MR0A16ACYS35 [EVERSPIN]

64K x 16 MRAM Memory;
MR0A16ACYS35
型号: MR0A16ACYS35
厂家: Everspin Technologies    Everspin Technologies
描述:

64K x 16 MRAM Memory

静态存储器 光电二极管 内存集成电路
文件: 总22页 (文件大小:930K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MR0A16A  
64K x 16 MRAM Memory  
FEATURES  
• 3.3 Volt power supply  
• Fast 35ns read/write cycle  
• SRAM compatible timing  
• Unlimited read & write endurance  
• Commercial, Industrial, and Extended Temperatures  
• Data non-volatile for >20 years at temperature  
• RoHS-compliant TSOP2 and BGA packages available  
• All products meet MSL-3 moisture sensitivity level  
• Automotive AEC-Q100 Grade 1 option available  
44-pin TSOP2  
BENEFITS  
• One memory replaces FLASH, SRAM, EEPROM and BBSRAM  
in system for simpler, more efficient designs  
48-ball BGA  
• Improves reliability by replacing battery-backed SRAM  
• Automatic data protection on power loss  
RoHS  
INTRODUCTION  
The MR0A16A is a 1,048,576-bit magnetoresistive random access memory (MRAM) device organized as  
65,536 words of 16 bits. The MR0A16A offers SRAM compatible 35 ns read/write timing with unlimited en-  
durance. Data is always non-volatile for greater than 20 years. Data is automatically protected on power loss  
by low-voltage inhibit circuitry to prevent writes with voltage out of specification.  
MR0A16A is the ideal memory solution for applications that must permanently store and retrieve critical  
data and programs quickly.  
The MR0A16B is available in a small footprint 48-pin ball grid array (BGA) package and a 44-pin thin small  
outline package (TSOP Type 2). These packages are compatible with similar low-power SRAM products and  
other nonvolatile RAM products.  
The MR0A16A provides highly reliable data storage over a wide range of temperatures. The product is avail-  
able with commercial temperature (0 to +70 °C), industrial temperature (-40 to +85 °C), extended tempera-  
ture (-40 to +105 °C), and Automotive AEC-Q100 Grade 1 (-40 to +125°) temperature range options.  
1
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
TABLE OF CONTENTS  
FEATURES .............................................................................................................................................1  
BENEFITS...............................................................................................................................................1  
INTRODUCTION ...................................................................................................................................1  
BLOCK DIAGRAM AND PIN ASSIGNMENTS.......................................................................................4  
Figure 1 – Block Diagram........................................................................................................................................... 4  
Table 1 – Pin Functions............................................................................................................................................... 4  
Figure 2 – MR0A16A Package Pinouts .................................................................................................................. 5  
OPERATING MODES.............................................................................................................................5  
Table 2 – Operating Modes....................................................................................................................................... 5  
ABSOLUTE MAXIMUM RATINGS.........................................................................................................6  
Table 3 – Absolute Maximum Ratings................................................................................................................... 6  
OPERATING CONDITIONS ...................................................................................................................7  
Table 4 – Operating Conditions............................................................................................................................... 7  
Power Up and Power Down Sequencing .......................................................................................8  
Figure 3 – Power Up and Power Down Timing ................................................................................................. 8  
DC CHARACTERISTICS.........................................................................................................................9  
Table 5 – DC Characteristics...................................................................................................................................... 9  
Table 6 – Power Supply Characteristics................................................................................................................ 9  
TIMING SPECIFICATIONS ................................................................................................................. 10  
Table 7 – Capacitance ...............................................................................................................................................10  
Table 8 – AC Measurement Conditions ..............................................................................................................10  
Figure 4 – Output Load Test Low and High.......................................................................................................10  
Figure 5 – Output Load Test All Others...............................................................................................................10  
Table 9 – Read Cycle Timing ...................................................................................................................................11  
Figure 6 – Read Cycle 1.............................................................................................................................................12  
2
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
TABLE OF CONTENTS - continued  
Figure 7 – Read Cycle 2.............................................................................................................................................12  
Table 10 – Write Cycle Timing 1 (W Controlled) ..............................................................................................13  
Figure 8 – Write Cycle Timing 1 (W Controlled)...............................................................................................14  
Table 11 – Write Cycle Timing 2 (E Controlled)................................................................................................15  
Figure 9 – Write Cycle Timing 2 (E Controlled)................................................................................................15  
Table 12 – Write Cycle Timing 3 (LB/UB Controlled).....................................................................................16  
Figure 10 – Write Cycle Timing 3 (UB/LB Controlled)...................................................................................16  
ORDERING INFORMATION ............................................................................................................... 17  
Table 13 – Part Numbering System......................................................................................................................17  
Table 14 – MR0A16A Ordering Part Numbers..................................................................................................18  
PACKAGE OUTLINE DRAWINGS....................................................................................................... 19  
Figure 11 – 44-pin TSOP2.........................................................................................................................................19  
Figure 12 – 48-ball FBGA..........................................................................................................................................20  
REVISION HISTORY ........................................................................................................................... 21  
HOW TO CONTACT US....................................................................................................................... 22  
3
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
BLOCK DIAGRAM AND PIN ASSIGNMENTS  
Figure 1 – Block Diagram  
OUTPUT  
ENABLE  
BUFFER  
UPPER BYTE OUTPUT ENABLE  
LOWER BYTE OUTPUT ENABLE  
G
8
UPPER  
BYTE  
OUTPUT  
BUFFER  
A[15:0] ADDRESS  
8
ROW  
DECODER  
8
BUFFER  
COLUMN  
DECODER  
16  
8
8
SENSE  
AMPS  
CHIP  
ENABLE  
BUFFER  
E
LOWER  
BYTE  
OUTPUT  
BUFFER  
8
16  
64K x 16  
BIT  
MEMORY  
ARRAY  
UPPER  
BYTE  
WRITE  
8
8
WRITE  
ENABLE  
BUFFER  
DQU[15:8]  
DQL[7:0]  
W
8
8
DRIVER  
FINAL  
WRITE  
DRIVERS  
16  
LOWER  
BYTE  
WRITE  
DRIVER  
UB  
LB  
UB  
UPPER BYTE WRITE ENABLE  
LOWER BYTE WRITE ENABLE  
BYTE  
ENABLE  
BUFFER  
LB  
Table 1 – Pin Functions  
Function  
Signal Name  
Address Input  
Chip Enable  
Write Enable  
Output Enable  
A
E
W
G
Upper Byte Enable  
Lower Byte Enable  
Data I/O  
UB  
LB  
DQ  
Power Supply  
VDD  
VSS  
Ground  
Do Not Connect  
No Connection  
DC  
NC  
4
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Figure 2 – MR0A16A Package Pinouts  
1
2
3
4
5
6
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A
A
A
A
A
A
LB  
G
A0  
A1  
A2  
NC  
A
B
C
D
E
3
4
G
UB  
A
A
E
5
DQU8  
DQU9  
DQL0  
DQL2  
UB  
A3  
A5  
A4  
A6  
E
6
LB  
7
DQU15  
DQU14  
DQU13  
DQU12  
DQL0  
DQL1  
DQL2  
DQL3  
8
DQU10  
DQU11  
DQU12  
DQU13  
DQL1  
DQL3  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSS  
VDD  
VSS  
A15  
NC  
VDD  
VSS  
VSS  
V
DD  
DQU11  
DQU10  
DQU9  
DQU8  
DC  
DQL4  
DQL5  
DQL6  
DQL7  
VDD  
A14  
A13  
A11  
A9  
DQL4  
DQL5  
VSS  
F
DQU14  
DQU15  
NC  
DQL6  
DQL7  
A12  
A10  
A8  
W
A
A
A
A
A
V
DD  
G
H
VSS  
NC  
A7  
W
A
A
A
VDD  
DC  
44-Pin TSOP Type 2  
48-Pin BGA  
OPERATING MODES  
Table 2 – Operating Modes  
Mode  
VDD Current  
ISB1, ISB2  
IDDR  
DQL[7:0] 2  
Hi-Z  
Hi-Z  
Hi-Z  
DOut  
Hi-Z  
DOut  
Din  
DQU[15:8] 2  
Hi-Z  
E 1  
H
G 1  
X
W 1  
X
LB 1  
X
UB 1  
X
Not selected  
L
L
L
L
L
L
L
H
X
L
H
X
H
H
H
L
X
H
L
X
H
H
L
Output disabled  
Output disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
Hi-Z  
IDDR  
Hi-Z  
IDDR  
Hi-Z  
L
H
L
IDDR  
DOut  
DOut  
Hi-Z  
L
L
IDDR  
X
X
X
L
H
L
Lower Byte Write  
Upper Byte Write  
Word Write  
IDDW  
L
H
L
IDDW  
Hi-Z  
Din  
Din  
L
L
L
IDDW  
Din  
Notes:  
1. H = high, L = low, X = don’t care  
2. Hi-Z = high impedance  
5
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
ABSOLUTE MAXIMUM RATINGS  
This device contains circuitry to protect the inputs against damage caused by high static voltages or electric fields; however,  
normal precautions should be taken to avoid application of any voltage greater than maximum rated voltages to these high-  
impedance (Hi-Z) circuits.  
The device also contains protection against external magnetic fields. Precautions should be taken to avoid application of any  
magnetic field more intense than the maximum field intensity specified in the maximum ratings.  
Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to  
recommended operating conditions. Exposure to excessive voltages or magnetic fields could affect device reliability. 1  
Table 3 – Absolute Maximum Ratings  
Symbol Parameter  
Temp Range  
Package  
Value  
Unit  
VDD  
VIN  
Supply voltage 2  
-
-
-0.5 to 4.0  
V
Voltage on any pin 2  
Output current per pin  
Package power dissipation 3  
-
-
-
-0.5 to VDD + 0.5  
V
mA  
W
-
IOUT  
PD  
-
20  
Note 3  
0.600  
Commercial  
Industrial  
-
-
-
-
-10 to 85  
-45 to 95  
-45 to 110  
-45 to 130  
TBIAS  
Temperature under bias  
°C  
Extended  
AEC Q-100 Grade 1  
Tstg  
Storage Temperature  
-
-
-
-55 to 150  
260  
°C  
°C  
Lead temperature during solder (3  
minute max)  
TLead  
-
Commercial  
TSOP2, BGA  
BGA  
2,000  
2,000  
10,000  
2,000  
8,000  
8,000  
10,000  
8,000  
Maximum magnetic field during  
write  
Industrial, Ex-  
tended  
Hmax_write  
A/m  
A/m  
TSOP2  
AEC-Q100 Grade 1  
Commercial  
TSOP2  
TSOP2, BGA  
BGA  
Maximum magnetic field during  
read or standby  
Industrial, Ex-  
tended  
Hmax_read  
TSOP2  
AEC-Q100 Grade 1  
TSOP2  
Notes appear on the next page.  
6
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Notes: for MR0A16A Absolute Maximum Ratings:  
1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted  
to recommended operating conditions. Exposure to excessive voltages or magnetic fields could affect device reliability.  
2. All voltages are referenced to VSS.  
3. Power dissipation capability depends on package characteristics and use environment.  
OPERATING CONDITIONS  
Table 4 – Operating Conditions  
Symbol  
Parameter  
Temp Range  
Min  
Typical  
Max  
Unit  
VDD  
Power supply voltage 1  
All  
3.0  
3.3  
3.6  
V
VWI  
VIH  
VIL  
Write inhibit voltage  
Input high voltage  
Input low voltage  
All  
All  
All  
2.5  
2.2  
2.7  
3.0 1  
VDD + 0.3 2  
0.8  
V
V
V
-
-
-0.5 3  
Commercial  
Industrial  
0
70  
85  
-40  
-40  
-40  
TA  
Ambient Temperature under bias  
°C  
Extended  
105  
125  
4
AEC Q-100 Grade 1  
Notes:  
1. There is a 2 ms startup time once VDD exceeds VDD,(min). See Power Up and Power Down Sequencing below.  
2. VIH(max) = VDD + 0.3 VDC ; VIH(max) = VDD + 2.0 VAC (pulse width ≤ 10 ns) for I ≤ 20.0 mA.  
3. VIL(min) = -0.5 VDC ; VIL(min) = -2.0 VAC (pulse width ≤ 10 ns) for I ≤ 20.0 mA.  
4. AEC-Q100 Grade 1 temperature profile assumes 10% duty cycle at maximum temperature (2 years out of 20 years life.)  
7
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Power Up and Power Down Sequencing  
The MRAM is protected from write operations whenever VDD is less than VWI. As soon as VDD exceeds  
VDD(min), there is a startup time of 2 ms before read or write operations can start. This time allows memory  
power supplies to stabilize.  
The E and W control signals should track VDD on power up to VDD- 0.2 V or VIH (whichever is lower) and  
remain high for the startup time. In most systems, this means that these signals should be pulled up with a  
resistor so that signal remains high if the driving signal is Hi-Z during power up. Any logic that drives E and  
W should hold the signals high with a power-on reset signal for longer than the startup time.  
During power loss or brownout where VDD goes below VWI, writes are protected and a startup time must be  
observed when power returns above VDD(min)  
.
Figure 3 – Power Up and Power Down Timing  
VDD  
V
WI  
BROWNOUT or POWER LOSS  
2 ms  
2 ms  
STARTUP  
RECOVER  
NORMAL  
OPERATION  
NORMAL  
OPERATION  
READ/WRITE  
INHIBITED  
READ/WRITE  
INHIBITED  
VIH  
VIH  
E
W
8
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
DC CHARACTERISTICS  
Table 5 – DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
Ilkg(I)  
Input leakage current  
All  
-
1
μA  
Ilkg(O)  
Output leakage current  
Output low voltage  
All  
-
-
1
μA  
V
IOL = +4 mA  
IOL = +100 μA  
IOH = -4 mA  
0.4  
VSS + 0.2  
-
VOL  
2.4  
VOH  
Output high voltage  
V
IOH = -100 μA  
VDD - 0.2  
Table 6 – Power Supply Characteristics  
Symbol  
Parameter  
Condition  
Temp Range Typical  
Max  
Unit  
AC active supply current  
- read modes 1  
IDDR  
IOUT= 0 mA, VDD= max  
All  
55  
80  
mA  
Commercial  
Industrial  
Extended  
105  
105  
105  
105  
155  
165  
165  
165  
AC active supply current  
- write modes1  
IDDW  
VDD= max  
mA  
AEC-Q100  
Grade 1  
VDD= max, E = VIH  
ISB1  
AC standby current  
All  
18  
9
28  
12  
mA  
mA  
No other restrictions on other  
inputs  
E ≥ VDD - 0.2 V and VIn ≤ VSS  
0.2 V or ≥ VDD - 0.2 V  
+
ISB2  
CMOS standby current  
VDD = max, f = 0 MHz  
Notes:  
1. All active current measurements are measured with one address transition per cycle and at minimum cycle time.  
9
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
TIMING SPECIFICATIONS  
Table 7 – Capacitance  
Symbol Parameter 1  
Typical  
Max  
Unit  
CIn  
Address input capacitance  
-
6
pF  
CIn  
Control input capacitance  
Input/Output capacitance  
-
-
6
8
pF  
pF  
CI/O  
Notes:  
1. f = 1.0 MHz, dV = 3.0 V, TA = 25 °C, periodically sampled rather than 100% tested.  
Table 8 – AC Measurement Conditions  
Parameter  
Value  
Unit  
Logic input timing measurement reference level  
Logic output timing measurement reference level  
Logic input pulse levels  
1.5  
V
1.5  
0 or 3.0  
2
V
V
Input rise/fall time  
ns  
Output load for low and high impedance parameters  
Output load for all other timing parameters  
See Figure 4  
See Figure 5  
Figure 4 – Output Load Test Low and High  
ZD= 50 Ω  
Output  
RL = 50 Ω  
VL = 1.5 V  
Figure 5 – Output Load Test All Others  
3.3 V  
590 Ω  
Output  
5 pF  
435 Ω  
10  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Table 9 – Read Cycle Timing  
Symbol  
tAVAV  
Parameter 1  
Min  
Max  
-
Unit  
ns  
Read cycle time  
35  
-
tAVQV  
tELQV  
Address access time  
Enable access time 2  
35  
35  
15  
15  
-
ns  
-
ns  
tGLQV  
tBLQV  
tAXQX  
tELQX  
Output enable access time  
-
ns  
Byte enable access time  
-
ns  
Output hold from address change  
Enable low to output active 3  
Output enable low to output active 3  
Byte enable low to output active 3  
Enable high to output Hi-Z 3  
Output enable high to output Hi-Z3  
Byte high to output Hi-Z3  
3
3
0
0
0
0
0
ns  
-
ns  
tGLQX  
tBLQX  
tEHQZ  
tGHQZ  
tBHQZ  
-
ns  
-
ns  
15  
10  
10  
ns  
ns  
ns  
Notes:  
1. W is high for read cycle. Power supplies must be properly grounded and decoupled, and bus contention conditions must be  
minimized or eliminated during read or write cycles.  
2. Addresses valid before or at the same time E goes low.  
3. This parameter is sampled and not 100% tested. Transition is measured 200 mV from the steady-state voltage.  
11  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Figure 6 – Read Cycle 1  
tAVAV  
A (ADDRESS)  
Q (DATA OUT)  
tAXQX  
Previous Data Valid  
Data Valid  
tAVQV  
Note: Device is continuously selected (E≤VIL, G≤VIL).  
Figure 7 – Read Cycle 2  
tAVAV  
A (ADDRESS)  
E (CHIP ENABLE)  
tAVQV  
tELQV  
tEHQZ  
tELQX  
G (OUTPUT ENABLE)  
LB, UB (BYTE ENABLE)  
tGHQZ  
tGLQV  
tGLQX  
tBHQZ  
tBLQV  
tBLQX  
Data Valid  
Q (DATA OUT)  
12  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Table 10 – Write Cycle Timing 1 (W Controlled)  
Symbol  
tAVAV  
Parameter 1  
Min  
35  
Max  
Unit  
ns  
Write cycle time 2  
-
-
-
-
tAVWL  
Address set-up time  
0
ns  
tAVWH  
tAVWH  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
18  
ns  
20  
ns  
tWLWH  
tWLEH  
Write pulse width (G high)  
Write pulse width (G low)  
15  
15  
-
-
ns  
ns  
tWLWH  
tWLEH  
tDVWH  
tWHDX  
tWLQZ  
tWHQX  
tWHAX  
Data valid to end of write  
Data hold time  
10  
0
-
-
ns  
ns  
ns  
ns  
ns  
Write low to data Hi-Z 3  
Write high to output active 3  
Write recovery time  
0
12  
-
3
12  
-
Notes:  
1. All write occurs during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W or E has been brought high, the signal must remain in  
steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being asserted  
low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
2. All write cycle timings are referenced from the last valid address to the first transition address.  
3. This parameter is sampled and not 100% tested. Transition is measured 200 mV from the steady-state voltage. At any given  
voltage or temperate, tWLQZ(max) < tWHQX(min)  
13  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Figure 8 – Write Cycle Timing 1 (W Controlled)  
tAVAV  
A (ADDRESS)  
tAVWH  
tWHAX  
E (CHIP ENABLE)  
tWLEH  
tWLWH  
W (WRITE ENABLE)  
tAVWL  
UB, LB (BYTE ENABLED)  
D (DATA IN)  
tDVWH  
tWHDX  
DATA VALID  
tWLQZ  
Hi -Z  
Hi -Z  
Q (DATA OUT)  
tWHQX  
14  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Table 11 – Write Cycle Timing 2 (E Controlled)  
Symbol  
Parameter 1  
Min  
Max  
Unit  
tAVAV  
Write cycle time 2  
35  
-
ns  
tAVEL  
tAVEH  
tAVEH  
Address set-up time  
0
-
-
-
ns  
ns  
ns  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
18  
20  
tELEH  
tELWH  
tELEH  
tELWH  
Enable to end of write (G high)  
Enable to end of write (G low) 3  
15  
15  
-
-
ns  
ns  
tDVEH  
tEHDX  
tEHAX  
Data valid to end of write  
Data hold time  
10  
0
-
-
-
ns  
ns  
ns  
Write recovery time  
12  
Notes:  
1. All write occurs during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W or E has been brought high, the signal must remain in  
steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being asserted  
low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
2. All write cycle timings are referenced from the last valid address to the first transition address.  
3. If E goes low at the same time or after W goes low, the output will remain in a high-impedance state. If E goes high at the  
same time or before W goes high, the output will remain in a high-impedance state.  
Figure 9 – Write Cycle Timing 2 (E Controlled)  
tAVAV  
A (ADDRESS)  
tEHAX  
tAVEH  
tELEH  
E (CHIP ENABLE)  
tAVEL  
tELWH  
W (WRITE ENABLE)  
UB, LB (BYTE ENABLE)  
D (DATA IN)  
tEHDX  
tDVEH  
Data Valid  
Hi-Z  
Q (DATA OUT)  
15  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Table 12 – Write Cycle Timing 3 (LB/UB Controlled)  
Symbol  
Parameter 1  
Min  
Max  
Unit  
tAVAV  
Write cycle time 2  
35  
-
ns  
tAVBL  
Address set-up time  
0
-
-
-
ns  
ns  
ns  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
18  
20  
tAVBH  
tBLEH  
tBLWH  
tBLEH  
tBLWH  
Write pulse width (G high)  
Write pulse width (G low)  
15  
15  
-
-
ns  
ns  
tDVBH  
tBHDX  
tBHAX  
Data valid to end of write  
Data hold time  
10  
0
-
-
-
ns  
ns  
ns  
Write recovery time  
12  
Notes:  
1. All write occurs during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
Wgoes low, the output will remain in a high impedance state. After W, E or UB/LB has been brought high, the signal must  
remain in steady-state high for a minimum of 2 ns. If both byte control signals are asserted, the two signals must have no  
more than 2 ns skew between them. The minimum time between E being asserted low in one cycle to E being asserted low in  
a subsequent cycle is the same as the minimum cycle time allowed for the device.  
2. All write cycle timings are referenced from the last valid address to the first transition address.  
Figure 10 – Write Cycle Timing 3 (UB/LB Controlled)  
tAVAV  
A (ADDRESS)  
tAVEH  
tBHAX  
E (CHIP ENABLE)  
W (WRITE ENABLE)  
tAVBL  
tBLEH  
tBLWH  
UB, LB (BYTE ENABLED)  
D (DATA IN)  
tDVBH  
Data Valid  
tBHDX  
Hi -Z  
Hi -Z  
Q (DATA OUT)  
16  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
ORDERING INFORMATION  
Table 13 – Part Numbering System  
17  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Table 14 – MR0A16A Ordering Part Numbers  
Temp Grade  
Temp  
Package  
Shipping  
Tray  
Ordering Part Number  
MR0A16AYS35  
44-TSOP2  
Tape and Reel  
Tray  
MR0A16AYS35R  
MR0A16AMA35  
MR0A16AMA35R  
MR0A16ACYS35  
MR0A16ACYS35R  
MR0A16ACMA35  
MR0A16ACMA35R  
MR0A16AVYS35  
MR0A16AVYS35R  
MR0A16AVMA35  
MR0A16AVMA35R  
MR0A16AMYS35  
MR0A16AMYS35R  
Commercial  
0 to +70 °C  
48-BGA  
Tape and Reel  
Tray  
44-TSOP2  
Tape and Reel  
Tray  
Industrial  
-40 to +85 °C  
48-BGA  
44-TSOP2  
48-BGA  
Tape and Reel  
Tray  
Tape and Reel  
Tray  
Extended  
-40 to +105 °C  
-40 to 125 °C  
Tape and Reel  
Tray  
AEC-Q100 Grade 1  
44-TSOP2  
Tape and Reel  
18  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
PACKAGE OUTLINE DRAWINGS  
Figure 11 – 44-pin TSOP2  
Notes:  
1. Dimensions and tolerances per ASME  
Y14.5M - 1994.  
2. Dimensions in Millimeters.  
3. Dimensions do not include mold protru-  
sion.  
4. Dimension does not include DAM bar  
protrusions.  
5. DAM Bar protrusion shall not cause the  
lead width to exceed 0.58.  
19  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
Figure 12 – 48-ball BGA Package Outline  
20  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
REVISION HISTORY  
Description of Change  
Date  
Revision  
0
1
2
Jun 18, 2007  
Sept 21, 2007  
Nov 12, 2007  
Initial Advanced Information Release  
Table 6, Applied Values to TBD’s in IDD Specifications  
Table 2, Changed IDDA to IDDR or IDDW  
Reformat Datasheet for EverSpin, Add BGA Packaging Information, Add Tape & Reel Part  
Numbers, Add Power Sequencing Info, Correct IOH spec of VOH to -100 uA, Correct ac Test  
Conditions.  
3
Sep 12, 2008  
4
5
Feb 28, 2011  
Dec 9, 2011  
Add TSOPII Lead Cross-Section, Add Production Note. Converted to new document format.  
Figure 2.1 cosmetic update. Figure 5.2 BGA package outline drawing revised for ball size.  
Updated logo and contact information.  
Revised Table 1 and Figure 1 to be correct for x16 device. Revised magnetic immunity  
ratings for TSOP2 Industrial Grade. Revised figure 3. Complete document reformat and  
restructure.  
6
7
8
August 6, 2012  
October 14,  
2013  
Added AEC-Q100 Grade 1 product option.  
February 19,  
2015  
Revised package outline for BGA. Ball size to 0.25 / 0.35 mm.  
8.1  
8.2  
8.3  
May 19, 2015  
June 11, 2015  
Revised contact information on Contact Us page.  
Correction to Japan Sales Office telephone number.  
March 23, 2018 Revised contact information on Contact Us page.  
21  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  
MR0A16A  
HOW TO CONTACT US  
Everspin Technologies, Inc.  
How to Reach Us:  
Home Page:  
Information in this document is provided solely to enable system and  
software implementers to use Everspin Technologies products. There are  
no express or implied licenses granted hereunder to design or fabricate any  
integrated circuit or circuits based on the information in this document.  
Everspin Technologies reserves the right to make changes without further  
notice to any products herein. Everspin makes no warranty, representa-  
tion or guarantee regarding the suitability of its products for any particular  
purpose, nor does Everspin Technologies assume any liability arising out of  
the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or inci-  
dental damages. “Typicalparameters, which may be provided in Everspin  
Technologies data sheets and/or specifications can and do vary in differ-  
ent applications and actual performance may vary over time. All operating  
parameters including “Typicalsmust be validated for each customer ap-  
plication by customer’s technical experts. Everspin Technologies does not  
convey any license under its patent rights nor the rights of others. Everspin  
Technologies products are not designed, intended, or authorized for use  
as components in systems intended for surgical implant into the body, or  
other applications intended to support or sustain life, or for any other ap-  
plication in which the failure of the Everspin Technologies product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Everspin Technologies products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Everspin Tech-  
nologies and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even  
if such claim alleges that Everspin Technologies was negligent regarding  
the design or manufacture of the part. Everspin™ and the Everspin logo are  
trademarks of Everspin Technologies, Inc.  
www.everspin.com  
World Wide Information Request  
WW Headquarters - Chandler, AZ  
5670 W. Chandler Blvd., Suite 100  
Chandler, Arizona 85226  
Tel: +1-877-480-MRAM (6726)  
Local Tel: +1-480-347-1111  
Fax: +1-480-347-1175  
support@everspin.com  
orders@everspin.com  
sales@everspin.com  
Europe, Middle East and Africa  
Everspin Europe Support  
support.europe@everspin.com  
Japan  
Everspin Japan Support  
support.japan@everspin.com  
Asia Pacific  
Everspin Asia Support  
support.asia@everspin.com  
All other product or service names are the property of their respective owners.  
Copyright © Everspin Technologies, Inc. 2018  
Filename:  
EST00354_MR0A16A_Datasheet_Rev8.3032318  
22  
Copyright © 2018 Everspin Technologies  
MR0A16A Rev. 8.3 3/2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY