W224BH [ETC]

CPU SYSTEM CLOCK GENERATOR|SSOP|56PIN|PLASTIC ; CPU的系统时钟发生器| SSOP | 56PIN |塑料\n
W224BH
型号: W224BH
厂家: ETC    ETC
描述:

CPU SYSTEM CLOCK GENERATOR|SSOP|56PIN|PLASTIC
CPU的系统时钟发生器| SSOP | 56PIN |塑料\n

晶体 时钟发生器 外围集成电路 光电二极管
文件: 总17页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1W224B  
W224B  
133-MHz Spread Spectrum FTG for Mobile Pentium III Platforms  
APIC, 48-MHz, 3V66, PCI Outputs  
Cycle-to-Cycle Jitter: ...................................................500 ps  
Features  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum technology (–0.5% and –1.0%)  
CPU Output Skew: ......................................................150 ps  
3V66 Output Skew:......................................................175 ps  
APIC, SDRAM Output Skew:.......................................250 ps  
PCI Output Skew:........................................................500 ps  
VDDQ3 (REF, PCI, 3V66, 48 MHz, SDRAM: .........3.3V±5%  
VDDQ2 (CPU, APIC):.............................................2.5V ±5%  
• Single chip system FTG for Mobile Intel® Platforms  
• Three CPU outputs  
• Seven copies of PCI clock (one Free Running)  
• Seven SDRAM clock (one DCLK for Memory Hub)  
• Two copies of 48-MHz clock (non-spread spectrum) op-  
timized for USB reference input and video DOT clock  
• Three 3V66 Hublink/AGP outputs  
• One VCH clock (48-MHz non-SSC or 66.67-MHz SSC)  
• Two APIC outputs  
Table 1. Pin Selectable Functions  
TEST#  
FS1  
x
FS0  
0
CPU  
SDRAM  
0
0
1
1
1
1
Three-state Three-state  
• One buffered reference output  
• Supports frequencies up to 133 MHz  
• Supports 5% and 10% overclocking  
• SMBus interface for programming  
• Power management control inputs  
Key Specifications  
x
1
Test  
Test  
0
0
66 MHz  
100 MHz  
133 MHz  
133 MHz  
100 MHz  
100 MHz  
133 MHz  
100 MHz  
0
1
1
0
CPU, SDRAM Outputs Cycle-to-Cycle Jitter:.............. 250 ps  
1
1
Block Diagram  
Pin Configuration  
VDD_REF  
X1  
X2  
XTAL  
OSC  
REF  
R EF  
VDD_REF  
X1  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
G ND_A PIC  
APIC0  
APIC1  
VDD_APIC  
C PU 0  
V DD_CPU  
C PU _F1  
PLL Ref Freq  
Divider  
Network  
PLL 1  
VDD_CPU  
CPU0  
Stop  
Clock  
Control  
X2  
FS0:1  
G N D_R EF  
G ND_3V66  
3V66_0  
CPU_F1:2  
CPU_STP#  
VDD_SDRAM  
SDRAM0:5  
DCLK  
3V66_1  
C PU _F2  
3V66_AG P  
VDD_3V66  
PC I_STP#  
PCI_F  
PCI1  
G ND_P CI  
PCI2  
PCI3  
VDD_P CI  
G N D _C PU  
G ND_S DRAM  
SDRAM 0  
SDRAM 1  
V DD_SDRAM  
SDRAM 2  
SDRAM 3  
G ND_S DRAM  
SDRAM 4  
SDRAM 5  
D C LK  
V DD_SDRAM  
V CH_CLK  
VDD_VCH  
C PU _STP#  
TEST#  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VDD_APIC  
APIC0:1  
PWR_DWN#  
PCI_STP#  
VDD_PCI  
PCI_F  
PCI4  
PCI5  
PCI6  
Stop  
Clock  
Control  
PCI1:6  
G ND_P CI  
VD D _C O R E  
G N D _C O R E  
GND_48M Hz  
USB  
DO T  
VDD_48M Hz  
FS0  
VDD_3V66  
3V66_0:1  
34  
33  
32  
31  
30  
29  
3V66_AGP  
P W R_DW N#  
SCLK  
SDATA  
FS1  
25  
26  
27  
28  
VDD_48MHz  
USB (48MHz)  
PLL2  
DOT (48MHz)  
VCH_CLK  
SDATA  
SCLK  
SMBus  
Logic  
Intel is a registered trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
June 12, 2001  
W224B  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
CPU0,  
CPU_F1:2  
52, 50, 49  
O
O
O
O
O
CPU Clock Outputs: Frequency is set by the FS0:1 inputs or through serial input  
interface. The CPU0 output is gated by the CLK_STOP# input.  
PCI1:6, PCI_F  
13, 15, 16, 18,  
19, 20, 12  
33MHz PCI Outputs: Except for the PCI_F output, these outputs are gated by  
the PCI_STOP# input.  
APIC0:1  
55, 54  
APIC Output: 2.5V fixed 33.33-MHz clock. This output is synchronous to the  
CPU clock.  
SDRAM0:5,  
DCLK  
46, 45, 43, 42,  
40, 39, 38  
SDRAM Output Clocks: 3.3V outputs running at either 100 MHz or 133 MHz  
depending on the setting of FS0:1 inputs. DCLK is a free-running clock.  
3V66_0:1,  
3V66_AGP  
7, 8, 9  
66-MHz Clock Outputs: 3.3V fixed 66-MHz clock.  
USB  
25  
26  
1
O
O
O
O
USB Clock Output: 3.3V fixed 48-MHz, non-spread spectrum USB clock output.  
Dot Clock Output: 3.3V fixed 48-MHz, non-spread spectrum signal.  
Reference Clock: 3.3V 14.318-MHz clock output.  
DOT  
REF  
VCH_CLK  
36  
Video Control Hub Clock Output: 3.3V selectable 48-MHz non-spread spec-  
trum or 66.67-MHz spread spectrum clock output.  
PWR_DWN#  
CPU_STP#  
PCI_STP#  
TEST#  
32  
34  
I
I
I
I
I
Power Down Control: 3.3V LVTTL-compatible input that places the device in  
power-down mode when held LOW.  
CPU Output Control: 3.3V LVTTL-compatible input that stops only the CPU0  
clock. Output remains in the LOW state.  
11  
PCI Output Control: 3.3V LVTTL-compatible input that stops PCI1:6 clocks.  
Output remains in the LOW state.  
33  
Test Mode Control: 3.3V LVTTL-compatible input to place the device into test  
mode.  
FS0:1  
28, 29  
Frequency Selection Input: 3.3V LVTTL-compatible input used to select the  
CPU and SDRAM frequencies. See Frequency Table.  
SCLK  
SDATA  
X1  
31  
30  
3
I
I/O  
I
SMBus Clock Input: Clock pin for SMBus circuitry.  
SMBus Data Input: Data pin for SMBus circuitry.  
CrystalConnectionor ExternalReferenceFrequencyInput:Thispinhas dual  
functions. It can be used as an external 14.318-MHz crystal connection or as an  
external reference frequency input.  
X2  
4
O
P
Crystal Connection: Connection for an external 14.318-MHz crystal. If using an  
external reference, this pin must be left unconnected.  
VDD_REF,  
VDD_3V66  
VDD _PCI,  
2, 10, 17, 27, 35,  
37, 44  
3.3V Power Connection: Power supply for core logic, PLL circuitry, SDRAM  
outputs buffers, PCI output buffers, reference output buffers and 48-MHz output  
buffers. Connect to 3.3V.  
VDD_48MHz,  
VDD_VCH,  
VDD_SDRAM,  
VDD_SDRAM  
VDD_APIC,  
VDD_CPU  
51, 53  
P
2.5V Power Connection: Power supply for APIC and CPU output buffers. Con-  
nect to 2.5V.  
GND_REF,  
GND_3V66,  
5, 6, 14, 21, 24,  
41, 47, 48, 56  
G
Ground Connection: Connect all ground pins to the common system ground  
plane.  
GND_PCI,  
GND_PCI,  
GND_48MHz,  
GND_SDRAM.  
GND_SDRAM.  
GND_CPU,  
GND_APIC  
2
W224B  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
VDD_CORE  
22  
P
3.3V Analog Power Connection: Power supply for core logic, PLL circuitry. Con-  
nect to 3.3V.  
GND_CORE  
23  
G
Analog Ground Connection: Ground for core logic, PLL circuitry.  
Overview  
CPU/SDRAM Frequency Selection  
CPU output frequency is selected through pins 28 and 29. For  
CPU/SDRAM frequency programming information, refer to  
Table 2 Alternatively, frequency selections are available  
through the serial data interface.  
The W224 is a highly integrated frequency timing generator,  
supplying all the required clock sources for an Intel® architec-  
ture platform using graphics integrated core logic.  
.
Table 2. Frequency Select Truth Table  
TEST#  
FS1  
X
FS0  
0
CPU  
Hi-Z  
SDRAM  
Hi-Z  
3V66  
Hi-Z  
PCI  
48MHz  
Hi-Z  
REF  
Hi-Z  
APIC  
Hi-Z  
Notes  
1
0
0
1
1
1
1
Hi-Z  
X
1
TCLK/2  
66 MHz  
TCLK/2  
TCLK/3  
TCLK/6  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
TCLK/2  
TCLK  
TCLK/6  
2, 3  
0
0
100 MHz 66 MHz  
48 MHz 14.318 MHz 33 MHz  
48 MHz 14.318 MHz 33 MHz  
48 MHz 14.318 MHz 33 MHz  
48 MHz 14.318 MHz 33 MHz  
4, 5, 6  
4, 5, 6  
4, 5, 6  
4, 5, 6  
0
1
100 MHz 100 MHz 66 MHz  
133 MHz 133 MHz 66 MHz  
133 MHz 100 MHz 66 MHz  
1
0
1
1
Notes:  
1. Provided for board-level “bed of nails” testing.  
2. TCLK is a test clock overdriven on the XTAL_IN input during test mode.  
3. Required for DC output impedance verification.  
4. “Normal” mode of operation.  
5. Range of reference frequency allowed is min. = 14.316 MHz, nominal = 14.31818 MHz, max. = 14.32 MHz.  
6. Frequency accuracy of 48 MHz must be +167 PPM to match USB default.  
3
W224B  
Offsets Among Clock Signal Groups  
spectively. It should be noted that when CPU clock is operating  
at 100 MHz, CPU clock output is 180 degrees out of phase with  
SDRAM clock outputs.  
Figure 1 and Figure 2 represent the phase relationship among  
the different groups of clock outputs from W224 when it is pro-  
viding a 66-MHz CPU clock and a 100-MHz CPU clock, re-  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeats  
CPU 66-MHz  
SDRAM 100-M Hz  
3V66 66-MHz  
PCI 33-MHz  
APIC33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 1. Group Offset Waveforms (66 MHz CPU/100 MHz SDRAM Clock)  
Table 3. 66 MHz Group Timing Relationships and Tolerances  
CPU to  
SDRAM to  
3V66  
SDRAM CPU to 3V66  
3V66 to PCI  
1.5–3.5 ns  
500 ps  
PCI to APIC  
0.0 ns  
USB & DOT  
Async  
Offset  
–2.5 ns  
500 ps  
7.5 ns  
0.0 ns  
Tolerance  
500 ps  
500 ps  
1.0 ns  
N/A  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeats  
CPU 100-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 2. Group Offset Waveforms (100 MHz CPU/100 MHz SDRAM Clock)  
4
W224B  
Table 4. 100 MHz Group Timing Relationships and Tolerances  
CPU to  
SDRAM  
CPU to  
3V66  
SDRAM to  
3V66  
3V66 to PCI PCI to APIC  
USB & DOT  
Offset  
5.0 ns  
5.0ns  
0.0 ns  
1.5–3.5 ns  
500 ps  
0.0 ns  
1.0 ns  
Async  
N/A  
Tolerance  
500 ps  
500 ps  
500 ps  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeats  
CPU 133-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 3. Group Offset Waveforms (133-MHz CPU/100-MHz SDRAM Clock)  
Table 5. 133 MHz/SDRAM 100 MHz Group Timing Relationships and Tolerances  
CPU to  
SDRAM to  
3V66  
SDRAM CPU to 3V66  
3V66 to PCI  
1.5–3.5 ns  
500 ps  
PCI to APIC  
0.0 ns  
USB & DOT  
Async  
Offset  
0.0 ns  
500 ps  
0.0 ns  
0.0 ns  
Tolerance  
500 ps  
500 ps  
1.0 ns  
N/A  
Power-Down Control  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeats  
CPU 133-MHz  
SDRAM 133-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC33-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 4. Group Offset Waveforms (133-MHz CPU/133-MHz SDRAM Clock)  
5
W224B  
Table 6. 133 MHz/SDRAM Test Mode Group Timing Relationships and Tolerance  
CPU to  
SDRAM to  
3V66  
SDRAM CPU to 3V66  
3V66 to PCI  
1.5–3.5 ns  
500 ps  
PCI to APIC  
0.0 ns  
USB& DOT  
Offset  
3.75 ns  
500 ps  
0.0 ns  
3.75 ns  
500 ps  
Async  
N/A  
Tolerance  
500 ps  
1.0 ns  
W224 provides one PWR_DWN# signal to place the device in low-power mode. In low-power mode, the PLLs are turned off and  
all clock outputs are driven LOW.  
0ns  
25ns  
50ns  
75ns  
Center  
1
2
VCO Internal  
CPU 100MHz  
3V66 66MHz  
PCI 33MHz  
APIC 33MHz  
PwrDwn  
SDRAM 100MHz  
REF 14.318MHz  
USB 48MHz  
Figure 5. W224 PWR_DWN# Timing Diagram[7, 8, 9, 10]  
Table 7. W224 Maximum Allowed Current  
Max. 2.5V supply consumption  
Max. discrete cap loads,  
VDDQ2 = 2.625V  
Max. 3.3V supply consumption  
Max. discrete cap loads  
VDDQ3 = 3.465V  
W224  
Condition  
All static inputs = VDDQ3 or VSS  
All static inputs = VDDQ3 or VSS  
Powerdown Mode  
(PWR_DWN# = 0)  
< 1 mA  
60 mA  
75 mA  
90 mA  
< 1 mA  
160 mA  
160 mA  
160 mA  
Full Active 66 MHz  
FS1:0 = 00 (PWR_DWN# =1)  
Full Active 100 MHz  
FS1:0 = 01 (PWR_DWN# =1)  
Full Active 133 MHz  
FS1:0 = 11 (PWR_DWN# =1)  
Notes:  
7. Once the PWR_DWN# signal is sampled LOW for two consecutive rising edges of CPU, clocks of interest will be held LOW on the next HIGH-to-LOW transition.  
8. PWR_DWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside W224.  
9. The shaded sections on the SDRAM, REF, and USB clocks indicate “Don’t Care” states.  
10. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66 MHz.  
6
W224B  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Frequency Timing  
Generation  
The output clock is modulated with a waveform depicted in  
Figure 7. This waveform, as discussed in “Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissions” by  
Bush, Fessler, and Hardin, produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is –0.5% or –1.0% of the select-  
ed frequency. Figure 7 details the Cypress spreading pattern.  
Cypress does offer options with more spread and greater EMI  
reduction. Contact your local Sales representative for details  
on these devices.  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 6.  
As shown in Figure 6, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is:  
Spread Spectrum clocking is activated or deactivated by se-  
lecting the appropriate value for bit 3 in data byte 0 of the SM-  
Bus data stream. Refer to page 9 for more details.  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
EMI Reduction  
Spread  
Non-  
Spread  
Spectrum  
Spectrum  
Enabled  
Figure 6. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX.  
MIN.  
Figure 7. Typical Modulation Profile  
7
W224B  
1 bit  
7 bits  
1
1
8 bits  
1
Start bit  
Slave Address  
R/W  
Ack  
Command Code  
Ack  
Byte Count = N  
Ack  
1 bit  
Data Byte 1  
8 bits  
Ack  
Data Byte 2  
8 bits  
Ack  
1
...  
Data Byte N  
8 bits  
Ack  
1
Stop  
1
1
Figure 8. An Example of a Block Write[11]  
Serial Data Interface  
the number 20 (14h), followed by the 20 bytes of data. The byte  
count may not be 0. A block write command is allowed to trans-  
fer a maximum of 32 data bytes. The slave receiver address  
for W224 is 11010010. Figure 8 shows an example of a block  
write.  
The W224 features a two-pin, serial data interface that can be  
used to configure internal register settings that control partic-  
ular device functions.  
Data Protocol  
The command code and the byte count bytes are required as  
the first two bytes of any transfer. W224 expects a command  
code of 0000 0000. The byte count byte is the number of ad-  
ditional bytes required for the transfer, not counting the com-  
mand code and byte count bytes. Additionally, the byte count  
byte is required to be a minimum of 1 byte and a maximum of  
32 bytes to satisfy the above requirement. Table 8 shows an  
example of a possible byte count value.  
The clock driver serial protocol accepts only block writes from  
the controller. The bytes must be accessed in sequential order  
from lowest to highest byte with the ability to stop after any  
complete byte has been transferred. Indexed bytes are not al-  
lowed.  
A block write begins with a slave address and a write condition.  
After the command code the core logic issues a byte count  
which describes how many more bytes will follow in the mes-  
sage. If the host had 20 bytes to send, the first byte would be  
A transfer is considered valid after the acknowledge bit corre-  
sponding to the byte count is read by the controller.  
Table 8. Example of Possible Byte Count Value  
Byte Count Byte  
Notes  
MSB  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0010  
LSB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0000  
Not allowed. Must have at least one byte.  
Data for functional and frequency select register (currently byte 0 in spec)  
Writes first two bytes of data (byte 0 then byte 1)  
Writes first three bytes (byte 0, 1, 2 in order)  
Writes first four bytes (byte 0, 1, 2, 3 in order)  
Writes first five bytes (byte 0, 1, 2, 3, 4 in order)  
Writes first six bytes (byte 0, 1, 2, 3, 4, 5 in order)  
Writes first seven bytes (byte 0, 1, 2, 3, 4, 5, 6 in order)  
Max. byte count supported = 32  
Note:  
11. The acknowledgment bit is returned by the slave/receiver (W224).  
8
W224B  
W224 Serial Configuration Map  
1. The serial bits will be read by the clock driver in the following  
order:  
2. All unused register bits (reserved and N/A) should be writ-  
ten to a “0” level.  
Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0  
3. All register bits labeled “Initialize to 0" must be written to  
zero during initialization. Failure to do so may result in high-  
er than normal operating current.  
Byte 0: Control Register (1 = Enable, 0 = Disable)[12]  
Bit  
Pin#  
36  
49  
50  
52  
-
Name  
Pin Description  
(Disabled/Enabled)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VCH  
CPU_F2  
CPU_F1  
CPU0  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
Spread Spectrum (1 = On/0 = Off) (Active/Inactive)  
26  
25  
--  
DOT  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Active/Inactive)  
USB  
Reserved Drive to ‘0’  
Byte 1: Control Register (1 = Enable, 0 = Disable)[12]  
Bit  
Pin#  
--  
Name  
Reserved Drive to ‘0’  
Reserved Drive to ‘0’  
SDRAM5  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(Active/Inactive)  
--  
(Active/Inactive)  
39  
40  
42  
43  
45  
46  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
Byte 2: Control Register (1 = Enable, 0 = Disable)[12]  
Bit  
Pin#  
9
Name  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
3V66_AGP  
3V66_1  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
((Active/Inactive)  
8
7
3V66_0  
--  
Reserved Drive to ‘0’  
Reserved Drive to ‘0’  
Reserved Drive to ‘0’  
Reserved Drive to ‘0’  
Reserved Drive to ‘0’  
--  
--  
--  
--  
Note:  
12. Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not expected to be  
configured during the normal modes of operation.  
9
W224B  
Byte 3: Control Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
-
Name  
Reserved Drive to ’0’  
Pin Description  
(Active/Inactive)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
20  
19  
18  
16  
15  
13  
--  
PCI6  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Disabled/Enabled)  
(Active/Inactive)  
SDRAM 133 MHz Mode Enable  
Default is Disabled = ‘0’, Enabled = ‘1’  
Byte 4: Control Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Pin Description  
Bit 7  
36  
VCH_CLK SSC Mode Enable  
Default is Disabled = ‘0’  
(Disabled/Enabled)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
-
Byte 5: Control Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Reserved Drive to’0’  
Pin Description  
(Active/Inactive)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
SpreadSpectrumandOverclockingMode (Active/Inactive)  
Select. See Table 9  
(Active/Inactive)  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to ’0’  
Reserved Drive to’0’  
Reserved Drive to’0’  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
-
Byte 5 has been provided as an optional register to enable a  
greater degree of spread spectrum and overclocking perfor-  
mance for all PLL1 outputs. (CPU, SDRAM, DCLK, APIC, PCI,  
3V66 and VCH_CLK)  
programming both bits 5 and 6 to ‘1.The part will enter this  
mode irrespective of pin 33, TEST#.  
It is not necessary to access Byte 5 if these additional features  
are not implemented. All outputs will default to 0% overclock-  
ing upon power up, with either 0% or –0.5% spread spectrum.  
(Spread spectrum ON/OFF remains under Byte 0, bit 3 con-  
trol). Note that 10% overclocking can only be enabled with  
Spread Spectrum turned OFF.  
By enabling Byte 5, (bits 5 and 6) spread spectrum can be  
increased to –1.0% and /or overclocking of either 5% or 10%  
can be enabled. Although the default values are ‘0’ for all bits,  
the part can be placed into either Three-State or Test Mode by  
10  
W224B  
Table 9. Spread Spectrum and Overclocking Mode Select[13]  
Byte 0  
Bit 3  
Byte 5  
SS%  
Overclock%  
Description and Comments  
Bit 5  
0
Bit 6  
0
–0.5%  
0%  
0%  
5%[13]  
5%[13]  
0%  
10%[13]  
5%[13]  
No overclocking  
No overclocking  
Spread  
Spectrum  
ON  
0
1
–1.0%  
1
0
–0.5%  
1
1
–1.0%  
0
0
-
-
-
Spread  
Spectrum  
OFF  
0
1
1
0
1
1
Three-state or Test Mode Mode determined by FS0 (see Table 1)  
Note:  
13. Overclocking not tested; characterized at room temperature only. Base Frequency determined through hardware select pins, FS0 & FS1.  
11  
W224B  
DC Electrical Characteristics  
Absolute Maximum DC Power Supply  
Parameter  
Description  
Min.  
–0.5  
–0.5  
–0.5  
–65  
Max.  
4.6  
Unit  
V
VDD3  
VDDQ2  
VDDQ3  
TS  
3.3V Core Supply Voltage  
2.5V I/O Supply Voltage  
3.6  
V
3.3V Supply Voltage  
Storage Temperature  
4.6  
V
150  
°C  
Absolute Maximum DC I/O  
Parameter  
Description  
Min.  
–0.5  
–0.5  
2000  
Max.  
Unit  
V
Vih3  
3.3V Input High Voltage  
4.6  
Vil3  
3.3V Input Low Voltage  
Input ESD Protection  
V
ESD prot.  
V
DC Operating Requirements  
Parameter  
Description  
Condition  
3.3V ±5%  
3.3V ±5%  
2.5V ±5%  
Min.  
Max.  
Unit  
V
VDD3  
3.3V Core Supply Voltage  
3.3V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.135  
3.135  
2.375  
3.465  
3.465  
2.625  
VDDQ3  
V
VDDQ2  
V
VDD3 = 3.3V±5%  
Vih3  
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input Leakage Current[14]  
VDD3  
2.0  
VSS – 0.3  
–5  
VDD + 0.3  
0.8  
V
V
Vil3  
Iil  
0<Vin<VDD3  
+5  
µA  
VDDQ2 = 2.5V±5%  
Voh2  
2.5V Output High Voltage  
2.5V Output Low Voltage  
Ioh = (–1 mA)  
Iol = (1 mA)  
2.0  
2.4  
2.4  
V
V
Vol2  
0.4  
0.4  
VDDQ3 = 3.3V±5%  
Voh3  
3.3V Output High Voltage  
3.3V Output Low Voltage  
Ioh = (–1 mA)  
Iol = (1 mA)  
V
V
Vol3  
VDDQ3 = 3.3V±5%  
Vpoh3  
PCI Bus Output High Voltage  
PCI Bus Output Low Voltage  
Ioh = (–1 mA)  
Iol = (1 mA)  
V
V
Vpol3  
0.55  
Cin  
Input Pin Capacitance  
Xtal Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
22.5  
6
pF  
pF  
pF  
nH  
°C  
Cxtal  
Cout  
Lpin  
13.5  
0
0
7
Ta  
Ambient Temperature  
No Airflow  
70  
Note:  
14. Input Leakage Current does not include inputs with pull-up or pull-down resistors.  
12  
W224B  
AC Electrical Characteristics  
TA = 0°C to +70°C, VDDQ3 = 3.3V ±5%, VDDQ2= 2.5V ±5%  
fXTL = 14.31818 MHz  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.[15]  
AC Electrical Characteristics  
66.6-MHz Host  
100-MHz Host  
133-MHz Host  
Parameter  
TPeriod  
THIGH  
Description  
Host/CPUCLK Period  
Min.  
15.0  
5.2  
Max.  
15.5  
N/A  
N/A  
1.6  
Min.  
10.0  
3.0  
Max.  
10.5  
N/A  
N/A  
1.6  
Min.  
7.5  
Max.  
8.0  
Unit Notes  
ns  
ns  
ns  
ns  
ns  
15  
16  
17  
18  
18  
Host/CPUCLK High Time  
Host/CPUCLK Low Time  
Host/CPUCLK Rise Time  
Host/CPUCLK Fall Time  
1.87  
1.67  
0.4  
N/A  
N/A  
1.6  
TLOW  
5.0  
2.8  
TRISE  
0.4  
0.4  
TFALL  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
SDRAM CLK Period (100-MHz)  
SDRAM CLK High Time (100-MHz)  
SDRAM CLK Low Time (100-MHz)  
SDRAM CLK Rise Time (100-MHz)  
SDRAM CLK Fall Time (100-MHz)  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
15  
16  
17  
18  
18  
1.6  
1.6  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
APIC 33-MHz CLK Period  
APIC 33-MHz CLK High Time  
APIC 33-MHz CLK Low Time  
APIC CLK Rise Time  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
15  
16  
17  
18  
18  
APIC CLK Fall Time  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
3V66 CLK Period  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
ns  
ns  
ns  
ns  
ns  
15  
16  
17  
18  
18  
3V66 CLK High Time  
3V66 CLK Low Time  
3V66 CLK Rise Time  
3V66 CLK Fall Time  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
PCI CLK Period  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
15  
16  
17  
18  
18  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Rise Time  
PCI CLK Fall Time  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
tpZL, tpZH  
tpLZ, tpZH  
Output Enable Delay (All outputs)  
Output Disable Delay (All outputs)  
All Clock Stabilization from Power-Up  
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
ns  
ns  
tstable  
ms 19  
Notes:  
15. Period, jitter, offset, and skew measured on rising edge at 1.25 for 2.5V clocks and at 1.5V for 3.3V clocks.  
16. THIGH is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.  
17. TLOW is measured at 0.4V for all outputs.  
18. TRISE and TFALL are measured as a transition through the threshold region Vol = 0.4V and Voh = 2.0V (1 mA) JEDEC specification for 2.5V outputs and VOL  
= 0.4V and VOH = 2.4V for 3.3V outputs.  
19. The time specified is measured from when VDDQ3 achieves its nominal operating level (typical condition VDDQ3 = 3.3V) until the frequency output is stable  
and operating within specification.  
13  
W224B  
Group Skew and Jitter Limits  
Skew, Jitter  
Output Group  
CPU  
Pin-Pin Skew Max.  
Cycle-Cycle Jitter  
250 ps  
Duty Cycle  
45/55  
Nom Vdd  
2.5V  
Measure Point  
1.25V  
1.5V  
150 ps  
250 ps  
250 ps  
N/A  
SDRAM  
APIC  
250 ps  
45/55  
3.3V  
500 ps  
45/55  
2.5V  
1.25V  
1.5V  
48MHz  
3V66  
500 ps  
45/55  
3.3V  
175 ps  
500 ps  
N/A  
500 ps  
45/55  
3.3V  
1.5V  
PCI  
500 ps  
45/55  
3.3V  
1.5V  
REF  
1000 ps  
250 ps  
45/55  
3.3V  
1.5V  
VCH_CLK  
N/A  
45/55  
3.3V  
1.5V  
Test Point  
Output  
Buffer  
Test Load  
Clock Output Wave  
TPERIOD  
Duty Cycle  
THIGH  
2.0  
1.25  
2.5V Clocking  
Interface  
0.4  
TLOW  
TRISE  
TFALL  
TPERIOD  
Duty Cycle  
THIGH  
2.4  
1.5  
0.4  
3.3V Clocking  
Interface  
TLOW  
TRISE  
TFALL  
Figure 9. Output Buffer  
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
W224B  
H
X
56-pin SSOP (7.5 mm)  
56-pin TSSOP (6.1 mm)  
Document #: 38-00926-**  
14  
W224B  
Layout Example  
+2.5V Supply  
FB  
+3.3V Supply  
FB  
VDDQ2  
VDDQ3  
10  
µF  
0.005  
µ
F C2  
10  
µF  
0.005  
µF  
C1  
C3  
C4  
G
G
G
G
G
V
1
56  
G
G
2
55  
54  
53  
G
V
G
3
4
G
5
52  
G
V
G
G
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
G
G
V
G
G
G
V
G
G
G
G
G
V
G
G
V
G
G
G
G
V
G
V
G
VDDQ3  
10  
PLL2  
G
G
C5  
C6  
G
G
FB = Dale ILB1206 - 300 (300  
Ceramic Caps: C1, C3 & C5 = 10–22  
G = VIA to GND plane layer  
V =VIA to respective supply plane layer  
@ 100 MHz)  
µF  
C2 & C4 = 0.005  
µF C6 = 0.1 µF  
Note: Each supply plane or strip should have a ferrite bead and capacitors  
15  
W224B  
Package Diagram  
56-Pin Thin Shrink Small Outline Package (TSSOP, 6.1 mm)  
4
B
1.00  
0.00  
0.05  
1.00 DIA. DEEP  
C
3
2
1
1
2
3
H/2  
E/2  
1.00  
C
E
H
8
L
0.20  
0.20  
H
C
A-B  
A-B  
D
D
N
N
7
D
4
SEE  
DETAIL "A"  
e/2  
X = A AND B  
X
X = A AND B  
A
4
X
TOP VIEW  
END VIEW  
BOTTOM VIEW  
EVEN LEAD SIDES  
TOPVIEW  
ODD LEAD SIDES  
TOPVIEW  
bbb  
M
C
A-B  
D
b
9
SEE DETAIL 'B'  
b
A2  
0.05  
C
b1  
A
C
WITH PLATING  
C
H
3
aaa  
8
e
A1  
SEATING  
PLANE  
c
c1  
D
5
SIDE VIEW  
BASE METAL  
SECTION "C-C"  
SCALE: 120/1  
(SEE NOTE 10)  
0.25  
PARTING  
LINE  
H
SEATING PLANE  
L
6
C
C
)
(
OC  
DETAIL "B"  
(SCALE: 30/1)  
DAMBAR PROTRUSION  
PACKAGE OUTLINE,  
6.10mm BODY, TSSOP  
DETAIL 'A'  
(SCALE: 30/1)  
THIS TABLE FOR 0.50mm PITCH  
NOTES:  
1. DIE THICKNESS ALLOWABLE IS 0.2790.0127 H  
2. DIMENSIONING & TOLERANCES PER ASME. Y14.5M-1994.  
S
COMMON  
DIMENSIONS  
NOM.  
NOTE  
VARI-  
ATIONS  
ED  
EE  
EF*  
5
7
Y
M
N
B
D
N
O
O
T
E
L
MIN.  
12.40  
13.90  
16.90  
NOM.  
12.50  
14.00  
17.00  
MAX.  
12.60  
14.10  
17.10  
MIN.  
MAX.  
1.10  
0.15  
1.05  
3. DATUM PLANE H LOCATED AT MOLD PARTING LINE AND CONCIDENT  
WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.  
48  
56  
64  
A
A1  
A2  
0.05  
0.80  
4. DATUMS A-B AND D TO BE DETERMINED WHERE CENTERLINE  
BETWEEN LEADS EXITS PLASTIC BODY AT DATUM PLANE H.  
1.00  
0.10  
-
0.20  
0.08  
-
aaa  
b
b1  
bbb  
c
*DESIGNED BUT NOT TOOLED  
0.17  
0.17  
0.27  
0.23  
9
5.  
"D" & "E" ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH OR  
PROTRUSIONS, AND ARE MEASURED AT THE BOTTOM PARTING LINE. MOLD  
FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15mm ON D AND 0.25mm  
ON E PER SIDE.  
0.09  
0.09  
0.20  
0.16  
0.127  
SEE VARIATIONS  
c1  
D
6. DIMENSION IS THE LENGTH OF TERMINAL  
FOR SOLDERING TO A SUBSTRATE.  
7. TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.  
5
5
6.00  
6.10  
0.50 BSC  
8.10 BSC  
0.60  
6.20  
E
e
H
8. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO  
ONE ANOTHER WITHIN 0.076mm AT SEATING PLANE.  
9. THE LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE  
0.08mm TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION  
AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE  
LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM  
SPACE BETWEEN PROTRUSIONS AND AN ADJACENT LEAD TO  
BE 0.10MM FOR 0.65MM PITCH, 0.08MM FOR 0.50MM PITCH AND  
0.07MM FOR 0.40MM PITCH PACKAGES.  
0.50  
0.75  
8
6
7
L
N
SEE VARIATIONS  
C
OC  
0
ALL DIMENSIONS IN MILLIMETERS  
SEE DETAIL 'B' AND SECTION "C-C".  
SECTION "C-C" TO BE DETERMINED AT 0.10  
TO 0.25 MM FROM THE LEAD TIP.  
10.  
11. CONTROLLING DIMENSION: MILLIMETERS.  
12. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION  
MO-153, VARIATIONS DB, DC, DE, ED, EE, AND FE.  
16  
W224B  
Package Diagram  
56-Pin Shrink Small Outline Package (SSOP, 7.5 mm)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.725  
Body Height: 0.102  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W224BHT

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 7.50 MM, SSOP-56
CYPRESS

W224BX

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 6.10 MM, TSSOP-56
CYPRESS

W224BXT

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 6.10 MM, TSSOP-56
CYPRESS

W228BH

CPU SYSTEM CLOCK GENERATOR|CMOS|SSOP|56PIN|PLASTIC
ETC