VS1003 [ETC]

MP3 / WMA AUDIO CODEC; MP3 / WMA音频编解码器
VS1003
型号: VS1003
厂家: ETC    ETC
描述:

MP3 / WMA AUDIO CODEC
MP3 / WMA音频编解码器

解码器 编解码器
文件: 总57页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VS1003  
VS1003 PRELIMINARY  
VS1003 - MP3/WMA AUDIO CODEC  
Features  
Description  
Decodes MPEG 1 & 2 audio layer III (CBR  
VS1003 is a single-chip MP3/WMA/MIDI audio  
decoder and ADPCM encoder. It contains a high-  
performance, proprietary low-power DSP proces-  
sor core VS DSP4, working data memory, 5 KiB  
instruction RAM and 0.5 KiB data RAM for user  
applications, serial control and input data inter-  
faces, 4 general purpose I/O pins, an UART, as  
well as a high-quality variable-sample-rate mono  
ADC and stereo DAC, followed by an earphone  
amplifier and a ground buffer.  
+VBR +ABR); WMA 4.0/4.1/7/8/9 all pro-  
files (5-384kbps); WAV (PCM + IMA AD-  
PCM);  
General MIDI / SP-MIDI files  
Encodes IMA ADPCM from microphone  
or line input  
Streaming support for MP3 and WAV  
Bass and treble controls  
Operates with a single clock 12..13 MHz.  
Internal PLL clock multiplier  
Low-power operation  
VS1003 receives its input bitstream through a se-  
rial input bus, which it listens to as a system slave.  
The input stream is decoded and passed through a  
digital volume control to an 18-bit oversampling,  
multi-bit, sigma-delta DAC. The decoding is con-  
trolled via a serial control bus. In addition to the  
basic decoding, it is possible to add application  
specific features, like DSP effects, to the user RAM  
memory.  
High-quality on-chip stereo DAC with no  
phase error between channels  
Stereo earphone driver capable of driving a  
30 load  
Separate operating voltages for analog, dig-  
ital and I/O  
5.5 KiB On-chip RAM for user code / data  
Serial control and data interfaces  
Can be used as a slave co-processor  
SPI flash boot for special applications  
UART for debugging purposes  
New functions may be added with software  
and 4 GPIO pins  
audio  
mic  
VS1003  
L
audio  
Mono  
ADC  
Stereo  
DAC  
Stereo Ear−  
phone Driver  
MIC AMP  
MUX  
R
line  
audio  
GPIO  
output  
4
GPIO  
X ROM  
X RAM  
Y ROM  
Y RAM  
DREQ  
SO  
SI  
Serial  
Data/  
4
SCLK  
XCS  
XDCS  
Control  
Interface  
VSDSP  
RX  
UART  
TX  
Clock  
multiplier  
Instruction  
RAM  
Instruction  
ROM  
Version 0.92, 2005-06-07  
1
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
CONTENTS  
Contents  
1
2
3
4
Licenses  
8
8
8
9
Disclaimer  
Definitions  
Characteristics & Specifications  
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
9
4.3 Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.4 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.5 Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.6 Switching Characteristics - Boot Initialization . . . . . . . . . . . . . . . . . . . . . . . 11  
5
Packages and Pin Descriptions  
12  
5.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1.1 LQFP-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1.2 BGA-49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.2 LQFP-48 and BGA-49 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
6
7
Connection Diagram, LQFP-48  
SPI Buses  
15  
16  
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.2 SPI Bus Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.2.1 VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . . . . . . . . . . 16  
Version 0.92, 2005-06-07  
2
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
CONTENTS  
7.2.2 VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.3 Data Request Pin DREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.4 Serial Protocol for Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . 17  
7.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.4.2 SDI in VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . . . . . . 17  
7.4.3 SDI in VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.4.4 Passive SDI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.5 Serial Protocol for Serial Command Interface (SCI) . . . . . . . . . . . . . . . . . . . . 18  
7.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.5.2 SCI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.5.3 SCI Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.6 SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.7 SPI Examples with SM SDINEW and SM SDISHARED set . . . . . . . . . . . . . . . 21  
7.7.1 Two SCI Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.7.2 Two SDI Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.7.3 SCI Operation in Middle of Two SDI Bytes . . . . . . . . . . . . . . . . . . . . 22  
8
Functional Description  
23  
8.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.2 Supported Audio Codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.2.1 Supported MP3 (MPEG layer III) Formats . . . . . . . . . . . . . . . . . . . . 23  
8.2.2 Supported WMA Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.2.3 Supported RIFF WAV Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.2.4 Supported MIDI Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.3 Data Flow of VS1003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Version 0.92, 2005-06-07  
3
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
CONTENTS  
8.4 Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.5 Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.6 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.6.1 SCI MODE (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6.2 SCI STATUS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.6.3 SCI BASS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.6.4 SCI CLOCKF (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.6.5 SCI DECODE TIME (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.6.6 SCI AUDATA (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.6.7 SCI WRAM (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.6.8 SCI WRAMADDR (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.6.9 SCI HDAT0 and SCI HDAT1 (R) . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.6.10 SCI AIADDR (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.6.11 SCI VOL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.6.12 SCI AICTRL[x] (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9
Operation  
37  
9.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.2 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.3 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.4 SPI Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.5 Play/Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.6 Feeding PCM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.7 SDI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.7.1 Sine Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Version 0.92, 2005-06-07  
4
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
CONTENTS  
9.7.2 Pin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.7.3 Memory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.7.4 SCI Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10 VS1003 Registers  
41  
10.1 Who Needs to Read This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.2 The Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.3 VS1003 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.4 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.5 Serial Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.6 DAC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.7 GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.8 Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.9 A/D Modulator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.10Watchdog v1.0 2002-08-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.10.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.11UART v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.11.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.11.2 Status UARTx STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.11.3 Data UARTx DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.11.4 Data High UARTx DATAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.11.5 Divider UARTx DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.11.6 Interrupts and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.12Timers v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.12.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Version 0.92, 2005-06-07  
5
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
CONTENTS  
10.12.2 Configuration TIMER CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.12.3 Configuration TIMER ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.12.4 Timer X Startvalue TIMER Tx[L/H] . . . . . . . . . . . . . . . . . . . . . . . 51  
10.12.5 Timer X Counter TIMER TxCNT[L/H] . . . . . . . . . . . . . . . . . . . . . . 51  
10.12.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.13System Vector Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.13.1 AudioInt, 0x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.13.2 SciInt, 0x21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.13.3 DataInt, 0x22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.13.4 ModuInt, 0x23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.13.5 TxInt, 0x24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.13.6 RxInt, 0x25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.13.7 Timer0Int, 0x26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.13.8 Timer1Int, 0x27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.13.9 UserCodec, 0x0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.14System Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.14.1 WriteIRam(), 0x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.14.2 ReadIRam(), 0x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.14.3 DataBytes(), 0x6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.14.4 GetDataByte(), 0x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.14.5 GetDataWords(), 0xa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.14.6 Reboot(), 0xc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11 Document Version Changes  
56  
11.1 Version 0.92, 2005-06-07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Version 0.92, 2005-06-07  
6
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
LIST OF FIGURES  
11.2 Version 0.91, 2005-02-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.3 Version 0.90, 2005-01-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.4 Version 0.80, 2005-01-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.5 Version 0.70, 2004-07-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.6 Initial version 0.62 for VS1003, 2003-03-19 . . . . . . . . . . . . . . . . . . . . . . . . 56  
12 Contact Information  
57  
List of Figures  
1
2
3
4
5
6
7
8
9
Pin Configuration, LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration, BGA-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Typical Connection Diagram Using LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . 15  
BSYNC Signal - one byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BSYNC Signal - two byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SCI Word Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SCI Word Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Two SCI Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10 Two SDI Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11 Two SDI Bytes Separated By an SCI Operation. . . . . . . . . . . . . . . . . . . . . . . 22  
12 Data Flow of VS1003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
13 ADPCM Frequency Responses with 8kHz sample rate. . . . . . . . . . . . . . . . . . . 30  
14 User’s Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
15 RS232 Serial Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Version 0.92, 2005-06-07  
7
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
1. LICENSES  
1 Licenses  
MPEG Layer-3 audio decoding technology licensed from Fraunhofer IIS and Thomson.  
VS1003 contains WMA decoding technology from Microsoft.  
This product is protected by certain intellectual property rights of Microsoft and cannot be used  
or further distributed without a license from Microsoft.  
2 Disclaimer  
This is a preliminary datasheet. All properties and figures are subject to change.  
3 Definitions  
ASIC Application Specific Integrated Circuit.  
B Byte, 8 bits.  
b Bit.  
IC Integrated Circuit.  
Ki “Kibi” = 10 = 1024 (IEC 60027-2).  
Mi “Mebi” = 20 = 1048576 (IEC 60027-2).  
VS DSP VLSI Solution’s DSP core.  
W Word. In VS DSP, instruction words are 32-bit and data words are 16-bit wide.  
Version 0.92, 2005-06-07  
8
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
4. CHARACTERISTICS & SPECIFICATIONS  
4 Characteristics & Specifications  
4.1 Absolute Maximum Ratings  
Parameter  
Symbol Min  
Max  
Unit  
Analog Positive Supply  
Digital Positive Supply  
I/O Positive Supply  
AVDD -0.3  
CVDD -0.3  
IOVDD -0.3  
3.6  
2.7  
3.6  
V
V
V
Current at Any Digital Output  
Voltage at Any Digital Input  
Operating Temperature  
Storage Temperature  
±50  
mA  
V
C  
C  
-0.3 IOVDD+0.31  
-40  
-65  
+85  
+150  
1 Must not exceed 3.6 V  
4.2 Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Ambient Operating Temperature  
Analog and Digital Ground 1  
Positive Analog  
Positive Digital  
I/O Voltage  
Input Clock Frequency2  
Internal Clock Frequency  
Internal Clock Multiplier3  
Master Clock Duty Cycle  
-25  
+70  
C  
AGND DGND  
AVDD  
0.0  
2.8  
2.5  
2.8  
12.288  
V
2.6  
2.4  
3.6  
2.7  
3.6  
13  
V
V
V
MHz  
CVDD  
IOVDD  
XTALI  
CVDD-0.6V  
12  
12  
×
CLKI  
36.864 50.04 MHz  
4
×
×
40  
50  
60  
%
1 Must be connected together as close the device as possible for latch-up immunity.  
2 The maximum sample rate that can be played with correct speed is XTALI/256.  
Thus, XTALI must be at least 12.288 MHz to be able to play 48 kHz at correct speed.  
3 Reset value is  
4 50.0 MHz (  
×. Set to  
× after reset and allow  
× increase during WMA playback.  
×
MHz or  
×
MHz) is the maximum clock for the full CVDD range.  
Version 0.92, 2005-06-07  
9
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
4. CHARACTERISTICS & SPECIFICATIONS  
4.3 Analog Characteristics  
Unless otherwise noted: AVDD=2.5..3.6V, CVDD=2.4..2.7V, IOVDD=CVDD-0.6V..3.6V, TA=-40..+85C,  
XTALI=12..13MHz, Internal Clock Multiplier  
×. DAC tested with 1307.894 Hz full-scale output  
sinewave, measurement bandwidth 20..20000 Hz, analog output load: LEFT to GBUF 30 , RIGHT to  
GBUF 30 . Microphone test amplitude 50 mVpp, f =1 kHz, Line input test amplitude 1.1 V, f =1 kHz.  
Parameter  
Symbol Min Typ  
Max Unit  
DAC Resolution  
18  
bits  
Total Harmonic Distortion  
Dynamic Range (DAC unmuted, A-weighted)  
S/N Ratio (full scale signal)  
THD  
IDR  
SNR  
0.1  
90  
0.3  
%
dB  
dB  
dB  
dB  
dB  
dB  
70  
50  
Interchannel Isolation (Cross Talk)  
Interchannel Isolation (Cross Talk), with GBUF  
Interchannel Gain Mismatch  
Frequency Response  
Full Scale Output Voltage (Peak-to-peak)  
Deviation from Linear Phase  
Analog Output Load Resistance  
Analog Output Load Capacitance  
Microphone input amplifier gain  
Microphone input amplitude  
Microphone Total Harmonic Distortion  
Microphone S/N Ratio  
75  
40  
-0.5  
-0.1  
1.3  
0.5  
0.1  
1.7  
5
1.51  
302  
Vpp  
AOLR  
MICG  
16  
100  
pF  
dB  
26  
50  
0.02  
62  
1403 mVpp AC  
0.10  
MTHD  
MSNR  
%
dB  
50  
60  
Line input amplitude  
Line input Total Harmonic Distortion  
Line input S/N Ratio  
2200 28003 mVpp AC  
0.06  
68  
LTHD  
LSNR  
0.10  
%
dB  
k
Line and Microphone input impedances  
100  
Typical values are measured of about 5000 devices of Lot 4234011, Week Code 0452.  
1 3.0 volts can be achieved with +-to-+ wiring for mono difference sound.  
2 AOLR may be much lower, but below Typical distortion performance may be compromised.  
3 Above typical amplitude the Harmonic Distortion increases.  
4.4 Power Consumption  
Tested with an MPEG 1.0 Layer-3 128 kbps sample and generated sine. Output at full volume. XTALI  
12.288 MHz. Internal clock multiplier  
×. CVDD = 2.5 V, AVDD = 2.8 V.  
Parameter  
Min Typ Max Unit  
Power Supply Consumption AVDD, Reset  
Power Supply Consumption CVDD, Reset  
0.6  
3.7 50.0  
5.0  
A
A
Power Supply Consumption AVDD, sine test, 30 + GBUF  
Power Supply Consumption CVDD, sine test  
36.9  
12.4  
mA  
mA  
Power Supply Consumption AVDD, no load  
Power Supply Consumption AVDD, output load 30  
Power Supply Consumption AVDD, 30 + GBUF  
Power Supply Consumption CVDD  
7.0  
mA  
mA  
mA  
mA  
10.9  
16.1  
17.5  
Version 0.92, 2005-06-07  
10  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
4. CHARACTERISTICS & SPECIFICATIONS  
4.5 Digital Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
IOVDD+0.31  
Unit  
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Voltage at I = -2.0 mA  
Low-Level Output Voltage at I = 2.0 mA  
Input Leakage Current  
SPI Input Clock Frequency 2  
×IOVDD  
V
V
V
V
A
MHz  
ns  
-0.2  
×IOVDD  
×IOVDD  
×IOVDD  
-1.0  
1.0  
6
50  
Rise time of all output pins, load = 50 pF  
1 Must not exceed 3.6V  
2 Value for SCI reads. SCI and SDI writes allow  
.
4
4.6 Switching Characteristics - Boot Initialization  
Parameter  
Symbol Min  
Max  
Unit  
XTALI  
XRESET active time  
XRESET inactive to software ready  
Power on reset, rise time to CVDD  
2
16600 500001 XTALI  
10  
V/s  
1 DREQ rises when initialization is complete. You should not send any data or commands before that.  
Version 0.92, 2005-06-07  
11  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
5. PACKAGES AND PIN DESCRIPTIONS  
5 Packages and Pin Descriptions  
5.1 Packages  
Both LPQFP-48 and BGA-49 are lead (Pb) free and also RoHS compliant packages. RoHS is a short  
name of Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical  
and electronic equipment.  
5.1.1 LQFP-48  
48  
1
Figure 1: Pin Configuration, LQFP-48.  
LQFP-48 package dimensions are at http://www.vlsi.fi/ .  
5.1.2 BGA-49  
A1 BALL PAD CORNER  
4
5
3
6
7
1
2
A
B
C
D
E
F
G
1.10 REF  
0.80 TYP  
4.80  
7.00  
TOP VIEW  
Figure 2: Pin Configuration, BGA-49.  
BGA-49 package dimensions are at http://www.vlsi.fi/ .  
Version 0.92, 2005-06-07  
12  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
5. PACKAGES AND PIN DESCRIPTIONS  
5.2 LQFP-48 and BGA-49 Pin Descriptions  
Pin Name  
LQFP- BGA49 Pin  
48 Pin Ball Type  
Function  
MICP  
MICN  
1
2
3
4
5
6
7
8
9
C3  
C2  
B1  
D2  
C1  
D3  
D1  
E2  
E1  
F2  
AI  
AI  
DI  
DGND  
CPWR  
IOPWR  
CPWR  
DO  
Positive differential microphone input, self-biasing  
Negative differential microphone input, self-biasing  
Active low asynchronous reset  
Core & I/O ground  
Core power supply  
I/O power supply  
Core power supply  
Data request, input bus  
General purpose IO 2 / serial input data bus clock  
General purpose IO 3 / serial data input  
XRESET  
DGND0  
CVDD0  
IOVDD0  
CVDD1  
DREQ  
GPIO2 / DCLK1  
GPIO3 / SDATA1 10  
XDCS / BSYNC1 13  
DIO  
DIO  
E3  
F3  
G2  
F4  
G3  
E4  
G4  
F5  
DI  
IOPWR  
DO  
DGND  
AO  
AI  
IOPWR  
IOPWR  
DGND  
DGND  
DGND  
DI  
Data chip select / byte sync  
I/O power supply  
Clock VCO output  
Core & I/O ground  
Crystal output  
Crystal input  
I/O power supply  
I/O power supply  
Core & I/O ground  
Core & I/O ground  
Core & I/O ground  
Chip select input (active low)  
Core power supply  
IOVDD1  
VCO  
14  
15  
16  
17  
18  
19  
DGND1  
XTALO  
XTALI  
IOVDD2  
IOVDD3  
DGND2  
DGND3  
DGND4  
XCS  
20  
21  
22  
23  
24  
G5  
F6  
G6  
G7  
CVDD2  
CPWR  
RX  
TX  
SCLK  
SI  
SO  
CVDD3  
TEST  
GPIO0 / SPIBOOT 33  
26  
27  
28  
29  
30  
31  
32  
E6  
F7  
D6  
E7  
D5  
D7  
C6  
C7  
DI  
DO  
DI  
UART receive, connect to IOVDD if not used  
UART transmit  
Clock for serial bus  
Serial input  
Serial output  
DI  
DO3  
CPWR  
DI  
Core power supply  
Reserved for test, connect to IOVDD  
General purpose IO 0 / SPIBOOT, use 100 k pull-down  
resistor2  
DIO  
GPIO1  
34  
B6  
DIO  
General purpose IO 1  
AGND0  
AVDD0  
RIGHT  
AGND1  
AGND2  
GBUF  
AVDD1  
RCAP  
AVDD2  
LEFT  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
C5  
B5  
A6  
B4  
A5  
C4  
A4  
B3  
A3  
B2  
A2  
A1  
APWR  
APWR  
AO  
APWR  
APWR  
AO  
APWR  
AIO  
APWR  
AO  
Analog ground, low-noise reference  
Analog power supply  
Right channel output  
Analog ground  
Analog ground  
Ground buffer  
Analog power supply  
Filtering capacitance for reference  
Analog power supply  
Left channel output  
Analog ground  
AGND3  
LINEIN  
APWR  
AI  
Line input  
1 First pin function is active in New Mode, latter in Compatibility Mode.  
2 Unless pull-down resistor is used, SPI Boot is tried. See Chapter 9.4 for details.  
Version 0.92, 2005-06-07  
13  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
5. PACKAGES AND PIN DESCRIPTIONS  
Pin types:  
Type  
Description  
Type Description  
AO  
AIO  
APWR  
DGND  
CPWR  
Analog output  
DI  
Digital input, CMOS Input Pad  
Analog input/output  
Analog power supply pin  
Core or I/O ground pin  
Core power supply pin  
DO  
DIO  
Digital output, CMOS Input Pad  
Digital input/output  
DO3 Digital output, CMOS Tri-stated Output Pad  
AI Analog input  
IOPWR I/O power supply pin  
In BGA-49, no-connect balls are A7, B7, D4, E5, F1, G1.  
In LQFP-48, no-connect pins are 11, 12, 25, 35, 36.  
Version 0.92, 2005-06-07  
14  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
6. CONNECTION DIAGRAM, LQFP-48  
6 Connection Diagram, LQFP-48  
Figure 3: Typical Connection Diagram Using LQFP-48.  
The ground buffer GBUF can be used for common voltage (1.24 V) for earphones. This will eliminate  
the need for large isolation capacitors on line outputs, and thus the audio output pins from VS1003 may  
be connected directly to the earphone connector.  
If GBUF is not used, LEFT and RIGHT must be provided with 100 F capacitors.  
If UART is not used, RX should be connected to IOVDD and TX be unconnected.  
Do not connect any external load to XTALO.  
Note: This connection assumes SM SDINEW is active (see Chapter 8.6.1). If also SM SDISHARE is  
used, xDCS doesn’t need to be connected (see Chapter 7.2.1).  
Version 0.92, 2005-06-07  
15  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
7 SPI Buses  
7.1 General  
The SPI Bus - that was originally used in some Motorola devices - has been used for both VS1003’s  
Serial Data Interface SDI (Chapters 7.4 and 8.4) and Serial Control Interface SCI (Chapters 7.5 and 8.5).  
7.2 SPI Bus Pin Descriptions  
7.2.1 VS1002 Native Modes (New Mode)  
These modes are active on VS1003 when SM SDINEW is set to 1 (default at startup). DCLK, SDATA  
and BSYNC are replaced with GPIO2, GPIO3 and XDCS, respectively.  
SDI Pin SCI Pin Description  
XDCS  
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state. If SM SDISHARE is 1, pin  
XDCS is not used, but the signal is generated internally by inverting  
XCS.  
SCK  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. If a chip select is active, SI is sampled on the rising CLK edge.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SI  
-
SO  
7.2.2 VS1001 Compatibility Mode  
This mode is active when SM SDINEW is set to 0. In this mode, DCLK, SDATA and BSYNC are active.  
SDI Pin SCI Pin Description  
-
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state.  
BSYNC  
DCLK  
-
SDI data is synchronized with a rising edge of BSYNC.  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. SI is sampled on the rising SCK edge, if XCS is low.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SDATA  
-
SI  
SO  
Version 0.92, 2005-06-07  
16  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
7.3 Data Request Pin DREQ  
The DREQ pin/signal is used to signal if VS1003’s FIFO is capable of receiving data. If DREQ is high,  
VS1003 can take at least 32 bytes of SDI data or one SCI command. When these criteria are not met,  
DREQ is turned low, and the sender should stop transferring new data.  
Because of the 32-byte safety area, the sender may send upto 32 bytes of SDI data at a time without  
checking the status of DREQ, making controlling VS1003 easier for low-speed microcontrollers.  
Note: DREQ may turn low or high at any time, even during a byte transmission. Thus, DREQ should  
only be used to decide whether to send more bytes. It should not abort a transmission that has already  
started.  
Note: In VS10XX products upto VS1002, DREQ was only used for SDI. In VS1003 DREQ is also used  
to tell the status of SCI.  
7.4 Serial Protocol for Serial Data Interface (SDI)  
7.4.1 General  
The serial data interface operates in slave mode so DCLK signal must be generated by an external circuit.  
Data (SDATA signal) can be clocked in at either the rising or falling edge of DCLK (Chapter 8.6).  
VS1003 assumes its data input to be byte-sychronized. SDI bytes may be transmitted either MSb or LSb  
first, depending of contents of SCI MODE (Chapter 8.6.1).  
The firmware is able to accept the maximum bitrate the SDI supports.  
7.4.2 SDI in VS1002 Native Modes (New Mode)  
In VS1002 native modes (SM NEWMODE is 1), byte synchronization is achieved by XDCS. The state of  
XDCS may not change while a data byte transfer is in progress. To always maintain data synchronization  
even if there may be glitches in the boards using VS1003, it is recommended to turn XDCS every now  
and then, for instance once after every flash data block or a few kilobytes, just to keep sure the host and  
VS1003 are in sync.  
If SM SDISHARE is 1, the XDCS signal is internally generated by inverting the XCS input.  
For new designs, using VS1002 native modes are recommended.  
Version 0.92, 2005-06-07  
17  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
7.4.3 SDI in VS1001 Compatibility Mode  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 4: BSYNC Signal - one byte transfer.  
When VS1003 is running in VS1001 compatibility mode, a BSYNC signal must be generated to ensure  
correct bit-alignment of the input bitstream. The first DCLK sampling edge (rising or falling, depending  
on selected polarity), during which the BSYNC is high, marks the first bit of a byte (LSB, if LSB-first  
order is used, MSB, if MSB-first order is used). If BSYNC is ’1’ when the last bit is received, the receiver  
stays active and next 8 bits are also received.  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 5: BSYNC Signal - two byte transfer.  
7.4.4 Passive SDI Mode  
If SM NEWMODE is 0 and SM SDISHARE is 1, the operation is otherwise like the VS1001 compat-  
ibility mode, but bits are only received while the BSYNC signal is ’1’. Rising edge of BSYNC is still  
used for synchronization.  
7.5 Serial Protocol for Serial Command Interface (SCI)  
7.5.1 General  
The serial bus protocol for the Serial Command Interface SCI (Chapter 8.5) consists of an instruction  
byte, address byte and one 16-bit data word. Each read or write operation can read or write a single  
register. Data bits are read at the rising edge, so the user should update data at the falling edge. Bytes are  
always send MSb first.  
The operation is specified by an 8-bit instruction opcode. The supported instructions are read and write.  
See table below.  
Instruction  
Name  
Opcode  
Operation  
READ  
0b0000 0011 Read data  
WRITE 0b0000 0010 Write data  
Note: VS1003 sets DREQ low after each SCI operation. The duration depends on the operation. It is not  
allowed to start a new SCI/SDI operation before DREQ is high again.  
Version 0.92, 2005-06-07  
18  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
7.5.2 SCI Read  
XCS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
30 31  
SCK  
3
2
1
0
SI  
don’t care  
data out  
don’t care  
0
0
0
0
0
0
1
1
0
0
0
0
instruction (read)  
address  
15 14  
1
0
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
execution  
DREQ  
Figure 6: SCI Word Read  
VS1003 registers are read from using the following sequence, as shown in Figure 6. First, XCS line is  
pulled low to select the device. Then the READ opcode (0x3) is transmitted via the SI line followed by  
an 8-bit word address. After the address has been read in, any further data on SI is ignored by the chip.  
The 16-bit data corresponding to the received address will be shifted out onto the SO line.  
XCS should be driven high after data has been shifted out.  
DREQ is driven low for a short while when in a read operation by the chip. This is a very short time and  
doesn’t require special user attention.  
7.5.3 SCI Write  
XCS  
0
0
0
1
2
3
4
5
6
1
0
7
0
0
8
0
0
9
0
0
10 11 12 13 14 15 16 17  
30 31  
SCK  
15 14  
1
0
3
2
1
0
X
SI  
0
0
0
0
0
0
0
data out  
instruction (write)  
address  
X
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
execution  
DREQ  
Figure 7: SCI Word Write  
VS1003 registers are written from using the following sequence, as shown in Figure 7. First, XCS line  
is pulled low to select the device. Then the WRITE opcode (0x2) is transmitted via the SI line followed  
by an 8-bit word address.  
Version 0.92, 2005-06-07  
19  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
After the word has been shifted in and the last clock has been sent, XCS should be pulled high to end the  
WRITE sequence.  
After the last bit has been sent, DREQ is driven low for the duration of the register update, marked “exe-  
cution” in the figure. The time varies depending on the register and its contents (see table in Chapter 8.6  
for details). If the maximum time is longer than what it takes from the microcontroller to feed the next  
SCI command or SDI byte, it is not allowed to finish a new SCI/SDI operation before DREQ has risen  
up again.  
7.6 SPI Timing Diagram  
tWL tWH  
tXCSH  
tXCSS  
XCS  
SCK  
SI  
tXCS  
30  
0
1
14  
15  
16  
31  
tH  
tSU  
SO  
tZ  
tV  
tDIS  
Figure 8: SPI Timing Diagram.  
Symbol Min  
Max Unit  
tXCSS  
tSU  
tH  
5
-26  
2
ns  
ns  
CLKI cycles  
tZ  
0
2
2
ns  
CLKI cycles  
CLKI cycles  
2 (+ 25ns1) CLKI cycles  
ns  
tWL  
tWH  
tV  
tXCSH  
tXCS  
tDIS  
-26  
2
CLKI cycles  
10 ns  
1 25ns is when pin loaded with 100pF capacitance. The time is shorter with lower capacitance.  
Note: As tWL and tWH, as well as tH require at least 2 clock cycles, the maximum speed for the SPI  
bus that can easily be used is 1/6 of VS1003’s internal clock speed CLKI. Slightly higher speed can be  
achieved with very careful timing tuning. For details, see Application Notes for VS10XX.  
Note: Although the timing is derived from the internal clock CLKI, the system always starts up in  
mode, thus CLKI XTALI.  
×
Note: Negative numbers mean that the signal can change in different order from what is shown in the  
diagram.  
Version 0.92, 2005-06-07  
20  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
7.7 SPI Examples with SM SDINEW and SM SDISHARED set  
7.7.1 Two SCI Writes  
SCI Write 1  
SCI Write 2  
XCS  
0
1
2
3
30  
31  
32  
33  
61  
62  
63  
SCK  
1
0
2
1
0
SI  
0
0
0
0
X
0
0
X
DREQ up before finishing next SCI write  
DREQ  
Figure 9: Two SCI Operations.  
Figure 9 shows two consecutive SCI operations. Note that xCS must be raised to inactive state between  
the writes. Also DREQ must be respected as shown in the figure.  
7.7.2 Two SDI Bytes  
SDI Byte 1  
SDI Byte 2  
XCS  
0
1
2
3
6
7
8
9
13  
14  
15  
SCK  
SI  
7
6
5
4
3
1
0
7
6
5
2
1
0
X
DREQ  
Figure 10: Two SDI Bytes.  
SDI data is synchronized with a raising edge of xCS as shown in Figure 10. However, every byte doesn’t  
need separate synchronization.  
Version 0.92, 2005-06-07  
21  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
7. SPI BUSES  
7.7.3 SCI Operation in Middle of Two SDI Bytes  
SDI Byte  
SDI Byte  
SCI Operation  
XCS  
0
1
7
8
9
39  
40  
41  
46  
47  
SCK  
7
6
5
1
0
7
6
5
1
0
X
SI  
0
0
DREQ high before end of next transfer  
Figure 11: Two SDI Bytes Separated By an SCI Operation.  
Figure 11 shows how an SCI operation is embedded in between SDI operations. xCS edges are used to  
synchronize both SDI and SCI. Remember to respect DREQ as shown in the figure.  
Version 0.92, 2005-06-07  
22  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8 Functional Description  
8.1 Main Features  
VS1003 is based on a proprietary digital signal processor, VS DSP. It contains all the code and data  
memory needed for MP3, WMA and WAV PCM + ADPCM audio decoding, MIDI synthesizer, together  
with serial interfaces, a multirate stereo audio DAC and analog output amplifiers and filters. Also AD-  
PCM audio encoding is supported using a microphone amplifier and A/D converter. A UART is provided  
for debugging purposes.  
8.2 Supported Audio Codecs  
Conventions  
Mark Description  
+
-
Format is supported  
Format exists but is not supported  
Format doesn’t exist  
8.2.1 Supported MP3 (MPEG layer III) Formats  
MPEG 1.01:  
Samplerate / Hz  
Bitrate / kbit/s  
32  
40  
48  
56  
64  
80  
96  
112 128 160 192 224 256 320  
48000  
44100  
32000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
MPEG 2.01:  
Samplerate / Hz  
Bitrate / kbit/s  
8
16  
24  
32  
40  
48  
56  
64  
80  
96  
112 128 144 160  
24000  
22050  
16000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
MPEG 2.51 2  
:
Samplerate / Hz  
Bitrate / kbit/s  
8
16  
24  
32  
40  
48  
56  
64  
80  
96  
112 128 144 160  
12000  
11025  
8000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1 Also all variable bitrate (VBR) formats are supported.  
2 Incompatibilities may occur because MPEG 2.5 is not a standard format.  
Version 0.92, 2005-06-07  
23  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.2.2 Supported WMA Formats  
Windows Media Audio codec versions 2, 7, 8, and 9 are supported. All WMA profiles (L1, L2, and L3)  
are supported. Previously streams were separated into Classes 1, 2a, 2b, and 3. The decoder has passed  
Microsoft’s conformance testing program.  
WMA 4.0 / 4.1:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
6
8
10  
12  
+
16  
20  
22  
32  
40  
48  
64  
80  
96  
128 160 192  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
WMA 7:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
6
8
10  
12  
+
16  
20  
22  
32  
40  
48  
64  
80  
96  
128 160 192  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
WMA 8:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
6
8
10  
12  
+
16  
20  
22  
32  
40  
48  
64  
80  
96  
128 160 192  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
WMA 9:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
6
8
10 12 16 20 22 32 40 48 64 80 96 128 160 192 256 320  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
In addition to these expected WMA decoding profiles, all other bitrate and samplerate combinations are  
supported, including variable bitrate WMA streams. Note that WMA does not consume the bitstream as  
evenly as MP3, so you need a higher peak transfer capability for clean playback at the same bitrate.  
Version 0.92, 2005-06-07  
24  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.2.3 Supported RIFF WAV Formats  
The most common RIFF WAV subformats are supported.  
Format Name  
Supported Comments  
0x01  
0x02  
0x03  
0x06  
0x07  
0x10  
0x11  
0x15  
0x16  
0x30  
0x31  
0x3b  
0x3c  
0x40  
0x41  
0x50  
0x55  
0x64  
0x65  
PCM  
ADPCM  
IEEE FLOAT  
ALAW  
MULAW  
OKI ADPCM  
IMA ADPCM  
DIGISTD  
DIGIFIX  
DOLBY AC2  
GSM610  
ROCKWELL ADPCM  
ROCKWELL DIGITALK  
G721 ADPCM  
G728 CELP  
MPEG  
MPEGLAYER3  
G726 ADPCM  
G722 ADPCM  
+
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
+
-
-
16 and 8 bits, any sample rate 48kHz  
Any sample rate 48kHz  
For supported MP3 modes, see Chapter 8.2.1  
Version 0.92, 2005-06-07  
25  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.2.4 Supported MIDI Formats  
General MIDI and SP-MIDI format 0 files are played. Format 1 and 2 files must be converted to format  
0 by the user. The maximum simultaneous polyphony is 40. Actual polyphony depends on the internal  
clock rate (which is user-selectable), the instruments used, and the possible postprocessing effects en-  
abled, such as bass and treble enhancers. The polyphony restriction algorithm makes use of the SP-MIDI  
MIP table, if present.  
36.86 MHz ( × input clock) achieves 16-26 simultaneous sustained notes. The instantaneous amount of  
notes can be larger. 36 MHz is a fair compromise between power consumption and quality, but higher  
clocks can be used to increase the polyphony.  
VS1003B implements 36 distinct instruments. Each melodic, effect, and percussion instrument is mapped  
into one of these instruments.  
VS1003B  
Melodic  
Effect  
Percussion  
piano  
reverse cymbal  
bass drum  
vibraphone  
organ  
guitar fret noise snare  
breath  
closed hihat  
guitar  
seashore  
open hihat  
high tom  
distortion guitar bird tweet  
bass  
telephone  
helicopter  
applause  
gunshot  
low tom  
violin  
strings  
trumpet  
sax  
flute  
lead  
crash cymbal 2  
ride cymbal  
tambourine  
high conga  
low conga  
maracas  
pad  
claves  
steeldrum  
Version 0.92, 2005-06-07  
26  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.3 Data Flow of VS1003  
MP3/PlusV/  
SDI  
Bitstream  
FIFO  
WAV/ADPCM/  
WMA decode/  
MIDI decode  
SM_ADPCM=0  
AIADDR = 0  
SB_AMPLITUDE=0  
ST_AMPLITUDE=0  
L
User  
Application  
Bass  
enhancer  
Treble  
enhancer  
Volume  
control  
Audio  
FIFO  
S.rate.conv.  
and DAC  
R
AIADDR != 0  
SB_AMPLITUDE!=0  
ST_AMPLITUDE!=0  
SCI_VOL  
2048 stereo  
samples  
Figure 12: Data Flow of VS1003.  
First, depending on the audio data, and provided ADPCM encoding mode is not set, MP3, WMA, PCM  
WAV, IMA ADPCM WAV, or MIDI data is received and decoded from the SDI bus.  
After decoding, if SCI AIADDR is non-zero, application code is executed from the address pointed to  
by that register. For more details, see Application Notes for VS10XX.  
Then data may be sent to the Bass and Treble Enhancer depending on the SCI BASS register.  
After that the signal is fed to the volume control unit, which also copies the data to the Audio FIFO.  
The Audio FIFO holds the data, which is read by the Audio interrupt (Chapter 10.13.1) and fed to the  
sample rate converter and DACs. The size of the audio FIFO is 2048 stereo (2×16-bit) samples, or 8  
KiB.  
The sample rate converter converts all different sample rates to XTALI/2, or 128 times the highest us-  
able sample rate. This removes the need for complex PLL-based clocking schemes and allows almost  
unlimited sample rate accuracy with one fixed input clock frequency. With a 12.288 MHz clock, the DA  
converter operates at  
×
kHz, i.e. 6.144 MHz, and creates a stereo in-phase analog signal. The  
oversampled output is low-pass filtered by an on-chip analog filter. This signal is then forwarded to the  
earphone amplifier.  
8.4 Serial Data Interface (SDI)  
The serial data interface is meant for transferring compressed MP3 or WMA data, WAV PCM and AD-  
PCM data as well as MIDI data.  
If the input of the decoder is invalid or it is not received fast enough, analog outputs are automatically  
muted.  
Also several different tests may be activated through SDI as described in Chapter 9.  
Version 0.92, 2005-06-07  
27  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.5 Serial Control Interface (SCI)  
The serial control interface is compatible with the SPI bus specification. Data transfers are always 16  
bits. VS1003 is controlled by writing and reading the registers of the interface.  
The main controls of the control interface are:  
control of the operation mode, clock, and builtin effects  
access to status information and header data  
access to encoded digital data  
uploading user programs  
8.6 SCI Registers  
SCI registers, prefix SCI  
Reg Type Reset  
Time1 Abbrev[bits]  
70 CLKI4 MODE  
40 CLKI STATUS  
2100 CLKI BASS  
11000 XTALI5 CLOCKF  
Description  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
0x800  
Mode control  
Status of VS1003  
Built-in bass/treble enhancer  
Clock freq + multiplier  
0x3C3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
40 CLKI DECODE TIME Decode time in seconds  
3200 CLKI AUDATA  
80 CLKI WRAM  
Misc. audio data  
RAM write/read  
Base address for RAM write/read  
Stream header data 0  
Stream header data 1  
Start address of application  
Volume control  
Application control register 0  
Application control register 1  
Application control register 2  
Application control register 3  
80 CLKI WRAMADDR  
-
-
HDAT0  
HDAT1  
r
rw  
rw  
rw  
rw  
rw  
rw  
3200 CLKI2 AIADDR  
2100 CLKI VOL  
50 CLKI2 AICTRL0  
50 CLKI2 AICTRL1  
50 CLKI2 AICTRL2  
50 CLKI2 AICTRL3  
1
This is the worst-case time that DREQ stays low after writing to this register. The user may choose to  
skip the DREQ check for those register writes that take less than 100 clock cycles to execute.  
2 In addition, the cycles spent in the user application routine must be counted.  
3 Firmware changes the value of this register immediately to 0x38, and in less than 100 ms to 0x30.  
4 When mode register write specifies a software reset the worst-case time is 16600 XTALI cycles.  
5
Writing to this register may force internal clock to run at  
× XTALI for a while. Thus it is not a  
good idea to send SCI or SDI bits while this register update is in progress.  
Note that if DREQ is low when an SCI write is done, DREQ also stays low after SCI write processing.  
Version 0.92, 2005-06-07  
28  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.1 SCI MODE (RW)  
SCI MODE is used to control the operation of VS1003 and defaults to 0x0800 (SM SDINEW set).  
Bit Name  
SM DIFF  
Function  
Value Description  
normal in-phase audio  
0
1
2
3
4
5
6
7
8
9
Differential  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
left channel inverted  
right  
wrong  
no reset  
reset  
SM SETTOZERO  
SM RESET  
Set to zero  
Soft reset  
SM OUTOFWAV  
SM PDOWN  
SM TESTS  
Jump out of WAV decoding  
Powerdown  
no  
yes  
power on  
powerdown  
not allowed  
allowed  
no  
Allow SDI tests  
Stream mode  
SM STREAM  
yes  
right  
SM SETTOZERO2 Set to zero  
wrong  
rising  
falling  
MSb first  
MSb last  
no  
yes  
no  
yes  
no  
yes  
no  
yes  
microphone  
line in  
SM DACT  
DCLK active edge  
SM SDIORD  
SDI bit order  
10 SM SDISHARE  
11 SM SDINEW  
12 SM ADPCM  
13 SM ADPCM HP  
14 SM LINE IN  
Share SPI chip select  
VS1002 native SPI modes  
ADPCM recording active  
ADPCM high-pass filter active  
ADPCM recording selector  
When SM DIFF is set, the player inverts the left channel output. For a stereo input this creates virtual  
surround, and for a mono input this creates a differential left/right signal.  
Software reset is initiated by setting SM RESET to 1. This bit is cleared automatically.  
If you want to stop decoding a WAV, WMA, or MIDI file in the middle, set SM OUTOFWAV, and send  
data honouring DREQ until SM OUTOFWAV is cleared. SCI HDAT1 will also be cleared. For WMA  
and MIDI it is safest to continue sending the stream, send zeroes for WAV.  
Bit SM PDOWN sets VS1003 into software powerdown mode. Note that software powerdown is not  
nearly as power efficient as hardware powerdown activated with the XRESET pin.  
If SM TESTS is set, SDI tests are allowed. For more details on SDI tests, look at Chapter 9.7.  
Version 0.92, 2005-06-07  
29  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
SM STREAM activates VS1003’s stream mode. In this mode, data should be sent with as even intervals  
as possible (and preferable with data blocks of less than 512 bytes), and VS1003 makes every attempt  
to keep its input buffer half full by changing its playback speed upto 5%. For best quality sound, the  
average speed error should be within 0.5%, the bitrate should not exceed 160 kbit/s and VBR should not  
be used. For details, see Application Notes for VS10XX. This mode does not work with WMA files.  
SM DACT defines the active edge of data clock for SDI. When ’0’, data is read at the rising edge, when  
’1’, data is read at the falling edge.  
When SM SDIORD is clear, bytes on SDI are sent as a default MSb first. By setting SM SDIORD, the  
user may reverse the bit order for SDI, i.e. bit 0 is received first and bit 7 last. Bytes are, however, still  
sent in the default order. This register bit has no effect on the SCI bus.  
Setting SM SDISHARE makes SCI and SDI share the same chip select, as explained in Chapter 7.2, if  
also SM SDINEW is set.  
Setting SM SDINEW will activate VS1002 native serial modes as described in Chapters 7.2.1 and 7.4.2.  
Note, that this bit is set as a default when VS1003 is started up.  
By activating SM ADPCM and SM RESET at the same time, the user will activate IMA ADPCM record-  
ing mode. More information is available in the Application Notes for VS10XX.  
If SM ADPCM HP is set at the same time as SM ADPCM and SM RESET, ADPCM mode will start  
with a high-pass filter. This may help intelligibility of speech when there is lots of background noise.  
The difference created to the ADPCM encoder frequency response is as shown in Figure 13.  
VS1003 AD Converter with and Without HP Filter  
5
No High−Pass  
High−Pass  
0
−5  
−10  
−15  
−20  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Frequency / Hz  
Figure 13: ADPCM Frequency Responses with 8kHz sample rate.  
SM LINE IN is used to select the input for ADPCM recording. If ’0’, microphone input pins MICP and  
MICN are used; if ’1’, LINEIN is used.  
Version 0.92, 2005-06-07  
30  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.2 SCI STATUS (RW)  
SCI STATUS contains information on the current status of VS1003 and lets the user shutdown the chip  
without audio glitches.  
Name  
Bits Description  
SS VER  
6:4 Version  
SS APDOWN2  
SS APDOWN1  
SS AVOL  
3
2
Analog driver powerdown  
Analog internal powerdown  
1:0 Analog volume control  
SS VER is 0 for VS1001, 1 for VS1011, 2 for VS1002 and 3 for VS1003.  
SS APDOWN2 controls analog driver powerdown. Normally this bit is controlled by the system firmware.  
However, if the user wants to powerdown VS1003 with a minimum power-off transient, turn this bit to  
1, then wait for at least a few milliseconds before activating reset.  
SS APDOWN1 controls internal analog powerdown. This bit is meant to be used by the system firmware  
only.  
SS AVOL is the analog volume control: 0 = -0 dB, 1 = -6 dB, 3 = -12 dB. This register is meant to be  
used automatically by the system firmware only.  
8.6.3 SCI BASS (RW)  
Name  
Bits  
Description  
ST AMPLITUDE 15:12 Treble Control in 1.5 dB steps (-8..7, 0 = off)  
ST FREQLIMIT  
SB AMPLITUDE  
SB FREQLIMIT  
11:8 Lower limit frequency in 1000 Hz steps (0..15)  
7:4  
3:0  
Bass Enhancement in 1 dB steps (0..15, 0 = off)  
Lower limit frequency in 10 Hz steps (2..15)  
The Bass Enhancer VSBE is a powerful bass boosting DSP algorithm, which tries to take the most out  
of the users earphones without causing clipping.  
VSBE is activated when SB AMPLITUDE is non-zero. SB AMPLITUDE should be set to the user’s  
preferences, and SB FREQLIMIT to roughly 1.5 times the lowest frequency the user’s audio system can  
reproduce. For example setting SCI BASS to 0x00f6 will have 15 dB enhancement below 60 Hz.  
Note: Because VSBE tries to avoid clipping, it gives the best bass boost with dynamical music material,  
or when the playback volume is not set to maximum. It also does not create bass: the source material  
must have some bass to begin with.  
Treble Control VSTC is activated when ST AMPLITUDE is non-zero. For example setting SCI BASS  
to 0x7a00 will have 10.5 dB treble enhancement at and above 10 kHz.  
Bass Enhancer uses about 3.0 MIPS and Treble Control 1.2 MIPS at 44100 Hz sample rate. Both can be  
on simultaneously.  
Version 0.92, 2005-06-07  
31  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.4 SCI CLOCKF (RW)  
The operation of SCI CLOCKF is different in VS1003 than in VS10x1 and VS1002.  
SCI CLOCKF bits  
Name  
Bits  
Description  
SC MULT 15:13 Clock multiplier  
SC ADD  
12:11 Allowed multiplier addition  
SC FREQ 10: 0 Clock frequency  
SC MULT activates the built-in clock multiplier. This will multiply XTALI to create a higher CLKI.  
The values are as follows:  
SC MULT MASK CLKI  
0
1
2
3
4
5
6
7
0x0000 XTALI  
0x2000 XTALI×  
0x4000 XTALI×  
0x6000 XTALI×  
0x8000 XTALI×  
0xa000 XTALI×  
0xc000 XTALI×  
0xe000 XTALI×  
SC ADD tells, how much the decoder firmware is allowed to add to the multiplier specified by SC MULT  
if more cycles are temporarily needed to decode a WMA stream. The values are:  
SC ADD MASK Multiplier addition  
0
1
2
3
0x0000 No modification is allowed  
0x0800 0.5×  
0x1000 1.0×  
0x1800 1.5×  
SC FREQ is used to tell if the input clock XTALI is running at something else than 12.288 MHz. XTALI  
8000000  
is set in 4 kHz steps. The formula for calculating the correct value for this register is  
4000  
(XTALI is in Hz).  
Note: The default value 0 is assumed to mean XTALI=12.288 MHz.  
Note: because maximum sample rate is  
MHz.  
, all sample rates are not available if XTALI  
256  
Note: Automatic clock change can only happen when decoding WMA files. Automatic clock change  
is done one × clock and you can use the same SCI  
× at a time. This does not cause a drop to  
and SDI clock throughout the WMA file. When decoding ends the default multiplier is restored and can  
cause  
× clock to be used momentarily.  
Example: If SCI CLOCKF is 0x9BE8, SC MULT = 4, SC ADD = 3 and SC FREQ = 0x3E8 = 1000.  
This means that XTALI =  
= 12 MHz. The clock multiplier is set to ×XTALI  
MHz, and the maximum allowed multiplier that the firmware may automatically choose to use is  
×XTALI MHz.  
×
Version 0.92, 2005-06-07  
32  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.5 SCI DECODE TIME (RW)  
When decoding correct data, current decoded time is shown in this register in full seconds.  
The user may change the value of this register. In that case the new value should be written twice.  
SCI DECODE TIME is reset at every software reset and also when WAV (PCM or IMA ADPCM),  
WMA, or MIDI decoding starts or ends.  
8.6.6 SCI AUDATA (RW)  
When decoding correct data, the current sample rate and number of channels can be found in bits 15:1  
and 0 of SCI AUDATA, respectively. Bits 15:1 contain the sample rate divided by two, and bit 0 is 0 for  
mono data and 1 for stereo. Writing to SCI AUDATA will change the sample rate directly.  
Example: 44100 Hz stereo data reads as 0xAC45 (44101).  
8.6.7 SCI WRAM (RW)  
SCI WRAM is used to upload application programs and data to instruction and data RAMs. The start  
address must be initialized by writing to SCI WRAMADDR prior to the first write/read of SCI WRAM.  
As 16 bits of data can be transferred with one SCI WRAM write/read, and the instruction word is 32 bits  
long, two consecutive writes/reads are needed for each instruction word. The byte order is big-endian (i.e.  
most significant words first). After each full-word write/read, the internal pointer is autoincremented.  
8.6.8 SCI WRAMADDR (W)  
SCI WRAMADDR is used to set the program address for following SCI WRAM writes/reads.  
SM WRAMADDR Dest. addr.  
Bits/  
Description  
Start... End  
Start... End  
Word  
0x1800... 0x187F  
0x5800... 0x587F  
0x8030... 0x84FF  
0xC000... 0xFFFF  
0x1800... 0x187F 16  
0x1800... 0x187F 16  
0x0030... 0x04FF 32  
0xC000... 0xFFFF 16  
X data RAM  
Y data RAM  
Instruction RAM  
I/O  
Version 0.92, 2005-06-07  
33  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.9 SCI HDAT0 and SCI HDAT1 (R)  
For WAV les, SPI HDAT0 and SPI HDAT1 read as 0x7761, and 0x7665, respectively.  
For WMA files, SCI HDAT1 contains 0x574D and SCI HDAT0 contains the data speed measured in  
bytes per second. To get the bit-rate of the file, multiply the value of SCI HDAT0 by 8.  
for MIDI files, SCI HDAT1 contains 0x4D54 and SCI HDAT0 contains values according to the follow-  
ing table:  
HDAT0[15:8] HDAT0[7:0] Value Explanation  
0
polyphony  
current polyphony  
1..255  
reserved  
For MP3 files, SCI HDAT[0... 1] have the following content:  
Bit  
Function  
Value Explanation  
2047 stream valid  
HDAT1[15:5]  
HDAT1[4:3]  
syncword  
ID  
3
2
1
0
3
2
1
0
1
0
ISO 11172-3 MPG 1.0  
ISO 13818-3 MPG 2.0 (1/2-rate)  
MPG 2.5 (1/4-rate)  
MPG 2.5 (1/4-rate)  
I
II  
III  
HDAT1[2:1]  
HDAT1[0]  
layer  
reserved  
No CRC  
protect bit  
CRC protected  
ISO 11172-3  
reserved  
32/16/ 8 kHz  
48/24/12 kHz  
44/22/11 kHz  
additional slot  
normal frame  
not defined  
mono  
HDAT0[15:12] bitrate  
HDAT0[11:10] sample rate  
3
2
1
0
1
0
HDAT0[9]  
pad bit  
HDAT0[8]  
HDAT0[7:6]  
private bit  
mode  
3
2
1
0
dual channel  
joint stereo  
stereo  
HDAT0[5:4]  
HDAT0[3]  
extension  
copyright  
ISO 11172-3  
copyrighted  
free  
original  
copy  
CCITT J.17  
reserved  
50/15 microsec  
none  
1
0
1
0
3
2
1
0
HDAT0[2]  
original  
HDAT0[1:0]  
emphasis  
When read, SCI HDAT0 and SCI HDAT1 contain header information that is extracted from MP3 stream  
Version 0.92, 2005-06-07  
34  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
currently being decoded. After reset both registers are cleared, indicating no data has been found yet.  
The “sample rate” field in SCI HDAT0 is interpreted according to the following table:  
“sample rate” ID=3 / Hz ID=2 / Hz ID=0,1 / Hz  
3
2
1
0
-
32000  
48000  
44100  
-
16000  
24000  
22050  
-
8000  
12000  
11025  
The “bitrate” field in HDAT0 is read according to the following table:  
“bitrate” ID=3 / kbit/s ID=0,1,2 / kbit/s  
15  
14  
13  
12  
11  
10  
9
forbidden  
320  
256  
224  
192  
160  
128  
112  
96  
forbidden  
160  
144  
128  
112  
96  
80  
64  
56  
8
7
6
80  
48  
5
64  
40  
4
56  
32  
3
48  
24  
2
40  
16  
1
32  
8
0
-
-
8.6.10 SCI AIADDR (RW)  
SCI AIADDR indicates the start address of the application code written earlier with SCI WRAMADDR  
and SCI WRAM registers. If no application code is used, this register should not be initialized, or it  
should be initialized to zero. For more details, see Application Notes for VS10XX.  
8.6.11 SCI VOL (RW)  
SCI VOL is a volume control for the player hardware. For each channel, a value in the range of 0..254  
may be defined to set its attenuation from the maximum volume level (in 0.5 dB steps). The left channel  
value is then multiplied by 256 and the values are added. Thus, maximum volume is 0 and total silence  
is 0xFEFE.  
Example: for a volume of -2.0 dB for the left channel and -3.5 dB for the right channel: (4*256) + 7  
= 0x407. Note, that at startup volume is set to full volume. Resetting the software does not reset the  
volume setting.  
Version 0.92, 2005-06-07  
35  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
Note: Setting SCI VOL to 0xFFFF will activate analog powerdown mode.  
8.6.12 SCI AICTRL[x] (RW)  
SCI AICTRL[x] registers ( x=[0 .. 3] ) can be used to access the user’s application program.  
Version 0.92, 2005-06-07  
36  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
9. OPERATION  
9 Operation  
9.1 Clocking  
VS1003 operates on a single, nominally 12.288 MHz fundamental frequency master clock. This clock  
can be generated by external circuitry (connected to pin XTALI) or by the internal clock chrystal interface  
(pins XTALI and XTALO).  
9.2 Hardware Reset  
When the XRESET -signal is driven low, VS1003 is reset and all the control registers and internal states  
are set to the initial values. XRESET-signal is asynchronous to any external clock. The reset mode  
doubles as a full-powerdown mode, where both digital and analog parts of VS1003 are in minimum  
power consumption stage, and where clocks are stopped. Also XTALO is grounded.  
After a hardware reset (or at power-up) DREQ will stay down for at least 16600 clock cycles, which  
means an approximate 1.35 ms delay if VS1003 is run at 12.288 MHz. After this the user should set  
such basic software registers as SCI MODE, SCI BASS, SCI CLOCKF, and SCI VOL before starting  
decoding. See section 8.6 for details.  
Internal clock can be multiplied with a PLL. Supported multipliers through the SCI CLOCKF register  
are  
×
× the input clock. Reset value for Internal Clock Multiplier is  
×. If typical values  
are wanted, the Internal Clock Multiplier needs to be set to  
write value 0x9800 to SCI CLOCKF (register 3). See section 8.6.4 for details.  
× after reset. Wait until DREQ rises, then  
9.3 Software Reset  
In some cases the decoder software has to be reset. This is done by activating bit 2 in SCI MODE register  
(Chapter 8.6.1). Then wait for at least 2 s, then look at DREQ. DREQ will stay down for at least 16600  
clock cycles, which means an approximate 1.35 ms delay if VS1003 is run at 12.288 MHz. After DREQ  
is up, you may continue playback as usual.  
If you want to make sure VS1003 doesn’t cut the ending of low-bitrate data streams and you want to do  
a software reset, it is recommended to feed 2048 zeros (honoring DREQ) to the SDI bus after the file  
and before the reset. This is especially important for MIDI files, although you can also use SCI HDAT1  
polling.  
If you want to interrupt the playing of a WAV, WMA, or MIDI file in the middle, set SM OUTOFWAV in  
the mode register, and wait until SCI HDAT1 is cleared (with a two-second timeout) before continuing  
with a software reset. MP3 does not currently implement the SM OUTOFWAV because it is a stream  
format, thus the timeout requirement.  
Version 0.92, 2005-06-07  
37  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
9. OPERATION  
9.4 SPI Boot  
If GPIO0 is set with a pull-up resistor to 1 at boot time, VS1003 tries to boot from external SPI memory.  
SPI boot redefines the following pins:  
Normal Mode SPI Boot Mode  
GPIO0  
GPIO1  
DREQ  
GPIO2  
xCS  
CLK  
MOSI  
MISO  
The memory has to be an SPI Bus Serial EEPROM with 16-bit addresses (i.e. at least 1 KiB). The serial  
speed used by VS1003 is 245 kHz with the nominal 12.288 MHz clock. The first three bytes in the  
memory have to be 0x50, 0x26, 0x48. The exact record format is explained in the Application Notes for  
VS10XX.  
9.5 Play/Decode  
This is the normal operation mode of VS1003. SDI data is decoded. Decoded samples are converted to  
analog domain by the internal DAC. If no decodable data is found, SCI HDAT0 and SCI HDAT1 are set  
to 0 and analog outputs are muted.  
When there is no input for decoding, VS1003 goes into idle mode (lower power consumption than during  
decoding) and actively monitors the serial data input for valid data.  
All different formats can be played back-to-back without software reset in-between. Send at least 4 zeros  
after each stream. However, using software reset between streams may still be a good idea, as it guards  
against broken files. In this case you shouldt wait for the completion of the decoding (SCI HDAT0 and  
SCI HDAT1 become zero) before issuing software reset.  
9.6 Feeding PCM data  
VS1003 can be used as a PCM decoder by sending to it a WAV le header. If the length sent in the WAV  
file is 0 or 0xFFFFFFF, VS1003 will stay in PCM mode indefinitely (or until SM OUTOFWAV has been  
set). 8-bit linear and 16-bit linear audio is supported in mono or stereo.  
Version 0.92, 2005-06-07  
38  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
9. OPERATION  
9.7 SDI Tests  
There are several test modes in VS1003, which allow the user to perform memory tests, SCI bus tests,  
and several different sine wave tests.  
All tests are started in a similar way: VS1003 is hardware reset, SM TESTS is set, and then a test  
command is sent to the SDI bus. Each test is started by sending a 4-byte special command sequence,  
followed by 4 zeros. The sequences are described below.  
9.7.1 Sine Test  
Sine test is initialized with the 8-byte sequence 0x53 0xEF 0x6E 0 0 0 0, where defines the sine test  
to use. is defined as follows:  
bits  
Name Bits Description  
7:5 Sample rate index  
4:0 Sine skip speed  
0
1
2
3
4
5
6
7
44100 Hz  
48000 Hz  
32000 Hz  
22050 Hz  
24000 Hz  
16000 Hz  
11025 Hz  
12000 Hz  
The frequency of the sine to be output can now be calculated from  
×
.
128  
Example: Sine test is activated with value 126, which is 0b01111110. Breaking to its components,  
and thus  
.
, and thus the final sine frequency  
30  
128  
×
.
To exit the sine test, send the sequence 0x45 0x78 0x69 0x74 0 0 0 0.  
Note: Sine test signals go through the digital volume control, so it is possible to test channels separately.  
9.7.2 Pin Test  
Pin test is activated with the 8-byte sequence 0x50 0xED 0x6E 0x54 0 0 0 0. This test is meant for chip  
production testing only.  
Version 0.92, 2005-06-07  
39  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
9. OPERATION  
9.7.3 Memory Test  
Memory test mode is initialized with the 8-byte sequence 0x4D 0xEA 0x6D 0x54 0 0 0 0. After this  
sequence, wait for 500000 clock cycles. The result can be read from the SCI register SCI HDAT0, and  
’one’ bits are interpreted as follows:  
Bit(s) Mask  
Meaning  
15  
14:7  
6
5
4
3
2
1
0
0x8000 Test finished  
Unused  
0x0040 Mux test succeeded  
0x0020 Good I RAM  
0x0010 Good Y RAM  
0x0008 Good X RAM  
0x0004 Good I ROM  
0x0002 Good Y ROM  
0x0001 Good X ROM  
0x807f All ok  
Memory tests overwrite the current contents of the RAM memories.  
9.7.4 SCI Test  
Sci test is initialized with the 8-byte sequence 0x53 0x70 0xEE 0 0 0 0, where  
number to test. The content of the given register is read and copied to SCI HDAT0. If the register to be  
tested is HDAT0, the result is copied to SCI HDAT1.  
is the register  
Example: if is 48, contents of SCI register 0 (SCI MODE) is copied to SCI HDAT0.  
Version 0.92, 2005-06-07  
40  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10 VS1003 Registers  
10.1 Who Needs to Read This Chapter  
User software is required when a user wishes to add some own functionality like DSP effects to VS1003.  
However, most users of VS1003 don’t need to worry about writing their own code, or about this chapter,  
including those who only download software plug-ins from VLSI Solution’s Web site.  
10.2 The Processor Core  
VS DSP is a 16/32-bit DSP processor core that also had extensive all-purpose processor features. VLSI  
Solution’s free VSKIT Software Package contains all the tools and documentation needed to write, sim-  
ulate and debug Assembly Language or Extended ANSI C programs for the VS DSP processor core.  
VLSI Solution also offers a full Integrated Development Environment VSIDE for full debug capabilities.  
10.3 VS1003 Memory Map  
VS1003’s Memory Map is shown in Figure 14.  
10.4 SCI Registers  
SCI registers described in Chapter 8.6 can be found here between 0xC000..0xC00F. In addition to these  
registers, there is one in address 0xC010, called SPI CHANGE.  
SPI registers, prefix SPI  
Reg Type Reset Abbrev[bits]  
Description  
0xC010  
r
0
CHANGE[5:0]  
Last SCI access address.  
SPI CHANGE bits  
Bits Description  
1 if last access was a write cycle.  
Name  
SPI CH WRITE  
SPI CH ADDR  
4
3:0 SPI address of last access.  
10.5 Serial Data Registers  
SDI registers, prefix SER  
Reg Type Reset Abbrev[bits]  
Description  
0xC011  
0xC012  
r
w
0
0
DATA  
DREQ[0]  
Last received 2 bytes, big-endian.  
DREQ pin control.  
Version 0.92, 2005-06-07  
41  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
Instruction (32−bit)  
X (16−bit)  
Y (16−bit)  
0000  
0000  
0030  
System Vectors  
0030  
User  
Instruction  
RAM  
0500  
0500  
X DATA  
RAM  
Y DATA  
RAM  
1800  
1880  
1940  
1800  
1880  
1940  
User  
User  
Space  
Space  
Stack  
Stack  
1C00  
1C00  
1E00  
1E00  
4000  
4000  
Instruction  
ROM  
X DATA  
ROM  
Y DATA  
ROM  
8000  
8000  
C000  
C000  
Hardware  
Register  
Space  
C100  
C100  
Figure 14: User’s Memory Map.  
10.6 DAC Registers  
DAC registers, prefix DAC  
Reg Type Reset Abbrev[bits]  
Description  
0xC013  
0xC014  
0xC015  
0xC016  
rw  
rw  
rw  
rw  
0
0
0
0
FCTLL  
FCTLH  
LEFT  
DAC frequency control, 16 LSbs.  
DAC frequency control 4MSbs, PLL control.  
DAC left channel PCM value.  
RIGHT  
DAC right channel PCM value.  
Every fourth clock cycle, an internal 26-bit counter is added to by (DAC FCTLH & 15) × 65536 +  
DAC FCTLL. Whenever this counter overflows, values from DAC LEFT and DAC RIGHT are read and  
a DAC interrupt is generated.  
Version 0.92, 2005-06-07  
42  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.7 GPIO Registers  
GPIO registers, prefix GPIO  
Reg Type Reset Abbrev[bits]  
Description  
0xC017  
0xC018  
0xC019  
rw  
r
rw  
0
0
0
DDR[3:0]  
IDATA[3:0]  
ODATA[3:0]  
Direction.  
Values read from the pins.  
Values set to the pins.  
GPIO DIR is used to set the direction of the GPIO pins. 1 means output. GPIO ODATA remembers its  
values even if a GPIO DIR bit is set to input.  
GPIO registers don’t generate interrupts.  
Note that in VS1003 the VSDSP registers can be read and written through the SCI WRAMADDR and  
SCI WRAM registers. You can thus use the GPIO pins quite conveniently.  
Version 0.92, 2005-06-07  
43  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.8 Interrupt Registers  
Interrupt registers, prefix INT  
Reg Type Reset Abbrev[bits]  
Description  
0xC01A  
0xC01B  
0xC01C  
0xC01D  
rw  
w
w
0
0
0
0
ENABLE[7:0]  
GLOB DIS[-]  
GLOB ENA[-]  
COUNTER[4:0]  
Interrupt enable.  
Write to add to interrupt counter.  
Write to subtract from interript counter.  
Interrupt counter.  
rw  
INT ENABLE controls the interrupts. The control bits are as follows:  
INT ENABLE bits  
Name  
Bits Description  
INT EN TIM1  
INT EN TIM0  
INT EN RX  
7
6
5
4
3
2
1
0
Enable Timer 1 interrupt.  
Enable Timer 0 interrupt.  
Enable UART RX interrupt.  
Enable UART TX interrupt.  
Enable AD modulator interrupt.  
Enable Data interrupt.  
INT EN TX  
INT EN MODU  
INT EN SDI  
INT EN SCI  
INT EN DAC  
Enable SCI interrupt.  
Enable DAC interrupt.  
Note: It may take upto 6 clock cycles before changing INT ENABLE has any effect.  
Writing any value to INT GLOB DIS adds one to the interrupt counter INT COUNTER and effectively  
disables all interrupts. It may take upto 6 clock cycles before writing to this register has any effect.  
Writing any value to INT GLOB ENA subtracts one from the interrupt counter (unless INT COUNTER  
already was 0). If the interrupt counter becomes zero, interrupts selected with INT ENABLE are re-  
stored. An interrupt routine should always write to this register as the last thing it does, because in-  
terrupts automatically add one to the interrupt counter, but subtracting it back to its initial value is the  
responsibility of the user. It may take upto 6 clock cycles before writing this register has any effect.  
By reading INT COUNTER the user may check if the interrupt counter is correct or not. If the register  
is not 0, interrupts are disabled.  
Version 0.92, 2005-06-07  
44  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.9 A/D Modulator Registers  
Interrupt registers, prefix AD  
Reg Type Reset Abbrev[bits]  
Description  
0xC01E  
0xC01F  
rw  
rw  
0
0
DIV  
DATA  
A/D Modulator divider.  
A/D Modulator data.  
AD DIV bits  
Bits Description  
Name  
ADM POWERDOWN  
ADM DIVIDER  
15 1 in powerdown.  
14:0 Divider.  
ADM DIVIDER controls the AD converter’s sampling frequency. To gather one sample,  
cycles are used ( is value of AD DIV). The lowest usable value is 4, which gives a 48 kHz sample rate  
when CLKI is 24.576 MHz. When ADM POWERDOWN is 1, the A/D converter is turned off.  
×
clock  
AD DATA contains the latest decoded A/D value.  
Version 0.92, 2005-06-07  
45  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.10 Watchdog v1.0 2002-08-26  
The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is inactive.  
The counter reload value can be set by writing to WDOG CONFIG. The watchdog is activated by writ-  
ing 0x4ea9 to register WDOG RESET. Every time this is done, the watchdog counter is reset. Every  
65536’th clock cycle the counter is decremented by one. If the counter underflows, it will activate vs-  
dsp’s internal reset sequence.  
Thus, after the first 0x4ea9 write to WDOG RESET, subsequent writes to the same register with the  
same value must be made no less than every  
×WDOG CONFIG clock cycles.  
Once started, the watchdog cannot be turned off. Also, a write to WDOG CONFIG doesn’t change the  
counter reload value.  
After watchdog has been activated, any read/write operation from/to WDOG CONFIG or WDOG DUMMY  
will invalidate the next write operation to WDOG RESET. This will prevent runaway loops from re-  
setting the counter, even if they do happen to write the correct number. Writing a wrong value to  
WDOG RESET will also invalidate the next write to WDOG RESET.  
Reads from watchdog registers return undefined values.  
10.10.1 Registers  
Watchdog, prefix WDOG  
Reg Type Reset Abbrev  
Description  
0xC020  
0xC021  
0xC022  
w
w
w
0
0
0
CONFIG  
RESET  
DUMMY[-] Dummy register  
Configuration  
Clock configuration  
Version 0.92, 2005-06-07  
46  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.11 UART v1.0 2002-04-23  
RS232 UART implements a serial interface using rs232 standard.  
Start  
bit  
Stop  
bit  
D0  
D4  
D1  
D2  
D3  
D5  
D6  
D7  
Figure 15: RS232 Serial Interface Protocol  
When the line is idling, it stays in logic high state. When a byte is transmitted, the transmission begins  
with a start bit (logic zero) and continues with data bits (LSB first) and ends up with a stop bit (logic  
high). 10 bits are sent for each 8-bit byte frame.  
10.11.1 Registers  
UART registers, prefix UARTx  
Reg Type Reset Abbrev  
Description  
STATUS[3:0] Status  
DATA[7:0] Data  
DATAH[15:8] Data High  
DIV Divider  
0xC028  
r
0
0
0
0
0xC029 r/w  
0xC02A r/w  
0xC02B r/w  
10.11.2 Status UARTx STATUS  
A read from the status register returns the transmitter and receiver states.  
UARTx STATUS Bits  
Name  
Bits Description  
UART ST RXORUN  
UART ST RXFULL  
UART ST TXFULL  
UART ST TXRUNNING  
3
2
1
0
Receiver overrun  
Receiver data register full  
Transmitter data register full  
Transmitter running  
UART ST RXORUN is set if a received byte overwrites unread data when it is transferred from the  
receiver shift register to the data register, otherwise it is cleared.  
UART ST RXFULL is set if there is unread data in the data register.  
UART ST TXFULL is set if a write to the data register is not allowed (data register full).  
UART ST TXRUNNING is set if the transmitter shift register is in operation.  
Version 0.92, 2005-06-07  
47  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.11.3 Data UARTx DATA  
A read from UARTx DATA returns the received byte in bits 7:0, bits 15:8 are returned as ’0’. If there is  
no more data to be read, the receiver data register full indicator will be cleared.  
A receive interrupt will be generated when a byte is moved from the receiver shift register to the receiver  
data register.  
A write to UARTx DATA sets a byte for transmission. The data is taken from bits 7:0, other bits in the  
written value are ignored. If the transmitter is idle, the byte is immediately moved to the transmitter shift  
register, a transmit interrupt request is generated, and transmission is started. If the transmitter is busy,  
the UART ST TXFULL will be set and the byte remains in the transmitter data register until the previous  
byte has been sent and transmission can proceed.  
10.11.4 Data High UARTx DATAH  
The same as UARTx DATA, except that bits 15:8 are used.  
10.11.5 Divider UARTx DIV  
UARTx DIV Bits  
Name  
Bits Description  
UART DIV D1  
UART DIV D2  
15:8 Divider 1 (0..255)  
7:0 Divider 2 (6..255)  
The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly depending on the  
master clock frequency to get the correct bit speed. The second divider ( 2) must be from 6 to 255.  
The communication speed  
TX/RX speed in bps.  
, where  
)
2
is the master clock frequency, and is the  
(
1+1)×(  
Divider values for common communication speeds at 26 MHz master clock:  
Example UART Speeds,  
Comm. Speed [bps] UART DIV D1 UART DIV D2  
4800  
9600  
85  
42  
42  
51  
42  
25  
1
63  
63  
42  
26  
21  
26  
226  
226  
14400  
19200  
28800  
38400  
57600  
115200  
0
Version 0.92, 2005-06-07  
48  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.11.6 Interrupts and Operation  
Transmitter operates as follows: After an 8-bit word is written to the transmit data register it will be  
transmitted instantly if the transmitter is not busy transmitting the previous byte. When the transmission  
begins a TX INTR interrupt will be sent. Status bit [1] informs the transmitter data register empty (or  
full state) and bit [0] informs the transmitter (shift register) empty state. A new word must not be written  
to transmitter data register if it is not empty (bit [1] = ’0’). The transmitter data register will be empty  
as soon as it is shifted to transmitter and the transmission is begun. It is safe to write a new word to  
transmitter data register every time a transmit interrupt is generated.  
Receiver operates as follows: It samples the RX signal line and if it detects a high to low transition, a  
start bit is found. After this it samples each 8 bit at the middle of the bit time (using a constant timer),  
and fills the receiver (shift register) LSB first. Finally if a stop bit (logic high) is detected the data in  
the receiver is moved to the reveive data register and the RX INTR interrupt is sent and a status bit[2]  
(receive data register full) is set, and status bit[2] old state is copied to bit[3] (receive data overrun). After  
that the receiver returns to idle state to wait for a new start bit. Status bit[2] is zeroed when the receiver  
data register is read.  
RS232 communication speed is set using two clock dividers. The base clock is the processor master  
clock. Bits 15-8 in these registers are for first divider and bits 7-0 for second divider. RX sample  
frequency is the clock frequency that is input for the second divider.  
Version 0.92, 2005-06-07  
49  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.12 Timers v1.0 2002-04-23  
There are two 32-bit timers that can be initialized and enabled independently of each other. If enabled,  
a timer initializes to its start value, written by a processor, and starts decrementing every clock cycle.  
When the value goes past zero, an interrupt is sent, and the timer initializes to the value in its start value  
register, and continues downcounting. A timer stays in that loop as long as it is enabled.  
A timer has a 32-bit timer register for down counting and a 32-bit TIMER1 LH register for holding the  
timer start value written by the processor. Timers have also a 2-bit TIMER ENA register. Each timer is  
enabled (1) or disabled (0) by a corresponding bit of the enable register.  
10.12.1 Registers  
Timer registers, prefix TIMER  
Reg Type Reset Abbrev  
Description  
0xC030 r/w  
0xC031 r/w  
0
0
CONFIG[7:0] Timer configuration  
ENABLE[1:0] Timer enable  
0xC034 r/w  
0xC035 r/w  
0xC036 r/w  
0xC037 r/w  
0xC038 r/w  
0xC039 r/w  
0xC03A r/w  
0xC03B r/w  
0
0
0
0
0
0
0
0
T0L  
T0H  
T0CNTL  
T0CNTH  
T1L  
T1H  
T1CNTL  
T1CNTH  
Timer0 startvalue - LSBs  
Timer0 startvalue - MSBs  
Timer0 counter - LSBs  
Timer0 counter - MSBs  
Timer1 startvalue - LSBs  
Timer1 startvalue - MSBs  
Timer1 counter - LSBs  
Timer1 counter - MSBs  
10.12.2 Configuration TIMER CONFIG  
TIMER CONFIG Bits  
Bits Description  
7:0 Master clock divider  
Name  
TIMER CF CLKDIV  
TIMER CF CLKDIV is the master clock divider for all timer clocks. The generated internal clock  
frequency +1, where is the master clock frequency and is TIMER CF CLKDIV. Example:  
With a 12 MHz master clock, TIMER CF DIV=3 divides the master clock by 4, and the output/sampling  
12  
3+1  
clock would thus be  
.
Version 0.92, 2005-06-07  
50  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.12.3 Configuration TIMER ENABLE  
TIMER ENABLE Bits  
Bits Description  
Enable timer 1  
Enable timer 0  
Name  
TIMER EN T1  
TIMER EN T0  
1
0
10.12.4 Timer X Startvalue TIMER Tx[L/H]  
The 32-bit start value TIMER Tx[L/H] sets the initial counter value when the timer is reset. The timer  
interrupt frequency where is the master clock obtained with the clock divider (see Chap-  
+1  
ter 10.12.2 and is TIMER Tx[L/H].  
Example: With a 12 MHz master clock and with TIMER CF CLKDIV=3, the master clock  
.
3
If TIMER TH=0, TIMER TL=99, then the timer interrupt frequency  
99+1  
.
10.12.5 Timer X Counter TIMER TxCNT[L/H]  
TIMER TxCNT[L/H] contains the current counter values. By reading this register pair, the user may get  
knowledge of how long it will take before the next timer interrupt. Also, by writing to this register, a  
one-shot different length timer interrupt delay may be realized.  
10.12.6 Interrupts  
Each timer has its own interrupt, which is asserted when the timer counter underflows.  
Version 0.92, 2005-06-07  
51  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.13 System Vector Tags  
The System Vector Tags are tags that may be replaced by the user to take control over several decoder  
functions.  
10.13.1 AudioInt, 0x20  
Normally contains the following VS DSP assembly code:  
jmpi DAC_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
interrupt.  
command to gain control over the audio  
10.13.2 SciInt, 0x21  
Normally contains the following VS DSP assembly code:  
jmpi SCI_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
command to gain control over the SCI interrupt.  
10.13.3 DataInt, 0x22  
Normally contains the following VS DSP assembly code:  
jmpi SDI_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
command to gain control over the SDI interrupt.  
10.13.4 ModuInt, 0x23  
Normally contains the following VS DSP assembly code:  
jmpi MODU_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
lator interrupt.  
command to gain control over the AD Modu-  
Version 0.92, 2005-06-07  
52  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.13.5 TxInt, 0x24  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
interrupt.  
command to gain control over the UART TX  
command to gain control over the UART  
command to gain control over the Timer  
command to gain control over the Timer  
10.13.6 RxInt, 0x25  
Normally contains the following VS DSP assembly code:  
jmpi RX_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
RX interrupt.  
10.13.7 Timer0Int, 0x26  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
0 interrupt.  
10.13.8 Timer1Int, 0x27  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
1 interrupt.  
Version 0.92, 2005-06-07  
53  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
10.13.9 UserCodec, 0x0  
Normally contains the following VS DSP assembly code:  
jr  
nop  
If the user wants to take control away from the standard decoder, the first instruction should be replaced  
with an appropriate command to user’s own code.  
Unless the user is feeding MP3 or WMA data at the same time, the system activates the user program  
in less than 1 ms. After this, the user should steal interrupt vectors from the system, and insert user  
programs.  
10.14 System Vector Functions  
The System Vector Functions are pointers to some functions that the user may call to help implementing  
his own applications.  
10.14.1 WriteIRam(), 0x2  
VS DSP C prototype:  
void WriteIRam(register i0 u int16 *addr, register a1 u int16 msW, register a0 u int16 lsW);  
This is the preferred way to write to the User Instruction RAM.  
10.14.2 ReadIRam(), 0x4  
VS DSP C prototype:  
u int32 ReadIRam(register i0 u int16 *addr);  
This is the preferred way to read from the User Instruction RAM.  
A1 contains the MSBs and a0 the LSBs of the result.  
10.14.3 DataBytes(), 0x6  
VS DSP C prototype:  
Version 0.92, 2005-06-07  
54  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
10. VS1003 REGISTERS  
u int16 DataBytes(void);  
If the user has taken over the normal operation of the system by switching the pointer in UserCodec  
to point to his own code, he may read data from the Data Interface through this and the following two  
functions.  
This function returns the number of data bytes that can be read.  
10.14.4 GetDataByte(), 0x8  
VS DSP C prototype:  
u int16 GetDataByte(void);  
Reads and returns one data byte from the Data Interface. This function will wait until there is enough  
data in the input buffer.  
10.14.5 GetDataWords(), 0xa  
VS DSP C prototype:  
void GetDataWords(register i0 y u int16 *d, register a0 u int16 n);  
Read data byte pairs and copy them in big-endian format (first byte to MSBs) to . This function will  
wait until there is enough data in the input buffer.  
10.14.6 Reboot(), 0xc  
VS DSP C prototype:  
void Reboot(void);  
Causes a software reboot, i.e. jump to the standard firmware without reinitializing the IRAM vectors.  
This is NOT the same as the software reset function, which causes complete initialization.  
Version 0.92, 2005-06-07  
55  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
11. DOCUMENT VERSION CHANGES  
11 Document Version Changes  
This chapter describes the most important changes to this document.  
11.1 Version 0.92, 2005-06-07  
License clause updated  
Midi instruments listed  
Recommended temperature range -25C..+70◦  
11.2 Version 0.91, 2005-02-25  
Added LQFP symbol into first page.  
Pin name changes in Section 5.2.  
Chip Characteristics revised.  
11.3 Version 0.90, 2005-01-28  
Updated the connection diagram in Section 6  
Added microphone and line input limits in Section 4  
RX should be connected to IOVDD if UART is not used.  
BGA-49 pinout changes in Section 5.2.  
11.4 Version 0.80, 2005-01-11  
DREQ deasserted during SCI operations (Chapters 7.3, 7.5.2, 7.5.3).  
WMA has passed Microsoft’s conformance testing program.  
11.5 Version 0.70, 2004-07-28  
References to MIDI added.  
Fixed memory map.  
11.6 Initial version 0.62 for VS1003, 2003-03-19  
Created document.  
Version 0.92, 2005-06-07  
56  
VS1003  
VLSI  
VS1003 PRELIMINARY  
y
Solution  
12. CONTACT INFORMATION  
12 Contact Information  
VLSI Solution Oy  
Hermiankatu 6-8 C  
FIN-33720 Tampere  
FINLAND  
Fax: +358-3-316 5220  
Phone: +358-3-316 5230  
Email: sales@vlsi.fi  
URL: http://www.vlsi.fi/  
Version 0.92, 2005-06-07  
57  

相关型号:

VS1003B-L

芬兰VLSI厂家生产的音频编解码芯片
CONSONANCE

VS1005

此产品是芬兰VLSI刚刚研发成功的音频编解码芯片样品
ETC

VS100AE

CAMERA MONOCHROME
ETC

VS100B

Single output 10W~150W
LAMBDA

VS100B-12

Single output 10W~150W
LAMBDA

VS100B-12

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-15

Single output 10W~150W
LAMBDA

VS100B-15

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-24

Single output 10W~150W
LAMBDA

VS100B-24

AC-DC Regulated Power Supply Module, 1 Output, 103.2W
INFINEON

VS100B-3

Single output 10W~150W
LAMBDA

VS100B-3

AC-DC Regulated Power Supply Module, 1 Output, 66W
INFINEON