MR1A16AVMA35 [EVERSPIN]

128K x 16 MRAM Memory;
MR1A16AVMA35
型号: MR1A16AVMA35
厂家: Everspin Technologies    Everspin Technologies
描述:

128K x 16 MRAM Memory

内存集成电路
文件: 总20页 (文件大小:1066K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MR1A16A  
128K x 16 MRAM Memory  
FEATURES  
• Fast 35 ns Read/Write cycle  
• SRAM compatible timing, uses existing SRAM control-  
lers without redesign  
• Unlimited Read & Write endurance  
• Data non-volatile for >20 years at temperature  
• One memory replaces Flash, SRAM, EEPROM and  
BBSRAM in a system for simpler, more efficient design  
• Replaces battery-backed SRAM solutions with MRAM  
to improve reliability  
44-pin TSOP2  
• 3.3 volt power supply  
• Automatic data protection on power loss  
• Commercial, Industrial, Extended temperatures  
• AEC-Q100 Grade 1 option  
48-ball BGA  
• All products meet MSL-3 moisture sensitivity level  
• RoHS-compliant SRAM TSOP2 and BGA Packages  
INTRODUCTION  
The MR1A16A is a 2,097,152-bit magnetoresistive random access memory (MRAM) device orga-  
nized as 131,072 words of 16 bits. The MR1A16A offers SRAM compatible 35 ns read/write timing  
with unlimited endurance. Data is always non-volatile for greater than 20 years. Data is automati-  
cally protected on power loss by low-voltage inhibit circuitry to prevent writes with voltage out of  
specification.  
The MR1A16A is the ideal memory solution for applications that must permanently store and re-  
trieve critical data and programs quickly.  
The MR1A16A is available in a small footprint 48-pin ball grid array (BGA) package and a 44-pin thin  
small outline package (TSOP Type 2). These packages are compatible with similar low-power SRAM  
products and other nonvolatile RAM products.  
The MR1A16A provides highly reliable data storage over a wide range of temperatures. The prod-  
uct is offered with Commercial (0 to +70 °C), Industrial (-40 to +85 °C), Extended (-40 to +105 °C),  
and AEC-Q100 Grade 1 (-40 to +125 °C) operating temperature range options.  
Copyright © Everspin Technologies 2020  
1
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
TABLE OF CONTENTS  
FEATURES .............................................................................................................................................1  
INTRODUCTION ...................................................................................................................................1  
BLOCK DIAGRAM AND PIN ASSIGNMENTS.......................................................................................4  
Figure 1 – Block Diagram........................................................................................................................................... 4  
Table 1 – Pin Functions............................................................................................................................................... 4  
Figure 2 – Pin Diagrams for Available Packages (Top View).......................................................................... 5  
Table 2 – Operating Modes....................................................................................................................................... 5  
ABSOLUTE MAXIMUM RATINGS.........................................................................................................6  
Table 3 – Absolute Maximum Ratings................................................................................................................... 6  
OPERATING CONDITIONS ...................................................................................................................7  
Power Up and Power Down Sequencing .......................................................................................8  
Figure 3 – Power Up and Power Down Diagram............................................................................................... 8  
DC CHARACTERISTICS.........................................................................................................................9  
Table 4 – DC Characteristics...................................................................................................................................... 9  
Table 5 – Power Supply Characteristics................................................................................................................ 9  
TIMING SPECIFICATIONS ................................................................................................................. 10  
Table 6 – Capacitance ...............................................................................................................................................10  
Table 7 – AC Measurement Conditions ..............................................................................................................10  
Figure 4 – Output Load Test Low and High.......................................................................................................10  
Figure 5 – Output Load Test All Others...............................................................................................................10  
Read Mode .................................................................................................................................... 11  
Table 8 – Read Cycle Timing ...................................................................................................................................11  
Figure 6 – Read Cycle 1.............................................................................................................................................11  
Figure 7 – Read Cycle 2.............................................................................................................................................11  
Write Mode.................................................................................................................................... 12  
Table 9 – Write Cycle Timing 1 (W Controlled).................................................................................................12  
Copyright © Everspin Technologies 2020  
2
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
TABLE OF CONTENTS (CONT’D)  
Figure 8 – Write Cycle Timing 1 (W Controlled) ...............................................................................................12  
Table 10 – Write Cycle Timing 2 (E Controlled) ................................................................................................13  
Figure 9 – Write Cycle Timing 2 (E Controlled).................................................................................................13  
Table 11 – Write Cycle Timing 3 (LB / UB Controlled)....................................................................................14  
Figure 10 – Write Cycle Timing 3 (LB / UB Controlled)..................................................................................14  
ORDERING INFORMATION ............................................................................................................... 15  
Table 12 – Ordering Part Number System for Parallel I/O MRAM..............................................................15  
Table 13 – MR1A16A Ordering Part Numbers..................................................................................................16  
PACKAGE OUTLINE DRAWINGS....................................................................................................... 17  
Figure 11 – 44-TSOP2 Package Outline...............................................................................................................17  
Figure 12 – 48-FBGA Packge Outline...................................................................................................................18  
REVISION HISTORY ........................................................................................................................... 19  
HOW TO CONTACT US....................................................................................................................... 20  
Copyright © Everspin Technologies 2020  
3
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
BLOCK DIAGRAM AND PIN ASSIGNMENTS  
Figure 1 – Block Diagram  
ꢆꢇꢀꢄꢈ0ꢉ  
ꢀꢊ  
ꢀ2ꢁꢂ ꢃ ꢀꢄ  
Table 1 – Pin Functions  
Signal Name  
Function  
A
Address Input  
E
Chip Enable  
W
G
Write Enable  
Output Enable  
Upper Byte Enable  
Lower Byte Enable  
Data I/O  
UB  
LB  
DQ  
VDD  
VSS  
DC  
NC  
Power Supply  
Ground  
Do Not Connect  
No Connection  
Copyright © Everspin Technologies 2020  
4
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Figure 2 – Pin Diagrams for Available Packages ꢀTop Viewꢁ  
Aꢀ  
Aꢁ  
Aꢂ  
Aꢃ  
Aꢇ  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
Aꢁꢈ  
Aꢁꢉ  
Aꢁꢇ  
G
3
4
2
5
UB  
ꢅꢆ  
ꢈ0  
ꢈꢀ  
ꢈ2  
ꢉC  
C
E
6
E
LB  
7
DQL0  
DQL1  
DQL2  
DQL3  
DQU15  
DQU14  
DQU13  
DQU12  
ꢊꢋꢌꢍ  
ꢊꢋꢌꢎ  
ꢊꢋꢅ0  
ꢊꢋꢅ2  
ꢌꢆ  
ꢈꢁ  
ꢈꢃ  
8
ꢈꢂ  
ꢈꢄ  
E
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
ꢊꢋꢌꢀ0  
ꢊꢋꢌꢀꢀ  
ꢊꢋꢌꢀ2  
ꢊꢋꢌꢀꢁ  
ꢉC  
ꢊꢋꢅꢀ  
ꢊꢋꢅꢁ  
V
DD  
VSS  
V
SS  
VDD  
ꢐꢐ  
ꢊꢊ  
ꢈꢀꢄ  
ꢈꢀꢂ  
ꢈꢀꢁ  
ꢈꢀꢀ  
ꢈꢎ  
ꢈꢀꢃ  
ꢉC  
DQL4  
DQL5  
DQL6  
DQL7  
W
Aꢉ  
Aꢈ  
Aꢄ  
Aꢅ  
DQU11  
DQU10  
DQU9  
DQU8  
DC  
VDD  
Aꢁꢃ  
Aꢁꢂ  
Aꢁꢁ  
ꢊꢊ  
ꢊꢋꢅꢂ  
ꢊꢋꢅꢃ  
ꢐꢐ  
ꢊꢋꢌꢀꢂ  
ꢊꢋꢌꢀꢃ  
ꢉC  
ꢊꢋꢅꢄ  
ꢊꢋꢅꢓ  
ꢊC  
ꢈꢀ2  
ꢈꢀ0  
ꢈꢍ  
ꢈꢓ  
ꢊꢊ  
Aꢆ  
Aꢁꢀ  
44-Pin TSOP Type2  
48-Pin BGA  
Table 2 – Operating Modes  
E 1 G1 W 1 LB 1 UB1  
Mode  
VDD Current DQL[7:0]2 DQU[15:8]2  
H
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
H
H
L
X
X
H
L
X
X
H
H
L
Not selected  
ISB1, ISB2  
Hi-Z  
Hi-Z  
Hi-Z  
DOut  
Hi-Z  
DOut  
Din  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DOut  
DOut  
Hi-Z  
Din  
Output disabled  
Output disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
IDDR  
IDDR  
IDDR  
L
H
L
IDDR  
L
L
IDDR  
X
X
X
L
H
L
Lower Byte Write  
Upper Byte Write  
Word Write  
IDDW  
IDDW  
IDDW  
L
H
L
Hi-Z  
Din  
L
L
Din  
Notes:  
1. H = high, L = low, X = don’t care  
2. Hi-Z = high impedance  
Copyright © Everspin Technologies 2020  
5
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
ABSOLUTE MAXIMUM RATINGS  
Table 3 – Absolute Maximum Ratings  
This device contains circuitry to protect the inputs against damage caused by high static voltages or electric fields; however, it  
is advised that normal precautions be taken to avoid application of any voltage greater than maximum rated voltages to these  
high-impedance (Hi-Z) circuits.  
The device also contains protection against external magnetic fields. Precautions should be taken to avoid application of any  
1
magnetic field more intense than the maximum field intensity specified in the maximum ratings.  
Symbol Parameter  
Temp Range  
Package  
Value  
Unit  
VDD  
VIN  
Supply voltage 2  
-
-
-0.5 to 4.0  
V
Voltage on any pin 2  
Output current per pin  
Package power dissipation 3  
-
-
-
-0.5 to VDD + 0.5  
V
mA  
W
-
IOUT  
PD  
-
20  
Note 3  
0.600  
Commercial  
Industrial  
-
-
-
-
-10 to 85  
-45 to 95  
-45 to 110  
-45 to 130  
TBIAS  
Temperature under bias  
°C  
Extended  
AEC-Q100 Grade 1  
Tstg  
Storage Temperature  
-
-
-
-55 to 150  
260  
°C  
°C  
Lead temperature during solder  
(3 minute max)  
TLead  
-
Commercial  
TSOP2, BGA  
BGA  
2,000  
2,000  
10,000  
2,000  
8,000  
8,000  
10,000  
8,000  
Maximum magnetic field during  
write  
Hmax_write  
Industrial, Extended  
A/m  
A/m  
TSOP2  
AEC-Q100 Grade 1  
Commercial  
TSOP2  
TSOP2, BGA  
BGA  
Maximum magnetic field during  
read or standby  
Hmax_read  
Industrial, Extended  
AEC-Q100 Grade 1  
TSOP2  
TSOP2  
Notes:  
1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted  
to recommended operating conditions. Exposure to excessive voltages or magnetic fields could affect device reliability.  
2. All voltages are referenced to VSS.  
3. Power dissipation capability depends on package characteristics and use environment.  
Copyright © Everspin Technologies 2020  
6
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
3.0  
Typical  
Max  
3.6  
3.0 1  
Unit  
Power supply voltage 1  
Write inhibit voltage  
Input high voltage  
Input low voltage  
3.3  
2.7  
-
V
V
V
V
VDD  
VWI  
VIH  
VIL  
2.5  
2.2  
-0.5 3  
VDD + 0.3 2  
-
0.8  
Temperature under bias  
MR1A16A (Commercial)  
MR1A16AC (Industrial)  
0
70  
85  
105  
125  
TA  
-40  
-40  
-40  
°C  
MR1A16AV (Extended)  
MR1A16AM (AEC-Q100 Grade 1) 4  
Notes:  
1. There is a 2 ms startup time once VDD exceeds VDD,(max). See “Power Up and Power Down Sequencingon page 8.  
2. VIH(max) = VDD + 0.3 VDC ; VIH(max) = VDD + 2.0 VAC (pulse width ≤ 10 ns) for I ≤ 20.0 mA.  
3. VIL(min) = -0.5 VDC ; VIL(min) = -2.0 VAC (pulse width ≤ 10 ns) for I ≤ 20.0 mA.  
4. AEC-Q100 Grade 1 temperature profile assumes 10% duty cycle at maximum temperature (2 years out of 20 years life.)  
Copyright © Everspin Technologies 2020  
7
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Power Up and Power Down Sequencing  
The MRAM is protected from write operations whenever VDD is less than VWI. As soon as VDD exceeds  
VDD(min), there is a startup time of 2 ms before read or write operations can start. This time allows memory  
power supplies to stabilize.  
The E and W control signals should track VDD on power up to VDD- 0.2 V or VIH (whichever is lower) and  
remain high for the startup time. In most systems, this means that these signals should be pulled up with a  
resistor so that signal remains high if the driving signal is Hi-Z during power up. Any logic that drives E and  
W should hold the signals high with a power-on reset signal for longer than the startup time.  
During power loss or brownout where VDD goes below VWI, writes are protected and a startup time must be  
observed when power returns above VDD(min).  
Figure 3 – Power Up and Power Down Sequencing Timing Diagram  
VDD  
V
WI  
BROWNOUT or POWER LOSS  
2 ms  
2 ms  
STARTUP  
RECOVER  
NORMAL  
OPERATION  
NORMAL  
OPERATION  
READ/WRITE  
INHIBITED  
READ/WRITE  
INHIBITED  
VIH  
VIH  
E
W
Copyright © Everspin Technologies 2020  
8
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
DC CHARACTERISTICS  
Table 4 – DC Characteristics  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
I
Input leakage current  
-
-
1
μA  
lkg(I)  
I
Output leakage current  
-
-
-
-
1
μA  
V
lkg(O)  
Output low voltage  
(IOL = +4 mA)  
(IOL = +100 μA)  
0.4  
VSS + 0.2  
V
OL  
Output high voltage  
(IOH = -4 mA)  
(IOH = -100 μA)  
2.4  
VDD - 0.2  
-
-
V
V
OH  
Table 5 – Power Supply Characteristics  
Parameter  
Symbol  
Typical  
Max  
Unit  
AC active supply current - read modes1  
(IOUT= 0 mA, VDD= max)  
55  
80  
mA  
I
DDR  
AC active supply current - write modes1  
(VDD= max)  
Commercial Grade  
Industrial Grade  
Extended Grade  
AEC-Q100 Grade  
105  
105  
105  
105  
155  
165  
165  
165  
mA  
mA  
mA  
I
DDW  
AC standby current  
(VDD= max, E = VIH)  
no other restrictions on other inputs  
18  
9
28  
12  
I
SB1  
CMOS standby current  
(E ≥ VDD - 0.2 V and VIn ≤ VSS + 0.2 V or ≥ VDD - 0.2 V)  
(VDD = max, f = 0 MHz)  
I
SB2  
Notes:  
1. All active current measurements are measured with one address transition per cycle and at minimum cycle time.  
Copyright © Everspin Technologies 2020  
9
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
TIMING SPECIFICATIONS  
Table 6 – Capacitance  
Parameter 1  
Symbol  
Typical  
Max  
Unit  
C
Address input capacitance  
-
6
pF  
In  
C
Control input capacitance  
-
-
6
8
pF  
pF  
In  
C
Input/Output capacitance  
I/O  
Notes:  
1. f = 1.0 MHz, dV = 3.0 V, TA = 25 °C, periodically sampled rather than 100% tested.  
Table 7 – AC Measurement Conditions  
Parameter  
Value  
1.5  
Unit  
V
Logic input timing measurement reference level  
Logic output timing measurement reference level  
Logic input pulse levels  
1.5  
V
0 or 3.0  
2
V
Input rise/fall time  
ns  
Output load for low and high impedance parameters  
Output load for all other timing parameters  
See Figure 4  
See Figure 5  
Figure 4 – Output Load Test Low and High  
ZD= 50 Ω  
Output  
RL = 50 Ω  
VL = 1.5 V  
Figure 5 – Output Load Test All Others  
3.3 V  
590 Ω  
Output  
5 pF  
435 Ω  
Copyright © Everspin Technologies 2020  
10  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Read Mode  
Table 8 – Read Cycle Timing  
Parameter 1  
Symbol  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Read cycle time  
AVAV  
35  
-
-
tAVQV  
tELQV  
tGLQV  
tBLQV  
tAXQX  
tELQX  
tGLQX  
tBLQX  
tEHQZ  
tGHQZ  
tBHQZ  
Address access time  
Enable access time2  
35  
35  
15  
15  
-
-
Output enable access time  
Byte enable access time  
Output hold from address change  
Enable low to output active3  
Output enable low to output active3  
Byte enable low to output active3  
Enable high to output Hi-Z3  
Output enable high to output Hi-Z3  
Byte high to output Hi-Z3  
-
-
3
3
0
0
0
0
0
-
-
-
15  
10  
10  
Notes:  
1. W is high for read cycle. Power supplies must be properly grounded and decoupled, and bus contention conditions must  
be minimized or eliminated during read or write cycles.  
2. Addresses valid before or at the same time E goes low.  
3. This parameter is sampled and not 100% tested. Transition is measured 200 mV from the steady-state voltage.  
Figure 6 – Read Cycle 1  
tAVAV  
A (ADDRESS)  
tAXQX  
Previous Data Valid  
Data Valid  
Q (DATA OUT)  
tAVQV  
Note: Device is continuously selected (E ≤ VIL, G ≤ VIL).  
Figure 7 – Read Cycle 2  
tAVAV  
A (ADDRESS)  
E (CHIP ENABLE)  
tAVQV  
tELQV  
tEHQZ  
tELQX  
G (OUTPUT ENABLE)  
LB, UB (BYTE ENABLE)  
tGHQZ  
tGLQV  
tGLQX  
tBHQZ  
tBLQV  
tBLQX  
Data Valid  
Q (DATA OUT)  
Copyright © Everspin Technologies 2020  
11  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Write Mode  
Table 9 – Write Cycle Timing 1 ꢀW Controlledꢁ  
Parameter 1  
Symbol  
tAVAV  
tAVWL  
tAVWH  
tAVWH  
Min  
35  
0
Max  
Unit  
ns  
2
Write cycle time  
-
-
-
-
Address set-up time  
ns  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
18  
20  
ns  
ns  
tWLWH  
Write pulse width (G high)  
Write pulse width (G low)  
15  
15  
-
-
ns  
ns  
tWLEH  
tWLWH  
tWLEH  
tDVWH  
tWHDX  
tWLQZ  
tWHQX  
tWHAX  
Data valid to end of write  
Data hold time  
Write low to data Hi-Z 3  
Write high to output active 3  
Write recovery time  
10  
0
-
-
ns  
ns  
ns  
ns  
ns  
0
12  
-
3
12  
-
Notes:  
1. All write occurs during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W, E or UB/LB has been brought high, the signal must  
remain in steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being  
asserted low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
2. All write cycle timings are referenced from the last valid address to the first transition address.  
3. This parameter is sampled and not 100% tested. Transition is measured 200 mV from the steady-state voltage. At any given  
voltage or temperate, tWLQZ(max) < tWHQX(min)  
Figure 8 – Write Cycle Timing 1 ꢀW Controlledꢁ  
t
AVAV  
A (ADDRESS)  
t
t
AVWH  
WHAX  
E (CHIP ENABLE)  
t
t
WLEH  
WLWH  
W (WRITE ENABLE)  
t
AVWL  
UB, LB (BYTE ENABLED)  
D (DATA IN)  
t
t
WHDX  
DVWH  
DATA VALID  
t
WLQZ  
Copyright © Everspin Technologies 2020  
12  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Table 10 – Write Cycle Timing 2 ꢀE Controlledꢁ  
Parameter 1  
Write cycle time 2  
Symbol  
tAVAV  
tAVEL  
Min  
35  
0
Max  
Unit  
ns  
-
-
-
-
Address set-up time  
ns  
tAVEH  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
18  
20  
ns  
tAVEH  
ns  
tELEH  
15  
15  
-
-
ns  
ns  
Enable to end of write (G high)  
Enable to end of write (G low) 3  
tELWH  
tELEH  
tELWH  
tDVEH  
tEHDX  
tEHAX  
Data valid to end of write  
Data hold time  
10  
0
-
-
-
ns  
ns  
ns  
Write recovery time  
Notes:  
12  
1. All write occurs during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W, E or UB/LB has been brought high, the signal must  
remain in steady-state high for a minimum of 2 ns. The minimum time between E being asserted low in one cycle to E being  
asserted low in a subsequent cycle is the same as the minimum cycle time allowed for the device.  
2. All write cycle timings are referenced from the last valid address to the first transition address.  
3. If E goes low at the same time or after W goes low, the output will remain in a high-impedance state. If E goes high at the  
same time or before W goes high, the output will remain in a high-impedance state.  
Figure 9 – Write Cycle Timing 2 ꢀE Controlledꢁ  
tAVAV  
A (ADDRESS)  
tEHAX  
tAVEH  
tELEH  
E (CHIP ENABLE)  
tAVEL  
tELWH  
W (WRITE ENABLE)  
UB, LB (BYTE ENABLE)  
D (DATA IN)  
tEHDX  
tDVEH  
Data Valid  
Hi-Z  
Q (DATA OUT)  
Copyright © Everspin Technologies 2020  
13  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Table 11 – Write Cycle Timing 3 ꢀLB / UB Controlledꢁ  
Parameter 1  
Symbol  
tAVAV  
tAVBL  
Min  
35  
0
Max  
Unit  
ns  
Write cycle time 2  
-
-
-
-
Address set-up time  
ns  
Address valid to end of write (G high)  
Address valid to end of write (G low)  
tAVBH  
tAVBH  
18  
20  
ns  
ns  
tBLEH  
15  
15  
-
-
ns  
ns  
Write pulse width (G high)  
Write pulse width (G low)  
tBLWH  
tBLEH  
tBLWH  
Data valid to end of write  
Data hold time  
tDVBH  
tBHDX  
tBHAX  
10  
0
-
-
-
ns  
ns  
ns  
Write recovery time  
Notes:  
12  
1. All write occurs during the overlap of E low and W low. Power supplies must be properly grounded and decoupled and bus  
contention conditions must be minimized or eliminated during read and write cycles. If G goes low at the same time or after  
W goes low, the output will remain in a high impedance state. After W, E or LB/UB has been brought high, the signal must  
remain in steady-state high for a minimum of 2 ns. If both byte control signals are asserted, the two signals must have no  
more than 2 ns skew between them. The minimum time between E being asserted low in one cycle to E being asserted low in  
a subsequent cycle is the same as the minimum cycle time allowed for the device.  
2. All write cycle timings are referenced from the last valid address to the first transition address.  
Figure 10 – Write Cycle Timing 3 ꢀLB / UB Controlledꢁ  
t
AVAV  
A (ADDRESS)  
t
t
AVEH  
BHAX  
E (CHIP ENABLE)  
W (WRITE ENABLE)  
t
t
t
AVBL  
BLEH  
BLWH  
UB, LB (BYTE ENABLED)  
D (DATA IN)  
t
t
BHDX  
DVBH  
Data Valid  
Hi -Z  
Hi -Z  
Q (DATA OUT)  
Copyright © Everspin Technologies 2020  
14  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
ORDERING INFORMATION  
Table 12 – Ordering Part Number System for Parallel I/O MRAM  
Copyright © Everspin Technologies 2020  
15  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Table 13 – MR1A16A Ordering Part Numbers  
Temp Grade  
Temp  
Package  
Shipping  
Tray  
Ordering Part Number  
MR1A16AYS35  
44-TSOP2  
Tape and Reel  
Tray  
MR1A16AYS35R  
Commercial  
0 to +70 °C  
MR1A16AMA35  
48-BGA  
Tape and Reel  
Tray  
MR1A16AMA35R  
MR1A16ACYS35  
MR1A16ACYS35R  
MR1A16ACMA35  
MR1A16ACMA35R  
MR1A16AVYS35  
MR1A16AVYS35R  
MR1A16AVMA35  
MR1A16AVMA35R  
MR1A16AMYS35  
44-TSOP2  
Tape and Reel  
Tray  
Industrial  
Extended  
-40 to +85 °C  
48-BGA  
44-TSOP2  
48-BGA  
Tape and Reel  
Tray  
Tape and Reel  
Tray  
-40 to +105 °C  
-40 to +125 °C  
Tape and Reel  
Tray  
Automotive AEC-  
Q100 Grade 1  
44-TSOP2  
Tape and Reel  
MR1A16AMYS35R  
Copyright © Everspin Technologies 2020  
16  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
PACKAGE OUTLINE DRAWINGS  
Figure 11 – 44-TSOP2 Package Outline  
44 PLACES  
Print Version Not To Scale  
1. Dimensions and tolerances per ASME Y14.5M - 1994.  
2. Dimensions in Millimeters.  
3. Dimensions do not include mold protrusion.  
4. Dimension does not include DAM bar protrusions.  
DAM Bar protrusion shall not cause the lead width to exceed 0.58.  
Copyright © Everspin Technologies 2020  
17  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
Figure 12 – 48-FBGA Packge Outline  
Notes:  
1.  
2.  
Dimensions in Millimeters.  
Dimensions and tolerances per ASME Y14.5M  
- 1994.  
3.  
4.  
5.  
Maximum solder ball diameter measured paral-  
lel to DATUM A  
DATUM A, the seating plane is determined by  
the spherical crowns of the solder balls.  
Parallelism measurement shall exclude any ef-  
fect of mark on top surface of package.  
Copyright © Everspin Technologies 2020  
18  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
REVISION HISTORY  
Revision  
Date  
Description of Change  
1.0  
October 1, 2019 Initial data sheet release  
1.1  
March 10, 2020 Updated Table 12 to correct temperature designator  
Copyright © Everspin Technologies 2020  
19  
MR1A16A Rev. 1.1 03/2020  
MR1A16A  
HOW TO CONTACT US  
How to Reach Us:  
Home Page:  
Everspin Technologies, Inc.  
www.everspin.com  
Information in this document is provided solely to enable system and  
software implementers to use Everspin Technologies products. There  
are no express or implied licenses granted hereunder to design or  
fabricate any integrated circuit or circuits based on the information  
in this document. Everspin Technologies reserves the right to make  
changes without further notice to any products herein. Everspin makes  
no warranty, representation or guarantee regarding the suitability of its  
products for any particular purpose, nor does Everspin Technologies as-  
sume any liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typicalparameters,  
which may be provided in Everspin Technologies data sheets and/  
or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters including  
“Typicalsmust be validated for each customer application by cus-  
tomer’s technical experts. Everspin Technologies does not convey any  
license under its patent rights nor the rights of others. Everspin Tech-  
nologies products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or  
other applications intended to support or sustain life, or for any other  
application in which the failure of the Everspin Technologies product  
could create a situation where personal injury or death may occur.  
Should Buyer purchase or use Everspin Technologies products for any  
such unintended or unauthorized application, Buyer shall indemnify  
and hold Everspin Technologies and its officers, employees, subsidiar-  
ies, affiliates, and distributors harmless against all claims, costs, dam-  
ages, and expenses, and reasonable attorney fees arising out of, directly  
or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Ever-  
spin Technologies was negligent regarding the design or manufacture  
of the part. Everspin™ and the Everspin logo are trademarks of Everspin  
Technologies, Inc. All other product or service names are the property  
World Wide Information Request  
WW Headquarters - Chandler, AZ  
5670 W. Chandler Blvd., Suite 100  
Chandler, Arizona 85226  
Tel: +1-877-480-MRAM (6726)  
Local Tel: +1-480-347-1111  
Fax: +1-480-347-1175  
support@everspin.com  
orders@everspin.com  
sales@everspin.com  
Europe, Middle East and Africa  
Everspin Europe Support  
support.europe@everspin.com  
Japan  
Everspin Japan Support  
support.japan@everspin.com  
Asia Pacific  
Everspin Asia Support  
support.asia@everspin.com  
Filename:  
MR1A16A_Datasheet_Rev1.1_03102020  
of their respective owners.  
Copyright © Everspin Technologies, Inc. 2019  
Copyright © Everspin Technologies 2020  
20  
MR1A16A Rev. 1.1 03/2020  

相关型号:

MR1A16AVMA35R

128K x 16 MRAM Memory
EVERSPIN

MR1A16AVTS35C

256K x 16-Bit 3.3-V Asynchronous Magnetoresistive RAM
FREESCALE

MR1A16AVYS35

64K x 16-Bit 3.3-V Asynchronous Magnetoresistive RAM
FREESCALE

MR1A16AVYS35

128K x 16 MRAM Memory
EVERSPIN

MR1A16AVYS35R

128K x 16 MRAM Memory
EVERSPIN

MR1A16AYS35

64K x 16-Bit 3.3-V Asynchronous Magnetoresistive RAM
FREESCALE

MR1A16AYS35

128K x 16 MRAM Memory
EVERSPIN

MR1A16AYS35R

128K x 16 MRAM Memory
EVERSPIN

MR1A8ACYS35

SPECIALTY MEMORY CIRCUIT, PDSO44, 0.400 INCH, ROHS COMPLIANT, PLASTIC, TSOP2-44
NXP

MR1A8AVYS35

暂无描述
NXP

MR1A8AYS35

SPECIALTY MEMORY CIRCUIT, PDSO44, 0.400 INCH, ROHS COMPLIANT, PLASTIC, TSOP2-44
NXP

MR1S08ACTS35C

256K x 16-Bit 3.3-V Asynchronous Magnetoresistive RAM
FREESCALE