XR-2211P [ETC]

ASK/FSK Demodulator ; ASK / FSK解调器\n
XR-2211P
型号: XR-2211P
厂家: ETC    ETC
描述:

ASK/FSK Demodulator
ASK / FSK解调器\n

文件: 总24页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR-2211  
FSK Demodulator/  
Tone Decoder  
...the analog plus companyTM  
June 1997-3  
FEATURES  
APPLICATIONS  
D Wide Frequency Range, 0.01Hz to 300kHz  
D Wide Supply Voltage Range, 4.5V to 20V  
D HCMOS/TTL/Logic Compatibility  
D Caller Identification Delivery  
D FSK Demodulation  
D Data Synchronization  
D Tone Decoding  
D FSK Demodulation, with Carrier Detection  
D Wide Dynamic Range, 10mV to 3V rms  
D Adjustable Tracking Range, +1% to 80%  
D Excellent Temp. Stability, +50ppm/°C, max.  
D FM Detection  
D Carrier Detection  
GENERAL DESCRIPTION  
The XR-2211 is a monolithic phase-locked loop (PLL)  
system especially designed for data communications  
applications. It is particularly suited for FSK modem  
applications. It operates over a wide supply voltage range  
of 4.5 to 20V and a wide frequency range of 0.01Hz to  
300kHz. It can accommodate analog signals between  
10mV and 3V, and can interface with conventional DTL,  
TTL, and ECL logic families. The circuit consists of a basic  
PLL for tracking an input signal within the pass band, a  
quadrature phase detector which provides carrier  
detection, and an FSK voltage comparator which provides  
FSK demodulation. External components are used to  
independently set center frequency, bandwidth, and output  
delay. An internal voltage reference proportional to the  
power supply is provided at an output pin.  
The XR-2211 is available in 14 pin packages specified for  
military and industrial temperature ranges.  
ORDERING INFORMATION  
Operating  
Temperature Range  
Part No.  
XR-2211M  
XR-2211N  
XR-2211P  
XR-2211ID  
Package  
14 Pin CDIP (0.300”)  
-55°C to +125°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
14 Pin CDIP (0.300”)  
14 Pin PDIP (0.300”)  
14 Lead SOIC (Jedec, 0.150”)  
Rev. 3.01  
E1992  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017  
1
XR-2211  
BLOCK DIAGRAM  
V
GND  
4
NC  
9
CC  
1
Pre Amplifier  
11  
3
LDO  
LDF  
INP  
2
Loop  
q-Det  
TIM C1 14  
Lock  
Detect  
Comparator  
6
5
LDOQ  
VCO  
13  
12  
TIM C2  
TIM R  
Quad  
q-Det  
LDOQN  
Internal  
10  
8
V
V
REF  
REF  
7
DO  
FSK Comp  
Reference  
COMP I  
Figure 1. XR-2211 Block Diagram  
Rev. 3.01  
2
XR-2211  
PIN CONFIGURATION  
1
2
3
4
5
14  
13  
12  
11  
10  
V
CC  
TIM C1  
TIM C2  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
INP  
TIM C1  
TIM C2  
CC  
INP  
LDF  
GND  
LDOQN  
LDOQ  
DO  
TIM R  
LDO  
LDF  
GND  
LDOQN  
TIM R  
LDO  
V
REF  
V
REF  
6
7
9
8
NC  
COMP I  
LDOQ  
DO  
NC  
COMP I  
8
14 Lead CDIP, PDIP (0.300”)  
14 Lead SOIC (Jedec, 0.150”)  
PIN DESCRIPTION  
Pin #  
1
Symbol  
VCC  
Type Description  
Positive Power Supply.  
2
INP  
I
Receive Analog Input.  
Lock Detect Filter.  
Ground Pin.  
3
LDF  
O
4
GND  
5
LDOQN  
LDOQ  
DO  
O
O
O
I
Lock Detect Output Not. This output will be low if the VCO is in the capture range.  
Lock Detect Output. This output will be high if the VCO is in the capture range.  
Data Output. Decoded FSK output.  
6
7
8
COMP I  
NC  
FSK Comparator Input.  
9
Not Connected.  
10  
11  
12  
13  
14  
VREF  
O
O
I
Internal Voltage Reference. The value of VREF is VCC/2 - 650mV.  
Loop Detect Output. This output provides the result of the quadrature phase detection.  
Timing Resistor Input. This pin connects to the timing resistor of the VCO.  
Timing Capacitor Input. The timing capacitor connects between this pin and pin 14.  
Timing Capacitor Input. The timing capacitor connects between this pin and pin 13.  
LDO  
TIM R  
TIM C2  
TIM C1  
I
I
Rev. 3.01  
3
XR-2211  
ELECTRICAL CHARACTERISTICS  
Test Conditions: V = 12V, T = +25°C, R = 30KW, C = 0.033mF, unless otherwise specified.  
CC  
A
O
O
Parameter  
Min.  
4.5  
Typ.  
Max.  
Unit  
Conditions  
General  
Supply Voltage  
Supply Current  
Oscillator Section  
Frequency Accuracy  
Frequency Stability  
Temperature  
20  
7
V
4
mA  
R0 > 10KW. See Figure 4.  
+1  
+3  
%
Deviation from fO = 1/R0 C0  
+20  
0.05  
0.2  
+50  
ppm/°C See Figure 8.  
Power Supply  
0.5  
%/V  
%/V  
kHz  
Hz  
VCC = 12 +1V. See Figure 7.  
VCC = + 5V. See Figure 7.  
R0 = 8.2KW, C0 = 400pF  
R0 = 2MW, C0 = 50mF  
Upper Frequency Limit  
100  
300  
Lowest Practical Operating  
Frequency  
0.01  
Timing Resistor, R0 - See  
Figure 5  
Operating Range  
Recommended Range  
Loop Phase Dectector Section  
Peak Output Current  
Output Offset Current  
Output Impedance  
5
2000  
KW  
KW  
5
See Figure 7 and Figure 8.  
Measured at Pin 11  
+150  
+200  
1
+300  
mA  
mA  
MW  
V
1
Maximum Swing  
+4  
+ 5  
Referenced to Pin 10  
Measured at Pin 3  
Quadrature Phase Detector  
Peak Output Current  
Output Impedance  
100  
300  
1
mA  
MW  
VPP  
Maximum Swing  
11  
Input Preampt Section  
Input Impedance  
Measured at Pin 2  
20  
2
KW  
Input Signal  
Voltage Required to  
Cause Limiting  
10  
mV rms  
Notes  
Parameters are guaranteed over the recommended operating conditions, but are not 100% tested in production.  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Rev. 3.01  
4
XR-2211  
DC ELECTRICAL CHARACTERISTICS (CONT’D)  
Test Conditions: VCC = 12V, TA = +25°C, RO = 30KW, CO = 0.033mF, unless otherwise specified.  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Voltage Comparator Section  
Input Impedance  
2
MW  
nA  
Measured at Pins 3 and 8  
Input Bias Current  
Voltage Gain  
100  
70  
55  
dB  
RL = 5.1KW  
IC = 3mA  
Output Voltage Low  
Output Leakage Current  
Internal Reference  
Voltage Level  
300  
0.01  
500  
10  
mV  
mA  
VO = 20V  
4.9  
5.3  
100  
80  
5.7  
V
W
Measured at Pin 10  
AC Small Signal  
Output Impedance  
Maximum Source Current  
mA  
Notes  
Parameters are guaranteed over the recommended operating conditions, but are not 100% tested in production.  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Specifications are subject to change without notice  
ABSOLUTE MAXIMUM RATINGS  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V  
Input Signal Level . . . . . . . . . . . . . . . . . . . . . . . . 3V rms  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . 900mW  
Package Power Dissipation Ratings  
CDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750mW  
Derate Above T = 25°C . . . . . . . . . . . . . . . 8mW/°C  
A
PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800mW  
Derate Above T = 25°C . . . . . . . . . . . . . . 60mW/°C  
A
SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390mW  
Derate Above T = 25°C . . . . . . . . . . . . . . . 5mW/°C  
A
SYSTEM DESCRIPTION  
The main PLL within the XR-2211 is constructed from an  
input preamplifier, analog multiplier used as a phase  
detector and a precision voltage controlled oscillator  
(VCO). The preamplifier is used as a limiter such that  
input signals above typically 10mV rms are amplified to a  
constant high level signal. The multiplying-type phase  
detector acts as a digital exclusive or gate. Its output  
(unfiltered) produces sum and difference frequencies of  
the input and the VCO output. The VCO is actually a  
current controlled oscillator with its normal input current  
(internally connected). When in lock, these frequencies  
are f + f  
(2 times f when in lock) and f - f  
(0Hz  
IN VCO  
IN  
IN VCO  
when lock). By adding a capacitor to the phase detector  
output, the 2 times f component is reduced, leaving a  
IN  
DC voltage that represents the phase difference between  
the two frequencies. This closes the loop and allows the  
VCO to track the input frequency.  
The FSK comparator is used to determine if the VCO is  
driven above or below the center frequency (FSK  
comparator). This will produce both active high and  
active low outputs to indicate when the main PLL is in lock  
(quadrature phase detector and lock detector  
comparator).  
(f ) set by a resistor (R ) to ground and its driving current  
O
0
with a resistor (R ) from the phase detector.  
1
The output of the phase detector produces sum and  
difference of the input and the VCO frequencies  
Rev. 3.01  
5
XR-2211  
PRINCIPLES OF OPERATION  
Signal Input (Pin 2): Signal is AC coupled to this  
terminal. The internal impedance at pin 2 is 20KW.  
Recommended input signal level is in the range of 10mV  
rms to 3V rms.  
10 must be bypassed to ground with a 0.1mF capacitor for  
proper operation of the circuit.  
Loop Phase Detector Output (Pin 11): This terminal  
provides a high impedance output for the loop phase  
detector. The PLL loop filter is formed by R and C  
connectedtopin11(seeFigure 3.)Withnoinputsignal, or  
withnophaseerrorwithinthePLL, theDClevelatpin11is  
1
1
Quadrature Phase Detector Output (Pin 3): This is the  
high impedance output of quadrature phase detector and  
is internally connected to the input of lock detect voltage  
comparator. In tone detection applications, pin 3 is  
very nearly equal to V . The peak to peak voltage swing  
REF  
available at the phase detector output is equal to 2 x V  
.
REF  
connected to ground through a parallel combination of R  
D
and C (see Figure 3) to eliminate the chatter at lock  
detect outputs. If the tone detect section is not used, pin 3  
can be left open.  
D
VCO Control Input (Pin 12): VCO free-running  
frequency is determined by external timing resistor, R ,  
0
connected from this terminal to ground. The VCO  
free-running frequency, f , is:  
O
Lock Detect Output, Q (Pin 6): The output at pin 6 is at  
“low” state when the PLL is out of lock and goes to “high”  
state when the PLL is locked. It is an open collector type  
1
fO +  
Hz  
R0·C0  
output and requires a pull-up resistor, R , to V  
for  
L
CC  
proper operation. At “low” state, it can sink up to 5mA of  
load current.  
where C is the timing capacitor across pins 13 and 14.  
0
For optimum temperature stability, R must be in the  
0
range of 10KW to 100KW (see Figure 9.)  
Lock Detect Complement, (Pin 5): The output at pin 5 is  
the logic complement of the lock detect output at pin 6.  
This output is also an open collector type stage which can  
sink 5mA of load current at low or “on” state.  
This terminal is a low impedance point, and is internally  
biased at a DC level equal to V . The maximum timing  
REF  
current drawn from pin 12 must be limited to < 3mA for  
proper operation of the circuit.  
FSK Data Output (Pin 7):Thisoutputisanopencollector  
VCO Timing Capacitor (Pins 13 and 14): VCO  
frequency is inversely proportional to the external timing  
logic stage which requires a pull-up resistor, R , to V for  
L
CC  
proper operation. It can sink 5mA of load current. When  
decoding FSK signals, FSK data output is at “high” or “off”  
state for low input frequency, and at “low” or “on” state for  
high input frequency. If no input signal is present, the logic  
state at pin 7 is indeterminate.  
capacitor, C , connected across these terminals (see  
0
Figure 6.) C must be non-polar, and in the range of  
0
200pF to 10mF.  
VCO Frequency Adjustment: VCO can be fine-tuned by  
connecting a potentiometer, R , in series with R at pin 12  
(see Figure 10.)  
X
0
FSK Comparator Input (Pin 8): This is the high  
impedance input to the FSK voltage comparator.  
Normally, an FSK post-detection or data filter is  
connected between this terminal and the PLL phase  
VCO Free-Running Frequency, f : XR-2211 does not  
O
have a separate VCO output terminal. Instead, the VCO  
outputs are internally connected to the phase detector  
sections of the circuit. For set-up or adjustment purposes,  
the VCO free-running frequency can be tuned by using  
the generalized circuit in Figure 3, and applying an  
alternating bit pattern of O’s and 1’s at the known mark  
detector output (pin 11). This data filter is formed by R  
F
and C (see Figure 3.) The threshold voltage of the  
F
comparator is set by the internal reference voltage, V  
available at pin 10.  
,
REF  
Reference Voltage, V  
(Pin 10): This pin is internally  
and space frequencies. By adjusting R , the VCO can  
REF  
0
biased at the reference voltage level, V :V  
REF REF  
= V /2  
then be tuned to obtain a 50% duty cycle on the FSK  
CC  
- 650mV. The DC voltage level at this pin forms an internal  
reference for the voltage levels at pins 5, 8, 11 and 12. Pin  
output (pin 7). This will ensure that the VCO f value is  
accuratelyreferencedtothemarkandspacefrequencies.  
O
Rev. 3.01  
6
XR-2211  
Loop  
Filter  
Data  
Filter  
FSK  
Output  
φ
Det  
FSK  
Comp  
φ
VCO  
Input  
Preamp  
φ
Lock Detect  
Outputs  
φ
Det  
Lock Detect  
Filter  
Lock Detect  
Comp  
Figure 2. Functional Block Diagram of a Tone and FSK  
Decoding System Using XR-2211  
V
CC  
R
B
R
l
11  
R
F
8
Loop  
Phase  
Detect  
7
+
C
C
1
F
FSK  
Comp.  
10  
R
1
2
Internal  
Reference  
12  
Input  
VCO  
0.1mF  
Signal  
0.1mF  
14  
13  
R
0
6
C
0
+
LDOQ  
LDOQN  
Quad  
Phase  
Detect  
5
3
Lock  
Detect  
Comp.  
R
C
D
D
Figure 3. Generalized Circuit Connection for  
FSK and Tone Detection  
Rev. 3.01  
7
XR-2211  
DESIGN EQUATIONS  
(All resistance in W, all frequency in Hz and all capacitance in farads, unless otherwise specified)  
(See Figure 3 for definition of components)  
1. VCO Center Frequency, f :  
O
1
fO +  
R0·C0  
2. Internal Reference Voltage, V  
(measured at pin 10):  
REF  
VCC  
2
+ ǒ Ǔ650mV in volts  
VREF  
3. Loop Low-Pass Filter Time Constant, t:  
t + C1·RPP (seconds)  
where:  
R1·RF  
R1 ) RF  
+ ǒ Ǔ  
RPP  
if R is 1 or C reactance is 1, then R = R1  
F
F
PP  
4. Loop Damping, j:  
1250·C0  
R1·C1  
ǒ Ǔ  
z +  
Ǹ
Note: For derivation/explanation of this equation, please see TAN-011.  
5. Loop-tracking  
Df  
f0  
"+  
bandwidth,  
R0  
R1  
Df  
f0  
+
Tracking  
Bandwidth  
Df  
Df  
f
LL  
f
1
f
O
f
2
f
LH  
Rev. 3.01  
8
XR-2211  
6. FSK Data filter time constant, tF:  
RB · RF  
tF +  
·CF (seconds)  
(
)
RB ) RF  
7. Loop phase detector conversion gain, Kd: (Kd is the differential DC voltage across pin 10 and pin11, per unit of  
phase error at phase detector input):  
VREF · R1  
10, 000·p  
volt  
radian  
ƪ ƫ  
Kd +  
Note: For derivation/explanation of this equation, please see TAN-011.  
8. VCO conversion gain, Ko: (Ko is the amount of change in VCO frequency, per unit of DC voltage change at pin 11):  
radianńsecond  
2p  
+ ǒ  
Ǔ
K0 +  
volt  
VREF ·C0 · R1  
9. The filter transfer function:  
1
F(s) +  
10. Total loop gain. K :  
at 0 Hz.  
S = Jw and w = 0  
1 ) SR1·C1  
T
RF  
1
ƪ
ƫ
K + K ·K ·F(s) + ǒ  
Ǔ
T
O
d
5, 000·C0·(R1 ) RF) seconds  
11. Peak detector current I :  
A
VREF  
20, 000  
IA +  
(VREF in volts and IA in amps)  
Note: For derivation/explanation of this equation, please see TAN-011.  
Rev. 3.01  
9
XR-2211  
APPLICATIONS INFORMATION  
FSK Decoding  
Figure 10 shows the basic circuit connection for FSK decoding. With reference to Figure 3 and Figure 10, the functions  
of external components are defined as follows: R and C set the PLL center frequency, R sets the system bandwidth,  
0
0
1
and C sets the loop filter time constant and the loop damping factor. C and R form a one-pole post-detection filter for  
1
F
F
the FSK data output. The resistor R from pin 7 to pin 8 introduces positive feedback across the FSK comparator to  
B
facilitate rapid transition between output logic states.  
Design Instructions:  
ThecircuitofFigure 10canbetailoredforanyFSKdecodingapplicationbythechoiceoffivekeycircuitcomponents:R ,  
0
R , C , C and C . For a given set of FSK mark and space frequencies, f and f , these parameters can be calculated as  
1
0
1
F
O
1
follows:  
(All resistance in W’s, all frequency in Hz and all capacitance in farads, unless otherwise specified)  
a) Calculate PLL center frequency, f :  
O
Ǹ
fO + F1·F2  
b) ChoosevalueoftimingresistorR , tobeintherangeof10KW to100KW. Thischoiceisarbitrary. Therecommended  
0
value is R = 20KW. The final value of R is normally fine-tuned with the series potentiometer, R .  
0
0
X
RX  
2
RO + RO )  
c) Calculate value of C0 from design equation (1) or from Figure 7:  
1
CO +  
R0 · f0  
d) Calculate R1 to give the desired tracking bandwidth (See design equation 5).  
R0·f0  
R1 +  
·2  
(f1–f2)  
e) Calculate C1 to set loop damping. (See design equation 4):  
Normally, j = 0.5 is recommended.  
1250·C0  
C1 +  
R1 · j2  
Rev. 3.01  
10  
XR-2211  
f) The input to the XR-2211 may sometimes be too sensitive to noise conditions on the input line. Figure 4 illustrates  
a method of de-sensitizing the XR-2211 from such noisy line conditions by the use of a resistor, Rx, connected  
from pin 2 to ground. The value of Rx is chosen by the equation and the desired minimum signal threshold level.  
VREF  
DV  
20, 000  
ǒ Ǔ  
VIN minimum (peak) + Va–Vb + DV " 2.8mV offset + V  
or RX + 20, 000  
1  
REF (20, 000 ) RX)  
V
IN  
minimum (peak) input voltage must exceed this value to be detected (equivalent to adjusting V threshold)  
V
CC  
To Phase  
Detector  
Va  
Vb  
Input  
2
20K  
20K  
Rx  
10  
V
REF  
Figure 4. Desensitizing Input Stage  
g) Calculate Data Filter Capacitance, C :  
F
(
)
RF ) R1 ·RB  
Rsum  
+
(
)
R1 ) RF ) RB  
0.25  
(Rsum·Baud Rate  
1
CF +  
Baud rate in  
)
seconds  
Note: All values except R0 can be rounded to nearest standard value.  
Rev. 3.01  
11  
XR-2211  
20  
1.0  
0.1  
R =5KW  
0
15  
R =10KW  
0
R =5K  
0
10  
5
R =20KW  
0
R =10KΩ  
0
R =40KW  
0
R =80KW  
0
R >100K  
0
R =160KW  
0
0
0.01  
4
6
8
10 12 14 16 18 20 22 24  
100  
1000  
f (HZ)  
10000  
+
O
Supply Voltage, V (Volts)  
Figure 5. Typical Supply Current vs. V+  
(Logic Outputs Open Circuited)  
Figure 6. VCO Frequency vs. Timing Resistor  
1,000  
C =0.001mF  
0
1.02  
f
= 1kHz  
O
5
3
1
R = 10R  
F
0
5
1.01  
C =0.0033mF  
0
4
2
1.00  
0.99  
100  
4
C =0.01mF  
0
3
C =0.1mF  
0
Curve  
R
0
2
1
2
3
4
5
5K  
10K  
0.98  
0.97  
C =0.0331mF  
0
30K  
100K  
300K  
1
C =0.33mF  
0
10  
4
6
8
10 12 14 16 18  
20 22 24  
0
1000  
10000  
V+ (Volts)  
f (Hz)  
O
Figure 7. VCO Frequency vs. Timing Capacitor  
Figure 8. Typical f vs. Power Supply  
O
Characteristics  
+1.0  
1MΩ  
R =10K  
0
+0.5  
0
500K  
R =50K  
0
50K  
10K  
R =500K  
0
-0.5  
-1.0  
V+ = 12V  
R =1MΩ  
0
R = 10 R  
0
1
f
= 1 kHz  
O
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (°C)  
Figure 9. Typical Center Frequency Drift vs. Temperature  
Rev. 3.01  
12  
XR-2211  
Design Example:  
1200 Baud FSK demodulator with mark and space frequencies of 1200/2200.  
Step 1: Calculate f : from design instructions  
O
Ǹ
(a) fO + 1200·2200 =1624  
Step 2: Calculate R : R =10K with a potentiometer of 10K. (See design instructions (b))  
0
0
10  
2
ǒ Ǔ + 15K  
(b) RT + 10 )  
Step 3: Calculate C from design instructions  
0
1
(c) CO +  
+ 39nF  
15000·1624  
Step 4: Calculate R : from design instructions  
1
20000·1624·2  
(d) R1 +  
+ 51, 000  
)
(
22001200  
Step 5: Calculate C : from design instructions  
1
1250·39nF  
(e) C1 +  
+ 3.9nF  
51000·0.52  
Step 6: Calculate R : R should be at least five times R , R = 51,000 5 = 255 KW  
F
F
1
F
Step 7: Calculate R : R should be at least five times R , R = 255,000 5 = 1.2 MW  
B
B
F
B
Step 8: Calculate R  
SUM :  
(
)
RF ) R1 ·RB  
RSUM  
+
+ 240KW  
(
)
RF ) R1 ) RB  
Step 9: Calculate C  
F :  
0.25  
RSUM·Baud Rate  
CF +  
+ 1nF  
ǒ
Ǔ
Note: All values except R0 can be rounded to nearest standard value.  
Rev. 3.01  
13  
XR-2211  
V
CC  
R
B
R
L
5.1K  
5%  
1.8m 5%  
Loop  
Phase  
Detect  
11  
8
R
178K  
5%  
F
7
C
Data  
C
1
F
1nF  
Output  
2.7nF  
5%  
10%  
FSK  
Comp.  
R
1
35.2K  
1%  
10  
Internal  
Reference  
2
12  
Input  
Signal  
0.1µF  
VCO  
R
0
0.1µF  
13  
20K  
1%  
14  
C
O
27nF  
5%  
VCO  
Fine  
Tune  
Rx  
20K  
6
LDOQ  
LDOQN  
+
Quad  
Phase  
Detect  
5
Lock  
Detect  
Comp.  
Figure 10. Circuit Connection for FSK Decoding of Caller Identification Signals  
(Bell 202 Format)  
V
CC  
R
B
R
L
11  
8
5.1k  
Loop  
Phase  
Detect  
R
F
7
+
C
C
1
F
FSK  
Comp.  
R
10  
1
12  
Internal  
Reference  
2
Input  
Signal  
VCO  
0.1µF  
0.1µF  
14  
13  
R
0
C
0
Rx  
6
LDOQ  
Quad  
Phase  
Detect  
LDOQN  
5
3
Lock  
Detect  
Comp.  
R
C
D
D
Between 400K and 600K  
Figure 11. External Connectors for FSK Demodulation with Carrier  
Detect Capability  
Rev. 3.01  
14  
XR-2211  
V
CC  
8
Loop  
Phase  
Detect  
11  
7
+
C
1
FSK  
Comp.  
220pF  
5%  
R
1
200K  
10  
12  
1%  
Internal  
Reference  
2
0.1µF  
VCO  
R
20K  
1%  
0.1µF  
0
14  
13  
V
CC  
C
50nF  
0
Tone  
Input  
5%  
VCO  
Fine  
Tune  
Rx  
5K  
RL2  
5.1K  
RL3  
5.1K  
6 LDOQ  
+
Logic Output  
Quad  
Phase  
Detect  
5 LDOQN  
3
Lock  
Detect  
Comp.  
C
D
R
470K  
D
80nF  
Figure 12. Circuit Connection for Tone Detection  
FSK Decoding with Carrier Detect  
The lock detect section of XR-2211 can be used as a  
frequency approaches the capture bandwidth.  
carrier detect option for FSK decoding.  
The  
ExcessivelylargevaluesofC willslowtheresponsetime  
D
recommended circuit connection for this application is  
shown in Figure 11. The open collector lock detect output,  
pin 6, is shorted to data output (pin 7). Thus, data output  
will be disabled at “low” state, until there is a carrier within  
the detection band of the PLL and the pin 6 output goes  
“high” to enable the data output.  
of the lock detect output. For Caller I.D. applications  
choose C = 0.1mF.  
D
Tone Detection  
Figure 12 shows the generalized circuit connection for  
tone detection. The logic outputs, LDOQN and LDOQ at  
pins 5 and 6 are normally at “high” and “low” logic states,  
respectively. When a tone is present within the detection  
band of the PLL, the logic state at these outputs become  
reversed for the duration of the input tone. Each logic  
output can sink 5mA of load current.  
Note: Data Output is “Low” When No Carrier is Present.  
The minimum value of the lock detect filter capacitance  
C is inversely proportional to the capture range, +Dfc.  
D
This is the range of incoming frequencies over which the  
loop can acquire lock and is always less than the tracking  
range. ItisfurtherlimitedbyC . Formostapplications, Dfc  
1
> Df/2. For R = 470KW, the approximate minimum value  
D
Both outputs at pins 5 and 6 are open collector type  
of C can be determined by:  
D
stages, and require external pull-up resistors R and  
L2  
R , as shown in Figure 12.  
L3  
16  
Df  
C in mF and f in Hz.  
CD §  
With reference to Figure 3 and Figure 12, the functions of  
the external circuit components can be explained as  
C in mF and f in Hz.  
follows: R and C set VCO center frequency; R sets the  
0
0
1
With values of C that are too small, chatter can be  
detection bandwidth; C sets the low pass-loop filter time  
D
1
observed on the lock detect output as an incoming signal  
constant and the loop damping factor.  
Rev. 3.01  
15  
XR-2211  
Design Instructions:  
ThecircuitofFigure 12canbeoptimizedforanytonedetectionapplicationbythechoiceofthe5keycircuitcomponents:  
R , R , C , C and C . For a given input, the tone frequency, f , these parameters are calculated as follows:  
0
1
0
1
D
S
(All resistance in W’s, all frequency in Hz and all capacitance in farads, unless otherwise specified)  
a) Choose value of timing resistor R to be in the range of 10KW to 50KW. This choice is dictated by the max./min.  
0
current that the internal voltage reference can deliver. The recommended value is R = 20KW. The final value of R  
0
0
is normally fine-tuned with the series potentiometer, R .  
X
b) Calculate value of C from design equation (1) or from Figure 7 f = f :  
0
S
O
1
R0·fs  
CO +  
c) Calculate R to set the bandwidth +Df (See design equation 5):  
1
R0·f0·2  
R1 +  
Df  
Note: The total detection bandwidth covers the frequency range of fO +Df  
d) Calculate value of C for a given loop damping factor:  
1
Normally, j = 0.5 is recommended.  
1250·C0  
C1 +  
R1·j2  
Increasing C improves the out-of-band signal rejection, but increases the PLL capture time.  
1
e) Calculate value of the filter capacitor C . To avoid chatter at the logic output, with R = 470KW, C must be:  
D
D
D
16  
Df  
CD §  
C in mF  
Increasing C slows down the logic output response time.  
D
Design Examples:  
Tone detector with a detection band of + 100Hz:  
a) Choose value of timing resistor R to be in the range of 10KW to 50KW. This choice is dictated by the max./min.  
0
current that the internal voltage reference can deliver. The recommended value is R = 20 KW. The final value of R  
0
0
is normally fine-tuned with the series potentiometer, R .  
X
b) Calculate value of C from design equation (1) or from Figure 6 f = f :  
0
S
O
1
R0·fS  
1
C0 +  
+
+ 50nF  
20, 000·1, 000  
Rev. 3.01  
16  
XR-2211  
c) Calculate R to set the bandwidth +Df (See design equation 5):  
1
R0·fO·2  
20, 000·1, 000·2  
100  
R1 +  
+
+ 400K  
Df  
Note: The total detection bandwidth covers the frequency range of fO +Df  
d) Calculate value of C for a given loop damping factor:  
0
Normally, j = 0.5 is recommended.  
1250·50·109  
400, 000·0.52  
1250·C0  
R1·j2  
C1 +  
+
+ 6.25pF  
Increasing C improves the out-of-band signal rejection, but increases the PLL capture time.  
1
e) Calculate value of the filter capacitor C . To avoid chatter at the logic output, with R = 470KW, C must be:  
D
D
D
16  
Df  
16  
200  
CD +  
w
w 80nF  
Increasing C slows down the logic output response time.  
D
f) Fine tune center frequency with 5KW potentiometer, R .  
X
V
+
CC  
V
CC  
R
F
0.1µF  
100K  
4
3
2
Loop  
Phase  
Detect  
8
11  
1
7
C
+
F
Demodulated  
Output  
C
1
FSK  
Comp  
.
Internal  
Reference  
11 LM324  
R
10  
1
2
12  
0.1µF  
VCO  
0.1µF  
R
0
FM  
Input  
14  
13  
6
C
0
LDOQ  
LDOQN  
+
Quad  
Phase  
Detect  
5
Lock  
Detect  
Comp.  
Figure 13. Linear FM Detector Using XR-2211 and an External Op Amp.  
(See Section on Design Equation for Component Values.)  
Rev. 3.01  
17  
XR-2211  
Linear FM Detection  
XR-2211 can be used as a linear FM detector for a wide  
range of analog communications and telemetry  
applications. The recommended circuit connection for  
this application is shown in Figure 13. The demodulated  
output is taken from the loop phase detector output (pin  
The FM detector gain, i.e., the output voltage change per  
unit of FM deviation can be given as:  
R1·VREF  
VOUT  
+
100·R0  
11), through a post-detection filter made up of R and C ,  
F
F
and an external buffer amplifier. This buffer amplifier is  
necessary because of the high impedance output at pin  
11. Normally, a non-inverting unity gain op amp can be  
used as a buffer amplifier, as shown in Figure 13.  
where VR is the internal reference voltage (V  
- 650mV). For the choice of external components R , R ,  
= V /2  
CC  
REF  
1
0
C , C and C , see the section on design equations.  
D
1
F
+
V
1
REF  
20K  
20K  
Voltage  
Output  
Input  
2
Lock  
Detect  
Filter  
10  
B
From  
VCO  
B’  
3
10K  
10K  
6
Lock Detect  
Outputs  
5
Internal Voltage  
Reference  
Input Preamplifier  
and Limiter  
Quadrature  
Phase Detector  
Lock Detect  
Comparator  
2K  
2K  
A’  
8
Timing  
Capacitor  
A
11  
FSK  
Comparator  
Input  
A
Loop  
Detector  
Output  
From  
VCO  
13  
B
14  
B’  
C
0
7
A’  
FSK  
Data  
Output  
12  
Timing  
8K  
R
0
4
Resistor  
Ground  
Voltage Controlled  
Oscillator  
Loop Phase Detector  
FSK Comparator  
Figure 14. Equivalent Schematic Diagram  
Rev. 3.01  
18  
XR-2211  
14 LEAD CERAMIC DUAL-IN-LINE  
(300 MIL CDIP)  
Rev. 1.00  
14  
1
8
7
E
E
1
D
A
1
Base  
A
Plane  
Seating  
Plane  
L
e
c
B
α
B1  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.100  
0.015  
0.014  
0.045  
0.008  
0.685  
0.250  
0.200  
0.060  
0.026  
0.065  
0.018  
0.785  
0.310  
2.54  
0.38  
0.36  
1.14  
0.20  
5.08  
1.52  
0.66  
1.65  
0.46  
19.94  
7.87  
A
1
B
B1  
c
D
E1  
E
17.40  
6.35  
0.300 BSC  
0.100 BSC  
7.62 BSC  
2.54 BSC  
e
L
0.125  
0.200  
3.18  
5.08  
α
0°  
15°  
0°  
15°  
Note: The control dimension is the inch column  
Rev. 3.01  
19  
XR-2211  
14 LEAD PLASTIC DUAL-IN-LINE  
(300 MIL PDIP)  
Rev. 1.00  
8
7
14  
1
E
1
E
D
A
2
A
L
Seating  
Plane  
C
A
α
1
B
e
A
e
B
B
e
1
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.145  
0.015  
0.115  
0.014  
0.030  
0.008  
0.725  
0.300  
0.240  
0.210  
0.070  
0.195  
0.024  
0.070  
0.014  
0.795  
0.325  
0.280  
3.68  
0.38  
2.92  
0.36  
0.76  
0.20  
5.33  
1.78  
4.95  
0.56  
1.78  
0.38  
20.19  
8.26  
7.11  
A
A
B
B
1
2
1
C
D
E
18.42  
7.62  
6.10  
E
e
1
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
e
A
e
B
L
0.310  
0.430  
0.160  
7.87  
10.92  
4.06  
0.115  
2.92  
α
0°  
15°  
0°  
15°  
Note: The control dimension is the inch column  
Rev. 3.01  
20  
XR-2211  
14 LEAD SMALL OUTLINE  
(150 MIL JEDEC SOIC)  
Rev. 1.00  
D
14  
1
8
7
E
H
C
A
Seating  
Plane  
α
A
1
e
B
L
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.069  
0.010  
0.020  
0.010  
0.344  
0.157  
MIN  
1.35  
0.10  
0.33  
0.19  
8.55  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
8.75  
4.00  
A
0.053  
0.004  
0.013  
0.007  
0.337  
0.150  
A
B
1
C
D
E
e
0.050 BSC  
1.27 BSC  
H
L
0.228  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
0.016  
α
0°  
8°  
0°  
8°  
Note: The control dimension is the millimeter column  
Rev. 3.01  
21  
XR-2211  
Notes  
Rev. 3.01  
22  
XR-2211  
Notes  
Rev. 3.01  
23  
XR-2211  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary  
depending upon a user’s specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 1995 EXAR Corporation  
Datasheet June 1997  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 3.01  
24  

相关型号:

XR-2212

Precision Phase-Locked Loop
EXAR

XR-2212CP

Precision Phase-Locked Loop
EXAR

XR-2212EA883

Phase Locked Loop, CDIP16, CERAMIC, DIP-16
EXAR

XR-2212M

Precision Phase-Locked Loop
EXAR

XR-2212N

暂无描述
EXAR

XR-2212P

Precision Phase-Locked Loop
EXAR

XR-2212_06

Precision Phase-Locked Loop
EXAR

XR-2213CN

Analog Phase-Locked Loop
ETC

XR-2213CP

Analog Phase-Locked Loop
ETC

XR-2213M

Analog Phase-Locked Loop
ETC

XR-2213N

Analog Phase-Locked Loop
ETC

XR-2213P

Analog Phase-Locked Loop
ETC