MC74VHC1GU04 [ETL]

Unbuffered Inverter; 无缓冲变频器
MC74VHC1GU04
型号: MC74VHC1GU04
厂家: E-TECH ELECTRONICS LTD    E-TECH ELECTRONICS LTD
描述:

Unbuffered Inverter
无缓冲变频器

文件: 总4页 (文件大小:576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Unbuffered Inverter  
MC74VHC1GU04  
The MC74VHC1GU04 is an advanced high speed CMOS Unbuffered inverter fabricated with silicon gate CMOS technology. It  
achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.  
This device consists of a single unbuffered inverter. In combination with others, or in the MC74VHCU04 Hex Unbuffered Inverter,  
these devices are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high–input impedance  
amplifier. For digital applications, the MC74VHC1G04 or the MC74VHC04 are recommended.  
The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.  
The MC74VHC1GU04 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This  
allows the MC74VHC1GU04 to be used to interface 5 V circuits to 3 V circuits.  
• High Speed: t PD = 2.5 ns (Typ) at V CC = 5 V  
• Low Power Dissipation: I CC = 2 mA (Max) at T A = 25°C  
• Power Down Protection Provided on Inputs  
• Balanced Propagation Delays  
• Pin and Function Compatible with Other Standard Logic Families  
• Chip Complexity: FETs = 105; Equivalent Gates = 26  
MARKING DIAGRAMS  
5
4
1
2
V6d  
3
SC–70/SC–88A/SOT–353  
DF SUFFIX  
CASE 419A  
Pin 1  
d = Date Code  
5
Figure 1. Pinout (Top View)  
4
V6d  
1
2
3
Figure 2. Logic Symbol  
SOT–23/TSOP–5/SC–59  
DT SUFFIX  
CASE 483  
Pin 1  
d = Date Code  
FUNCTION TABLE  
Inputs  
Output  
PIN ASSIGNMENT  
A
L
Y
H
L
1
2
3
4
5
NC  
IN A  
H
GND  
OUT Y  
V CC  
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
package dimensions section on page 4 of this data sheet.  
VHU4–1/4  
MC74VHC1GU04  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
V CC  
V IN  
DC Supply Voltage  
– 0.5 to + 7.0  
– 0.5 to +7.0  
– 0.5 to +7.0  
–0.5 to V cc + 0.5  
–20  
DC Input Voltage  
V
V OUT  
DC Output Voltage  
V CC=0  
V
High or Low State  
I IK  
Input Diode Current  
Output Diode Current  
mA  
mA  
mA  
mA  
mW  
°C/W  
°C  
I OK  
I OUT  
I CC  
P D  
θ JA  
T L  
V OUT < GND; V OUT > V CC  
+20  
DC Output Current, per Pin  
DC Supply Current, V CC and GND  
Power dissipation in still air  
Thermal resistance  
+ 25  
+50  
SC–88A, TSOP–5  
SC–88A, TSOP–5  
200  
333  
Lead Temperature, 1 mm from Case for 10 s  
Junction Temperature Under Bias  
Storage temperature  
260  
T J  
+ 150  
°C  
T stg  
V ESD  
–65 to +150  
>2000  
°C  
ESD Withstand Voltage  
Human Body Model (Note 2)  
Machine Model (Note 3)  
V
> 200  
Charged Device Model (Note 4)  
N/A  
I LATCH–UP  
Latch–Up Performance Above V CC and Below GND at 125°C (Note 5)  
± 500  
mA  
1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions  
beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is  
not implied. Functional operation should be restricted to the Recommended Operating Conditions.  
2. Tested to EIA/JESD22–A114–A  
3. Tested to EIA/JESD22–A115–A  
4. Tested to JESD22–C101–A  
5. Tested to EIA/JESD78  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
V CC  
Parameter  
Min  
2.0  
0.0  
0.0  
– 55  
0
Max  
5.5  
Unit  
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
V IN  
5.5  
V
V OUT  
T A  
V CC  
V
Operating Temperature Range  
Input Rise and Fall Time  
+ 125  
No Limit  
No Limit  
°C  
ns/V  
t r ,t f  
V CC = 3.3 ± 0.3 V  
V CC = 5.0 ± 0.5 V  
0
DEVICE JUNCTION TEMPERATURE VERSUS  
TIME TO 0.1% BOND FAILURES  
Junction  
Time,  
Hours  
Time,  
Years  
117.8  
47.9  
20.4  
9.4  
Temperature °C  
80  
1,032,200  
419,300  
178,700  
79,600  
37,000  
17,800  
8,900  
90  
100  
110  
120  
130  
140  
1
4.2  
2.0  
1
10  
100  
1000  
1.0  
TIME, YEARS  
Figure 3. Failure Rate vs. Time Junction Temperature  
VHU4–2/4  
MC74VHC1GU04  
DC ELECTRICAL CHARACTERISTICS  
V CC  
T A = 25°C  
T A <85°C –55°C<TA<125°C  
Symbol  
Parameter  
Test Conditions  
(V) Min Typ Max Min Max Min Max Unit  
V IH  
Minimum High–Level  
Input Voltage  
2.0 1.7  
3.0 2.4  
4.5 3.6  
5.5 4.4  
2.0  
1.7  
2.4  
3.6  
4.4  
1.7  
2.4  
3.6  
4.4  
V
V
V
V IL  
Maximum Low–Level  
Input Voltage  
0.3  
0.6  
0.9  
1.1  
0.3  
0.6  
0.9  
1.1  
0.3  
0.6  
0.9  
1.1  
3.0  
4.5  
5.5  
V OH  
Minimum High–Level  
Output Voltage  
V IN = V IH or V IL  
2.0 1.9 2.0  
3.0 2.9 3.0  
4.5 4.4 4.5  
1.9  
2.9  
4.4  
1.9  
2.9  
4.4  
I
OH = – 50 µA  
V IN = V IH or V IL  
V
IN = V IH or V IL  
I OH = –4 mA  
OH = –8 mA  
V IN = V IH or V IL  
OL = 50 µA  
3.0 2.58  
4.5 3.94  
2.48  
3.80  
2.34  
3.66  
I
V OL  
Maximum Low–Level  
Output Voltage  
V IN = V IH or V IL  
2.0  
3.0  
4.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
I
V
IN = V IH or V IL  
I OL = 4 mA  
OL = 8 mA  
3.0  
4.5  
0.36  
0.36  
±0.1  
0.44  
0.44  
±1.0  
0.52  
0.52  
±1.0  
I
I IN  
Maximum Input  
Leakage Current  
Maximum Quiescent  
Supply Current  
V IN = 5.5 V or GND  
0 to5.5  
µA  
µA  
I CC  
V IN = V CC or GND  
5.5  
2.0  
20  
40  
AC ELECTRICAL CHARACTERISTICS C load = 50 pF, Input t r = t f = 3.0 ns  
T A = 25°C  
Min Typ Max Min Max Min Max Unit  
T A  
<85°C –55°C<TA<125°C  
Symbol Parameter  
Test Conditions  
t PLH  
t PHL  
,
Maximum  
V CC = 3.3± 0.3 V C L = 15 pF  
C L = 50 pF  
3.5  
4.8  
8.9  
10.5  
13.0  
12.0 ns  
15.5  
Propagation Delay,  
Input A or B to Y  
11.4  
V CC = 5.0± 0.5 V C L = 15 pF  
C L = 50 pF  
2.5  
3.8  
4
5.5  
7.0  
10  
6.5  
8.0  
10  
8.0  
9.5  
C IN  
Maximum Input  
Capacitance  
10  
pF  
pF  
Typical @ 2C, V CC = 5.0 V  
C PD  
Power Dissipation Capacitance (Note 6)  
22  
6. C PD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without  
load. Average operating current can be obtained by the equation: I CC(OPR) = C PD V CC f in + I CC C PD is used to determine the no–  
.
2
load dynamic power consumption; P D = C PD V CC f in + I CC V CC  
.
VHU4–3/4  
MC74VHC1GU04  
*Includes all probe and jig capacitance  
Figure 4. Switching Waveforms  
Figure 5. Test Circuit  
DEVICE ORDERING INFORMATION  
Device Nomenclature  
Device  
Package Type  
Tape and  
Reel Size  
Temp  
Tape &  
Reel  
Circuit  
Order Number  
(Name/SOT#/  
Device  
Package  
Suffix  
Range  
Identifier  
Technology  
Indicator  
Common Name)  
Function  
Suffix  
MC74VHC1GU04DFT1 MC  
MC74VHC1GU04DFT2 MC  
MC74VHC1GU04DFT4 MC  
MC74VHC1GU04DTT1 MC  
MC74VHC1GU04DTT3 MC  
74  
74  
74  
74  
74  
VHC1G  
VHC1G  
VHC1G  
VHC1G  
VHC1G  
U04  
U04  
U04  
U04  
U04  
DF  
DF  
DF  
DT  
DT  
T1  
T2  
T4  
T1  
T3  
SC–70/SC–88A/  
SOT–353  
178 mm (7 in)  
3000 Unit  
SC–70/SC–88A/  
SOT–353  
178 mm (7 in)  
3000 Unit  
SC–70/SC–88A/  
SOT–353  
330 mm (13 in)  
10,000 Unit  
178 mm (7 in)  
3000 Unit  
SOT–23/TSOPS/  
SC–59  
SOT–23/TSOPS/  
SC–59  
330 mm (13 in)  
10,000 Unit  
VHU4–4/4  

相关型号:

MC74VHC1GU04DBVT1G

无缓冲单逆变器
ONSEMI

MC74VHC1GU04DF1G

Single Unbuffered Inverter
ONSEMI

MC74VHC1GU04DF1G-L22038

Unbuffered Single Inverter
ONSEMI

MC74VHC1GU04DF2G

INVERT GATE
ONSEMI

MC74VHC1GU04DFT1

Unbuffered Inverter
ONSEMI

MC74VHC1GU04DFT1

Unbuffered Inverter
LRC

MC74VHC1GU04DFT1

Unbuffered Inverter
ETL

MC74VHC1GU04DFT2

Unbuffered Inverter
LRC

MC74VHC1GU04DFT2

Unbuffered Inverter
ETL

MC74VHC1GU04DFT2

Single Unbuffered Inverter
ONSEMI

MC74VHC1GU04DFT2G

AHC/VHC SERIES, 1-INPUT INVERT GATE, PDSO5, SC-70, SC-88A, SOT-353, 5 PIN
ONSEMI

MC74VHC1GU04DFT4

Unbuffered Inverter
LRC