XE88LC01RI000 [ETC]

Sensing Machine 16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller; 感应机16 + 10位数据采集超低功耗微控制器
XE88LC01RI000
型号: XE88LC01RI000
厂家: ETC    ETC
描述:

Sensing Machine 16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
感应机16 + 10位数据采集超低功耗微控制器

微控制器
文件: 总36页 (文件大小:877K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
XE88LC01 Sensing Machine  
16 + 10 bit Data Acquisition  
Ultra Low-Power Microcontroller  
General Description  
Key product Features  
The XE88LC01 is an ultra low-power microcontroller unit  
(MCU) associated with a versatile analog-to-digital con-  
verter (ADC) including a programmable offset and gain  
pre-amplifier (PGA) .  
Low-power, high resolution ZoomingADC  
0.5 to 1000 gain with offset cancellation  
up to 16 bits ADC  
up to 13 input multiplexer  
Low-voltage low-power controller operation  
XE88LC01 is available with on chip Multiple-Time-Pro-  
grammable (MTP) Flash program memory and ROM.  
2 MIPS at 2.4 V to 5.5 V supply voltage  
300 µA at 1 MIPS, 2.4 V to 5.5 V supply  
22 kByte (8 kInstruction) MTP, 520 Byte RAM  
RC and crystal oscillators  
5 reset, 18 interrupt, 8 event sources  
100 years MTP Flash retention at 55°C  
Applications  
Internet connected appliances  
Portable, battery operated instruments  
Piezoresistive bridge sensors  
HVAC control  
Ordering Information  
Motor control  
Reference  
Memory type Temperature  
Package  
die  
XE88LC01MI000 MTP Flash  
XE88LC01MI027 MTP Flash  
XE88LC01MI032 MTP Flash  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 125°C  
LQFP44  
PLL-44L  
die  
XE88LC01RI000  
XE88LC01RI027  
ROM  
ROM  
LQFP44  
Cool Solutions for Wireless Connectivity  
XEMICS SA, email: info@xemics.com web: www.xemics.com  
Cool Solutions for Wireless Connectivity  
XEMICS SA, email: info@xemics.com web: www.xemics.com  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
1 Detailed Pin Description  
42  
40  
38  
36  
34  
1
2
3
4
5
6
7
8
9
10  
packaging date  
32  
31  
30  
29  
28  
27  
26  
25  
24  
production  
lot identification  
device type  
22  
12  
14  
16  
18  
20  
Figure 1.1:  
Pinout of the XE88LC01 in LQFP44 package  
Pin  
Position  
in  
TQFP44  
Description  
Function  
name  
Second function  
name  
Type  
1
2
PA(5)  
PA(6)  
PA(7)  
PC(0)  
PC(1)  
PC(2)  
PC(3)  
PC(4)  
PC(5)  
PC(6)  
PC(7)  
Input  
Input of Port A  
Input  
Input of Port A  
3
Input  
Input of Port A  
4
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input-Output of Port C  
Input-Output of Port C  
Input-Output of Port C  
Input-Output of Port C  
Input-Output of Port C  
Input-Output of Port C  
Input-Output of Port C  
Input-Output of Port C  
5
6
7
8
9
10  
11  
Input-Output-Analog of Port B/  
Data output for test and MTP programing/  
PWM output  
12  
PB(0)  
testout  
Input/Output/Analog  
Input-Output-Analog of Port B/  
PWM output  
13  
14  
15  
PB(1)  
PB(2)  
PB(3)  
Input/Output/Analog  
Input/Output/Analog  
Input/Output/Analog  
Input-Output-Analog of Port B  
Input-Output-Analog of Port B,  
Output pin of USRT  
SOU  
SCL  
SIN  
Tx  
Input-Output-Analog of Port B/  
Clock pin of USRT  
16  
17  
18  
PB(4)  
PB(5)  
PB(6)  
Input/Output/Analog  
Input/Output/Analog  
Input/Output/Analog  
Input-Output-Analog of Port B/  
Data input or input-output pin of USRT  
Input-Output-Analog of Port B/  
Emission pin of UART  
Input-Output-Analog of Port B/  
Reception pin of UART  
19  
20  
21  
PB(7)  
Rx  
Input/Output/Analog  
Special  
VPP/TEST  
AC_R(3)  
Vhigh  
Test mode/High voltage for MTP programing  
Highest potential node for 2nd reference of  
ADC  
Analog  
22  
23  
24  
25  
26  
AC_R(2)  
AC_A(7)  
AC_A(6)  
AC_A(5)  
AC_A(4)  
Analog  
Analog  
Analog  
Analog  
Analog  
Lowest potential node for 2nd reference of ADC  
ADC input node  
ADC input node  
ADC input node  
ADC input node  
Table 1.1:  
Pin-out of the XE88LC01 in LQFP44  
(see Table “IO pins performances” on page 18 for drive capabilities of the pins)  
3
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
Pin  
Position  
Description  
Function  
name  
Second function  
name  
in  
TQFP44  
27  
Type  
AC_A(3)  
AC_A(2)  
AC_A(1)  
AC_A(0)  
AC_R(1)  
AC_R(0)  
VSS  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Power  
ADC input node  
ADC input node  
28  
29  
ADC input node  
30  
ADC input node  
31  
Highest potential node for 1st reference of ADC  
Lowest potential node for 1st reference of ADC  
Negative power supply, connected to substrate  
Positive power supply  
32  
33  
34  
Vbat  
Power  
35  
Vreg  
Analog  
Input  
Regulated supply  
36  
RESET  
Vmult  
Reset pin (active high)  
37  
Analog  
Pad for optional voltage multiplier capacitor  
Connection to Xtal/  
CoolRISC clock for test and MTP programing  
38  
39  
OscIn  
ck_cr  
ptck  
Analog/Input  
Analog/Input  
Connection to Xtal/  
Peripheral clock for test and MTP programing  
OscOut  
Input of Port A/  
Data input for test and MTP programing/  
Counter A input  
40  
PA(0)  
testin  
testck  
Input  
Input of Port A/  
Data clock for test and MTP programing/  
Counter B input  
41  
42  
PA(1)  
PA(2)  
Input  
Input  
Input of Port A/  
Counter C input/ Counter capture input  
Input of Port A/  
Counter D input/ Counter capture input  
43  
44  
PA(3)  
PA(4)  
Input  
Input  
Input of Port A  
Table 1.1:  
Pin-out of the XE88LC01 in LQFP44  
(see Table “IO pins performances” on page 18 for drive capabilities of the pins)  
4
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
2 Absolute maximum ratings  
Stresses beyond these listed in this chapter may cause permanent damage to the device. No  
functional operation is implied at or beyond these conditions. Exposure to these conditions for  
an extended period may affect the device reliability.  
Parameter  
VBAT with respect to VSS  
Valéue  
-0.3V to 6.0V  
Input voltage on any input pin  
Storage temperature  
VSS-0.3V to VBAT+0.3V  
-55°C to 125°C  
Storage temperature for programmed MTP devices  
-40°C to 85°C  
Table 2.1:  
Absolute maximum ratings  
These devices are ESD sensitive. Although these devices feature proprietary ESD protection  
structures, permanent damage may occur on devices subjected to high energy electrostatic  
discharges. Proper ESD precautions have to be taken to avoid performance degradation or  
loss of functionality.  
5
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
3 Electrical Characteristics  
All specification are -40°C to 85°C unless otherwise noted. ROM operates up to 125°C.  
Operation conditions  
min  
2.4  
typ  
max  
5.5  
5.5  
2
Unit  
V
Remarks  
ROM version  
Power supply  
MTP version  
2.4 V to 5.5 V  
any instruction  
2.4  
V
Operating speed  
Instruction cycle  
0.032  
MHz  
ns  
500  
7
1
CPU running  
at 1 MIPS  
310  
10  
uA  
CPU running  
at 32 kHz  
on Xtal,  
uA  
1
RC off  
CPU halt,  
timer on Xtal,  
RC off  
1
uA  
uA  
1
1
Current requirement  
CPU halt,  
timer on Xtal,  
RC ready  
1.7  
CPU halt,  
Xtal off  
timer on RC  
at 100 kHz  
1.4  
uA  
uA  
uA  
1
CPU halt,  
ADC 16 bits  
at 4 kHz  
190  
460  
4,6  
4,6  
CPU halt,  
ADC 12 bits  
at 4 kHz,  
PGA gain 100  
CPU at 1 MIPS,  
ADC 12 bits  
at 4 kHz  
670  
790  
uA  
uA  
uA  
uA  
3,4,6  
3,4,6  
3,4,6  
3,4,6  
Current requirement  
CPU at 1 MIPS,  
ADC 12 bits at 4 kHz,  
PGA gain 10  
CPU at 1 MIPS,  
ADC 12 bits at 4 kHz,  
PGA gain 100  
940  
CPU at 1 MIPS,  
ADC 12 bits at 4 kHz,  
PGA gain 1000  
1100  
Voltage level detection  
Prog. voltage  
15  
10.8  
1
uA  
V
s
10.3  
0.2  
10  
Erase time  
8
MTP Flash  
memory  
Write/Erase cycles  
100  
5
10  
years  
years  
85°C, 2  
55°C, 2  
Data retention  
100  
Table 3.1:  
Note:  
Specifications and current requirement of the XE88LC01  
1) Power supply: 2.4 V - 5.5 V, temperature is 27°C.  
2) < 10 erase cycles.  
3) Output not loaded.  
4) Current requirement can be divided by a factor of 2 or 4 by reducing the speed accordingly.  
5) More cycles possible during development, with restraint retention  
6) Power supply: 3.0V, at 27°C; see chapter Power Consumption on page 30 for variation of current  
with voltage and clock speed variation  
7) With 2 MHz clock, all instructions are using exactly 1 clock cycle  
8) Longer erase time may degrade retention  
6
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
4 CPU  
The XE88LC01 CPU is a low power RISC core. It has 16 internal registers for efficient imple-  
mentation of the C compiler. Its instruction set is made of 35 generic instructions, all coded on  
22 bits, with 8 addressing modes. All instructions are executed in one clock cycle, including  
conditional jumps and 8x8 multiplication.  
A complete tool suite for development is available from XEMICS, including programmer, C-  
compiler, assembler, simulator, linker, all integrated in a modern and efficient graphical user  
interface.  
7
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
5 Memory organisation  
The CPU uses a Harvard architecture, so that memory is organised in two separated fields:  
program memory and data memory. As both memory are separated, the central processing  
unit can read/write data at the same time it loads an instruction. Peripherals and system control  
registers are mapped on data memory space.  
Program memory is fitted onto one page. Data is made of several 256 bytes pages.  
0h1FFF / 01hBFF  
0h027F  
0h0080  
RAM  
512 Bytes  
Program  
memory  
8k instructions MTP  
or  
CPU  
6k instructions ROM  
Peripherals  
0h0010  
0h0000  
CPU  
registers  
Instruction  
pipeline  
LP RAM  
0h0000  
22 bits wide  
Memory organization  
8 bits wide  
Figure 5.1:  
5.1 Program memory  
The program memory is implemented as Multiple Time Programmable (MTP) Flash memory.  
The power consumption of MTP memory is linear with the access frequency (no significant  
static current).  
Size of the MTP Flash memory is 8192 x 22 bits (= 22 kBytes)  
Size of the ROM memory is 6144 x 22 bits (= 17 kBytes)  
block  
MTP  
size  
8192 x 22  
6144 x 22  
address  
H0000 - H1FFF  
H0000 - H1BFF  
ROM  
Table 5.1:  
Program addresses for MTP or ROM memory  
8
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
5.2 Data memory  
The data memory is implemented as static Random-Access Memory (RAM). The RAM size is  
512 x 8 bits plus 8 low power RAM bytes that require very low current when addressed. Pro-  
grams using the low-power RAM instead of RAM will use even less current.  
block  
LP RAM  
RAM  
size  
8 x 8  
address  
H0000 - H0007  
H0080 - H027F  
512 x 8  
Table 5.2:  
RAM addresses  
6
Registers list  
Left column include register name and address.  
Right columns include bit name, access (r: read, r0: always 0 when read, w: write, c: cleared  
by writing any value, c1: cleared by writing 1), and reset status (0 or 1) and signal. Empty bits  
are reserved for future use and should not be written, neither should their read value be used  
for any purpose as it may change without notice.  
6.1 Peripherals mapping  
block  
LP RAM  
System control  
Port A  
size  
8x8  
16x8  
8x8  
8x8  
4x8  
4x8  
4x8  
4x8  
8x8  
8x8  
8x8  
8x8  
8x8  
12x8  
8x8  
address  
Page  
H0000-H0007  
H0010-H001F  
H0020-H0027  
H0028-H002F  
H0030-H0033  
H0034-H0037  
H0038-H003B  
H003C-H003F  
H0040-H0047  
H0048-H004F  
H0050-H0057  
H0058-H005F  
H0060-H0067  
H0068-H0073  
H0074-H007B  
Port B  
Port C  
Reserved  
MTP  
Event  
Interrupts control  
reserved  
Page 0  
UART  
Counters  
Zooming ADC  
Reserved  
Reserved  
Other  
(VLD)  
4x8  
H007C-H007F  
RAM1  
RAM2  
RAM3  
128x8  
256x8  
128x8  
H0080 - H00FF  
H0100 - H01FF  
H0200 - H027F  
Page 1  
Page 2  
Table 6.1:  
Peripherals addresses  
9
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
6.2  
Resets  
The reset source name is simplified in the following registers description. Name mapping is in  
the next table.  
name in this  
reset source  
document  
resetsystem  
global  
resetSynch  
resetPOR  
resetCold  
resetPad  
cold  
resetPconf  
resetSleep  
pconf  
sleep  
Table 6.2:  
Reset signal name mapping  
6.3  
Low power RAM  
Low power RAM is a small additionnal RAM area with extremely low power requirement.  
Name  
7
6
5
4
3
2
1
0
Address  
h0000  
h0001  
h0002  
h0003  
h0004  
h0005  
h0006  
h0007  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Table 6.3:  
Low power RAM  
10  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
6.4  
System, oscillators, prescaler and watchdog  
Name  
7
6
5
4
3
2
1
0
Address  
RegSysCtrl  
h0010, type 1  
RegSysReset  
SleepEn  
rw, 0 por  
Sleep  
EnRes-PConf EnBus-Error EnResWD  
rw, 0 cold  
ResPor  
r, 0  
rw, 0 cold  
ResBus-Error  
rc, 0 cold  
rw, 0 cold  
ResWD  
ResPortA  
rc, 0 cold  
ColdXtal  
r, 1 sleep  
ResPad-Deb  
rc, 0 cold  
ColdRC  
ResPad  
rc, 0 cold  
EnableXtal  
rw, 0 sleep  
w, 0 cold  
CpuSel  
rc, 0 cold  
BiasRC  
h0011, type 1  
RegSysClock  
ExtClk  
r, 0 cold  
EnExtClk  
EnableRC  
rw, 1 sleep  
rw, 0 sleep  
rw, 0 cold  
rw, 1 cold  
r, 1 sleep  
h0012, type 1  
Output-  
CkXtal  
Output-  
CkCPU  
RegSysMisc  
RCOnPA0  
DebFast  
h0013, type 1  
RegSysWD  
h0014  
rw, 0 sleep  
rw, 0 sleep  
rw, 0 sleep  
rw, 0 sleep  
WatchDog(3) WatchDog(2) WatchDog(1) WatchDog(0)  
special  
special  
special  
special  
ResPre  
RegSysPre0  
ClearLow-  
Prescal (*)  
w, 0 cold  
h0015  
RCFreq-  
Range  
RCFreq-  
Coarse(3)  
RCFreq-  
Coarse(2)  
RCFreq-  
Coarse(1)  
RCFreq-  
Coarse(0)  
RegSysRCTrim1  
h001B  
rw, 0 cold  
rw, 0 cold  
rw, 0 cold  
rw, 0 cold  
rw, 0 cold  
RCFreq-  
Fine(5)  
RCFreq-  
Fine(4)  
RCFreq-  
Fine(3)  
RCFreq-  
Fine(2)  
RCFreq-  
Fine(1)  
RCFreq-  
Fine(0)  
RegSysRCTrim2  
h001C  
rw, 1 cold  
rw, 0 cold  
rw, 0 cold  
rw, 0 cold  
rw, 0 cold  
rw, 0 cold  
Table 6.4:  
System control registers  
6.5  
PortA  
Name  
7
6
5
4
3
2
1
0
Address  
RegPAIn  
PAIn(7)  
r
RegPAIn(6)  
r
PAIn(5)  
r
PAIn(4)  
r
PAIn(3)  
r
PAIn(2)  
r
PAIn(1)  
r
PAIn(0)  
r
h0020  
RegPADebounce  
h0021  
RegPAEdge  
h0022  
RegPAPullup  
h0023, type 1  
RegPARes0  
h0024  
RegPARes1  
h0025  
PADeb(7)  
rw, 0 pconf  
PAEdge(7)  
PADeb(6)  
rw, 0 pconf  
PAEdge(6)  
PADeb(5)  
rw, 0 pconf  
PAEdge(5)  
PADeb(4)  
rw, 0 pconf  
PAEdge(4)  
PADeb(3)  
rw, 0 pconf  
PAEdge(3)  
PADeb(2)  
rw, 0 pconf  
PAEdge(2)  
PADeb(1)  
rw, 0 pconf  
PAEdge(1)  
PADeb(0)  
rw, 0 pconf  
PAEdge(0)  
rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global  
PAPullUp(7) PAPullUp(6) PAPullUp(5) PAPullUp(4) PAPullUp(3) PAPullUp(2) PAPullUp(1) PAPullUp(0)  
rw, 0 pconf  
PARes0(7)  
rw, 0 pconf  
PARes0(6)  
rw, 0 pconf  
PARes0(5)  
rw, 0 pconf  
PARes0(4)  
rw, 0 pconf  
PARes0(3)  
rw, 0 pconf  
PARes0(2)  
rw, 0 pconf  
PARes0(1)  
rw, 0 pconf  
PARes0(0)  
rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global  
PARes1(7) PARes1(6) PARes1(5) PARes1(4) PARes1(3) PARes1(2) PARes1(1) PARes1(0)  
rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global rw, 0 global  
Table 6.5:  
Port A registers  
11  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
6.6  
PortB  
Name  
7
6
5
4
3
2
1
0
Address  
RegPBOut  
PBOut(7)  
rw, 0 pconf  
PBIn(7)  
PBOut(6)  
rw, 0 pconf  
PBIn(6)  
PBOut(5)  
rw, 0 pconf  
PBIn(5)  
PBOut(4)  
rw, 0 pconf  
PBIn(4)  
PBOut(3)  
rw, 0 pconf  
PBIn(3)  
PBOut(2)  
rw, 0 pconf  
PBIn(2)  
PBOut(1)  
rw, 0 pconf  
PBIn(1)  
PBOut(0)  
rw, 0 pconf  
PBIn(0)  
h0028  
h0029  
RegPBIn  
r
r
r
r
r
r
r
r
RegPBDir  
PBDir(7)  
rw, 0 pconf  
PBOpen(7)  
rw, 0 pconf  
PBDir(6)  
rw, 0 pconf  
PBOpen(6)  
rw, 0 pconf  
PBDir(5)  
rw, 0 pconf  
PBOpen(5)  
rw, 0 pconf  
PBDir(4)  
rw, 0 pconf  
PBOpen(4)  
rw, 0 pconf  
PBDir(3)  
rw, 0 pconf  
PBOpen(3)  
rw, 0 pconf  
PBDir(2)  
rw, 0 pconf  
PBOpen(2)  
rw, 0 pconf  
PBDir(1)  
rw, 0 pconf  
PBOpen(1)  
rw, 0 pconf  
PBDir(0)  
rw, 0 pconf  
PBOpen(0)  
rw, 0 pconf  
h002A  
RegPBOpen  
h002B  
RegPBPullup  
h002C  
RegPBAna  
PBPullUp(7) PBPullUp(6) PBPullUp(5) PBPullUp(4) PBPullUp(3) PBPullUp(2) PBPullUp(1) PBPullUp(0)  
rw, 0 pconf  
rw, 0 pconf  
rw, 0 pconf  
rw, 0 pconf  
rw, 0 pconf  
PBAna(3)  
rw, 0 pconf  
rw, 0 pconf  
PBAna(2)  
rw, 0 pconf  
rw, 0 pconf  
PBAna(1)  
rw, 0 pconf  
rw, 0 pconf  
PBAna(0)  
rw, 0 pconf  
h002D  
Table 6.6:  
Port B registers  
6.7  
PortC  
Name  
7
6
5
4
3
2
1
0
Address  
RegPCOut  
PCOut(7)  
rw, 0 pconf  
PCIn(7)  
r
PCOut(6)  
rw, 0 pconf  
PCIn(6)  
r
PCOut(5)  
rw, 0 pconf  
PCIn(5)  
r
PCOut(4)  
rw, 0 pconf  
PCIn(4)  
r
PCOut(3)  
rw, 0 pconf  
PCIn(3)  
r
PCOut(2)  
rw, 0 pconf  
PCIn(2)  
r
PCOut(1)  
rw, 0 pconf  
PCIn(1)  
r
PCOut(0)  
rw, 0 pconf  
PCIn(0)  
r
h0030  
h0031  
h0032  
RegPCIn  
RegPCDir  
PCDir(7)  
rw, 0 pconf  
PCDir(6)  
rw, 0 pconf  
PCDir)  
PCDir(4)  
rw, 0 pconf  
PCDir(3)  
rw, 0 pconf  
PCDir(2)  
rw, 0 pconf  
PCDir(1)  
rw, 0 pconf  
PCDir(0)  
rw, 0 pconf  
rw, 0 pconf  
Table 6.7:  
Port C registers  
6.8  
MTP  
Name  
7
6
5
4
3
2
1
0
Address  
RegEEP  
RegEEP1  
RegEEP2  
RegEEP3  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
h0038  
h0039  
h003A  
h003B  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
special  
Table 6.8:  
MTP control registers  
12  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
6.9  
Events  
Name  
7
6
5
4
3
2
1
0
Address  
RegEvn  
EvnCntA  
rc1, 0 global  
EvnEnCntA  
rw, 0 global  
EvnCntC  
rc1, 0 global  
EvnEnCntC  
rw, 0 global  
EvnPre1  
rc1, 0 global  
EvnEnPre1  
rw, 0 global  
EvnPA(1)  
rc1, 0 global  
EvnEnPA(1)  
rw, 0 global  
EvnCntB  
rc1, 0 global  
EvnEnCntB  
rw, 0 global  
EvnCntD  
rc1, 0 global  
EvnEnCntD  
rw, 0 global  
EvnPre2  
rc1, 0 global  
EvnEnPre2  
rw, 0 global  
EvnPA(0)  
rc1, 0 global  
EvnEnPA(0)  
rw, 0 global  
h003C  
RegEvnEn  
h003D  
RegEvnPriority  
h003E  
RegEvnEvn  
h003F  
EvnPriority(7) EvnPriority(6) EvnPriority(5) EvnPriority(4) EvnPriority(3) EvnPriority(2) EvnPriority(1) EvnPriority(0)  
r,1 global  
r,1 global  
r,1 global  
r,1 global  
r,1 global  
r,1 global  
r,1 global  
EvnHigh  
r, 0 global  
r,1 global  
EvnLow  
r, 0 global  
Table 6.9:  
Events control registers  
6.10 Interrupts  
Name  
7
6
5
4
3
2
1
0
Address  
RegIrqHig  
IrqAc  
IrqPre1  
IrqCntA  
rc1, 0 global  
IrqPA(4)  
IrqCntC  
rc1, 0 global  
IrqPre2  
IrqUartTx  
rc1, 0 global  
IrqPA(1)  
IrqUartRx  
rc1, 0 global  
IrqPA(0)  
rc1, 0 global  
rc1, 0 global  
h0040  
RegIrqMid  
IrqPA(5)  
rc1, 0 global  
IrqCntB  
IrqVld  
rc1, 0 global  
IrqCntD  
rc1, 0 global  
IrqPA(3)  
rc1, 0 global  
IrqPA(2)  
rc1, 0 global  
rc1, 0 global  
h0041  
RegIrqLow  
h0042  
RegIrqEnHig  
h0043  
RegIrqEnMid  
h0044  
RegIrqEnLow  
h0045  
RegIrqPriority  
h0046  
IrqPA(7)  
rc1, 0 global  
IrqEnAc  
IrqPA(6)  
rc1, 0 global  
IrqEnPre1  
rc1, 0 global  
rc1, 0 global  
IrqEnCntA  
rw, 0 global  
IrqEnPA(4)  
rw, 0 global  
IrqEnCntD  
rw, 0 global  
rc1, 0 global  
IrqEnCntC  
rw, 0 global  
IrqEnPre2  
rw, 0 global  
IrqEnPA(3)  
rw, 0 global  
rc1, 0 global  
IrqEnUartTx IrqEnUartRx  
rw, 0 global  
rw, 0 global  
rw, 0 global  
IrqEnPA(1)  
rw, 0 global  
rw, 0 global  
IrqEnPA(0)  
rw, 0 global  
IrqEnPA(5)  
rw, 0 global  
IrqEnCntB  
rw, 0 global  
IrqEnVld  
rw, 0 global  
IrqEnPA(2)  
rw, 0 global  
IrqEnPA(7)  
rw, 0 global  
IrqEnPA(6)  
rw, 0 global  
IrqPriority(7) IrqPriority(6) IrqPriority(5) IrqPriority(4) IrqPriority(3) IrqPriority(2) IrqPriority(1) IrqPriority(0)  
r, 1 global  
r, 1 global  
r, 1 global  
r, 1 global  
r, 1 global  
r, 1 global  
IrqHig  
r, 1 global  
IrqMid  
r, 1 global  
IrqLow  
RegIrqIrq  
r, 0 global  
r, 0 global  
r, 0 global  
h0047  
Table 6.10:  
Interrupts control registers  
6.11 USRT  
Name  
Address  
7
6
5
4
3
2
1
0
RegUsrtSin  
h0048  
RegUsrtScl  
h0049  
UsrtSin  
rw, 1 global  
UsrtScl  
rw, 1 global  
UsrtEnWait-  
Cond1  
RegUsrtCtrl  
UsrtWaitS0  
r, 0 global  
UsrtEnWaitS0  
rw, 0 global  
UsrtEnable  
rw, 0 global  
rw, 0 global  
UsrtData  
r
h004A  
RegUsrtData  
h004D  
RegUsrtEdgeScl  
h004E  
UsrtEdgeScl  
r, 0 global  
Table 6.11:  
USRT control registers  
13  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
6.12 UART  
Name  
Address  
7
6
5
4
3
2
1
0
RegUartCtrl  
h0050  
RegUartCmd  
h0051  
RegUartTx  
h0052  
RegUartTxSta  
h0053  
UartEcho  
rw, 0 global  
SelXtal  
UartEnRx  
UartEnTx  
UartXRx  
UartXTx  
UartBR(2)  
rw, 1 global  
UartPM  
UartBR(1)  
rw, 0 global  
UartPE  
UartBR(0)  
rw, 1 global  
UartWL  
rw, 0 global  
rw, 0 global  
rw, 0 global  
rw, 0 global  
UartWakeup UartRCSel(2) UartRCSel(1) UartRCSel(0)  
rw, 0 global  
UartTx(7)  
rw, 0 global  
rw, 0 global  
UartTx(6)  
rw, 0 global  
UartTx(5)  
rw, 0 global  
UartTx(4)  
rw, 0 global  
UartTx(3)  
rw, 0 global  
UartTx(2)  
rw, 0 global  
rw, 0 global  
UartTx(1)  
rw, 0 global  
UartTxBusy  
r, 0 global  
UartRx(1)  
r
rw, 1 global  
UartTx(0)  
rw, 0 global  
UartTxFull  
r, 0 global  
UartRx(0)  
r
rw, 0 global  
rw, 0 global  
rw, 0 global  
rw, 0 global  
RegUartRx  
h0054  
UartRx(7)  
r
UartRx(6)  
r
UartRx(5)  
UartRx(4)  
UartRx(3)  
UartRx(2)  
r
r
r
r
RegUartRxSta  
h0055  
UartRxSErr  
r
UartRxPErr  
r
UartRxFErr  
r
UartRxOErr  
c
UartRxBusy  
r
UartRxFull  
r
Table 6.12:  
UART control registers  
6.13 Counters  
Name  
7
6
5
4
3
2
1
0
Address  
RegCntA  
RegCntB  
RegCntC  
RegCntD  
CounterA(7)  
CounterA(6)  
CounterA(5)  
CounterA(4)  
CounterA(3)  
rw  
CounterA(2)  
CounterA(1)  
rw  
CounterA(0)  
rw  
rw  
CounterB(7)  
rw  
rw  
CounterB(6)  
rw  
rw  
CounterB(5)  
rw  
rw  
CounterB(4)  
rw  
rw  
CounterB(2)  
rw  
h0058  
h0059  
h005A  
h005B  
CounterB(3)  
rw  
CounterB(1)  
rw  
CounterB(0)  
rw  
CounterC(7)  
rw  
CounterC(6)  
rw  
CounterC(5)  
rw  
CounterC(4)  
rw  
CounterC(3)  
rw  
CounterC(2)  
rw  
CounterC(1)  
rw  
CounterC(0)  
rw  
CounterD(7)  
rw  
CounterD(6)  
rw  
CounterD(5)  
rw  
CounterD(4)  
rw  
CounterD(3)  
rw  
CounterD(2)  
rw  
CounterD(1)  
rw  
CounterD(0)  
rw  
RegCntCtrlCk  
h005C  
RegCntConfig1  
h005D  
RegCntConfig2  
h005E  
RegCntOn  
h005F  
CntDSel(1)  
rw  
CntDSel(0)  
rw  
CntCSel(1)  
rw  
CntCSel(0)  
rw  
CntBSel(1)  
rw  
CntBSel(0)  
rw  
CntASel(1)  
rw  
CntASel(0)  
rw  
CntDDownUp CntCDownUp CntBDownUp CntADownUp CascadeCD  
CascadeAB  
rw  
CntPWM1  
rw, 0 global  
CntPWM0  
rw, 0 global  
rw  
rw  
rw  
rw  
rw  
CapSel(1)  
rw, 0 global  
CapSel(0)  
rw, 0 global  
CapFunc(1)  
rw, 0 global  
CapFunc(0) PWM1Size(1) PWM1Size(0) PWM0Size(1) PWM0Size(0)  
rw, 0 global  
rw  
rw  
rw  
rw  
CntDEnable  
rw, 0 global  
CntCEnable  
rw, 0 global  
CntBEnable  
rw, 0 global  
CntAEnable  
rw, 0 global  
Table 6.13:  
Counters control registers  
14  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
6.14 Acquisition chain  
Name  
Address  
RegAcOutLsb  
h0060  
RegAcOutMsb  
h0061  
RegAcCfg0  
h0062  
RegAcCfg1  
h0063  
RegAcCfg2  
h0064  
RegAcCfg3  
h0065  
RegAcCfg4  
h0066  
RegAcCfg5  
h0067  
7
6
5
4
3
2
1
0
AdcOutL(7)  
r
AdcOutL(6)  
r
AdcOutL(5)  
r
AdcOutL(4)  
r
AdcOutL(3)  
r
AdcOutL(2)  
r
AdcOutL(1)  
r
AdcOutL(0)  
r
AdcOutM(7) AdcOutM(6) AdcOutM(5) AdcOutM(4) AdcOutM(3) AdcOutM(2) AdcOutM(1) AdcOutM(0)  
r
r
r
r
r
r
r
r
Start  
NelConv(1)  
rw, 0 global  
NelConv(0)  
rw, 1 global  
OSR(2)  
OSR(1)  
OSR(0)  
Cont  
r0w, 0 global  
rw, 0 global  
rw, 1 global  
Enable(3)  
rw, 0 global  
Enable(2)  
rw, 0 global  
Enable(1)  
rw, 0 global  
Pga2Off(1)  
rw, 0 global  
Pga3Gain(1)  
rw, 0 global  
Pga3Off(1)  
rw, 0 global  
AMux(0)  
IbAmpADC(1) IbAmpAdc(0) IbAmpPga(1) IbAmpPga(0)  
Enable(0)  
rw, 1 global  
Pga2Off(0)  
rw, 0 global  
Pga3Gain(0)  
rw, 0 global  
Pga3Off(0)  
rw, 0 global  
VMux  
rw, 1 global  
Fin(1)  
rw, 1 global  
Fin(0)  
rw, 1 global  
Pga2Gain(1)  
rw, 0 global  
Pga3Gain(5)  
rw, 0 global  
Pga3Off(5)  
rw, 0 global  
AMux(4)  
rw, 1 global  
Pga2Gain(0)  
rw, 0 global  
Pga3Gain(4)  
rw, 0 global  
Pga3Off(4)  
rw, 0 global  
AMux(3)  
rw, 0 global  
Pga2Off(3)  
rw, 0 global  
Pga3Gain(3)  
rw, 1 global  
Pga3Off(3)  
rw, 0 global  
AMux(2)  
rw, 0 global  
Pga2Off(2)  
rw, 0 global  
Pga3Gain(2)  
rw, 1 global  
Pga3Off(2)  
rw, 0 global  
AMux(1)  
rw, 0 global  
Pga1Gain  
rw, 0 global  
rw, 0 global  
Pga3Gain(6)  
rw, 0 global  
Pga3Off(6)  
rw, 0 global  
Def  
Busy  
r, 0 global  
wr0  
rw, 0 global  
rw, 0 global  
rw, 0 global  
rw, 0 global  
rw, 0 global  
rw, 0 global  
Table 6.14:  
Acquisition chain control registers  
6.15 Vmult and Vld registers  
Name  
Address  
RegVmultCfg0  
h007C  
RegVldCtrl  
h007E  
RegVldStat  
h007F  
7
6
5
4
3
2
1
0
Enable  
rw, 0 global  
VldTune(2)  
rw, 0 cold  
VldIrq  
Fin(1)  
Fin(0)  
rw, 0 global  
VldTune(1)  
rw, 0 cold  
VldValid  
rw, 0 global  
VldTune(0)  
rw, 0 cold  
VldEn  
VldMult  
rw, 0 cold  
r, 0 global  
r, 0 global  
rw, 0 global  
Table 6.15:  
Vmult and Vld control registers  
15  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
7 Peripherals  
The XE88LC01 includes usual microcontroller peripherals and some other blocks more spe-  
cific to low-voltage or mixed-signal operation. They are 3 parallel ports, one input port (A), one  
IO and analog port (B) with analog switching capabilities and one general purpose IO port (C).  
A watchdog is available, connected to a prescaler. Four 8-bit counters, with capture, PWM and  
chaining capabilities are available. The UART can handle transmission speeds as high as  
115kbaud.  
Low-power low-voltage blocks include a voltage level detector, two oscillators (one internal  
0.1-2 MHz RC oscillator and a 32 kHz crystal oscillator) and a specific regulation scheme that  
largely uncouples current requirement from external power supply (usual CMOS ASICs re-  
quire much more current at 5.5 V than they need at 2.4 V. This is not the case for the  
XE88LC01).  
Analog blocks (ZoomingADC (acquisition path)) are defined below. All these blocks operate  
on 2.4 - 5.5 V power supply range.  
7.1 Counters  
4 8-bit counters  
Daisy chain on 16 bits  
PWM on 8-16 bits  
Capture - compare on 16 bits  
Events and interrupts generation  
7.2 Prescaler  
7.3 Watchdog  
7.4 UART  
Interrupt generated with 1 second period for ultra low power hibernation mode  
2 seconds watchdog  
full duplex operation with buffered receiver and transmitter.  
Internal baudrate generator with programmable baudrate (300 - 115000 bauds).  
7 or 8 bits word length.  
even, odd, or no-parity bit generation and detection  
1 stop bit  
error receive detection : Start, Parity, Frame and Overrun  
receiver echo mode  
2 interrupts (receive full and transmit empty)  
enable receive and/or transmit  
invert pad Rx and/or Tx  
16  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
7.5 Xtal clock  
The Xtal Oscillator operates with an external crystal of 32’768 Hz.  
symbol  
f_clk32k  
description  
nominal frequency  
min  
typ  
32768  
1
max  
unit  
Hz  
s
comments  
st_x32k  
oscillator start-up time  
2
for full precision  
duty_clk32k  
duty cycle on the digital output  
30  
50  
70  
%
relative frequency deviation from  
nominal, for a crystal with CL=8.2 pF  
and temperature between -40° and  
+85°C  
not included:  
crystal frequency tolerance and aging  
crystal frequency - temperature dependence  
fstab_1  
-100  
+300  
ppm  
Table 7.1:  
Note:  
Xtal oscillator specifications.  
Board layout recommendations for safer crystal oscillation and lower current consumption:  
Keep lines xtal_in and xtal_out short and insert a VSS line between them.  
Connect package of the crystal to VSS.  
No noisy or digital lines near xtal_in and xtal_out.  
Insert guards at VSS where needed.  
7.6 RC oscillator  
The RC Oscillator is always turned on at power-on reset and can be turned off after the option-  
al Xtal oscillator has been started. The RC oscillator has two frequency ranges: sub-MHz  
(100KHz to 1MHz) and above-MHz (1MHz to max MCU frequency). Inside a range, the fre-  
quency can be tuned by software for coarse and fine adjustment.  
Note:  
No external component is required for the RC oscillator.  
The RC oscillator can be in 3 modes. In mode 1(RC on), the RC oscillator and its bias are on.  
In mode 2 (RC ready), the RC oscillator is off and the bias is on. In mode 3 (RC off), the RC  
oscillator and the bias are off. RC ready mode is a compromise between power consumption  
and start-up time.  
Figure 7.1:  
RC frequencies programming example for low range (typical values)  
17  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
symbol  
Fst  
description  
frequency at start-up  
range selection  
min  
50  
typ  
80  
max  
110  
10  
16  
1.5  
2
unit  
kHz  
comments  
multiplies Fst  
range  
1
4 bits, multiplies Fst * range  
6 bits, multiplies Fst * range * mult  
mult[3:0]  
coarse tuning range  
fine tuning range  
fine tuning step  
1
0.65  
tune[5:0]  
1.4  
30  
%
µs  
%
µs  
Tst  
Ost  
start-up time  
50  
50  
5
bias current is off (RC off)  
bias current is off (RC off)  
bias current is on (RC ready)  
bias current is on (RC ready)  
overshoot at start-up  
wakeup time  
Twu  
Owu  
3
2
overshoot at wakeup  
50  
%
o
jit  
jitter rms  
/
oo  
Table 7.2:  
RC specifications  
7.7 Parallel IO ports  
8 bit input port A with interrupt, reset and event generation.  
8 bit input-output-analog port B with analog switching capabilities.  
8 bit input-output port C.  
sym  
description  
Port A: low threshold limit  
condition  
min  
typ  
max  
unit  
V
Comments  
Port A: high threshold limit  
output drop when sinking 1 mA  
output drop when sourcing 1 mA  
Port A: low threshold limit  
V
Vbat =  
1.2 V  
0.4  
0.4  
V
V
1
V
Port A: high threshold limit  
output drop when sinking 1 mA  
output drop when sinking 8 mA  
output drop when sourcing 1 mA  
output drop when sourcing 8 mA  
Port A: low threshold limit  
1.5  
V
V
Vbat =  
2.4 V  
0.4  
0.4  
V
V
V
2
3
V
Port A: high threshold limit  
output drop when sinking 1 mA  
output drop when sinking 8 mA  
output drop when sourcing 1 mA  
output drop when sourcing 8 mA  
pull-up, pull-down resistor  
V
V
Vbat =  
5.0 V  
0.4  
V
V
0.4  
V
50  
150  
kohm  
Table 7.3:  
IO pins performances  
18  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
7.8 Voltage level detector  
Can be switched off, on or simultaneously with CPU activities  
Generates an interrupt if power supply is below a pre-determined level  
The Voltage Level Detector monitors the state of the system battery. It returns a logical high  
value (an interrupt) in the status register if the supplied voltage drops below the user defined  
level.  
symbol  
description  
min  
typ  
max  
unit  
comments  
trimming values:  
Note 1  
VldRange  
VldTune  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1.53  
1.44  
1.36  
1.29  
1.22  
1.16  
1.11  
1.06  
3.06  
2.88  
2.72  
2.57  
2.44  
2.33  
2.22  
2.13  
2.0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Vth  
Threshold voltage  
V
TEOM  
TPW  
duration of measurement  
2.5  
ms  
us  
Note 2  
Note 2  
Minimum pulse width detected  
875  
1350  
Table 7.4:  
Note:  
Voltage level detector operation  
1) Absolute precision of the threshold voltage is 10%.  
2) This timing is respected in case the internal RC or crystal oscillators are selected. Refer to the clock  
block documentation in case the external clock is used.  
19  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
8 ZoomingADC  
The fully differential acquisition chain is formed of a programmable gain (0.5 - 1000) and offset  
amplifier and a programmable speed and resolution ADC (example: 12 bits at 4 kHz, 16 bits  
at 1 kHz). It can handle inputs with very low full scale signal and large offsets.  
reference selection  
AC_R(0)  
AC_R(1)  
AC_R(2)  
AC_R(3)  
AC_A(0)  
AC_A(1)  
AC_A(2)  
AC_A(3)  
ADC  
AC_A(4)  
AC_A(5)  
AC_A(6)  
gain1  
mode output  
code  
gain2  
offset2  
gain3  
offset3  
AC_A(7)  
input selection  
Figure 8.1:  
Acquisition channel block diagram  
Input selection is made from 1 of 4 differential pairs or 1 of seven single signal versus AC_A(0).  
Reference is chosen from the 2 differential references. Acquisition path offset can be sup-  
pressed by inverting input polarity.  
The gain of each amplifier is programmed individually. Each amplifier is powered on and off on  
command to minimize the total current requirement. All blocks can be set to low frequency op-  
eration and lower their current requirement by a factor 2 or 4.  
The ADC can run continuously (end of conversion signalled by an interrupt, event or by pooling  
the ready bit), or it can be started on request.  
8.1 PGA 1  
symbol  
GD1  
description  
PGA1 Signal Gain  
min  
1
typ  
max  
10  
unit  
-
Comments  
GD1 = 1 or 10  
GD_preci  
GD_TC  
fs  
Precision on gain settings  
Temperature dependency of gain settings  
input sampling frequency  
Input impedance  
-5  
+5  
%
-5  
+5  
ppm/°C  
kHz  
kΩ  
512  
Zin1  
150  
1
1
Zin1p  
Input impedance for gain 1  
1500  
kΩ  
nV/  
sqrt(Hz)  
VN1  
Input referred noise  
28.6  
2
Table 8.1:  
Note:  
PGA1 Performances  
1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequen-  
cy for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs  
= 128 kHz.  
2) Input referred rms noise is 205 uV per input sample with gain = 1, 20.5 uV with gain = 10. This cor-  
responds to 28.6 nV/sqrt(Hz) for fs = 512 kHz and gain = 10.  
20  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
8.2 PGA2  
sym  
GD2  
description  
PGA2 Signal Gain  
min  
1
typ  
0.2  
max  
10  
unit  
-
FS  
Comments  
GD2 = 1, 2, 5 or 10  
GDoff2  
GDoff2_step  
GD_preci  
GD_TC  
fs  
PGA2 Offset Gain  
-1  
1
GDoff2(code+1) – GDoff2(code)  
Precision on gain settings  
Temperature dependency of gain settings  
Input sampling frequency  
Input impedance  
0.18  
-5  
0.22  
+5  
-
%
valid for GD2 and GDoff2  
-5  
+5  
ppm/°C  
kHz  
kΩ  
nV/  
sqrt(Hz)  
512  
Zin2  
150  
1
2
VN2  
Input referred noise  
47.5  
Table 8.2:  
Note:  
PGA2 Performances  
1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequen-  
cy for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs  
= 128 kHz.  
2) Input referred rms noise is 340 uV per input sample with gain = 1, 34 uV with gain = 10.This corre-  
sponds to 47.5 nV/sqrt(Hz) for fs = 512 kHz and gain = 10.  
8.3 PGA3  
sym  
GD3  
description  
PGA3 Signal Gain  
min  
0
typ  
max  
10  
unit  
-
Comments  
GDoff3  
GD3_step  
GDoff3_step  
GD_preci  
GD_TC  
fs  
PGA3 Offset Gain  
-5  
5
FS  
GD3(code+1) - GD3(code)  
GDoff2(code+1) – GDoff2(code)  
Precision on gain settings  
Temperature dependency of gain settings  
Input sampling frequency  
0.075  
0.075  
-5  
0.08  
0.08  
0.085  
0.085  
+5  
-
-
%
valid for GD3 and GDoff3  
-5  
+5  
ppm/°C  
kHz  
512  
Zin3  
VN3  
Input impedance  
150  
kΩ  
1
2
nV/  
sqrt(Hz)  
Input referred noise  
51.0  
Table 8.3:  
Note:  
PGA3 Performances  
1) Measured with block connected to inputs through AMUX block. Normalized input sampling frequen-  
cy for input impedance is 512 kHz. This figure has to be multiplied by 2 for fs = 256 kHz and 4 for fs  
= 128 kHz.  
2) Input referred rms noise is 365 uV per imput sample with gain = 1, 36.5 uV with gain = 10. This cor-  
responds to 51.0 nV/sqrt(Hz) for fs = 512 kHz.  
21  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
8.4 Analog to digital converter (ADC)  
The whole analog to digital conversion sequence is basically made of an initialisation, a set of  
Nelconv elementary incremental conversions and finally a termination phase(N is set  
umCONV  
by 2 bits on RegACCfg0). The result is a mean of the results of the elementary conversions.  
1 2  
smax 1 2  
smax  
1 2  
smax  
input  
sample  
1st elementary  
conversion  
2nd elementary  
conversion  
elementary  
conversion  
elementary  
conversion  
END  
START  
conversion  
1
2
N
umConv-1  
NumConv  
index  
Figure 8.2:  
Conversion sequence. smax is the oversampling rate.  
Note: NumCONV elementary conversions are performed, each elementary conversion being made of  
smax input samples.  
N
umCONV = 2NELCONV  
smax = 8*2OSR  
During the elementary conversions, the operation of the converter is the same as in a sigma  
delta modulator. During one conversion sequence, the elementary conversions are alterna-  
tively performed with direct and crossed PGA-ADC differential inputs, so that when two ele-  
mentary conversions or more are performed, the offset of the converter is cancelled.  
Some additional clock cycles (N  
conversion properly.  
+N  
) clock cycles are used to initiate and terminate the  
INIT  
END  
8.5 ADC performances  
sym  
VINR  
Resol  
NResol  
DNL  
INL  
description  
Input range  
min  
-0.5  
6
typ  
max  
0.5  
16  
unit  
Vref  
bits  
bits  
LSB  
LSB  
kHz  
-
Comments  
Resolution  
Numerical resolution  
Differential non-linearity  
Integral non-linearity  
sampling frequency  
Oversampling Ratio  
16  
3
-0.1  
-3  
0.1  
2
LSB at 16 bits  
2, LSB at 16 bits  
fs  
10  
8
512  
1024  
smax  
1
1
Number of elementary conversions in  
incremental mode  
NUMCONV  
Ninit  
1
8
5
5
-
-
-
Number of periods for incremental conversion  
initialization  
Number of periods for incremental conversion  
termination  
Nend  
Table 8.4:  
ADC Performances  
1) Only powers of 2  
Note:  
Note:  
2) INL is defined as the deviation of the DC transfer curve from the best fit straight line. This specifi-  
22  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
cation holds over 100% of the full scale.  
3) NResol is the maximal readable resolution of the digital filter.  
8.6  
resolution  
6
conditions  
oversampling per convertion = 8  
1 conversion (no offset rejection)  
input frequency. convertion time. output frequency.  
512 kHz  
512 kHz  
512 kHz  
512 kHz  
512 kHz  
512 kHz  
512 kHz  
40 us  
50 us  
25 kHz  
20 kHz  
6.7 kHz  
3.6 kHz  
2 kHz  
oversampling per convertion = 16  
1 conversion (no offset rejection)  
8
oversampling per convertion = 64  
1 conversion (no offset rejection)  
12  
13  
16  
16  
16  
150 us  
275 us  
500 us  
1 ms  
oversampling per convertion = 64  
2 convertions (offset rejection)  
oversampling per convertion = 256  
1 convertion (no offset rejection)  
oversampling per convertion = 256  
2 convertions (offset rejection)  
1 kHz  
oversampling per convertion = 1024  
8 convertions (offset rejection)  
16.5 ms  
60 Hz  
Table 8.5:  
ADC performances examples  
8.7 Linearity  
To quantify linearity errors, Integral Non-Linearity (INL) and Differential Non-Linearity (DNL)  
were measured for the ADC alone and for gains of 1, 5, 10, 20, 100, 1000, and a resolution of  
12 bits and 16 bits.  
INL is defined as the deviation (in LSB) of the DC transfer curve of each individual code from  
the best-fit straight line. This specification holds over the full scale.  
DNL is defined as the difference (in LSB) between the ideal (1 LSB) and measured code tran-  
sitions for successive codes. INL and DNL are specified after gain and offset errors have been  
removed.  
8.8 Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) for 12-bit reso-  
lution  
12 bits - ADC converter (No PGA; ADC only) (version v5a)  
12 bits - ADC converter (No PGA; ADC only) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV =  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
4
f
f
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
VIN [mV]  
VIN [mV]  
Figure 8.3:  
NO GAIN (ONLY ADC), 12 bit ADC setting  
23  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
12 bits - ADC converter (GDtot = 1) (version v5a)  
12 bits - ADC converter (GDtot = 1) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV =  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
4
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
2.0  
1.5  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
VIN [mV]  
VIN [mV]  
Figure 8.4:  
GAIN=1, 12 bit ADC setting  
12 bits - ADC converter (GDtot = 5) (version v5a)  
12 bits - ADC converter (GDtot = 5) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
N
f
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
0
100  
200  
VIN [mV]  
300  
400  
500  
0
100  
200  
300  
400  
500  
VIN [mV]  
Figure 8.5:  
GAIN=5, 12 bit ADC setting  
12 bits - ADC converter (GDtot = 10) (version v5a)  
12 bits - ADC converter (GDtot = 10) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
0.50  
2.0  
1.5  
0.40  
0.30  
1.0  
0.20  
0.5  
0.10  
0.00  
0.0  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.5  
-1.0  
-1.5  
-2.0  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
VIN [mV]  
VIN [mV]  
Figure 8.6:  
GAIN=10, 12 bit ADC setting  
24  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
12 bits - ADC converter (GDtot = 20) (version v5a)  
12 bits - ADC converter (GDtot = 20) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
0.60  
0.40  
0.8  
0.6  
0.4  
0.20  
0.2  
0.00  
0.0  
-0.20  
-0.40  
-0.60  
-0.80  
-0.2  
-0.4  
-0.6  
-0.8  
0
20  
40  
60  
VIN [mV]  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
VIN [mV]  
Figure 8.7:  
GAIN=20, 12 bit ADC setting  
12 bits - ADC converter (GDtot = 100) (version v5a)  
12 bits - ADC converter (GDtot = 100) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat  
=
Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
1.00  
0.50  
4.0  
3.0  
2.0  
1.0  
0.00  
0.0  
-0.50  
-1.00  
-1.50  
-1.0  
-2.0  
-3.0  
-4.0  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
VIN [mV]  
VIN [mV]  
Figure 8.8:  
GAIN=100, 12 bit ADC setting  
12 bits - ADC converter (GDtot = 1000) (version v5a)  
12 bits - ADC converter (GDtot = 1000) (version v5a)  
Vbat  
=
Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 32; NELCONV = 4  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
6.0  
4.0  
2.0  
1.5  
1.0  
2.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.0  
-4.0  
-6.0  
0
5
10  
15  
20  
25  
0
5
10 15  
10*VIN [mV]  
20  
25  
10*VIN [mV]  
Figure 8.9:  
GAIN=1000, 12 bit ADC setting  
25  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
8.9 Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) for 16-bit reso-  
lution  
16 bits - ADC converter (No PGA; ADC only) (version v5a)  
16 bits- ADC converter (No PGA; ADC only) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
sweep = 1201; average on 4 samples  
f
=
f
N
3
2
0.10  
0.05  
1
0.00  
0
-0.05  
-0.10  
-0.15  
-1  
-2  
-3  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
VIN [mV]  
VIN [mV]  
Figure 8.10:  
NO GAIN (ONLY ADC), 16 bit ADC setting  
16 bits - ADC converter (GDtot = 1) (version v5a)  
16 bits - ADC converter (GDtot = 1) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
25.0  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
20.0  
15.0  
10.0  
5.0  
0.0  
-5.0  
-10.0  
-15.0  
-20.0  
-25.0  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
VIN [mV]  
VIN [mV]  
Figure 8.11:  
GAIN=1, 16 bit ADC setting  
16 bits - ADC converter (GDtot = 5) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
16 bits - ADC converter (GDtot = 5) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
f
N sweep = 1201; average on 4 samples  
10.0  
5.0  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
0.0  
-5.0  
-10.0  
-15.0  
-20.0  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VIN [mV]  
VIN [mV]  
Figure 8.12:  
GAIN=5, 16 bit ADC setting  
26  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
16 bits - ADC converter (GDtot = 10) (version v5a)  
16 bits - ADC converter (GDtot = 10) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
30  
20  
10  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-10  
-20  
-30  
0
50  
100  
150  
200  
250  
0
50  
100  
VIN [mV]  
150  
200  
250  
VIN [mV]  
Figure 8.13:  
GAIN=10, 16 bit ADC setting  
16 bits - ADC converter (GDtot = 20) (version v5a)  
16 bits - ADC converter (GDtot = 20) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
f
0.6  
0.4  
10  
8
6
4
0.2  
2
0.0  
0
-2  
-4  
-6  
-8  
-0.2  
-0.4  
-0.6  
0
-10  
20  
40  
60  
VIN [mV]  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
VIN [mV]  
Figure 8.14:  
GAIN=20, 16 bit ADC setting  
16 bits - ADC converter (GDtot = 100) (version v5a)  
16 bits - ADC converter (GDtot = 100) (version v5a)  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV =  
RC 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
sweep = 1201; average on 4 samples  
2
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC  
2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
f
=
f
=
N
40  
30  
0.8  
0.6  
0.4  
20  
0.2  
10  
0.0  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-10  
-20  
-30  
-40  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
VIN [mV]  
VIN [mV]  
Figure 8.15:  
GAIN=100, 16 bit ADC setting  
27  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
16 bits - ADC converter (GDtot = 1000) (version v5a)  
16 bits - ADC converter (GDtot = 1000) (version v5a)  
2
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV = 2  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
N sweep = 1201; average on 4 samples  
Vbat = Vref = 5.0V; fs = 500kHz; OSR = 512; NELCONV =  
RC = 2MHz; IB_AMP(1:0) = 11; Vinn=0V  
f
f
N
sweep = 1201; average on 4 samples  
80  
60  
2.0  
1.5  
40  
1.0  
20  
0.5  
0
0.0  
-20  
-40  
-60  
-80  
-0.5  
-1.0  
-1.5  
-2.0  
0
5
10  
15  
20  
25  
0
5
10 15  
10*VIN [mV]  
20  
25  
10*VIN [mV]  
Figure 8.16:  
GAIN=1000, 16 bit ADC setting  
The gain settings of each PGA stage for the plots of above figure are those of the table below.  
PGA Gain  
PGA1 Gain  
GD1  
PGA2 Gain  
GD2  
PGA3 Gain  
GD3  
GD  
TOT  
(V/V)  
(V/V)  
(V/V)  
(V/V)  
1
1
bypassed  
bypassed  
bypassed  
bypassed  
bypassed  
bypassed  
10  
5
1
5
10  
10  
10  
10  
10  
bypassed  
20  
2
100  
1000  
10  
10  
Table 8.6:  
Table 8.7:  
Individual PGA gains for INL & DNL measurements  
8.10 Noise  
Ideally, a constant input voltage V should result in a constant output code. However, because  
IN  
of circuit noise, the output code may vary for a fixed input voltage. The figure shows the distri-  
bution for the ADC alone (PGA1, 2, and 3 bypassed) and of several configurations of the  
PGAs. Quantization noise is dominant in this case of ADC only, and, thus, the ADC thermal  
noise is negligible.  
One has to considere two points when computing final noise of the acquisition chain:  
this is a type of amplifier (switched-cap with constant capacitive load) that maintains its output  
noise when changing the gain. Therefore input refered noise is lowered when the gain of an  
amplifier is increased.  
the ADC is oversampled, and the number of samples taken lowers the thermal noise  
Total input refered noise can be computed using the following equation:  
2
2  
2  
Vn, out1  
-----------------  
gain1  
Vn, out2  
Vn, out3  
----------------------------------  
gain1 gain2  
-----------------------------------------------------  
gain1 gain2 gain3  
+
+
V2  
=
-----------------------------------------------------------------------------------------------------------------------------------------------  
n, in  
numconv smax  
28  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
Where V  
is the rms output noise of amplifier x.  
n,outx  
Typical output noise per  
over-sample  
205  
Amplifier  
Symbol  
Unit  
Vn,out1  
Vn,out2  
Vn,out3  
PGA1  
PGA2  
PGA3  
uVrms  
uVrms  
uVrms  
340  
365  
Typical output noise of ZoomingADC preamplifiers  
ADC only  
PGA1: 1  
PGA2: 10  
PGA3: off  
PGA1: off  
PGA2: 1  
PGA3: 10  
PGA1: 1  
PGA2: 10  
PGA3: 10  
PGA1: 10  
PGA2: 10  
PGA3: off  
Figure 8.17:  
Noise measured at the output of the ZoomingADC  
As one can see on the figures above, increase the gain of the first amplifier lowers the output  
noise for constant global gain. It also lowers sensitivity to temperature drift as offset is better  
compensated on first amplifier.  
8.11 Gain Error and Offset Error  
Gain error is defined as the amount of deviation between the ideal transfer function and the  
measured transfer function (with the offset error removed). The left figure shows gain error vs.  
temperature for different PGA gains. The curves are expressed in % of Full-Scale Range  
(FSR) normalized to 25°C.  
29  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
Offset error is defined as the output code error for a zero volt input (ideally, output code = 0).  
The measured offset errors vs. temperature curves for different PGA gains are depicted in the  
right figure below. The output offset error, expressed in (LSB), is normalized to 25°C.  
0.2  
0.1  
100  
1
5
20  
100  
80  
60  
40  
20  
0
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
1
5
20  
100  
-20  
-40  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature [°C]  
Temperature [°C]  
Figure 8.18:  
Gain and offset error vs temperature for several gains, normalized to 25°C, offset cancellation  
disabled. When the offset cancellation is enabled, the offset remains below the LSB in all  
temperature situations.  
8.12 Power Consumption  
Left figure below plots the variation of quiescent current consumption with supply voltage V  
,
DD  
as well as the distribution between the 3 PGA stages and the ADC. As shown in the right figure,  
quiescent current consumption is not greatly affected by sampling frequency. It can be seen  
that the quiescent current varies by about 20% between 100kHz and 2MHz. Quiescent current  
consumption vs. temperature is shown in the second set of figures, showing a relative increase  
of nearly 40% between -45 and +85°C.  
800  
800  
700  
600  
500  
400  
300  
200  
100  
750  
PGA1, 2 & 3  
500kHz  
250kHz  
62.5kHz  
Sampling Frequency fS  
:
700  
650  
600  
550  
500  
PGA1 & 2 only  
PGA1 only  
No PGAs, ADC only  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage - VDDA [V]  
Supply Voltage - VDDA [V]  
Figure 8.19:  
Quiescent current versus supply voltage for different gains and clock speed (not using the PGA and  
ADC low power modes)  
Supply  
VDD = 5V  
ADC  
250  
PGA1  
165  
PGA2  
130  
PGA3  
175  
TOTAL  
720  
Unit  
µA  
V
DD = 3V  
190  
150  
120  
160  
620  
µA  
Table 8.8:  
Typical quiescent current distributions in acquisition chain (n = 16 bits, f = 500kHz)  
S
30  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
20  
15  
10  
5
900  
850  
800  
750  
700  
650  
600  
550  
500  
0
-5  
-10  
-15  
-20  
-25  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 8.20:  
Absolute and (b) relative change in quiescent current consumption vs. temperature  
15  
10  
5
850  
800  
750  
700  
650  
600  
550  
0
-5  
-10  
-15  
-20  
500  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Frequency - fRC [kHz]  
Frequency - fRC [kHz]  
Figure 8.21:  
Absolute and (b) relative change in quiescent current consumption vs. clock speed  
8.13 Power Supply Rejection Ratio  
Figure below shows power supply rejection ratio (PSRR) at 3V and 5V supply voltage, and for  
various PGA gains. PSRR is defined as the ratio (in dB) of voltage supply change (in V) to the  
change in the converter output (in V). PSRR depends on both PGA gain and supply voltage  
V
.
DD  
31  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
105  
100  
95  
VDD=3V  
VDD=5V  
90  
85  
80  
75  
70  
65  
60  
1
5
10  
20  
100  
PGA Gain [V/V]  
Figure 8.22:  
Power supply rejection ratio (PSRR)  
Supply  
GAIN = 1  
GAIN =5  
GAIN = 10  
GAIN = 20  
GAIN =100  
Unit  
dB  
VDD = 5V  
79  
72  
78  
79  
100  
90  
99  
90  
97  
86  
VDD = 3V  
dB  
Table 8.9:  
PSRR (n = 16 bits, V = V  
= 2.5V, f = 500kHz)  
REF S  
IN  
8.14 Frequency Response  
The incremental ADC of the XE88LC01 is an over-sampled converter with two main blocks:  
an analog modulator and a low-pass digital filter. The main function of the digital filter is to re-  
move the quantization noise introduced by the modulator. As shown below, this filter deter-  
mines the frequency response of the transfer function between the output of the ADC and the  
analog input V . Notice that the frequency axes are normalized to one elementary conversion  
IN  
period OSR/f . The plots below also show that the frequency response changes with the  
S
number of elementary conversions N  
performed. In particular, notches appear for  
ELCONV  
N
2. These notches occur at:  
ELCONV  
i fS  
OSR NELCONV  
fNOTCH (i) =  
i = 1,2,...,(NELCONV 1)  
(Hz)for  
and are repeated every f /OSR.  
S
Information on the location of these notches is particularly useful when specific frequencies  
must be filtered out by the acquisition system. For example, consider a 5Hz-bandwidth, 16-bit  
sensing system where 50Hz line rejection is needed. Using the above equation and the plots  
below, we set the 4th notch for N  
frequency is then calculated as f = 20.48kHz for OSR = 512. Notice that this choice yields  
= 4 to 50Hz, i.e. 1.25f /OSR = 50Hz. The sampling  
ELCONV  
S
S
also good attenuation of 50Hz harmonics.  
32  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
1.2  
1
1.2  
1
NELCONV = 2  
NELCONV = 1  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
0
1
2
3
4
Normalized Frequency - f *(OSR/fS) [-]  
Normalized Frequency - f *(OSR/fS) [-]  
1.2  
1
1.2  
1
NEL CONV = 8  
NELCONV = 4  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
0
1
2
3
4
Normalized Frequency - f *(OSR/fS) [-]  
Normalized Frequency - f *(OSR/fS) [-]  
Figure 8.23:  
Frequency response: normalized magnitude vs. frequency for different N  
ELCONV  
33  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
9 Physical description  
9.1 LQFP44 package  
Figure 9.1:  
LQFP44 package, size in mm.  
9.2 PLL-44L package  
Figure 9.2:  
PLL-44L package,  
34  
D0202-60  
Data Sheet XE88LC01  
Data Acquisition Microcontroller  
9.3 Die form  
pin 1  
2
Figure 9.3:  
XE88LC01 in die: 4.1 x 4.6 mm  
9.3.1 Bonding pads location  
Coordinates start with a point near to the bottom left border (with respect to above picture). X  
is horizontal, Y is vertical.  
Pad size is 85 x 85 um.  
Symbol  
Pad  
X
Y
Symbol  
Pad  
X
Y
um  
um  
um  
um  
1
PA(4)  
PA(5)  
NC  
52.6  
4075.5  
3795.5  
3515.5  
3235.5  
2955.5  
2675.5  
2395.5  
2115.5  
1835.5  
1555.5  
1275.5  
995.5  
715.5  
435.5  
47.6  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
AC_R(2)  
AC_A(7)  
NC  
3314.1  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3958.4  
3597.6  
3332.6  
3067.6  
2802.6  
2537.0  
2007.6  
1742.6  
1477.6  
1212.6  
947.6  
47.6  
2
52.6  
522.4  
3
52.6  
807.4  
4
PA(6)  
PA(7)  
PC(0)  
PC(1)  
PC(2)  
PC(3)  
NC  
52.6  
AC_A(6)  
AC_A(5)  
AC_A(4)  
AC_A(3)  
AC_A(2)  
NC  
1092.4  
1377.4  
1662.4  
1947.4  
2232.4  
2517.4  
2802.4  
3087.4  
3372.4  
3657.4  
3942.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
4453.4  
5
52.6  
6
52.6  
7
52.6  
8
52.6  
9
52.6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
52.6  
AC_A(1)  
AC_A(0)  
AC_R(1)  
AC_R(0)  
Vss  
PC(4)  
PC(5)  
PC(6)  
PC(7)  
PB(0)  
PB(1)  
PB(2)  
PB(3)  
PB(4)  
NC  
52.6  
52.6  
52.6  
52.6  
398.5  
533.5  
668.5  
798.5  
933.5  
1063.5  
1198.5  
1328.5  
1463.5  
1934.1  
2394.1  
2854.1  
Vbat  
47.6  
NC  
47.6  
Vreg  
47.6  
RESET  
Vmult  
47.6  
47.6  
OscIn  
PB(5)  
PB(6)  
PB(7)  
TEST  
NC  
47.6  
NC  
47.6  
OscOut  
PA(0)  
47.6  
47.6  
PA(1)  
47.6  
PA(2)  
682.6  
AC_R(3)  
47.6  
PA(3)  
417.6  
Table 9.1:  
Bonding pads location. Do not connect pads named NC. Connect Vss pad and substrate to Vss.  
35  
D0202-60  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

相关型号:

XE88LC01RI027

Sensing Machine 16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
ETC

XE88LC02

Sensing Machine Data Acquisition MCU with 16 + 10 bit ZoomingADC and LCD driver
ETC

XE88LC02MI000

Sensing Machine Data Acquisition MCU with 16 + 10 bit ZoomingADC and LCD driver
ETC

XE88LC02MI035

Sensing Machine Data Acquisition MCU with 16 + 10 bit ZoomingADC and LCD driver
ETC

XE88LC05

16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
ETC

XE88LC05MI000

16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
ETC

XE88LC05MI028

16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
ETC

XE88LC05RI000

16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
ETC

XE88LC05RI028

16 + 10 bit Data Acquisition Ultra Low-Power Microcontroller
ETC

XE900S

Smart Spread Spectrum Transceiver
ETC

XE900S-500

Smart Spread Spectrum Transceiver
ETC

XE900SL10

Miniature Spread Spectrum Transceiver
ETC