MR0DL08B [EVERSPIN]

Dual Supply 128K x 8 MRAM;
MR0DL08B
型号: MR0DL08B
厂家: Everspin Technologies    Everspin Technologies
描述:

Dual Supply 128K x 8 MRAM

文件: 总16页 (文件大小:786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MR0DL08B  
Dual Supply 128K x 8 MRAM  
FEATURES  
• 3.3 Volt VDD power supply with a range of 2.7V to 3.6V  
• I/O Voltage range supports wide +1.65 to +3.6 Volt interfaces  
• Fast 45 ns read/write cycle  
• SRAM compatible timing  
• Unlimited read & write endurance  
• Data always non-volatile for >20-years at temperature  
• All products meet MSL-3 moisture sensitivity level  
• RoHS-compliant small footprint BGA package  
BENEFITS  
• One memory replaces FLASH, SRAM, EEPROM and BBSRAM in systems  
for simpler, more efficient designs  
RoHS  
• Improves reliability by replacing battery-backed SRAM  
INTRODUCTION  
The MR0DL08B is a dual power supply 1,048,576-bit magnetoresistive random access memory (MRAM)  
device organized as 131,072 words of 8 bits. It supports I/O voltages from +1.65 to +3.6 volts. The  
MR0DL08B offers SRAM compatible 45ns read/write timing with unlimited endurance. Data is always  
non-volatile for greater than 20-years. Data is automatically protected on power loss by low-voltage inhibit  
circuitry to prevent writes with voltage out of specification. The MR0DL08B is the ideal memory solution  
for applications that must permanently store and retrieve critical data and programs quickly.  
The MR0DL08B is available in small footprint 8 mm x 8 mm, 48-pin ball grid array (BGA) package with 0.75  
mm ball centers.  
The MR0DL08B provides highly reliable data storage over a wide range of temperatures. The product is  
offered with commercial temperature (0 to +70 °C).  
CONTENTS  
1. DEVICE PIN ASSIGNMENT......................................................................... 2  
2. ELECTRICAL SPECIFICATIONS................................................................. 4  
3. TIMING SPECIFICATIONS.......................................................................... 8  
4. ORDERING INFORMATION....................................................................... 13  
5. MECHANICAL DRAWING.......................................................................... 14  
6. REVISION HISTORY...................................................................................... 15  
How to Reach Us.......................................................................................... 15  
Copyright © Everspin Technologies 2018  
1
MR0DL08B Rev. 1.3, 3/2018  
MR0DL08B  
1. DEVICE PIN ASSIGNMENT  
Figure 1.1 Block Diagram  
OUTPUT  
ENABLE  
OUTPUT ENABLE  
BUFFER  
ꢄꢅ1ꢆꢇ0ꢈ ADDRESS  
10  
ROW  
DECODER  
BUFFER  
COLUMN  
DECODER  
1ꢂ  
CHIP  
ENABLE  
BUFFER  
8
8
OUTPUT  
BUFFER  
8
SENSE  
AMPS  
128Kx 8  
BIT  
MEMORY  
ARRAY  
WRITE  
ENABLE  
BUFFER  
FINAL  
WRITE  
DRIVERS  
8
8
WRITE  
DRIVER  
8
Dꢉꢅꢂꢇ0ꢈ  
WRITE ENABLE  
Table 1.1 Pin Functions  
Signal Name  
Function  
A
Address Input  
Chip Enable  
Write Enable  
Output Enable  
Data I/O  
E
W
G
DQ  
VDD  
Power Supply  
VDDQ  
VSS  
I/O Power Supply  
Ground  
DC  
NC  
Do Not Connect  
No Connection, Ball D3, H1, H6, G2 Reserved for Future Expansion  
Copyright © Everspin Technologies 2018  
2
MR0DL08B Rev. 1.2, 3/2018  
DEVICE PIN ASSIGNMENT  
MR0DL08B  
Figure 1.2 Pin Diagrams for Available Packages (Top View)  
1
2
3
DD  
B
D
Dꢇ  
ꢋꢇ  
Dꢆ  
Dꢇ  
DD  
Dꢆ  
Dꢆ  
Dꢇ  
Dꢆ  
ꢋꢇ  
Dꢆ  
ꢉꢉ  
DDꢆ  
ꢋꢇ  
Dꢇ  
Dꢆ  
DDꢆ  
ꢉꢉ  
Dꢆꢀ  
ꢋꢇ  
ꢋꢇ  
ꢋꢇ  
Dꢆ  
ꢋꢇ  
ꢋꢇ  
ꢋꢇ  
ꢋꢇ  
48 Pin FBGA  
Table 1.2 Operating Modes  
E1  
H
L
G1  
X
W1  
X
Mode  
Not selected  
Output disabled  
Byte Read  
VDD Current  
DQ[7:0]2  
Hi-Z  
ISB1, ISB2  
H
L
H
IDDR  
Hi-Z  
L
H
IDDR  
DOut  
L
X
L
Byte Write  
IDDW  
Din  
1
2
H = high, L = low, X = don’t care  
Hi-Z = high impedance  
Copyright © Everspin Technologies 2018  
3
MR0DL08B Rev. 1.3, 3/2018  
MR0DL08B  
2. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
This device contains circuitry to protect the inputs against damage caused by high static voltages or  
electric fields; however, it is advised that normal precautions be taken to avoid application of any  
voltage greater than maximum rated voltages to these high-impedance (Hi-Z) circuits.  
The device also contains protection against external magnetic fields. Precautions should be taken  
to avoid application of any magnetic field more intense than the maximum field intensity specified  
in the maximum ratings.  
Table 2.1 Absolute Maximum Ratings1  
Parameter  
Core Supply voltage2  
I/O Power Supply voltage2  
Symbol  
Value  
-0.5 to 4.0  
-0.5 to 4.0  
-0.5 to +4.0 or  
VDDQ + 0.5  
whichever is less  
20  
Unit  
V
VDD  
VDDQ  
VIN  
V
Voltage on any pin2  
V
IOUT  
PD  
Output current per pin  
Package power dissipation 3  
mA  
W
0.600  
TBIAS  
Temperature under bias  
-10 to 85  
-55 to 150  
260  
°C  
Tstg  
Storage Temperature  
°C  
TLead  
Lead temperature during solder (3 minute max)  
Maximum magnetic field during write  
Maximum magnetic field during read or standby  
°C  
Hmax_write  
Hmax_read  
2000  
A/m  
A/m  
8000  
1
Permanent device damage may occur if absolute maximum ratings are exceeded. Functional opera-  
tion should be restricted to recommended operating conditions. Exposure to excessive voltages or  
magnetic fields could affect device reliability.  
2
3
All voltages are referenced to VSS.  
Power dissipation capability depends on package characteristics and use environment.  
Copyright © Everspin Technologies 2018  
4
MR0DL08B Rev. 1.2, 3/2018  
Electrical Specifications  
MR0DL08B  
Table 2.2 Operating Conditions  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
2.7 1  
3.3  
3.6  
Core Power supply voltage  
VDD  
V
1.65 1  
2.3  
-
3.6  
I/O Power supply voltage  
Write inhibit voltage VDD  
Write inhibit voltage VDDQ  
VDDQ  
VWIDD  
VWIDDQ  
V
V
V
2.5  
2.7 1  
1.2  
1.4  
1.4  
1.65 1  
VDDQ + 0.22  
VDDQ + 0.22  
VDDQ + 0.22  
0.4  
Input high voltage (VDDQ=1.65-2.2V)  
Input high voltage (VDDQ=2.2-2.7V)  
Input high voltage (VDDQ=2.7-3.6V)  
Input low voltage (VDDQ=1.65-2.2V)  
Input low voltage (VDDQ=2.2-2.7V)  
Input low voltage (VDDQ=2.7-3.6V)  
Access Time  
VIH  
VIH  
VIH  
VIL  
VIL  
VIL  
TA  
-
-
-
-
-
-
V
V
1.8  
2.2  
V
-0.2 3  
-0.2 3  
-0.2 3  
0
V
0.6  
V
0.8  
V
70  
°C  
Notes:  
1. VDDQ≤VDD. Write inhibit occurs when either VDD or VDDQ drops below its write inhibit voltage. There is a 2 ms startup time once  
VDD exceeds VDD(min). See Power Up and Power Down Sequencing.  
2. VIH(max) = VDDQ + 0.2 V DC ; VIH(max) = VDDQ + 0.5 V AC (pulse width ≤ 20 ns) for I ≤ 20.0 mA.  
3. VIL(min) = -0.2 V DC ; VIL(min) = -2.0 V AC (pulse width ≤ 20 ns) for I ≤ 20.0 mA.  
Copyright © Everspin Technologies 2018  
5
MR0DL08B Rev. 1.3, 3/2018  
Electrical Specifications  
MR0DL08B  
Power Up and Power Down Sequencing  
Initial Power Up  
The MRAM is protected from write operations whenever VDD is less than VWIDD. Upon power up VDD must go  
above 3.0V, and a 2 ms startup time must be observed before read or write operations can start. This time  
allows memory power supplies to stabilize.  
Power Loss or Brownout  
During power loss or brownout where VDD goes below VWIDD writes are inhibited. To return to normal opera-  
tion and exit Write Inhibit, VDD must go above 3.0V, and a 2 ms startup time must be observed. Once pow-  
ered up, VDD minimum can go as low as 2.7V.  
Chip Enable and Write Enable  
The E and W control signals should track VDD on power up to VDD - 0.2 V or VIH (whichever is lower) and remain  
high for the startup time. In most systems, this means that these signals should be pulled up with a resis-  
tor so that signal remains high if the driving signal is Hi-Z during power up. Any logic that drives E and W  
should hold the signals high with a power-on reset signal for longer than the startup time.  
Figure 2.1 Power Up and Power Down Sequencing  
VDD / VDDQ  
V
WIDD  
V
WIDDQ  
2 ms  
2 ms  
BROWNOUT or POWER LOSS  
STARTUP  
RECOVER  
NORMAL  
OPERATION  
NORMAL  
OPERATION  
READ/WRITE  
INHIBITED  
READ/WRITE  
INHIBITED  
VIH  
VIH  
E
W
Copyright © Everspin Technologies 2018  
6
MR0DL08B Rev. 1.2, 3/2018  
Electrical Specifications  
MRD08B  
Table 2.3 DC Characteristics  
Parameter  
Symbol  
Min Typical Max  
Unit  
Ilkg(I)  
Input leakage current  
-
-
-
-
-
-
-
-
-
-
1
1
μA  
Ilkg(O)  
Output leakage current  
μA  
V
VOL  
VOL  
VOL  
VOH  
VOH  
VOH  
Output low voltage (VDDQ=1.65-2.2V@ 0.1mA)  
Output low voltage (VDDQ=2.2-2.7V@ 0.1mA)  
Output low voltage (VDDQ=2.7-3.6V@ 2.1 mA)  
Output high voltage (VDDQ=1.65-2.2V@ - 0.1 mA)  
Output high voltage (VDDQ=2.2-2.7V@ -0.1 mA)  
Output high voltage (VDDQ=2.7-3.6V@ -1.0 mA)  
-
0.2  
0.4  
0.4  
-
-
V
-
V
1.4  
2
V
-
V
2.4  
-
V
Table 2.4 Power Supply Characteristics  
Parameter  
Symbol  
Typical  
Max  
Unit  
AC active supply current - read modes1  
(IOUT= 0 mA, VDD= max)  
IDDR  
25  
30  
mA  
mA  
AC active supply current - write modes1  
(VDD= max)  
IDDW  
55  
65  
2
AC active operating current  
(VDDQ = VIH= 3.6V, VIL= 0V)  
IDDQ  
0.50  
mA  
mA  
mA  
input transitions <2ns, no output load  
AC standby current  
(VDD= max, E = VIH)  
ISB1  
6
5
8
7
no other restrictions on other inputs  
CMOS standby current  
(E ≥ VDD - 0.2 V and VIn VSS + 0.2 V or ≥ VDDQ - 0.2 V)  
(VDD = max, f = 0 MHz)  
ISB2  
1
All active current measurements are measured with one address transition per cycle and at minimum cycle time.  
Copyright © Everspin Technologies 2018  
7
MR0DL08B Rev. 1.3, 3/2018  
MR0DL08B  
3. TIMING SPECIFICATIONS  
Table 3.1 Capacitance1  
Symbol  
Parameter  
Typical  
Max  
Unit  
pF  
Address input capacitance  
Control input capacitance  
CIn  
CIn  
-
-
-
6
6
8
pF  
Input/Output capacitance  
CI/O  
pF  
1
f = 1.0 MHz, VDDQ=VDDQ(typ), TA = 25 °C, periodically sampled rather than 100% tested.  
Table 3.2 AC Measurement Conditions  
Parameter  
VDDQ=1.8  
0.8  
VDDQ=2.5  
0.8  
VDDQ=3.3  
0.8  
Unit  
Logic input timing measurement reference level  
Logic output timing measurement reference level  
Logic input pulse levels  
V
V
V
0.8  
0.8  
0.8  
0 or 1.8  
0 or 2.5  
0 or 3.3  
Output load voltage (VL) for low & high impedance  
parameters (Figure 3.1)  
0.8  
1.2  
1.75  
V
Output load resistor (R1) for all other timing  
Output load resistor (R2) for all other timing  
13,500  
10,800  
16,600  
15,400  
1,103  
1,554  
Ω
Ω
Figure 3.1 Output Load Test Low and High  
ZD= 50 Ω  
Output  
RL = 50 Ω  
VL  
Figure 3.2 Output Load Test All Others  
VDDQ  
R1  
Output  
30 pF  
R2  
Copyright © Everspin Technologies 2018  
8
MR0DL08B Rev. 1.2, 3/2018  
Timing Specifications  
MR0DL08B  
Read Mode  
Table 3.3 Read Cycle Timing1  
Parameter  
Symbol  
Min  
Max  
-
Unit  
ns  
tAVAV  
Read cycle time  
45  
-
tAVQV  
tELQV  
Address access time  
Enable access time2  
45  
45  
20  
-
ns  
-
ns  
tGLQV  
tAXQX  
tELQX  
Output enable access time  
Output hold from address change  
Enable low to output active3  
Output enable low to output active3  
Enable high to output Hi-Z3  
-
ns  
3
3
0
0
0
ns  
-
ns  
tGLQX  
-
ns  
tEHQZ  
tGHQZ  
15  
15  
ns  
Output enable high to output Hi-Z3  
ns  
1
W is high for read cycle. Power supplies must be properly grounded and decoupled, and bus contention conditions must be  
minimized or eliminated during read or write cycles.  
Addresses valid before or at the same time E goes low.  
2
3
This parameter is sampled and not 100% tested. Transition is measured 200 mV from the steady-state voltage.  
Figure 3.3A Read Cycle 1  
tAVAV  
A (ADDRESS)  
tAXQX  
Previous Data Valid  
Data Valid  
Q (DATA OUT)  
tAVQV  
NOTE: Device is continuously selected (E ≤ VIL, G ≤ VIL)  
Figure 3.3B Read Cycle 2  
tAVAV  
A (ADDRESS)  
tAVQV  
tELQV  
E (CHIP ENABLE)  
tEHQZ  
tELQX  
G (OUTPUT ENABLE)  
Q (DATA OUT)  
tGHQZ  
tGLQV  
tGLQX  
Data Valid  
Copyright © Everspin Technologies 2018  
9
MR0DL08B Rev. 1.3, 3/2018  
Timing Specifications  
MR0DL08B  
Table 3.4 Write Cycle Timing 1 (W Controlled)1  
Parameter  
Write cycle time2  
Symbol  
Min  
45  
0
Max  
Unit  
ns  
tAVAV  
-
-
-
-
tAVWL  
Address set-up time  
ns  
tAVWH  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
25  
25  
ns  
tAVWH  
ns  
tWLWH  
tWLEH  
tWLWH  
tWLEH  
tDVWH  
Write pulse width (G high)  
Write pulse width (G low)  
20  
20  
-
-
ns  
ns  
Data valid to end of write  
Data hold time  
Write low to data Hi-Z3  
Write high to output active3  
15  
0
-
-
ns  
ns  
ns  
ns  
ns  
tWHDX  
tWLQZ  
tWHQX  
tWHAX  
0
15  
-
3
Write recovery time  
12  
-
1
All writes occur during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W or E has been brought high, the signal must remain in  
steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being asserted  
low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
All write cycle timings are referenced from the last valid address to the first transition address.  
This parameter is sampled and not 100% tested. Transition is measured 200 mV from the steady-state voltage. At any given  
voltage or temperature, tWLQZ(max) < tWHQX(min)  
2
3
Figure 3.4 Write Cycle Timing 1 (W Controlled)  
tAVAV  
A (ADDRESS)  
tWHAX  
tAVWH  
E (CHIP ENABLE)  
tWLEH  
tWLWH  
W (WRITE ENABLE)  
tAVWL  
tDVWH  
tWHDX  
D (DATA IN)  
Data Valid  
tWLQZ  
Hi-Z  
Hi-Z  
Q (DATA OUT)  
tWHQX  
Copyright © Everspin Technologies 2018  
10  
MR0DL08B Rev. 1.2, 3/2018  
Timing Specifications  
MR0DL08B  
Table 3.5 Write Cycle Timing 2 (E Controlled)1  
Parameter  
Symbol  
Min  
45  
0
Max  
Unit  
ns  
Write cycle time2  
-
-
-
-
tAVAV  
tAVEL  
tAVEH  
Address set-up time  
ns  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
25  
25  
ns  
tAVEH  
ns  
tELEH  
tELWH  
tELEH  
tELWH  
tDVEH  
Enable to end of write (G high)  
Enable to end of write (G low)3  
20  
20  
-
-
ns  
ns  
Data valid to end of write  
Data hold time  
15  
0
-
-
-
ns  
ns  
ns  
tEHDX  
tEHAX  
Write recovery time  
12  
1
All writes occur during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W or E has been brought high, the signal must remain in  
steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being asserted  
low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
All write cycle timings are referenced from the last valid address to the first transition address.  
If E goes low at the same time or after W goes low, the output will remain in a high-impedance state. If E goes high at the  
same time or before W goes high, the output will remain in a high-impedance state.  
2
3
Figure 3.5 Write Cycle Timing 2 (E Controlled)  
tAVAV  
A (ADDRESS)  
tEHAX  
tAVEH  
tELEH  
E (CHIP ENABLE)  
tAVEL  
tELWH  
W (WRITE ENABLE)  
D (DATA IN)  
tEHDX  
tDVEH  
Data Valid  
Copyright © Everspin Technologies 2018  
11  
MR0DL08B Rev. 1.3, 3/2018  
Timing Specifications  
MR0DL08B  
Table 3.6 Write Cycle Timing 3 (Shortened tWHAX, W and E Controlled)1  
Parameter  
Symbol  
Min  
Max  
Unit  
Write cycle time2  
45  
-
ns  
tAVAV  
tAVWL  
tAVWH  
tAVWH  
Address set-up time  
0
-
ns  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
25  
25  
-
-
ns  
ns  
tWLWH  
tWLEH  
tDVWH  
Write pulse width  
20  
-
ns  
Data valid to end of write  
Data hold time  
15  
0
-
-
ns  
ns  
tWHDX  
tEHAX  
tWHAX  
tWHEL  
Enable recovery time  
-2  
6
-
-
-
ns  
ns  
ns  
Write recovery time3  
Write to enable recovery time3  
12  
1
All writes occur during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W or E has been brought high, the signal must remain in  
steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being asserted  
low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
All write cycle timings are referenced from the last valid address to the first transition address.  
If E goes low at the same time or after W goes low, the output will remain in a high-impedance state. If E goes high at the  
same time or before W goes high, the output will remain in a high-impedance state.  
2
3
Table 3.6 Write Cycle Timing 3 (Shortened tWHAX, W and E Controlled)  
tAVAV  
A (ADDRESS)  
t
WHAX  
tAVWH  
tEHAX  
E (CHIP ENABLE)  
t WLEH  
tWLWH  
tWHEL  
tWHDX  
W (WRITE ENABLE)  
t AVWL  
t DVWH  
D (DATA IN)  
Copyright © Everspin Technologies 2018  
12  
MR0DL08B Rev. 1.2, 3/2018  
MR0DL08B  
4. ORDERING INFORMATION  
Figure 4.1 Part Numbering System  
MR  
0
DL  
08  
B
MA 45  
R
Carrier  
Speed  
(Blank= Tray,R=Tape & Reel)  
(45 = 45 ns)  
Package  
Temperature Range  
Revision  
Data Width  
Type  
(MA = FBGA)  
(Blank= 0 to +70 °C)  
(B = Revision)  
(08 = 8-Bit)  
(DL= Dual Supply Low Voltage)  
(0 = 1Mb)  
Density  
Part Type  
(MR = Magnetoresistive  
RAM)  
Table 4.1 Available Parts  
Description  
Part Number  
Temperature  
MR0DL08BMA45  
Dual Supply 128x8 MRAM 48-BGA  
Commercial  
Dual Supply 128x8 MRAM 48-BGA  
Tape & Reel  
MR0DL08BMA45R  
Commercial  
Copyright © Everspin Technologies 2018  
13  
MR0DL08B Rev. 1.3, 3/2018  
Mechanical Drawings  
MR0DL08B  
Figure 5.1 FBGA  
TOP VIEW  
0.41  
0.31  
0.32  
0.22  
SIDE VIEW  
BOTTOM VIEW  
Print Version Not To Scale  
1. Dimensions in Millimeters.  
2. Dimensions and tolerances per ASME Y14.5M - 1994.  
3. Maximum solder ball diameter measured parallel to DATUM A  
4. DATUM A, the seating plane is determined by the spherical crowns of  
the solder balls.  
5. Parallelism measurement shall exclude any effect of mark on top sur-  
face of package.  
Copyright © Everspin Technologies 2018  
14  
MR0DL08B Rev. 1.2, 3/2018  
MR0DL08B  
6. REVISION HISTORY  
Revision  
Date  
Description of Change  
1
Nov 19, 2013 Initial Data Sheet Release  
May 19, 2015 Revised contact information.  
1.1  
1.2  
June 11, 2015  
Corrected Japan Sales Office telephone number.  
1.3  
March 22, 2018 Updated Contact Us table  
Copyright © Everspin Technologies 2018  
15  
MR0DL08B Rev. 1.3, 3/2018  
HOW TO CONTACT US  
Home Page:  
Everspin Technologies, Inc.  
www.everspin.com  
Information in this document is provided solely to enable system and  
software implementers to use Everspin Technologies products. There are  
no express or implied licenses granted hereunder to design or fabricate any  
integrated circuit or circuits based on the information in this document.  
Everspin Technologies reserves the right to make changes without further  
notice to any products herein. Everspin makes no warranty, representa-  
tion or guarantee regarding the suitability of its products for any particular  
purpose, nor does Everspin Technologies assume any liability arising out of  
the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or inci-  
dental damages. “Typicalparameters, which may be provided in Everspin  
Technologies data sheets and/or specifications can and do vary in differ-  
ent applications and actual performance may vary over time. All operating  
parameters including “Typicalsmust be validated for each customer ap-  
plication by customer’s technical experts. Everspin Technologies does not  
convey any license under its patent rights nor the rights of others. Everspin  
Technologies products are not designed, intended, or authorized for use  
as components in systems intended for surgical implant into the body, or  
other applications intended to support or sustain life, or for any other ap-  
plication in which the failure of the Everspin Technologies product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Everspin Technologies products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Everspin Tech-  
nologies and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even  
if such claim alleges that Everspin Technologies was negligent regarding  
the design or manufacture of the part. Everspin™ and the Everspin logo are  
trademarks of Everspin Technologies, Inc.  
World Wide Information Request  
WW Headquarters - Chandler, AZ  
5670 W. Chandler Blvd., Suite 100  
Chandler, Arizona 85224  
Tel: +1-877-480-MRAM (6726)  
Local Tel: +1-480-347-1111  
Fax: +1-480-347-1175  
support@everspin.com  
Europe, Middle East and Africa  
Everspin Europe Support  
support.europe@everspin.com  
Japan  
Everspin Japan Support  
support.japan@everspin.com  
Asia Pacific  
Everspin Asia Support  
support.asia@everspin.com  
Filename:  
EST02629_MR0DL08B_Datasheet_Rev1.3032218  
All other product or service names are the property of their respective owners.  
Copyright © Everspin Technologies, Inc. 2018  
Copyright © Everspin Technologies 2018  
16  
MR0DL08B Rev. 1.2, 3/2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY