XE3005I033 [ETC]

Low-Power Audio CODEC; 低功耗音频编解码器
XE3005I033
型号: XE3005I033
厂家: ETC    ETC
描述:

Low-Power Audio CODEC
低功耗音频编解码器

解码器 编解码器
文件: 总32页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
XE3005/XE3006  
VSSD VSSA VSSA VDD VREF  
VREG11  
VREG16  
Power supply  
management  
Microphone  
Bias  
RESET  
XE3006  
VDDPA  
AOUTP  
PWM  
DAC  
Power  
AIN  
Σ∆  
modulator  
Decimator  
Amp.  
amplifier  
AOUTN  
VSSPA  
Sandman  
Functions  
Serial Audio  
Interface  
Clock  
mgt  
SPI  
MISO SS SCK MOSI SMAD SMDA BCLK SDI SDO FSYNC MCLK  
XE3005 / XE3006  
Low-Power Audio CODEC  
Features  
General Description  
Ultra low-power consumption, below 2 mW  
Low-voltage operation down to 1.8 V  
Sandman™ function to reduce system  
power consumption (XE3006)  
Single supply voltage  
The XE3005 is an ultra low-power CODEC (Analog  
to Digital and Digital to Analog Converter) for voice  
and audio applications. It includes microphone  
supply, preamplifier, 16-bit ADC, 16-bit DAC, serial  
audio interface, power management and clock  
management for the ADC and the DAC. The  
sampling frequency of the ADC and of the DAC  
can be adjusted from 4 kHz to 48 kHz.  
Adjustable sampling frequency: 4 – 48 kHz  
Digital format: 16 bit 2s complement  
Requires a minimum number of external  
components  
Easy interfacing to various DSPs  
Direct connection to microphone and  
speaker  
The XE3006 also includes the Sandman™  
function, which signals whether a relevant voice or  
audio signal is present for the ADC or DAC.  
Various programming options  
Quick Reference Data  
Applications  
supply voltage  
1.8 – 3.6 V  
0.4 mA  
current (@20 kHz sampling)  
sampling frequency  
4 – 48 kHz  
78 dB  
Wireless Headsets  
Typical dynamic range ADC  
Typical dynamic range DAC  
Bluetooth™ headset  
78 dB  
Hands-free telephony  
Digital hearing instruments  
Consumer and multimedia applications  
All battery-operated portable audio  
devices  
Ordering Information  
Part  
Package  
Ext. part no.  
Temperature  
range  
-20 to 70° C  
-20 to 70° C  
XE3005  
XE3006  
TSSOP 20 pins  
TSSOP 24 pins  
XE3005I033  
XE3006I019  
Cool Solutions for Wireless Connectivity  
XEMICS SA e-mail: info@xemics.com web: www.xemics.com  
Data Sheet  
XE3005/XE3006  
Table of contents  
1
Device Description................................................................................................................................... 3  
1.1 Terminal Descriptions XE3005/6................................................................................................................ 3  
Functional Description ............................................................................................................................ 4  
2
2.1 Device Functions........................................................................................................................................ 4  
2.2 Power-Down Functions............................................................................................................................ 11  
3
Serial Communications ......................................................................................................................... 12  
3.1 Serial Audio Interface............................................................................................................................... 12  
3.2 Register Programming ............................................................................................................................. 13  
3.3 Serial Peripheral Interface - SPI............................................................................................................... 14  
4
Sandman™ Function (XE3006)............................................................................................................. 16  
5
Specifications......................................................................................................................................... 18  
5.1 Absolute Maximum Ratings ..................................................................................................................... 18  
5.2 Recommended Operating Conditions...................................................................................................... 18  
5.3 Electrical Characteristics.......................................................................................................................... 19  
6
Application Information......................................................................................................................... 26  
6.1 Application Schematics – XE3006 ........................................................................................................... 26  
Register Description .............................................................................................................................. 27  
7
7.1 Register Functional Summary.................................................................................................................. 27  
7.2 Register Definitions .................................................................................................................................. 28  
8
Mechanical Information......................................................................................................................... 31  
8.1 XE3005 package size (TSSOP20)........................................................................................................... 31  
8.2 XE3006 Package size (TSSOP24) .......................................................................................................... 32  
2
D0212-116  
Data Sheet  
XE3005/XE3006  
1 Device Description  
MOSI  
SCK 19  
1
2
3
4
5
6
7
8
9
20  
MCLK  
SS  
MOSI  
SS  
1
2
MCLK  
SMAD  
SMDA  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SDI  
SDO  
18  
17  
16  
15  
14  
13  
12  
11  
VDD  
SCK  
3
NRESET  
VREG16  
VREF  
VSSA  
VSSD  
VREG11  
MISO  
SDI  
4
BCLK  
5
NRESET  
VSSA  
FSYNC  
AOUTP  
VDDPA  
AOUTN  
VSSPA  
SDO  
6
BCLK  
FSYNC  
AOUTP  
VDDPA  
AOUTN  
VSSPA  
VREG16  
VREF  
7
8
VSSA  
9
10 AIN  
VSSD  
10  
11  
12  
VREG11  
AIN  
Figure 1: Pin layout of the XE3006 and XE3005  
The XE3006 is available in a TSSOP24 package. The XE3005 is available in a TSSOP20 package. Detailed  
information is found in chapter 8, Mechanical Information.  
1.1 Terminal Descriptions XE3005/6  
Terminals  
Type 1  
Description  
XE3006  
XE3005  
Name  
MCLK  
SMAD  
SMDA  
VDD  
1
2
3
4
1
DI  
DO  
DO  
AI  
Master Clock. MCLK derives the internal clocks of ADC and DAC  
Sandman output ADC  
N/A  
N/A  
3
Sandman output DAC  
Digital power supply  
Reset signal generated by the CODEC. If required, the reset signal can  
be applied externally to initialize all the internal CODEC registers  
Analog ground  
5
4
NRESET  
ZI/O  
6
7
N/A  
5
VSSA  
VREG16  
VREF  
VSSA  
VSSD  
VREG11  
AIN  
AI  
AO  
AO  
AI  
Regulator voltage 1.6 V. Can be used to supply the microphone  
Reference voltage  
8
6
9
7
Analog ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Note: (1)  
8
AI  
Digital ground  
9
AO  
AI  
ADC Regulated microphone output supply voltage 1.1 V  
ADC Analog input signal  
10  
11  
12  
13  
14  
15  
16  
17  
18  
N/A  
19  
2
VSSPA  
AOUTN  
VDDPA  
AOUTP  
FSYNC  
BCLK  
SDO  
AI  
DAC Power Amplifier Ground  
AO  
AI  
DAC Analog Output negative  
DAC Power Amplifier Supply  
AO  
DI/O  
DI/O  
ZO  
DAC Analog Output positive  
Serial audio interface Frame Synchronization  
Serial audio interface Bit Clock  
Serial audio interface Data Output  
SDI  
DI PD Serial audio interface Data Input  
MISO  
SCK  
ZO  
SPI Master In Slave Out  
DI PD SPI Serial Clock  
DI PU SPI Slave Select  
DI PD SPI Master Out Slave In  
AO = Analog Output  
SS  
20  
MOSI  
AI = Analog Input  
DI = Digital Input  
DO = Digital Output  
DI/O = Digital In or Out  
PU = internal Pull Up  
ZO = Hi Impedance or Output  
PD = internal Pull Down  
ZI/O = Hi impedance In or Out  
3
D0212-116  
Data Sheet  
XE3005/XE3006  
2 Functional Description  
A CODEC is typically used for voice and audio applications as an interface between a Digital Signal processor  
(DSP) or microcontroller and the analogue interfaces like a microphone and loudspeaker.  
DAC  
ADC  
MIC-Amplifier  
CODEC  
Power Amplifier  
Serial Audio Interface  
SPI  
DSP / Microcontroller  
„
„
Digital wireless transmission – Bluetooth™  
Voice recognition / speech synthesis  
Figure 2: typical usage of CODEC  
This chapter provides a brief description of the CODEC features relating to the CODEC configuration. The  
configuration of the CODEC is defined by programming registers through a serial interface. A detailed description  
of the registers defining details of the CODEC setup can be found in chapter 3 and 7. Digital voice and audio  
samples are passed through the Serial Audio Interface.  
2.1 Device Functions  
2.1.1 ADC Signal Channel  
The ADC channel is a chain of programmable amplifier, band-pass filter, sigma-delta modulator and a decimation  
filter. The amplifier gain is programmable to 5x (default) and 20x. The band-pass filter has cut-off frequencies  
proportional to the sampling rate. The sigma-delta modulator operates at a frequency of 64 times the sampling  
rate. The analog modulator is followed by a digital decimation filter. The digital output data (16 bits, 2’s  
complement format) is made available through the Serial Audio Interface. The format of the Serial Audio interface  
can be selected through register J.  
With the default register settings the ADC can run at a sampling frequency up to 20 kHz. When used with a  
sampling frequency higher than 20 kHz, then register C has to be changed.  
The whole ADC chain can be powered-down through register I.  
4
D0212-116  
Data Sheet  
XE3005/XE3006  
2.1.2 MIC Input  
The programmable pre-amplifier and the microphone bias sources VREG11 or VREG16 are optimized to operate  
with electret microphones. VREG11 provides a 1.1 V reference voltage. The VREG11 can deliver up to 50 µA.  
VREG11 is enabled through control register E. VREG16 is a regulated voltage of typically 1.6V and can deliver  
up to 1 mA.VREG16 is always enabled.  
Vcc  
4
5
VDD  
0.1µF  
NRESET  
VSSA  
6
7
VREG16  
VREF  
8
VSSA  
9
VSSD  
10  
11  
1k  
VREG11  
AIN  
12  
50 pF (gain is 5)  
820k  
200 pF (gain is 20)  
1µF  
1µF  
GND  
Figure 3: typical microphone interface (1.1 V / 50 uA bias through VREG11)  
Vcc  
4
5
VDD  
0.1µF  
NRESET  
VSSA  
6
1k*  
7
VREG16  
VREF  
8
9
VSSA  
VSSD  
10  
11 VREG11  
AIN  
12  
50 pF (gain is 5)  
200 pF (gain is 20)  
820kΩ  
1µF  
1µF  
*
depends on microphone type  
GND  
Figure 4: typical microphone interface (1.6 V / 1 mA bias through VREG16)  
5
D0212-116  
Data Sheet  
XE3005/XE3006  
2.1.3 DAC Signal Channel  
The DAC is based on a multi bit sigma-delta modulator, which operates at a frequency of 8 times the sampling  
rate. The outputs of the modulator are 2’s complement words of 6 bit. A pulse-width modulator (PWM) converts  
the 6 bit words into 2 single bit streams at 256 times the sampling frequency. Finally the 2 bit streams are  
supplied to the power amplifier. The Power Amplifier is a Class D amplifier, which offers higher efficiency than the  
traditional Class AB topologies. It uses a three-state unbalanced PWM. This means that both channels of the PA  
(AOUTP and AOUTN) will not switch at the same time, therefore the outputs are not purely differential (see figure  
5 and 6)  
XE3005/6  
VDDPA  
P
P
s
N
N
AOUTP  
AOUTN  
P
From Serial Audio  
Interface  
Interpolator  
&
Pulse Width  
Modulator  
Power  
N
Amplifier  
Modulator  
dac_in(15:0)  
@ Fsync  
pwm_in(5:0)  
@ 8xFsync  
bit streams  
@ 256xFsync  
VSSPA  
s = 0  
s = 1  
Figure 5: DAC block diagram  
Figure 6 shows the relation of input and output samples of the PWM (The timing diagram is not to scale in the  
time-axis).  
pwm_in(5:0) = 1  
pwm_in(5:0) = -1  
pwm_in(5:0) = 0  
pwm_in(5:0) = 2  
1
0
P
1
0
N
1/(256 x Fsync)  
1/(8 x Fsync)  
VDDPA  
VSSPA  
OUTP-OUTN  
-VDDPA  
1/(256 x Fsync)  
2/(256 x Fsync)  
Figure 6: examples PWM in and out (not to scale)  
The DAC receives 16-bit wide 2’s complement format through the Serial Audio Interface. The protocol can be  
selected through register J. The complete DAC and PA amplifier chain can be powered-down through register I.  
6
D0212-116  
Data Sheet  
XE3005/XE3006  
2.1.4 Digital Loop Back  
In digital loop back mode, the ADC output is routed directly to the DAC input. This allows in-circuit system level  
tests. The digital loop back mode can be selected through register J.  
2.1.5 Operating Frequency  
A master clock (MCLK) has to be applied to the XE3005/3006. The clock frequency of the signal applied to the  
MCLK pin may vary between 1.024 MHz minimum and 33.9 MHz maximum. The maximum internal clock signal  
frequency (MCLK/div_factor) should not exceed 12.288 MHz.  
The div_factor can be set by the user in register I to 1,2 or 4. The default value for div_factor is ‘1’.  
2.1.6 Serial Audio Interface  
The Serial Audio Interface is a 4-wire interface for bi-directional communication of audio data. It operates on the  
bit serial clock BCLK and the frame synchronization signal FSYNC. The sampling frequency of the CODEC  
corresponds to the rate at which the Audio Serial Interface will put out succeeding frames. One frame always  
corresponds to one sample. One frame always contains 2 channels.  
Synchronizing the Serial Audio Interface to the MCLK is recommended. FSYNC and MCLK must have a fixed  
ratio as defined by the following relation:  
FSYNC = Sampling frequency = frame rate = MCLK/(256 x div_factor).  
The pin BCLK defines the time when the data must be presented to the serial audio interface and shifted into (pin  
SDI) or out of (pin SDO) the CODEC. The number of BCLK periods in one FSYNC period is 32. The user can  
select to use the first 16 clock cycles (channel 1) or the second 16 clock cycles (channel 2) of BLCK to shift in or  
out the data samples.  
The table below shows some examples of the relationships between MCLK, BCLK and FSYNC  
MCLK  
2048 kHz  
8192 kHz  
5120 kHz  
22579.2 kHz  
Div_factor  
BCLK  
256 kHz  
256 kHz  
640 kHz  
1411.2 kHz  
FSYNC  
8 kHz  
1
4
1
2
8 kHz  
20 kHz  
44.1 kHz  
The table below shows the possible functional configurations of the serial audio interface  
CODEC  
master  
slave  
supported protocol  
LFS (long frame sync)  
LFS (long frame sync), SFS (short frame sync)  
By default the Serial Audio Interface operates in slave, SFS mode. In slave mode the user needs to generate the  
signals BLCK, FSYNC and supply to the CODEC.  
In master mode the CODEC generates the BLCK and FSYNC signals. In that case the BLCK operates at 32  
times the frequency of FSYNC. The CODEC master mode can be used with the LFS protocol only.  
The register J is used for the different setups of the serial audio interface.  
7
D0212-116  
Data Sheet  
XE3005/XE3006  
2.1.7 Serial Peripheral Interface - SPI  
The SPI interface is used to control register values. It is a serial communications interface that is independent of  
the rest of the CODEC. It allows the device to communicate synchronously with a microprocessor or DSP. The  
CODEC interface only implements a slave controller.  
A detailed description can be found in chapter 3.3.  
2.1.8  
Sandman™ ADC Function  
The Sandman™ function monitors the signals, which are processed in the ADC signal channel and the DAC  
signal channel. The logic output signal SMAD indicates whether the ADC signal channel has processed an audio  
signal or only noise, and for how long. The reference signal amplitude can be selected through register O, the  
time window parameters are the off time and on time (registers L, M and N).  
FSYNC  
BCLK  
SDO  
Serial Audio  
Interface  
AIN  
Σ∆  
modulator  
Decimator  
Amp.  
Sandman  
Interface  
SMAD  
Figure 7: Implementation of the Sandman function for the ADC (SMAD)  
The logic output SMAD can be used to power-down or reduce clock speed in other devices in the application,  
such as a microcontroller, DSP or wireless link. Also, SMAD can be used as phone pick-up indicator. The  
Sandman™ function is illustrated in Figure 9 and is valid for both SMAD (related to the ADC signal) and SMDA  
(related to the DAC signal).  
Initially, SMAD is inactive (low), which means that “noise” is processed by the ADC, i.e. no audio signal amplitude  
above the Reference. The Sandman™ Interface compares every output sample of the ADC signal channel to the  
Reference value. If the signal is lower than the Reference value, SMAD remains inactive (low).  
As soon as the signal passes the reference (time = 1), the on-time counter is started. (for the moment defined by  
time=’x’ see Figure 9). However, as the signal returns below the reference (time = 2) before the on-time counter  
has reached the on time, the on-time counter is reset and the SMAD signal remains inactive (low).  
The next time the signal gets higher than the Reference (time = 3), the on-time counter is started again and when  
it reaches the on time, the SMAD signal becomes active (high), indicating that an audio signal is present (time =  
4). As long as the signal remains above the Reference, nothing happens and the SMAD signal remains active  
(high). When the signal falls below the Reference (time = 5), the off-time counter is started, but as it does not  
reach the off time before the signal passes again the Reference (time = 6), SMAD remains active (high). Also  
during the period from time = 7 to time = 8, the off time counter does not reach the off time.  
When the signal falls below the Reference (time = 9) and remains below the Reference until the off-time counter  
has reached the off-time, the SMAD signal is changed into the inactive (low) state (time = 10).  
8
D0212-116  
Data Sheet  
XE3005/XE3006  
2.1.9  
Sandman™ DAC Function  
The Sandman™ function monitors the signals, which are processed in the ADC signal, channel and the DAC  
signal channel. The logic output signal SMDA indicates whether the DAC signal channel processes an audio  
signal or only noise, and this for certain duration. The reference signal amplitude can be selected through register  
P, the time window parameters are the off time and on time (registers L, M and N).  
Reg I, bit 4  
Sandman  
SMDA  
Interface  
VDDPA  
FSYNC  
BCLK  
SDI  
AOUTP  
Serial Audio  
Interface  
PWM  
DAC  
Power  
amplifier  
AOUTN  
VSSPA  
Figure 8: Implementation of the Sandman function for the DAC (SMDA)  
The logic output SMDA can be employed to power-down other devices in the application, such as an external  
audio power amplifier. By setting bit 4 in register I, the on-chip DAC signal channel can be powered-down through  
SMDA too. The Sandman™ function is illustrated in Figure 9 and is valid for both SMAD (related to the ADC  
signal) and SMDA (related to the DAC signal).  
AIN/SDO  
(AOUT/SDI)  
+ reference  
- reference  
On-time counter  
Time step = 1/fs = 1/FSYNC  
Off-time counter  
on-time  
off-time  
SMAD  
(SMDA)  
1
2
3
4
5
6
7
8
9
10 time  
Figure 9: Illustration of the Sandman™ function.  
The above illustration is valid for either the SMAD output as a result of AIN/SDO or for the SMDA output as a  
function of AOUT/SDI.  
9
D0212-116  
Data Sheet  
XE3005/XE3006  
2.1.10 Start-up and Initialization  
The CODEC generates its own power on reset signal after a power supply is connected to the VDD pin. The  
reset signal is made available for the user at the pin NRESET. The rising edge of the NRESET indicates that the  
startup sequence of the CODEC has finished. In most applications the NRESET pin can be left open.  
The NRESET signal generated by the CODEC is used to initialize the various blocks in the device and  
guarantees a correct start-up of the circuit. The start-up sequence that is automatically carried out upon power-up  
of the device is listed below and illustrated in Figure 10.  
1) NRESET is low (0V) when the device is not powered and remains low for a short time when VDD (upper  
curve in Figure 10) is applied. The low state sustains while VDD, VREG16, VREF are stabilizing.  
2) As soon as the MCLK signal is present, a counter is activated that counts 221 periods of the MCLK. After this  
moment the NRESET is in the high state (VDD).  
VDD = 1.8..3.3V  
VREG16 = 1.6V  
VREF = 1.2V  
time  
. . .  
MCLK  
977 ms (MCLK=2.048KHz)  
main reset  
NRESET  
Figure 10: Startup sequence and NRESET signal after power-on.  
The user can use the NRESET pin in 3 different ways and combinations:  
1) Leave the NRESET pin not connected. In this case the CODEC will startup as described in figure 10.  
2) Use the NRESET pin as an output to indicate, to e.g. a microcontroller, that the CODEC finished its  
power up sequence and that the CODEC is ready to operate.  
3) Use the NRESET pin to force a re-initialisation of the registers to their default values. In this case the  
user has to force the NRESET to 0V for at least 32 periods of the MCLK. The circuit which forces the  
NRESET to 0V should be able to sink at least 50 uA.  
10  
D0212-116  
Data Sheet  
XE3005/XE3006  
Figure 11 shows the block diagram of the CODEC reset.  
reset to analog and  
digital circuitry of codec  
delay  
Power  
On  
NRESET  
counter  
Reset  
low drive  
buffer  
MCLK  
XE3005/6  
Figure 11: Codec reset circuitry  
2.2 Power-Down Functions  
2.2.1 Software Power-Down  
Register I allows for the selective power down of the ADC signal channel or the DAC signal channel through SPI  
control. The wake-up time, after powering down the device is typically 200µs. The maximum standby current is  
96µA, depending highly upon the Master clock (MCLK), see 5.3.5.2 Low Power Modes.  
2.2.2 Hardware Power-Down  
The device has no power-down pin. However, by holding down (0 V) the NRESET pin (resetting the device) as  
well as the pins MCLK, BCLK and FSYNC, the power consumption will reach the standby current of typically  
16µA. Use the standard procedure for power up (see start-up and initialization procedure) after a hardware power  
down and apply your registers setup procedure.  
11  
D0212-116  
Data Sheet  
XE3005/XE3006  
3 Serial Communications  
3.1 Serial Audio Interface  
The Serial Audio Interface is a 4-wire interface for bi-directional communication of audio data. The 4 terminals are  
listed below:  
BCLK:  
Bit serial clock, one clock cycle corresponds to one data bit transmitted or received.  
Frame Synchronization. This signal indicates the start of a data word. The frequency of  
the FSYNC corresponds to the sample frequency of the CODEC.  
FSYNC:  
SDI:  
Serial Data In, data received from external device and sent to DAC.  
SDO:  
Serial Data Out, data received from ADC and sent to external device.  
The same clock (BCLK) and synchronization (FSYNC) signals are used for both sending and receiving. The  
synchronization signal FSYNC must have a fixed ratio with the master clock signal MCLK.  
The Serial Audio Interface supports two formats that are commonly used for audio/voice CODECs and that are  
referred to as SFS (Short Frame Synchronization) and LFS (Long Frame Synchronization). Data can be  
transmitted and received in 2 channels. Which channel is selected depends on the programmed values in the  
registers. The two interface protocols are shown below.  
channel 2, no data  
channel 1, sample n+1  
channel 1, sample n  
FSYNC  
BCLK  
SDI  
-
-
-
-
-
-
n+115  
n15 n14  
n0  
n+115  
n15 n14  
n0  
SDO  
msb  
msb  
lsb  
Figure 12: Audio interface timing LFS mode, channel 1  
channel 1, sample n+1  
channel 1, sample n  
channel 2, sample n  
FSYNC  
BCLK  
SDI  
-
n+115  
n15 n14  
n0  
-
-
-
-
n+115  
-
n15 n14  
n0  
SDO  
msb  
msb  
lsb  
Figure 13: Audio interface timing in SFS mode, channel 1  
SDI Data should be changed on the rising edge of BCLK. The SDI data will be read by the CODEC on the falling  
edge of BLCK. SDO data will change on the rising edge of the BCLK. The SDO data should be read on the falling  
edge of the BLCK. Each rising edge of the FSYNC indicates the start of a new sample.  
12  
D0212-116  
Data Sheet  
XE3005/XE3006  
3.1.1 LFS optimization  
For transmitting and receiving 32 clock cycles in one frame are always required (figure 12 and 13). This is even  
the case when only 16 bits have to be sent or received. In most cases this can be handled easily with a DSP and  
microcontroller.  
If the user wants to send a minimum of BLCK cycles, it is possible to shorten channel 1 (channel 2 can not be  
shortened).  
In the LFS mode the possibility exists to shorten the number of BLCK cycles to 17 instead of 32. In this case the  
data is transmitted and received in channel 2. Channel 1 is shortened to one BLCK cycle only.  
The figure 14 shows this special LFS mode.  
channel 1, no data  
channel 2, sample n+1  
channel 1, no data  
channel 2, sample n  
FSYNC  
BCLK  
SDI  
n15 n14  
n0  
-
-
n15 n14  
-
-
n15 n14  
n15 n14  
n0  
SDO  
lsb  
msb  
msb  
Figure 14: Audio interface timing in LFS mode,17 BLCK cycles, channel 2  
3.2 Register Programming  
The control registers define the configuration of the CODEC and define the various modes of operation. During  
power-up, all registers will be configured with default values. The control register set consists of 16 registers. A  
detailed description is provided chapter 7.  
The control registers can be changed in the two following ways:  
1. Logic values at SPI pins during power-up  
There are 3 bits inside the registers which are configured depending on the logic values of the pins SS, SCK and  
MOSI during the power up startup sequence as described in section 2.1.10  
Value at power up  
SS = 1  
Influenced bits of registers  
Register I(0)=0  
comments  
MCLKDIV division by 1  
MCLKDIV division by 2  
SFS protocol  
SS = 0  
Register I(0)=1  
SCK = 0  
Register J(0)=1  
SCK = 1  
Register J(0)=0  
LFS protocol  
MOSI = 0  
MOSI = 1  
Register E(2) = 0  
Register E(2) = 1  
preamplifier gain x5  
preamplifier gain x20  
Using the SPI pins at startup the user is able to configure the CODEC in the corresponding setups without  
reprogramming through the SPI interface and protocol. In best case the SPI interface can then be completely  
omitted and the 3 SPI pins can be fixed to ‘0’ or ‘1’.  
13  
D0212-116  
Data Sheet  
XE3005/XE3006  
2. Programming through SPI interface after power-up  
Once the device has been powered up, the configuration registers can be modified at all times (also when the  
device is active) through the SPI interface.  
The following section describes the SPI protocol which is required to change the control registers from their  
default values.  
3.3 Serial Peripheral Interface - SPI  
The serial peripheral interface (SPI) allows the device to communicate synchronously with other devices such as  
a microprocessor or a DSP. The CODEC interface only implements a slave controller. This section describes the  
communication from master (e.g. DSP) to slave (CODEC pin MOSI) and from slave (CODEC pin MISO) to a  
master (e.g. DSP).  
Four lines are used to transmit data between the slave and master:  
-
-
-
-
MOSI (Master Out, Slave In) data from master to slave, synchronous with the SPI clock (SCK).  
MISO (Master In, Slave Out) data from slave to master, synchronous with the SPI clock (SCK).  
SCK (Serial Clock) synchronizes the data bits of MOSI and MISO.  
SS (Slave Select) Slave devices are selected by activating SS.  
3.3.1 Protocol  
During SPI communication, data is simultaneously transmitted and received.  
trecovery  
1/Fsck  
tdisable  
SS  
SCK  
MOSI  
MISO  
14  
14  
15  
15  
1
1
0
0
Figure 15: SPI signal timing  
The master puts data on the MOSI line on the falling edge of SCK; the slave reads the data on the rising edge of  
SCK. The slave puts data on the MISO line on the falling edge of SCK; the master reads the data on the rising  
edge of SCK. Transmission in either direction is by 2 bytes with MSB first.  
The SS pin should be kept low during the whole transfer of data.  
There are three timing constraints:  
-
-
-
Recovery time (t recovery) between the falling edge of SS and the falling edge of SCK.  
Disable time (t disable) between the last rising edge of SCK and the rising edge of SS.  
SCK frequency (FSCK  
)
Delay  
t recover  
t disable  
F SCK  
Min  
125  
Max  
Unit  
ns  
Comments  
-
2 x Tmaster  
-
ns  
Tmaster = clock period of the master clock MCLK  
Fmaster = frequency of the master clock MCLK  
0.5 x Fmaster  
Hz  
14  
D0212-116  
Data Sheet  
XE3005/XE3006  
3.3.2 SPI Interface Modes  
There are two SPI modes: read and write.  
3.3.2.1 Read Mode  
Read communication always takes place in pairs of bytes. A read request of 2 bytes is sent on the MOSI line.  
The content of the addressed register, one byte, is dumped on the MISO line during the transmission of the  
second byte on the MOSI. The formats of one byte are the following:  
bit  
7
6
5
4
3
2
1
0
mosi  
1
1
0
msb  
A (4:0)  
lsb  
bit  
7
6
5
4
3
2
1
0
miso  
msb  
D(7:0)  
lsb  
ss  
sck  
mosi  
0
1
1
0
A4 A3 A2 A1 A0  
1
1
request (read <address A(4:0)>)  
miso  
msb  
lsb  
read data D(7:0) of address A(4:0)  
Figure 16: SPI signal timing in read mode  
3.3.2.2 Write Mode  
Write communication always takes place in pairs of bytes. The format of the 2 bytes is:  
Bit  
7
6
5
4
3
3
2
1
1
0
mosi  
1
0
0
msb  
A(4:0)  
lsb  
Bit  
7
6
5
4
2
0
mosi  
msb  
D(7:0)  
lsb  
ss  
sck  
lsb  
msb  
mosi  
A4  
A3 A2  
A0  
1
0
0
A1  
write data D(7:0) to address A(4:0)  
Figure 17: SPI signal timing in write mode  
request (write to address A(4:0))  
15  
D0212-116  
Data Sheet  
XE3005/XE3006  
4 Sandman™ Function (XE3006)  
The Sandman™ function analyzes the audio signals in the ADC and DAC. Its output signals indicate whether an  
audio signal is present in the ADC or DAC or if the processed signal is just noise. The threshold or reference  
value between noise and audio signal as well as the minimum duration of an audio signal is user-programmable  
through the SPI interface. If the XE3006 CODEC is used in a system that includes a microcontroller, a DSP or an  
RF link, the outputs of the Sandman™ Interface can be used to bring these devices into standby or sleep mode  
whenever no audio signal is being processed. In this way, the Sandman™ function contributes to significant  
additional power savings on the system level outside the XE3006 chip.  
The Sandman™ Interface consists of 2 digital outputs:  
The SMAD detects whether the ADC processes an audio signal. The calculation is made with the digital data  
leaving the ADC.  
The SMDA detects whether an audio signal is processed by the DAC. The calculation is made with the  
digital data entering through the Audio Interface.  
The Sandman™ Interface is implemented for the ADC and for the DAC in an identical way. It works with a set of  
4 user-defined parameters: off time, on-time, ADC-reference and DAC-reference. The on time and the off time  
are the same for ADC and DAC. However, the reference values for the ADC and the DAC are adjusted  
separately, as indicated in the table below.  
Input parameters  
Off-time1(7:0)  
Register  
Sandman ADC  
Sandman DAC  
L
M
N
O
P
X
X
X
X
-
X
X
X
-
Off-time2(15:8)  
On-time(7:0)  
ADC_reference(7:0)  
DAC_reference(7:0)  
X
The Sandman™ Interface (for the ADC as well as for the DAC) is configured with three parameters:  
Reference (7:0): Absolute value under which the signal is considered noise and above which the signal is  
considered to be an audio signal. The Sandman™ function is disabled (SMAD or SMDA at logic 1) if this  
parameter is zero. The ADC and the DAC have separate Reference values.  
Off-time (15:0): Time until power down. The number of sequential samples that have to be lower than the  
Reference for the power down signal to become active. The Sandman™ function is disabled (SMAD or  
SMDA at logic 1) if this parameter is zero. The ADC and DAC have one common Off-time value.  
On-time (7:0): Time until wakeup. The number of sequential samples that have to be higher than the  
Reference for the power down signal to become inactive. The Sandman™ function is disabled (SMAD or  
SMDA at logic 1) if this parameter is zero. The ADC and DAC have one common On-time value.  
All these parameters are set in the registers L, M, N, O and P.  
Reference(7:0)  
0
On-time(7:0)  
don’t care  
0
Off-time(15:0) Sandman (SMAD or SMDA) Comments  
don’t care  
don’t care  
0
logic 1 (disable function)  
logic 1 (disable function)  
logic 1 (disable function)  
logic 1 (signal higher than ref)  
Sandman disable  
Sandman disable  
Sandman disable  
all registers zero  
time for FSYNC =  
20kHz  
don’t care  
don’t care  
1.-.255  
don’t care  
1.-.255  
1 - 65535  
corresponds to  
128.-.32640  
corresponds to corresponds to logic 0 (signal lower than ref)  
50 µs – 12 ms 50 µs - 3.2 sec  
16  
D0212-116  
Data Sheet  
XE3005/XE3006  
The reference (7:0) value is related to the absolute value of the 16 bits input signal. The following format is used  
for the comparison:  
16 bit inputs data (2’s-complement) : 0111’1111’1111’1111 = 0x7FFF  
8 bit reference (unsigned) : 0111’1111’1000’0000 = 0xFF00/2  
max positive value  
reference max  
So the reference is compared to the 8 most significant bits of the absolute value of the input signal:  
reference(7:0)  
Absolute reference  
AIN (mV) if gain = 4  
AIN (mV) if gain = 20  
0
1
2
0
0.00  
1.10  
2.20  
0.00  
0.27  
0.55  
128  
256  
M
M
M
M
70  
255  
280  
255 × 128 = 32640  
The values in this table are amplitude values, RMS values can be derived by dividing the numbers by 2.  
The working mechanism of the Sandman™ function is the following:  
The incoming data is compared to the reference after each time step (1/FSYNC = 50µs if FSYNC = 20kHz).  
During the On-time phase  
If the input data is higher than the reference, a counter will be incremented otherwise the counter is reset.  
When the counter reaches the On-time value, then the SMAD or SMDA signal is activated (high level).  
During the Off-time phase  
If the input data is lower than the reference, a counter will be incremented otherwise the counter is reset.  
When the counter reaches the Off-time value, then the SMAD or SMDA signal is deactivated (low level).  
In a first approximation, the following points are recommended:  
On-time at least 1ms. If the On-time is shorter than 1 ms, the Sandman™ function becomes sensitive to  
spikes in the audio input signal AIN.  
Off-time at least 10ms, the Off-time should be longer than 1/fmin = 10ms, (code = 200). fmin is the minimum  
audio frequency = 100Hz if FSYNC = 20kHz. The value of fmin scales proportionally with the sampling  
frequency FSYNC. A high-pass filter in the ADC filters out signals below 100Hz.  
Reference should be adjusted just above the noise level.  
The CODEC bandwidth is around 100 Hz to 10 kHz at the nominal system frequency settings (MCLK = 5 MHz,  
CKDIV = 1, FSYNC = 20 kHz).  
In digital loop back mode, the data entering into the Audio Interface is not transferred to the DAC. However, the  
Sandman™ function (if activated) continues to output the SMDA signal based on the data entered into the Audio  
Interface (input terminal SDI).  
17  
D0212-116  
Data Sheet  
XE3005/XE3006  
5 Specifications  
5.1 Absolute Maximum Ratings  
Stresses above those listed in the following table may cause permanent failure. Exposure to absolute ratings for  
extended periods may affect device reliability.  
The values are in accordance with the Absolute Maximum Rating System (IEC 134).  
All voltages are referenced to ground (VSSA and VSSD).  
Analog and digital grounds are equal (VSSA = VSSD).  
Symbol  
VDD  
Tstg  
TA  
Parameter  
Conditions  
Min  
-0.3  
-65  
-20  
Max  
3.65  
150  
70  
Unit  
V
Supply voltage  
Storage temperature  
°C  
°C  
V
Operating free-air temperature, TA  
Electrostatic discharge protection  
Static latchup current  
Ves  
1)  
2)  
2)  
500  
98  
Ilus  
10  
mA  
V
Vlud  
Dynamic latchup voltage  
50  
1) Tested according MIL883C Method 3015.6, class JEDEC 1B (Standardized Human Body Model: 100 pF,  
1500 , 3 pulses, protection related to substrate).  
2) Static and dynamic latchup values are valid at 27 °C.  
5.2 Recommended Operating Conditions  
All voltages referenced to ground (VSSA and VSSD).  
Min  
Typ  
Max  
Unit  
Supply voltage, VDD  
1.8  
3.0  
3.6  
V
Analog signal peak-to-peak input voltage, AIN (gain = 20x)  
Analog signal peak-to-peak input voltage, AIN (gain = 5x)  
Differential output load resistance  
65  
mV  
mV  
270  
16  
32  
20  
Ohm  
Master clock frequency  
1.024  
33  
48  
70  
MHz  
kHz  
°C  
ADC or DAC conversion rate  
Operating free-air temperature, TA  
-20  
18  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3 Electrical Characteristics  
The operating conditions in this section are: VDD = 3.0 V, T = 25°C.  
5.3.1 Digital Inputs and Outputs, FSYNC = 20 kHz, output not loaded  
Parameter  
Test  
Min  
Typ  
Max  
Unit  
Conditions  
IO = -360uA  
VOH  
VOL  
IIH  
High-level output voltage, DOUT  
Low-level output voltage, DOUT  
High-level input current, any digital input  
Low-level input current, any digital input  
Input capacitance  
2.4  
VDD+0.5  
V
IO = 2mA  
VIH = 3.3 V  
VIL = 0.6 V  
VSSD-0.5  
0.4  
10  
10  
10  
10  
V
uA  
uA  
pF  
pF  
IIL  
Ci  
Co  
Output capacitance  
5.3.2 ADC Dynamic Performance, FSYNC = 20 kHz  
Parameter  
Test Conditions  
Min  
72  
Typ  
Max  
Unit  
dB  
Pre-amp gain = 5x  
SNR  
THD  
Flo  
Signal-to-noise ratio  
78  
0.5  
70  
10  
Vin=250mV (full scale)  
Total harmonic distortion  
¼ full scale  
%
Hz  
kHz  
us  
Low cut-off frequency (-3 dB), See Note 1 FSYNC = 20 kHz  
High cut-off frequency (-3 dB), See Note 2 FSYNC = 20 kHz  
60  
80  
Fhi  
GD  
Group delay  
FSYNC = 20 kHz  
150  
Note 1) Flo is proportional to FSYNC  
Note 2) Fhi equals FSYNC/2  
5.3.3 ADC Channel Characteristics, FSYNC = 20 kHz  
Parameter  
Test Conditions  
Pre-amp gain = 5x  
Min  
Typ  
Max  
270  
Unit  
Vipp Peak-to-peak input voltage (single ended)  
mV  
Pre-amp gain = 20x  
65  
20  
5
A-weighted, 100 Hz-10 kHz  
pre-amp gain = 5x  
Vneq  
Equivalent input noise  
Dynamic range  
µV rms  
A-weighted, 100 Hz-10 kHz  
pre-amp gain = 20x  
Pre-amp gain = 5x  
72  
1
78  
60  
50  
dB  
dB  
Vin=250mV (full scale)  
PSRR Power supply rejection ratio, input referred  
Up to 1 kHz  
Preamp-gain = 5x  
Preamp gain = 20x  
Cin  
Input capacitor  
pF  
200  
Rin  
Eg  
Input resistance VIN – VSSA  
gain error  
MOhm  
[%]  
LSB  
LSB  
LSB  
VDD 1.8-3.3V  
VDD 1.8-3.3V  
VDD 1.8-3.3V  
VDD 1.8-3.3V  
+/- 0.1  
-60  
6.7  
offset error  
input noise  
Integral non linearity  
INL  
+/- 5  
DNL  
Differential non linearity  
VDD 1.8-3.3V  
+/- 0.1  
LSB  
19  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3.4 DAC Dynamic Performance, load is an LC filter at 10 kHz  
FSYNC = 20 kHz, MCLK = 5 MHz, for info on the LC filter see chapter 6, Application Information.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
SNR  
THD  
Signal-to-noise ratio  
Bandwidth 10 kHz  
72  
78  
dB  
Total harmonic distortion  
Dynamic range  
¼ full scale  
0.5  
78  
%
dB  
µs  
Bandwidth 10 kHz  
FSYNC = 20 kHz  
72  
GD  
Group delay  
150  
5.3.5 Power Supply  
5.3.5.1 Regulated supply characteristics @ T = 25°C  
Parameter  
Test  
Conditions  
1µF capacitor  
load  
Min  
Typ  
Max  
Unit  
VREF  
reference Voltage  
1.2  
V
VREG11  
I_vreg11  
R_vreg11  
regulated Voltage 1.1V  
available current  
1.1  
35  
1
V
50  
µA  
output impedance  
1.5  
kOhm  
1µF capacitor  
VREG16  
regulated Voltage 1.6V  
1.5  
1.6  
V
820kresistor  
I_vreg16  
available output current  
1
mA  
dB  
dB  
dB  
VREF PSRR  
power supply rejection ratio, input referred  
up to 1 kHz  
up to 1 kHz  
up to 1 kHz  
60  
60  
40  
VREG11 PSRR power supply rejection ratio, input referred  
VREG16 PSRR power supply rejection ratio, input referred  
5.3.5.2 Low power mode  
Stand-by mode @ VDD = 3.0V, T = 25°C  
Parameter  
Test Conditions  
Min  
Min  
Typ  
Max  
Unit  
ADC off, DAC off  
Istb1  
Istb2  
Istb3  
Supply current in standby mode  
28  
48  
20  
56  
96  
40  
µA  
MCLK = 5 MHz,  
ADC off, DAC off  
Supply current in standby mode  
Supply current in standby mode  
µA  
µA  
MCLK = 12.2880 MHz  
NRESET mode  
MCLK = 0  
Stand-by mode @ VDD = 1.8V, T = 25°C  
Parameter  
Test Conditions  
Typ  
25  
Max  
50  
Unit  
µA  
ADC off, DAC off  
MCLK = 5 MHz,  
ADC off, DAC off  
MCLK = 12.2880 MHz  
NRESET mode  
MCLK = 0  
Istb1  
Istb2  
Istb3  
Supply current in standby mode  
Supply current in standby mode  
Supply current in standby mode  
31  
62  
µA  
16  
32  
µA  
20  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3.5.3 Normal operation, output load consumption is not included.  
Normal operations @ VDD = 3.0V, FSYNC = 20 kHz, T = 25°C, Register C(7:0) = 0xF0  
Parameter  
Test Conditions  
Min  
Typ  
350  
240  
120  
Max  
700  
480  
240  
Unit  
µA  
ADC on, DAC on  
IDD  
Supply current CODEC  
Supply current ADC  
Supply current DAC  
FSYNC = 20 kHz, no load  
ADC on, DAC off  
IADC  
IDAC  
µA  
FSYNC = 20 kHz, no load  
ADC off, DAC on  
µA  
FSYNC = 20 kHz, no load  
Normal operations @ VDD = 3.0V, FSYNC = 48 kHz, T = 25°C, Register C(7:0) = 0xC4  
Parameter  
Test Conditions  
Min  
Typ  
860  
600  
280  
Max  
1720  
1200  
560  
Unit  
µA  
ADC on, DAC on  
IDD  
Supply current CODEC  
Supply current ADC  
Supply current DAC  
FSYNC = 48 kHz, no load  
ADC on, DAC off  
IADC  
IDAC  
µA  
FSYNC = 48 kHz, no load  
ADC off, DAC on  
µA  
FSYNC = 48 kHz, no load  
Normal operations @ VDD = 1.8V, FSYNC = 20 kHz, T = 25°C, Register C(7:0) = 0xF0  
Parameter  
Test Conditions  
Min  
Typ  
250  
200  
65  
Max  
500  
400  
130  
Unit  
µA  
ADC on, DAC on  
IDD  
Supply current CODEC  
Supply current ADC  
Supply current DAC  
FSYNC = 20 kHz, no load  
ADC on, DAC off  
IADC  
IDAC  
µA  
FSYNC = 20 kHz, no load  
ADC off, DAC on  
µA  
FSYNC = 20 kHz, no load  
Normal operations @ VDD = 1.8V, FSYNC = 48 kHz, T = 25°C, Register C(7:0) = 0xC4  
Parameter  
Test Conditions  
Min  
Typ  
625  
505  
140  
Max  
1250  
1010  
280  
Unit  
µA  
ADC on, DAC on  
IDD  
Supply current CODEC  
Supply current ADC  
Supply current DAC  
FSYNC = 48 kHz, no load  
ADC on, DAC off  
IADC  
IDAC  
µA  
FSYNC = 48 kHz, no load  
ADC off, DAC on  
µA  
FSYNC = 48 kHz, no load  
21  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3.6 Timing Requirements of serial audio interface  
Ref.  
Test  
Characteristics  
No. *  
Min  
1024  
45  
Typ  
5.12  
Max  
Unit  
Conditions  
1
1
Master Clock Frequency for MCLK = 1/ T  
33  
55  
10  
10  
MHz  
%
MCLK Duty Cycle  
Rise Time for All Digital Signals  
2
ns  
Fall Time for All Digital Signals  
3
ns  
Hold time BCLK or FSYNC high after MCLK low  
Setup time BCLK or FSYNC high to MCLK low  
Hold time BCLK or FSYNC low after MCLK low  
Setup time BCLK or FSYNC low to MCLK low  
Bit Clock Frequency for BCLK = 1 / TBCLK  
Setup time data input SDI to BCLK low  
Hold time data input SDI after BCLK low  
Delay time SDO valid after BCLK high  
Setup time data input FSYNC to BCLK low  
Hold time data input FSYNC after BCLK low  
4
T/4  
T/4  
T/4  
T/4  
ns  
5
ns  
6
CLoad = 10pF  
ns  
7
ns  
MCLK/2  
TBCLK/4  
8
32xFSYNC  
MHz  
ns  
9
TBCLK/4  
TBCLK/4  
10  
11  
12  
13  
ns  
ns  
TBCLK/4  
TBCLK/4  
ns  
ns  
*see figure 18,19 for LFS and 20, 21 for SFS  
22  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3.6.1 Timing diagram of the serial audio interface – LFS mode  
1
2
3
MCLK  
5
7
7
BCLK  
6
6
4
FSYNC  
SDI  
Figure 18: LFS, timing diagram  
MCLK  
8
BCLK  
FSYNC  
SDI  
11  
9
10  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 19: LFS, zoom timing diagram  
23  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3.6.2 Timing diagram of the serial audio interface – SFS mode  
1
2
3
MCLK  
6
5
4
7
BCLK  
FSYNC  
SDI  
Figure 20: SFS, timing diagram  
MCLK  
8
BCLK  
12  
9
13  
11  
10  
FSYNC  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
SDO  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 21: SFS zoom timing diagram  
24  
D0212-116  
Data Sheet  
XE3005/XE3006  
5.3.7 Timing Requirements of the Serial Peripheral Interface  
Test Conditions  
Ref. No. *  
Characteristics  
Serial Clock Frequency for SCK = 1 / TSCK  
MCLK Duty Cycle  
Recovery Time  
Disable Time  
Setup time MISO valid to SCK high  
Hold time MISO valid after SCK high  
Delay time MOSI valid after SCK low  
Min  
Typ  
Max  
Unit  
1
MCLK/2 MHz  
1
45  
55  
%
ns  
ns  
ns  
ns  
ns  
2
125  
CLoad = 10pF  
3
2T  
4
TSCK/4  
TSCK/4  
TSCK/4  
5
6
* see figure 22  
SS  
2
3
1
4
SCK  
5
A4  
6
M2  
M1 M0  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MISO  
MOSI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 22: Serial Peripheral Interface timing  
25  
D0212-116  
Data Sheet  
XE3005/XE3006  
6 Application Information  
6.1 Application Schematics – XE3006  
6.1.1 Typical Application schematic  
Sandman output  
Master Clock  
MOSI  
SS  
1
MCLK  
SMAD  
SMDA  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
Vcc  
SPI  
SCK  
3
4
MISO  
SDI  
0.1µF  
5
NRESET  
VSSA  
SDO  
6
7
Serial Audio Interface  
BCLK  
FSYNC  
AOUTP  
VDDPA  
AOUTN  
VSSPA  
VREG16  
VREF  
8
R
L
VSSA  
9
Vcc  
VSSD  
10  
11  
12  
2µ2F  
4µ7F  
VREG11  
AIN  
L
R
L=680µH  
R=56  
820kΩ  
1µF  
lowpass filter,  
1µF  
Bluetooth™ voice application  
MCLK = 2.048 MHz,  
div_factor =1  
GND  
Figure 23: Typical Application with 3rd order LC output Filter  
6.1.2 External components required for optimal performances  
The following minimum set-up of external components is required:  
Capacitor for Vref: 1 µF  
Resistor for Vref: 820 kΩ  
Capacitor for VREG16: 1 µF  
The low pass filter between the DAC output and the speaker depends on the CODEC settings and the speaker  
type.  
26  
D0212-116  
Data Sheet  
XE3005/XE3006  
7 Register Description  
7.1 Register Functional Summary  
The following registers can be programmed by the SPI to configure the operation modes. See also section 3.2  
Register Programming.  
Name  
Description  
Register C  
ADC current setting. The data in this register has the following  
functions:  
Adjust the ADC current for FSYNC > 20kHz  
0xF0 for FSYNC<= 20 kHz, 0xC4 for FSYNC > 20 kHz.  
Register E  
Register I  
Analog Input. The data in this register has the following functions:  
Enable/disable microphone bias source of 1.1 V  
Gain setting of pre-amplifier.  
Function enable and clock division. The data in this register has the  
following functions:  
Enable/disable Sandman function of DAC  
Enable/disable DAC channel (DAC, power amplifier)  
Enable/disable ADC channel (pre-amplifier, ADC, decimation  
filter)  
Division of master clock  
Register J  
Audio Interface Configuration. The data in this register has the  
following functions:  
Enable/disable digital loopback  
Channel select receive  
Select master / slave mode  
Output impedance  
Channel select transmit  
Select short / long frame sync  
Register L  
Register M  
Register N  
Register O  
Register P  
Sandman™ function, Off-time, low byte. The data in this register has  
the following function:  
Define Off-time (low byte) of the Sandman™ function  
Sandman™ function, Off-time, high byte. The data in this register has  
the following function:  
Define Off-time (high byte) of the Sandman™ function  
Sandman™ function, On-time. The data in this register has the  
following function:  
Define On-time of the Sandman™ function  
Sandman™ function, reference for ADC. The data in this register has  
the following function:  
Define reference amplitude for ADC for Sandman™ function  
Sandman™ function, reference for DAC. The data in this register has  
the following function:  
Define reference amplitude for DAC for Sandman™ function  
27  
D0212-116  
Data Sheet  
XE3005/XE3006  
7.2 Register Definitions  
The complete register setup consists of 24 registers of 8 bits each, as shown in the table below. All registers are  
preconfigured with the default values and do not have to be programmed by the user if no changes in the setup  
are required.  
The registers C, E, I and J can be used to configure the XE3005 and XE3006 differently than the default setup.  
The registers L, M, N, O, P are related to the Sandman function available in the XE3006.  
Register  
Address  
(hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Name  
Default value (hex)  
A
B
C
D
E
F
G
H
I
Reserved  
0x48  
0x8F  
Reserved  
ADC current  
0xF0  
Reserved  
0x00  
Analog input  
0x08/0x0C  
0x82  
Reserved  
Reserved  
0x00  
Reserved  
0x00  
Block on/off and clock division  
Audio interface configuration  
Reserved  
0x00/0x01  
0x25/0x24  
0x00  
J
K
L
Sandman™ function, off-time byte 1  
Sandman™ function, off-time byte 2  
Sandman™ function, on-time  
Sandman™ function, reference for ADC  
Sandman™ function, reference for DAC  
0x00  
M
N
O
P
0x00  
0x00  
0x00  
0x00  
Register C (7:0)  
address 0x02  
7:0  
ADC  
Default value: Description  
0xF0  
current  
ADC  
0xF0  
0xF0 for FSYNC<= 20 kHz,  
0xC4 for FSYNC > 20 kHz.  
current  
Register E (7:0)  
address 0x04  
7
ADC input  
Default value  
0x08/0x0C  
0
Description  
VMIC_EN  
Generation of the microphone supply at pin VREG11:  
1: enables VREG11  
0: disables VREG11  
6:3  
2
reserved  
PREAMP_  
GAIN  
0001  
reserved  
0 or 1  
Gain of preamplifier:  
0: 5x (280 mV pp)  
1: 20x (70 mV pp)  
The default is depending on the logic value of the pin MOSI during  
startup (see section 3.2)  
MOSI=0, default will be set to 0  
MOSI=1, default will be set to 1  
reserved  
1:0  
reserved  
00  
28  
D0212-116  
Data Sheet  
XE3005/XE3006  
Register I (7:0)  
block on/off and  
clock division  
Default value  
0x00/0x01  
0000  
Description  
address 0x08  
7:4  
3
reserved  
0: enable  
EN_DAC  
EN_ADC  
0
1: disable DA converter (DAC + PA)  
2
0
0: enable  
1: disable AD converter (Preamp + ADC +  
decimator)  
1:0  
MCLKDIV  
00 or 01  
Division factor of the master clock:  
00: 1  
01: 2  
10: reserved  
11: 4  
The default is depending on the logic value of the pin SS  
during startup (see Section 3.2)  
SS=0, default will be set to 1  
SS=1, default will be set to 0  
Register J (7:0)  
address 0x09  
Audio  
interface  
Default Description  
value  
0x25/  
0x24  
configuration  
7
6
LOOPBACK  
0
0: disable loopback, normal mode  
1: enable loopback => The CODEC connects internally the  
ADC output to DAC input  
RX_FIRST_  
SECOND  
0
0: Receive audio data in the first 16-bit channel after the  
frame synchronization.  
1: Receive audio data in the second 16-bit channel after the  
frame synchronization.  
5
4
reserved  
MASTER  
1
0
reserved  
1: enable audio interface in master mode (only for LFS)  
0: enable audio interface in slave mode (LFS or SFS)  
0: SDO is continuously in output mode for both data  
channels.  
3
SDO_HI_EN  
0
1: SDO is in output mode when transmitting a channel with  
data (J(2) or J(1)=1).  
It is switched automatically into high-impedance state  
when a channel with no data is transmitted (J(2) or  
J(1)=0).  
2
1
0
TX_FIRST  
TX_SECOND  
PROTOCOL  
1
0
1: transmit the audio data in the first 16-bit channel after the  
frame synchronization.  
0: do no transmit data in the first channel.  
1: transmit the audio data in the second 16-bit channel after  
the frame synchronization.  
0: do no transmit data in the second channel.  
1: Short Frame Synchronization mode (slave mode).  
0: Long Frame Synchronization mode (mode master or  
slave).  
0 or 1  
The default is depending on the logic value of the pin SCK during startup  
(see Section 3.2)  
SCK=0, default will be set to 1  
SCK=1, default will be set to 0  
29  
D0212-116  
Data Sheet  
XE3005/XE3006  
Register L (7:0)  
address 0x0B  
Sandman™ function,  
off-time,  
Default  
Description  
value 0x00  
least significant byte  
SM_OFF_LSB  
7:0  
00000000 Least significant byte of the off-time of  
the Sandman™ function  
Register M (7:0)  
address 0x0C  
Sandman™ function,  
off-time,  
Default  
Description  
value 0x00  
most significant byte  
SM_OFF_MSB  
7:0  
00000000 Most significant byte of the off-time of  
the Sandman™ function  
Register N (7:0)  
address 0x0D  
7:0  
Sandman™ function,  
on-time  
Default  
Description  
value 0x00  
SM_ON  
00000000 On-time of the Sandman™ function  
Register O (7:0)  
address 0x0E  
7:0  
Sandman™ function,  
reference for ADC  
SMAD_REF  
Default  
Description  
value 0x00  
00000000 Reference amplitude for ADC for  
Sandman™ function  
Register P (7:0)  
address 0x0F  
7:0  
Sandman™ function,  
reference for DAC  
SMDA _REF  
Default  
Description  
value 0x00  
00000000 Reference amplitude for DAC for  
Sandman™ function  
30  
D0212-116  
Data Sheet  
XE3005/XE3006  
8 Mechanical Information  
8.1 XE3005 package size (TSSOP20)  
D
E
A
X
c
H
v
M
A
y
E
Z
11  
20  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
L
p
L
1
1
0
detail X  
w
M
b
p
e
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
A
b
c
D
E
e
H
L
L
v
w
y
Q
1
2
3
p
E
p
Z
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.10  
0.65  
0.25  
1.0  
0.2  
0.13  
0.1  
Figure 24: TSSOP20  
Plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
31  
D0212-116  
Data Sheet  
XE3005/XE3006  
8.2 XE3006 Package size (TSSOP24)  
D
E
A
X
c
H
v
M
A
y
E
Z
13  
24  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
L
p
L
1
1
2
detail X  
w
M
b
p
e
DIMENSIONS (mm are the originladimensions)  
A
Q
y
UNIT  
A
A
A
b
c
D
E
e
H
L
L
v
w
1
2
3
p
E
p
Z
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
7.9  
7.7  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.10  
0.65  
0.25  
1.0  
0.2  
0.13  
0.1  
Figure 25: TSSOP24  
Plastic thin shrink small outline package; 24 leads; body width 4.4 mm  
XEMICS, 2002  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information  
presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any  
license under patent or other industrial or intellectual property rights.  
XEMICS PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT  
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF XEMICS PRODUCTS IN SUCH  
APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK.  
Should a customer purchase or use XEMICS products for any such unauthorized application, the customer shall indemnify and hold XEMICS  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could  
arise.  
32  
D0212-116  

相关型号:

XE3006

Low-Power Audio CODEC
SEMTECH

XE3006I019

Low-Power Audio CODEC
ETC

XE330M10

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 330uF
YSTONE

XE330M100

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 100V, 20% +Tol, 20% -Tol, 330uF
YSTONE

XE330M35

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 35V, 20% +Tol, 20% -Tol, 330uF
YSTONE

XE3314B

Telecommunication IC
ETC

XE3314C

Telecommunication IC
ETC

XE3314L

Dual In-Line 2.75 in by 1.38 in by 0.42 in.
ETC

XE332-Z

NOISE SUPPRESSION CAPACITOR
OKAYA

XE333-Z

NOISE SUPPRESSION CAPACITOR
OKAYA

XE334-Z

NOISE SUPPRESSION CAPACITOR
OKAYA

XE3386L

Compact 33,600 BPS Data and Fax Modem
ETC