 COM127 COM15  
COM19 COM126 COM14  
COM20 COM125 COM13  
COM21 COM124 COM12  
COM22 COM123 COM11  
COM23 COM122 COM10  
COM24 COM121 COM9  
COM25 COM120 COM8  
COM10 COM26 COM119 COM7  
COM11 COM27 COM118 COM6  
COM12 COM28 COM117 COM5  
COM13 COM29 COM116 COM4  
COM14 COM30 COM115 COM3  
COM15 COM31 COM114 COM2  
COM16 COM32 COM113 COM1  
COM17 COM33 COM112 COM128  
COM18 COM34 COM111 COM127  
COM19 COM35 COM110 COM126  
COM20 COM36 COM109 COM125  
COM21 COM37 COM108 COM124  
COM22 COM38 COM107 COM123  
COM23 COM39 COM106 COM122  
COM24 COM40 COM105 COM121  
COM25 COM41 COM104 COM120  
COM26 COM42 COM103 COM119  
COM27 COM43 COM102 COM118  
COM28 COM44 COM101 COM117  
COM29 COM45 COM100 COM116  
68H  
69H  
6AH  
6BH  
6CH  
6DH  
6EH  
6FH  
70H  
71H  
72H  
73H  
74H  
75H  
76H  
77H  
78H  
79H  
7AH  
7BH  
7CH  
7DH  
7EH  
7FH  
COM105 COM121 COM24 COM40  
COM106 COM122 COM23 COM39  
COM107 COM123 COM22 COM38  
COM108 COM124 COM21 COM37  
COM109 COM125 COM20 COM36  
COM110 COM126 COM19 COM35  
COM111 COM127 COM18 COM34  
COM112 COM128 COM17 COM33  
COM113 COM1  
COM114 COM2  
COM115 COM3  
COM116 COM4  
COM117 COM5  
COM118 COM6  
COM119 COM7  
COM120 COM8  
COM121 COM9  
COM122 COM10  
COM123 COM11  
COM124 COM12  
COM125 COM13  
COM126 COM14  
COM127 COM15  
COM128 COM16  
COM16 COM32  
COM15 COM31  
COM14 COM30  
COM13 COM29  
COM12 COM28  
COM11 COM27  
COM10 COM26  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM25  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
Example for memory mapping: let MX = 0, MY = 0, SL = 0, LC[7:6] = 10b ( RRRRR-GGGGGG-BBBBB,  
64K-color ), according to the data shown in the above table (R: 11111b, G: 111111b, B: 11111b):  
1st byte of Write data: 11111111b  
2nd byte of Write data: 11111111b  
46  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
RESET & POWER MANAGEMENT  
TYPES OF RESET  
CHANGING OPERATION MODE  
In addition to Power-ON-Reset, two commands will  
initiate OM transitions:  
UC1697v has two different types of Reset:  
Power-ON-Reset and System-Reset.  
Set Display Enable, and System Reset.  
Power-ON-Reset is performed right after VDD is  
connected to power. Power-On-Reset will first wait  
for about 150mS, depending on the time required  
for VDD to stabilize, and then trigger the System  
Reset.  
When DC[2] is modified by Set Display  
Enable, OM will be updated automatically. There  
is no other action required to enter Sleep mode.  
OM changes are synchronized with the edges of  
UC1697v internal clock. To ensure consistent  
system states, wait at least 10µS after Set  
Display Enableor System Resetcommand.  
System Reset can also be activated by software  
command or by connecting RST pin to ground.  
In the following discussions, Reset means System  
Reset.  
Action  
Mode  
OM  
Reset command  
RST_ pin pulled “L”  
Power ON reset  
RESET STATUS  
Reset  
00  
When UC1697v enters RESET sequence:  
Operation mode will be “Reset”.  
Set Driver Enable to “0”  
Set Driver Enable to “1”  
Sleep  
10  
11  
Normal  
All control registers are reset to default values.  
Refer to section Control Registers for details of  
their default values.  
Table 5: OM changes  
Both Reset mode and Sleep mode drain the  
charges stored in the external capacitors CB0, CB1,  
and CL. When entering Reset mode or Sleep mode,  
the display drivers will be disabled.  
OPERATION MODES  
UC1697v has three operating modes (OM):  
Reset, Sleep, Normal.  
The difference between Sleep mode and Reset  
mode is that, Reset mode clears all control  
registers and restores them to default values, while  
Sleep mode retains all the control registers values  
set by the user.  
Mode  
OM  
Reset  
00  
Sleep Normal  
10 11  
Active Active  
Host Interface  
Clock  
Active  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
It is recommended to use Sleep Mode for Display  
OFF operations as UC1697v consumes very little  
energy in Sleep mode (typically under 2µA).  
LCD Drivers  
Charge Pump  
Draining Circuit  
ON  
OFF  
EXITING SLEEP MODE  
Table 4: Operating Modes  
UC1697v contains internal logic to check whether  
VLCD and VBIAS are ready before releasing COM  
and SEG drivers from their idle states. When  
exiting Sleep or Reset mode, COM and SEG  
drivers will not be activated until UC1697v internal  
voltage sources are restored to their proper values.  
Revision A_0.6  
47  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
POWER-DOWN SEQUENCE  
POWER-UP SEQUENCE  
To prevent the charge stored in capacitors CBX and  
CL from damaging the LCD, when VDD is switched  
off, use Reset mode to enable the built-in draining  
circuit and discharge these capacitors.  
UC1697v power-up sequence is simplified by built-  
in “Power Ready” flags and the automatic  
invocation of System-Reset command after Power-  
ON-Reset.  
The draining resistor is 10 Kfor both VLCD and  
VB+. It is recommended to wait 3 x RC for VLCD and  
1.5 x RC for VB. For example, if CL is 0.1uF, then  
the draining time required for VLCD is ~3 mS.  
System programmers are only required to wait  
150 mS before the CPU starting to issue  
commands to UC1697v. No additional time  
sequences are required between enabling the  
charge pump, turning on the display drivers, writing  
to RAM or any other commands.  
When internal VLCD is not used, UC1697v will NOT  
drain VLCD during RESET. System designers need  
to make sure external VLCD source is properly  
There’s no delay needed while turning on VDD and  
drained off before turning off VDD  
.
VDD2/3, and either one can be turned on first.  
Figure 13: Reference Power-Down Sequence  
Figure 12: Reference Power-Up Sequence  
Either VDD or VDD2/3  
may be turned on first.  
VDD2/3 2.6V  
VDD 1.8V  
TWait > 10mS  
VDD < 0.1V  
VDD2/3 VDD  
Tf < 10 mS  
10µS < T1< 10 mS  
Figure 14: Power Off-On Sequence  
48  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
MULTI-TIME PROGRAM NV MEMORY  
Although user can use Read Status command in  
a polling loop to make sure {MS, WS}={0, 1}  
before proceeding with the normal operations,  
however, it may be simpler to just issue Set  
Display Enablecommand every 0.5~2  
second, repeatedly, together with other LCM  
optimization settings, such as BR, CEN, TC, etc.  
OVERVIEW  
MTP feature is available for UC1697v such that  
LCM makers can record an PM offset value in  
non-volatile memory cells, which can then be  
used to adjust the effective VLCD value, in order to  
achieve high level of consistency for LCM  
contrast across all shipments.  
The above “Periodical re-initializing” approach is  
also an effective safeguard against accidental  
display off events such as  
To accomplish this purpose, three operations are  
supported by UC1697v:  
MTP-Erase, MTP-Program, MTP-Read.  
ESD strikes  
MTP-Program requires an external power source  
supplied to TST4 pin. MTP allows to program at  
least 10 times and should be performed only by  
the LCM makers.  
Mechanical shocks causing LCM  
connector to malfunction temporarily  
HARDWARE VS. SOFTWARE RESET  
The auto-MTP-READ is only performed for  
hardware RESET (power-ON and RST pin), but  
not for software RESET command. This enables  
the ICs to turn on display faster without the delay  
caused by MTP-READ.  
MTP-Read is facilitated by the internal DC-DC  
converter built-in on UC1697v, no external power  
source is required, and it is performed  
automatically after hardware RESET (power-ON  
or pin RESET).  
It is recommended to use software RESET for  
normal operation control purpose and hardware  
RESET only during the event of power up and  
power down.  
OPERATION FOR THE SYSTEM USERS  
For the MTP version of UC1697v, the content of  
the NV memory will be read automatically after  
the power-on and hardware pin RESET. There is  
no user intervention or external power source  
required. When set up properly, the VLCD will be  
fine tuned to achieve high level of consistency for  
the LCM contrast.  
OPERATION FOR THE LCM MAKERS  
Always ERASE the MTP NV memory cells,  
before starting the Write process.  
The MTP-READ is a relatively slow process and  
the time required can vary quite a bit. For a  
successful MTP-READ operation, the MS and  
WS bits in the Read Status commands will exhibit  
the following waveforms.  
RST  
150mS  
MS  
WS  
As illustrated above, the {MS, WS} will go  
through a {0,0}Ö{1,0}Ö{1,1}Ö{0,1} transition.  
When the {MS, WS}={0,1} state is reached, it  
means the LCM is ready to be turned on.  
Revision A_0.6  
49  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
MTP OPERATION FOR LCM MAKERS  
1.  
High voltage supply and timer setting  
In MTP Program operation, two different high voltages are needed. In chip design, one high voltage is  
generated by internal charge pump (VLCD), the other high voltage must be input from TST4 by external  
voltage source.  
VLCD value is controlled by register MTP3 and MTP2. The default values of these two registers are  
appropriate for most applications.  
External TST4 power source is required for MTP Program operation. MTP Programming speed  
depends on the TST4 voltage. Considering the ITO trace resistance in COG modules, it is  
recommended to program the MTP cells one at a time, so that the required 10V at TST4 can be  
maintained with proper consistency.  
No external power source is required for MTP Erase and Read operation. For these MTP operations,  
TST4 should be open, or connected to VDD3  
.
VLCD  
TST4 (external input)  
10V (1mA per bit)  
Floating or VDD3  
Program  
Erase  
MTP3 : 3Dh (12V)  
MTP3 : 3Dh (12V)  
MTP2 : 00h (6.4V)  
Read  
Floating or VDD3  
Note:  
1.  
2.  
Do Erase before Program and program one bit at a time.  
When doing MTP Program or Erase, it’s required to use VDD2/3 3.0V.  
50  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
3.  
Read MTP status bits  
With normal Get Status method (CD=0, W/R=1), MTP operation status can be monitored in the real time.  
There are 3 status bits (WS, MD, MS) in status register. MTP control circuit will read to verify if the operation  
(program, erase) success or not. If the operation succeeded, and current operation will be ended with WS=1.  
If it failed, last operation will be automatically retried two more times. If it fails 3 times, WS will be set to 0  
and the operation is aborted. MD is MTP ID, which is either 1 for MTP IC. No transition.  
Program: 10 V  
TST4  
Program/Erase  
Erase: VDD3  
VLCD=12V  
Read to verify  
VLCD=6.4V  
VLCD  
MTP  
may repeat 3 times  
Command  
MD  
MS  
WS  
MTP status bits, TST4 & VLCD Waveform  
MTP CELL VALUE USAGE  
There are 6 MTP cell bits. They are divided into two groups for different purpose.  
MTP[5:0] : VLCD Trim  
When PMO[5]=1: PM with trim = PM - PMO[4:0]  
When PMO[5]=0: PM with trim = PM + PMO[4:0]  
Revision A_0.6  
51  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
MTP COMMAND SEQUENCE SAMPLE CODES  
The following tables are examples of command sequence for MTP Program and Erase operations. These  
are only to demonstrate some “typical, generic” scenarios. Designers are encouraged to study related  
sections of the datasheet and find out what the best parameters and control sequences are for their specific  
design needs.  
MTP operations (Erase, Program, Read) and Set Display ON is mutual exclusive. There is no harm done to  
the IC or the LCM if this is violated. However, the violating commands will be ignored.  
Type  
Required:  
These items are required  
Customized: These items are not necessary if customer parameters are the same as default  
Advanced:  
Optional:  
We recommend new users to skip these commands and use default values.  
These commands depend on what users want to do.  
C/D  
W/R  
(1)  
The type of the interface cycle. It can be either Command (0) or Data (1)  
The direction of dataflow of the cycle. It can be either Write (0) or Read (1).  
MTP Program Sample Code  
Type C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Chip Action  
Set Line Rate  
Comments  
Set LC[4:3]=11b  
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
0
1
1
0
1
1
1
0
1
0
1
0
1
0
1
1
1
1
1
0
1
0
0
0
0
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
0
0
0
0
1
0
1
0
0
1
0
0
1
1
0
0
1
0
1
Set VMTP1 Potentiometer  
Set VMTP2 Potentiometer  
Set MTP Write Timer  
Set MTP Read Timer  
Set MTP VLCD  
MTP2: 00h(6.4V)  
Set MTP VLCD  
MTP3: 3Dh(12V)  
Set MTP Timer  
MTP4: 50h(100mS)  
Set MTP Timer  
MTP5: 08h(10mS)  
Set MTP Bit Mask  
Set MTP Write Mask  
MTPM  
Ex: To program MTPM[0] to be 1,  
C
R
0
-
0
-
0
-
0
-
0
-
0
-
0
-
0
-
0
-
1
-
set the value to 00000001b *  
Apply TST4 voltage  
Program: 10V  
R
R
0
0
0
0
1
-
0
-
1
0
1
0
1
1
0
0
0
1
0
1
Set MTP Control  
Set MTPC[3]=1  
Set MTPC[2:0]=011  
Check MTP Status until MS=0,  
WS=1  
R
0
1
-
-
-
-
-
WS  
-
MS Get Status & PM  
R
R
Remove TST4 voltage  
Power OFF  
VDD=0V  
* It is recommended that users program one bit at a time.  
52  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(2)  
MTP Erase Sample Code  
Type C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Chip action  
Set Line Rate  
Comments  
Set LC[4:3]=11b  
Set MTP VLCD  
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
0
1
1
0
1
1
1
0
1
0
1
0
1
0
1
1
1
1
1
0
1
0
0
0
0
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
0
0
0
0
1
0
1
0
0
1
0
0
1
1
0
0
1
0
1
Set VMTP1 Potentiometer  
Set VMTP2 Potentiometer  
Set MTP Write Timer  
Set MTP Read Timer  
MTP2: 00h(6.4V)  
Set MTP VLCD  
MTP3: 3Dh(12V)  
Set MTP Timer  
MTP4: 50h(100mS)  
Set MTP Timer  
MTP5: 08h(10mS)  
Set MTP Bit Mask  
Set MTP Write Mask  
MTPM1  
Ex: To erase MTPM[3:0],  
set the value to 00001111b  
C
0
0
0
0
0
0
1
1
1
1
R
R
0
0
0
0
1
-
0
-
1
0
1
0
1
1
0
0
0
1
0
0
Set MTP Control  
Set MTPC[3]=1  
Set MTPC[2:0]=010  
Check MTP Status  
until MS=0 WS=1  
R
0
1
-
-
-
-
-
WS  
-
MS Get Status & PM  
R
VDD=0V  
Power OFF  
Note: It is recommended that users clear first all the bits to be programmed.  
Revision A_0.6  
53  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
SAMPLE POWER MANAGEMENT COMMAND SEQUENCES  
The following tables are examples of command sequence for power-up, power-down and display ON/OFF  
operations. These are only to demonstrate some “typical, generic” scenarios. Designers are encouraged to  
study related sections of the datasheet and find out what the best parameters and control sequences are for  
their specific design needs.  
C/D  
W/R  
Type  
The type of the interface cycle. It can be either Command (0) or Data (1)  
The direction of dataflow of the cycle. It can be either Write (0) or Read (1).  
Required:  
These items are required  
Customized: These items are not necessary if customer parameters are the same as default  
Advanced:  
Optional:  
We recommend new users to skip these commands and use default values.  
These commands depend on what users want to do.  
POWER-UP  
Type C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Chip action  
Comments  
R
Wait until VDD, VDD2/3 are  
stable  
Turn on VDD and VDD2/3  
R
R
R
C
C
A
C
C
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
0
1
1
1
0
1
0
1
0
0
0
1
0
0
0
0
0
1
1
#
0
1
0
#
#
#
#
#
#
#
#
#
#
Set RST pin Low  
Set RST pin High  
Wait 1mS after RST is Low  
Automatic Power-ON Reset Wait 150mS  
Set Temp. Compensation  
Set LCD Mapping  
Set Line Rate  
Set up LCD format specific  
parameters, MX, MY, etc.  
Fine tune for power, flicker,  
contrast, and shading.  
Set Color Mode  
LCD specific operating  
voltage setting  
Set LCD Bias Ratio  
0
0
0
0
1
#
0
#
0
#
0
#
0
#
0
#
0
#
1
#
LCD specific operating  
voltage setting  
R
Set VBIAS Potentiometer  
1
.
0
.
#
.
#
.
#
.
#
.
#
.
#
.
#
.
#
.
O
R
Write display RAM  
Set Display Enable  
Set up display image  
.
.
.
.
.
.
.
.
.
.
1
0
0
0
#
1
#
0
#
1
#
0
#
1
#
1
#
1
#
1
POWER-DOWN  
Type C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Chip action  
System Reset  
Comments  
R
R
0
0
1
1
1
0
0
0
1
0
Draining capacitor  
Wait ~3mS before VDD OFF  
DISPLAY-OFF  
Type C/D W/R D7 D6 D5 D4 D3 D2 D1 D0  
Chip action  
Set Display Disable  
Write display RAM  
Comments  
R
C
0
1
.
0
0
.
1
#
.
0
#
.
1
#
.
0
#
.
1
#
.
1
#
.
1
#
.
0
#
.
Set up display image (Image  
update is optional. Data in  
the RAM is retained through  
the SLEEP state.)  
.
.
.
.
.
.
.
.
.
.
1
0
0
0
#
1
#
0
#
1
#
0
#
1
#
1
#
1
#
1
R
Set Display Enable  
54  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
ESD CONSIDERATION  
UC1600 series products usually are provided in bare die format to customers. This makes the product  
particularly sensitive to ESD damage during handling and manufacturing process. It is therefore highly  
recommended that LCM makers strictly follow the "JESD 625-A Requirements for Handling Electrostatic-  
Discharge-Sensitive (ESDS) Devices" when manufacturing LCM.  
The following pins in UC1697v require special "ESD Sensitivity" consideration in particular:  
Machine Mode  
Human Body Mode  
Test Mode  
VDD  
VSS  
VDD  
VSS  
LCD Driver  
200V  
300V  
300V  
300V  
300V  
300V  
--  
200V  
300V  
300V  
300V  
300V  
300V  
300V  
2.0KV  
3.0KV  
3.0KV  
3.0KV  
3.0KV  
3.0KV  
--  
2.0KV  
3.0KV  
3.0KV  
3.0KV  
3.0KV  
3.0KV  
3.0KV  
LCM Interface  
TST1/2/4  
CB pins  
VLCDIN  
LCM HV pin/  
Test pin  
VLCDOUT  
PWR / GND  
According to UltraChip's Mass Production experiences, the ESD tolerance conditions are believed to be very  
stable and can produce high yield in multiple customer sites. However, special care is still required during  
handling and manufacturing process to avoid unnecessary yield loss due to ESD damages.  
Revision A_0.6  
55  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
ABSOLUTE MAXIMUM RATINGS  
In accordance with IEC134, Note 1 and 2  
Symbol  
VDD  
Parameter  
Min.  
-0.3  
-0.3  
-0.3  
--  
Max.  
Unit  
V
Logic Supply voltage  
+4.0  
+4.0  
VDD2  
LCD Generator Supply voltage  
Analog Circuit Supply voltage  
V
VDD3  
+4.0  
V
VDD2/3-VDD Voltage difference between VDD and VDD2/3  
1.6  
V
VLCD  
VIN  
LCD Driving voltage  
Digital input signal  
-0.3  
-0.4  
-30  
-55  
+19.8  
VDD + 0.5  
+85  
V
V
TOPR  
TSTR  
Operating temperature range  
Storage temperature  
oC  
oC  
+125  
NOTE:  
1. VDD is based on VSS = 0V  
2. Stress beyond ranges listed above may cause permanent damages to the device.  
56  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
SPECIFICATIONS  
DC CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min.  
1.65  
2.5  
Typ.  
Max. Unit  
VDD  
VDD2/3  
VLCD  
VD  
Supply for digital circuit  
Supply for bias & pump  
Charge pump output  
LCD data voltage  
3.3  
3.3  
V
V
V
V
DD2/3 = 2.8V, 25OC  
VDD2/3 = 2.8V, 25OC  
15.2  
16.5  
0.93  
1.76  
V
V
VIL  
Input logic LOW  
0.2VDD  
VIH  
Input logic HIGH  
0.8VDD  
0.8VDD  
V
VOL  
VOH  
IIL  
Output logic LOW  
Output logic HIGH  
Input leakage current  
0.2VDD  
V
V
1.5  
50  
µA  
VDD = VDD2/3 = 3.3V,  
Temp = 85oC  
ISB  
Standby current  
µA  
CIN  
Input capacitance  
Output capacitance  
5
10  
PF  
PF  
COUT  
5
10  
RON(SEG) SEG output impedance  
VLCD = 16.5V  
VLCD = 16.5V  
1000  
1000  
1900  
29.6  
1200  
1200  
2500  
RON(COM) Upward COM output impedance  
RONs(COM) Downward COM output impedance VLCD = 16.5V  
fLINE Average line rate  
LC[4:3] = 10b, 25OC  
-10%  
+10% Klps  
Note : Voltages exceeding the Max. value may still keep the IC operating properly, yet might shorten its  
lifetime.  
POWER CONSUMPTION  
VDD = 2.7 V,  
Bias Ratio = 12,  
PM = 92,  
VLCD = 15.22 V,  
Mux Rate = 128,  
CB = 2.2 µF,  
Line Rate = 10 b,  
Panel Loading (PC[1:0]) = 11 b,  
CL = 330 nF,  
MTP= 00 H,  
Bus mode = 6800,  
Temperature = 25 oC,  
Color Mode = 64 K mode,  
N-line inversion = 17 lines  
All HV outputs are open circuit.  
Display Pattern  
All-Pixel-OFF  
2-pixel checker  
None  
Conditions  
Bus = idle  
Typ. (µA)  
1233  
Max. (µA)  
(TBD)  
(TBD)  
5
Bus = idle  
1692  
Reset (stand-by current)  
< 1  
Revision A_0.6  
57  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
AC CHARACTERISTICS  
CD  
tAS80  
tAH80  
CS0  
CS1  
tCSSA80  
tCY80  
tCSH80  
tPWR80, tPWW80  
tHPW80  
WR0  
WR1  
tDS80  
tDH80  
Write  
D[7:0]  
tACC80  
tOD80  
Read  
D[7:0]  
FIGURE 15: Parallel Bus Timing Characteristics (for 8080 MCU)  
(2.5V VDD< 3.3V, Ta= –30 to +85oC)  
Symbol  
Signal  
Description  
Condition  
Min.  
Max.  
Units  
tAS80  
tAH80  
tCY80  
CD  
Address setup time  
Address hold time  
System cycle time  
16-bit bus  
0
0
nS  
nS  
170  
130  
100  
80  
(read)  
(write)  
(read)  
(write)  
8-bit bus  
85  
50  
65  
40  
tPWR80  
tPWW80  
tHPW80  
WR1  
WR0  
Pulse width 16-bit (read)  
8-bit  
Pulse width 16-bit (write)  
8-bit  
High pulse width  
16-bit bus (read)  
(write)  
nS  
nS  
nS  
WR0, WR1  
85  
65  
50  
40  
8-bit bus (read)  
(write)  
tDS80  
tDH80  
tACC80  
tOD80  
tCSSA80  
tCSH80  
D0~D15  
Data setup time  
Data hold time  
Read access time  
Output disable time  
30  
0
15  
0
nS  
nS  
nS  
CL = 100pF  
60  
30  
CS1/CS0  
Chip select setup time  
0
58  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(1.65V VDD< 2.5V, Ta= –30 to +85oC)  
Symbol  
Signal  
Description  
Condition  
Min.  
Max.  
Units  
tAS80  
tAH80  
tCY80  
Address setup time  
Address hold time  
System cycle time  
0
0
nS  
CD  
nS  
320  
270  
180  
145  
16-bit bus (read)  
(write)  
(read)  
(write)  
8-bit bus  
160  
90  
135  
72  
tPWR80  
tPWW80  
tHPW80  
Pulse width 16-bit (read)  
8-bit (read)  
Pulse width 16-bit (write)  
8-bit (write)  
High pulse width  
16-bit bus (read)  
(write)  
8-bits bus (read)  
(write)  
Data setup time  
Data hold time  
Read access time  
Output disable time  
nS  
nS  
nS  
WR1  
WR0  
160  
135  
90  
WR0, WR1  
D0~D15  
72  
tDS80  
tDH80  
tACC80  
tOD80  
tCSSA80  
tCSH80  
60  
0
-
30  
0
nS  
nS  
nS  
CL = 100pF  
120  
60  
CS1/CS0  
Chip select setup time  
0
Revision A_0.6  
59  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
CD  
tAS68  
tAH68  
CS0  
CS1  
tCSSA68  
tCY68  
tCSH68  
tPWR68, tPWW68  
tLPW68  
WR1  
tDS68  
tDH68  
Write  
D[7:0]  
tACC68  
tOD68  
Read  
D[7:0]  
FIGURE 16: Parallel Bus Timing Characteristics (for 6800 MCU)  
(2.5V VDD< 3.3V, Ta= –30 to +85oC)  
Symbol  
Signal  
Description  
Condition  
Min.  
Max.  
Units  
tAS68  
tAH68  
tCY68  
CD  
Address setup time  
Address hold time  
System cycle time  
0
0
nS  
nS  
170  
130  
100  
80  
16-bit bus  
(read)  
(write)  
(read)  
(write)  
8-bit bus  
85  
50  
65  
40  
tPWR68  
tPWW68  
tLPW68  
WR1  
Pulse width 16-bit (read)  
8-bit  
Pulse width 16-bit (write)  
8-bit  
Low pulse width  
16-bit bus (read)  
(write)  
nS  
nS  
nS  
85  
65  
50  
40  
8-bit bus  
(read)  
(write)  
tDS68  
tDH68  
tACC68  
tOD68  
tCSSA68  
tCSH68  
D0~D7  
Data setup time  
Data hold time  
Read access time  
30  
0
15  
0
nS  
nS  
nS  
CL = 100pF  
60  
30  
Output disable time  
CS1/CS0  
Chip select setup time  
0
60  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
(1.65V VDD< 2.5V, Ta= –30 to +85oC)  
Symbol  
Signal  
Description  
Condition  
Min.  
Max.  
Units  
tAS68  
tAH68  
tCY68  
CD  
Address setup time  
Address hold time  
System cycle time  
0
0
nS  
nS  
320  
270  
180  
145  
16-bit bus (read)  
(write)  
8-bit bus (read)  
(write)  
160  
90  
135  
72  
tPWR68  
tPWW68  
tLPW68  
WR1  
Pulse width 16-bit (read)  
8-bit (read)  
Pulse width 16-bit (write)  
8-bit (write)  
Low pulse width  
16-bit bus (read)  
(write)  
nS  
nS  
nS  
160  
135  
90  
8-bit bus (read)  
(write)  
72  
tDS68  
tDH68  
tACC68  
tOD68  
tCSSA68  
tCSH68  
D0~D7  
Data setup time  
Data hold time  
Read access time  
Output disable time  
60  
0
-
30  
0
nS  
nS  
nS  
CL = 100pF  
120  
60  
CS1/CS0  
Chip select setup time  
0
Revision A_0.6  
61  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
CD  
tASS8  
tAHS8  
CS0  
CS1  
tCSSAS8  
tCYS8  
tLPWS8  
tCSHS8  
tHPWS8  
SCK  
SDA  
tDSS8  
tDHS8  
FIGURE 17: Serial Bus Timing Characteristics (for S8/S8uc)  
(2.5V VDD< 3.3V, Ta= –30 to +85oC)  
Symbol  
tASS8  
Signal  
Description  
Address setup time  
Address hold time  
System cycle time  
Low pulse width  
Condition  
Min.  
0
Max.  
Units  
nS  
CD  
nS  
tAHS8  
0
nS  
tCYS8  
SCK  
40  
20  
20  
nS  
tLPWS8  
tHPWS8  
tDSS8  
tDHS8  
nS  
High pulse width  
nS  
SDA  
Data setup time  
Data hold time  
15  
0
nS  
tCSSAS8  
tCSHS8  
CS1/CS0  
5
5
Chip select setup time  
(1.65V VDD< 2.5V, Ta= –30 to +85oC)  
Symbol  
tASS8  
Signal  
Description  
Address setup time  
Address hold time  
System cycle time  
Low pulse width  
Condition  
Min.  
0
Max.  
Units  
nS  
CD  
nS  
tAHS8  
0
nS  
tCYS8  
SCK  
75  
37  
37  
nS  
tLPWS8  
tHPWS8  
tDSS8  
tDHS8  
nS  
High pulse width  
nS  
SDA  
Data setup time  
Data hold time  
30  
10  
nS  
tCSSAS8  
tCSHS8  
CS1/CS0  
15  
15  
Chip select setup time  
62  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
CS0  
CS1  
tCSS9  
tCYS9  
tWLS9  
tCSHS9  
tWHS9  
SCK  
SDA  
tDSS9  
tDHS9  
FIGURE 18: Serial Bus Timing Characteristics (for S9)  
(2.5V VDD< 3.3V, Ta= –30 to +85oC)  
Symbol  
tCYS9  
Signal  
Description  
System cycle time  
Low pulse width  
High pulse width  
Condition  
Min.  
40  
Max.  
Units  
nS  
SCK  
tLPWS9  
tHPWS9  
tDSS9  
tDHS9  
20  
nS  
15  
nS  
SDA  
Data setup time  
Data hold time  
15  
0
nS  
tCSSAS9  
tCSHS9  
CS1/CS0  
5
5
nS  
Chip select setup time  
(1.65V VDD< 2.5V, Ta= –30 to +85oC)  
Symbol  
tCYS9  
Signal  
Description  
System cycle time  
Low pulse width  
High pulse width  
Condition  
Min.  
75  
Max.  
Units  
nS  
SCK  
tLPWS9  
tHPWS9  
tDSS9  
tDHS9  
40  
nS  
30  
nS  
SDA  
Data setup time  
Data hold time  
30  
0
nS  
tCSSAS9  
tCSHS9  
CS1/CS0  
10  
10  
nS  
Chip select setup time  
Revision A_0.6  
63  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
tRW  
RST  
tRD  
WR[1:0]  
FIGURE 19: Reset Characteristics  
(1.65V VDD< 3.3V, Ta= –30 to +85oC)  
Symbol  
tRW  
Signal  
RST  
Description  
Condition  
Min.  
3
Max.  
Units  
Reset low pulse width  
Reset to WR pulse delay  
µS  
mS  
tRD  
RST, WR  
10  
64  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
PHYSICAL DIMENSIONS  
PAD COORDINATES  
DIE SIZE:  
11309.6 µM x 1273 µM ± 40 µM  
DIE THICKNESS:  
400 µM ± 20 µM  
AU BUMP HEIGHT:  
15 µM  
(HMAX-HMIN) within die 2 µM  
BUMP SIZE:  
SEG /COM: 14.5x138 µM2  
BUMP PITCH:  
26.5 µM  
BUMP GAP:  
12.0 µM  
PAD COORDINATE ORIGIN:  
Chip center  
(Drawing and coordinates are for the  
Circuit/Bump view.)  
Revision A_0.6  
65  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
ALIGNMENT MARK INFORMATION  
U-Left  
Mark  
U-Right  
Mark  
(0,0)  
D-Left  
Mark  
D-Right  
Mark  
SHAPE OF THE ALIGNMENT MARK:  
NOTE:  
3
1
1
1
Alignment marks are on Metal3 under  
Passivation.  
3
C
2
4
The “x” and “+” marks are symmetric  
both horizontally and vertically.  
3
2
2
COORDINATES:  
U-Left Mark (L)  
U-Right Mark (X)  
X
Y
X
Y
1
2
3
-5374.5  
-5363.3  
-5346.5  
586  
569.2  
558  
5346.5  
5374.5  
5353.5  
586  
558  
586  
D-Left Mark (+)  
D-Right Mark (+)  
X
Y
X
Y
1
2
3
4
C
-5419.8  
-5399.8  
-5452.3  
-5367.3  
-5409.8  
-495  
-580  
-527.5  
-547.5  
-537.5  
5399.8  
5419.8  
5367.3  
5452.3  
5409.8  
-495  
-580  
-527.5  
-547.5  
-537.5  
Note: The values of x-coordinate and y-coordinate in the tables are after-rounded.  
TOP METAL AND PASSIVATION:  
SiON / 10.5KÅ  
Metal3 / 9KÅ  
FOR MTP PROCESS CROSS-SECTION  
66  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
PAD COORDINATES  
#
1
2
3
4
5
6
7
Pad  
X
Y
587.375  
556.5  
530  
503.5  
477  
450.5  
424  
397.5  
371  
344.5  
318  
291.5  
265  
238.5  
212  
185.5  
159  
W
H
#
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
Pad  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
X
Y
W
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
65  
65  
45  
65  
65  
65  
45  
65  
65  
45  
65  
45  
45  
45  
45  
65  
45  
65  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
H
DUMMY  
COM20  
COM22  
COM24  
COM26  
COM28  
COM30  
COM32  
COM34  
COM36  
COM38  
COM40  
COM42  
COM44  
COM46  
COM48  
COM50  
COM52  
COM54  
COM56  
COM58  
COM60  
COM62  
COM64  
COM66  
COM68  
COM70  
COM72  
COM74  
COM76  
COM78  
COM80  
COM82  
COM84  
COM86  
COM88  
COM90  
COM92  
COM94  
COM96  
COM98  
COM100  
COM102  
COM104  
DUMMY  
COM106  
COM108  
COM110  
COM112  
COM114  
COM116  
COM118  
COM120  
COM122  
COM124  
COM126  
COM128  
D15  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5551.3  
-5325.05  
-5298.55  
-5272.05  
-5245.55  
-5219.05  
-5192.55  
-5166.05  
-5139.55  
-5113.05  
-5086.55  
-5060.05  
-5033.55  
-4853.9  
-4793.9  
-4733.9  
-4487.9  
-4427.9  
-4181.9  
138 23.25  
-4121.9  
-3875.9  
-3815.9  
-3569.9  
-3509.9  
-3263.9  
-3203.9  
-2957.9  
-2897.9  
-2651.9  
-2591.9  
-2415.1  
-2333.5  
-2253.7  
-2173.9  
-2092.3  
-2010.7  
-1930.9  
-1851.1  
-1769.5  
-1689.7  
-1609.9  
-1530.1  
-1470.1  
-1059.225  
-999.225  
-818.8  
-739  
-659.2  
-579.4  
-519.4  
-459.4  
-399.4  
-339.4  
-279.4  
-219.4  
-159.4  
-99.4  
-39.4  
20.6  
80.6  
140.6  
228.775  
313.6  
373.6  
433.6  
493.6  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541  
-541  
-541.5  
-541  
-541  
-541  
-541.5  
-541  
-541  
-541.5  
-541  
-541.5  
-541.5  
-541.5  
-541.5  
-541  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
118  
118  
119  
118  
118  
118  
119  
118  
118  
119  
118  
119  
119  
119  
119  
118  
119  
118  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
8
9
D2  
D1  
D0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
RST_  
WR0  
VDDX  
WR1  
CD  
CS0  
VDDX  
CS1  
BM0  
VDDX  
BM1  
TST4  
TST4  
TST1  
TST2  
ID0  
132.5  
106  
79.5  
53  
26.5  
0
-26.5  
-53  
-79.5  
-106  
-132.5  
-159  
-185.5  
-212  
-238.5  
-265  
-291.5  
-318  
-344.5  
-371  
-397.5  
-424  
-450.5  
-477  
-503.5  
-530  
-556.5  
VDDX  
ID1  
-541.5  
-541  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DUMMY  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DUMMY  
DUMMY  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
-587.375 138 23.25  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
45  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
119  
119  
119  
119  
119  
119  
553.6  
613.6  
673.6  
733.6  
793.6  
853.6  
913.6  
973.6  
1033.6  
1093.6  
1153.6  
1213.6  
1273.6  
1333.6  
1519.525  
1579.525  
VDDX  
D14  
D13  
D12  
45  
45  
45  
45  
D11  
45  
Revision A_0.6  
67  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
#
Pad  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
DUMMY  
VDD3  
VDD3  
VB0+  
VB0+  
VB0+  
VB0+  
VB1+  
VB1+  
VB1+  
VB1+  
VB1-  
X
Y
W
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
H
#
Pad  
X
Y
-132.5  
-106  
-79.5  
-53  
-26.5  
0
26.5  
53  
79.5  
106  
132.5  
159  
185.5  
212  
238.5  
265  
291.5  
318  
344.5  
371  
397.5  
424  
450.5  
477  
503.5  
530  
556.5  
587.375  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
W
H
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
1639.525  
1699.525  
1759.525  
1819.525  
1879.525  
1939.525  
2125.45  
2185.45  
2245.45  
2305.45  
2365.45  
2425.45  
2485.45  
2573.625  
2750.3  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-541.5  
-533  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
COM71  
COM69  
COM67  
COM65  
COM63  
COM61  
COM59  
COM57  
COM55  
COM53  
COM51  
COM49  
COM47  
COM45  
COM43  
COM41  
COM39  
COM37  
COM35  
COM33  
COM31  
COM29  
COM27  
COM25  
COM23  
COM21  
COM19  
DUMMY  
COM17  
COM15  
COM13  
COM11  
COM9  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5313.25  
5286.75  
5260.25  
5233.75  
5207.25  
5180.75  
5154.25  
5127.75  
5101.25  
5074.75  
5048.25  
5021.75  
4995.25  
4968.75  
4942.25  
4915.75  
4889.25  
4862.75  
4836.25  
4809.75  
4783.25  
4756.75  
4730.25  
4703.75  
4677.25  
4650.75  
4624.25  
4597.75  
4571.25  
4544.75  
4518.25  
4491.75  
4465.25  
4438.75  
4412.25  
4385.75  
4359.25  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
2810.3  
2878.45  
2938.45  
2998.45  
3058.45  
3266.6  
3326.6  
3386.6  
3446.6  
3654.75  
3714.75  
3774.75  
3834.75  
4042.9  
4102.9  
4162.9  
4222.9  
4562.9  
VB1-  
VB1-  
VB1-  
VB0-  
VB0-  
VB0-  
VB0-  
VLCDIN  
VLCDIN  
138 23.25  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
45  
45  
45  
45  
4622.9  
4682.9  
4742.9  
COM7  
COM5  
COM3  
COM1  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
161 VLCDOUT  
162 VLCDOUT  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
COM127  
COM125  
COM123  
COM121  
COM119  
COM117  
COM115  
COM113  
COM111  
COM109  
COM107  
COM105  
DUMMY  
COM103  
COM101  
COM99  
COM97  
COM95  
COM93  
COM91  
COM89  
COM87  
COM85  
COM83  
COM81  
COM79  
COM77  
COM75  
COM73  
5033.55  
5060.05  
5086.55  
5113.05  
5139.55  
5166.05  
5192.55  
5219.05  
5245.55  
5272.05  
5298.55  
5325.05  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
-533  
SEG9  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
-587.375 138 23.25  
-556.5  
-530  
-503.5  
-477  
-450.5  
-424  
-397.5  
-371  
-344.5  
-318  
-291.5  
-265  
-238.5  
-212  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
5551.3  
533  
533  
533  
533  
-185.5  
-159  
68  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
#
Pad  
X
Y
W
H
#
Pad  
X
Y
W
H
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
4332.75  
4306.25  
4279.75  
4253.25  
4226.75  
4200.25  
4173.75  
4147.25  
4120.75  
4094.25  
4067.75  
4041.25  
4014.75  
3988.25  
3961.75  
3935.25  
3908.75  
3882.25  
3855.75  
3829.25  
3802.75  
3776.25  
3749.75  
3723.25  
3696.75  
3670.25  
3643.75  
3617.25  
3590.75  
3564.25  
3537.75  
3511.25  
3484.75  
3458.25  
3431.75  
3405.25  
3378.75  
3352.25  
3325.75  
3299.25  
3272.75  
3246.25  
3219.75  
3193.25  
3166.75  
3140.25  
3113.75  
3087.25  
3060.75  
3034.25  
3007.75  
2981.25  
2954.75  
2928.25  
2901.75  
2875.25  
2848.75  
2822.25  
2795.75  
2769.25  
2742.75  
2716.25  
2689.75  
2663.25  
2636.75  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
SEG94  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
2610.25  
2583.75  
2557.25  
2530.75  
2504.25  
2477.75  
2451.25  
2424.75  
2398.25  
2371.75  
2345.25  
2318.75  
2292.25  
2265.75  
2239.25  
2212.75  
2186.25  
2159.75  
2133.25  
2106.75  
2080.25  
2053.75  
2027.25  
2000.75  
1974.25  
1947.75  
1921.25  
1894.75  
1868.25  
1841.75  
1815.25  
1788.75  
1762.25  
1735.75  
1709.25  
1682.75  
1656.25  
1629.75  
1603.25  
1576.75  
1550.25  
1523.75  
1497.25  
1470.75  
1444.25  
1417.75  
1391.25  
1364.75  
1338.25  
1311.75  
1285.25  
1258.75  
1232.25  
1205.75  
1179.25  
1152.75  
1126.25  
1099.75  
1073.25  
1046.75  
1020.25  
993.75  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG132  
SEG133  
SEG134  
SEG135  
SEG136  
SEG137  
SEG138  
SEG139  
SEG140  
SEG141  
SEG142  
SEG143  
SEG144  
SEG145  
SEG146  
SEG147  
SEG148  
SEG149  
SEG150  
SEG151  
SEG152  
SEG153  
SEG154  
SEG155  
SEG156  
SEG157  
SEG158  
967.25  
940.75  
914.25  
Revision A_0.6  
69  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
#
Pad  
X
Y
W
H
#
Pad  
X
Y
W
H
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
SEG159  
SEG160  
SEG161  
SEG162  
SEG163  
SEG164  
SEG165  
SEG166  
SEG167  
SEG168  
SEG169  
SEG170  
SEG171  
SEG172  
SEG173  
SEG174  
SEG175  
SEG176  
SEG177  
SEG178  
SEG179  
SEG180  
SEG181  
SEG182  
SEG183  
SEG184  
SEG185  
SEG186  
SEG187  
SEG188  
SEG189  
SEG190  
SEG191  
SEG192  
SEG193  
SEG194  
SEG195  
SEG196  
SEG197  
SEG198  
SEG199  
SEG200  
SEG201  
SEG202  
SEG203  
SEG204  
SEG205  
SEG206  
SEG207  
SEG208  
SEG209  
SEG210  
SEG211  
SEG212  
SEG213  
SEG214  
SEG215  
SEG216  
SEG217  
SEG218  
SEG219  
SEG220  
SEG221  
SEG222  
SEG223  
887.75  
861.25  
834.75  
808.25  
781.75  
755.25  
728.75  
702.25  
675.75  
649.25  
622.75  
596.25  
569.75  
543.25  
516.75  
490.25  
463.75  
437.25  
410.75  
384.25  
357.75  
331.25  
304.75  
278.25  
251.75  
225.25  
198.75  
172.25  
145.75  
119.25  
92.75  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
SEG224  
SEG225  
SEG226  
SEG227  
SEG228  
SEG229  
SEG230  
SEG231  
SEG232  
SEG233  
SEG234  
SEG235  
SEG236  
SEG237  
SEG238  
SEG239  
SEG240  
SEG241  
SEG242  
SEG243  
SEG244  
SEG245  
SEG246  
SEG247  
SEG248  
SEG249  
SEG250  
SEG251  
SEG252  
SEG253  
SEG254  
SEG255  
SEG256  
SEG257  
SEG258  
SEG259  
SEG260  
SEG261  
SEG262  
SEG263  
SEG264  
SEG265  
SEG266  
SEG267  
SEG268  
SEG269  
SEG270  
SEG271  
SEG272  
SEG273  
SEG274  
SEG275  
SEG276  
SEG277  
SEG278  
SEG279  
SEG280  
SEG281  
SEG282  
SEG283  
SEG284  
SEG285  
SEG286  
SEG287  
SEG288  
-834.75  
-861.25  
-887.75  
-914.25  
-940.75  
-967.25  
-993.75  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
-1020.25  
-1046.75  
-1073.25  
-1099.75  
-1126.25  
-1152.75  
-1179.25  
-1205.75  
-1232.25  
-1258.75  
-1285.25  
-1311.75  
-1338.25  
-1364.75  
-1391.25  
-1417.75  
-1444.25  
-1470.75  
-1497.25  
-1523.75  
-1550.25  
-1576.75  
-1603.25  
-1629.75  
-1656.25  
-1682.75  
-1709.25  
-1735.75  
-1762.25  
-1788.75  
-1815.25  
-1841.75  
-1868.25  
-1894.75  
-1921.25  
-1947.75  
-1974.25  
-2000.75  
-2027.25  
-2053.75  
-2080.25  
-2106.75  
-2133.25  
-2159.75  
-2186.25  
-2212.75  
-2239.25  
-2265.75  
-2292.25  
-2318.75  
-2345.25  
-2371.75  
-2398.25  
-2424.75  
-2451.25  
-2477.75  
-2504.25  
-2530.75  
66.25  
39.75  
13.25  
-13.25  
-39.75  
-66.25  
-92.75  
-119.25  
-145.75  
-172.25  
-198.75  
-225.25  
-251.75  
-278.25  
-304.75  
-331.25  
-357.75  
-384.25  
-410.75  
-437.25  
-463.75  
-490.25  
-516.75  
-543.25  
-569.75  
-596.25  
-622.75  
-649.25  
-675.75  
-702.25  
-728.75  
-755.25  
-781.75  
-808.25  
70  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
#
Pad  
X
Y
W
H
#
Pad  
X
Y
W
H
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
SEG289  
SEG290  
SEG291  
SEG292  
SEG293  
SEG294  
SEG295  
SEG296  
SEG297  
SEG298  
SEG299  
SEG300  
SEG301  
SEG302  
SEG303  
SEG304  
SEG305  
SEG306  
SEG307  
SEG308  
SEG309  
SEG310  
SEG311  
SEG312  
SEG313  
SEG314  
SEG315  
SEG316  
SEG317  
SEG318  
SEG319  
SEG320  
SEG321  
SEG322  
SEG323  
SEG324  
SEG325  
SEG326  
SEG327  
SEG328  
SEG329  
SEG330  
SEG331  
SEG332  
SEG333  
SEG334  
SEG335  
SEG336  
SEG337  
SEG338  
SEG339  
SEG340  
SEG341  
SEG342  
SEG343  
SEG344  
SEG345  
SEG346  
SEG347  
SEG348  
SEG349  
SEG350  
SEG351  
SEG352  
SEG353  
-2557.25  
-2583.75  
-2610.25  
-2636.75  
-2663.25  
-2689.75  
-2716.25  
-2742.75  
-2769.25  
-2795.75  
-2822.25  
-2848.75  
-2875.25  
-2901.75  
-2928.25  
-2954.75  
-2981.25  
-3007.75  
-3034.25  
-3060.75  
-3087.25  
-3113.75  
-3140.25  
-3166.75  
-3193.25  
-3219.75  
-3246.25  
-3272.75  
-3299.25  
-3325.75  
-3352.25  
-3378.75  
-3405.25  
-3431.75  
-3458.25  
-3484.75  
-3511.25  
-3537.75  
-3564.25  
-3590.75  
-3617.25  
-3643.75  
-3670.25  
-3696.75  
-3723.25  
-3749.75  
-3776.25  
-3802.75  
-3829.25  
-3855.75  
-3882.25  
-3908.75  
-3935.25  
-3961.75  
-3988.25  
-4014.75  
-4041.25  
-4067.75  
-4094.25  
-4120.75  
-4147.25  
-4173.75  
-4200.25  
-4226.75  
-4253.25  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
SEG354  
SEG355  
SEG356  
SEG357  
SEG358  
SEG359  
SEG360  
SEG361  
SEG362  
SEG363  
SEG364  
SEG365  
SEG366  
SEG367  
SEG368  
SEG369  
SEG370  
SEG371  
SEG372  
SEG373  
SEG374  
SEG375  
SEG376  
SEG377  
SEG378  
SEG379  
SEG380  
SEG381  
SEG382  
SEG383  
SEG384  
COM2  
-4279.75  
-4306.25  
-4332.75  
-4359.25  
-4385.75  
-4412.25  
-4438.75  
-4465.25  
-4491.75  
-4518.25  
-4544.75  
-4571.25  
-4597.75  
-4624.25  
-4650.75  
-4677.25  
-4703.75  
-4730.25  
-4756.75  
-4783.25  
-4809.75  
-4836.25  
-4862.75  
-4889.25  
-4915.75  
-4942.25  
-4968.75  
-4995.25  
-5021.75  
-5048.25  
-5074.75  
-5101.25  
-5127.75  
-5154.25  
-5180.75  
-5207.25  
-5233.75  
-5260.25  
-5286.75  
-5313.25  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
533  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
138  
COM4  
COM6  
COM8  
COM10  
COM12  
COM14  
COM16  
COM18  
Revision A_0.6  
71  
ULTRACHIP  
High-Voltage Mixed-Signal IC  
©1999 ~ 2007  
TRAY INFORMATION  
H20-58x453-22  
72  
ES Specifications  
UC1697v  
128x128RGB CSTN Controller-Driver  
REVISION HISTORY  
Revision  
Contents  
Date of Rev.  
0.6  
First Release  
Feb. 7, 2007  
Revision A_0.6  
73  

相关型号:

UC1701

Single-Chip, Ultra-Low Power 65COM by 132SEG Passive Matrix LCD Controller-Driver
ETC

UC1701cGAB

Single-Chip, Ultra-Low Power 65COM by 132SEG Passive Matrix LCD Controller-Driver
ETC

UC1701cGBB

Single-Chip, Ultra-Low Power 65COM by 132SEG Passive Matrix LCD Controller-Driver
ETC

UC1701X

UC1701x is an advanced high-voltage mixed-signal CMOS IC,especially designed for the display needs of ultra-low power hand-held devices.
UTC

UC1702

Quad PWM Relay Driver
TI

UC1702D

0.175A 4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO16, 0.150 INCH, PLASTIC, SOIC-16
TI

UC1702J

0.175A 4 CHANNEL, PWM BASED PRPHL DRVR, CDIP16, CERAMIC, DIP-16
TI

UC1702N

0.175A 4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDIP16, PLASTIC, DIP-16
TI

UC1702_08

Quad PWM Relay Driver
TI

UC1705

High Speed Power Driver
TI

UC1705-SP

具有 40V VDD 和输出锁存器的航天级 QMLV 1.5A/1.5A 单通道栅极驱动器
TI

UC1705D

High Speed Power Driver
TI