ST16C650A_0508 [EXAR]

2.90V TO 5.5V UART WITH 32-BYTE FIFO; 具有32字节FIFO 2.90V至5.5V UART
ST16C650A_0508
型号: ST16C650A_0508
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

2.90V TO 5.5V UART WITH 32-BYTE FIFO
具有32字节FIFO 2.90V至5.5V UART

先进先出芯片
文件: 总52页 (文件大小:793K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
AUGUST 2005  
FEATURES  
GENERAL DESCRIPTION  
Added features in devices with a top mark date code  
of "HC YYWW" and newer:  
1
The ST16C650A (650A) is a 2.90 to 5.5 volt  
Universal Asynchronous Receiver and Transmitter  
(UART) with 5 volt tolerant inputs. This device  
supports Intel and PC ISA mode data bus interfaces  
and is software compatible to industry standard  
16C450, 16C550, and ST16C580 UARTs.  
2.90 to 5.5 Volt Operation  
5 Volt Tolerant Inputs  
Automatic RS485 Half-Duplex Control Output  
Programmable Infrared Encoder Pulse Width  
Sleep Mode with Wake-up Indicator  
Device ID & Revision  
The 650A has 32 bytes of TX and RX FIFOs and is  
capable of operating up to serial data rates of 3.125  
Mbps at 5 volt supply voltage. The internal registers  
include the 16C550 register set plus Exar’s enhanced  
registers for additional features to support today’s  
highly demanding data communication needs. The  
enhanced features include automatic hardware and  
software flow control, selectable TX and RX trigger  
levels, and wireless infrared (IrDA) encoder/decoder.  
Up to 3.125 Mbps Data Rate at 5 Volts  
Added feature in devices with a top mark date code of  
"I2 YYWW" and newer:  
0 ns address hold time  
Intel or PC Mode 8-bit Bus Interface  
32-byte Transmit and Receive FIFOs  
Automatic Hardware (RTS/CTS) Flow Control  
Hardware Flow Control Hysteresis  
Automatic Software (Xon/Xoff) Flow Control  
The device provides a new capability to give user the  
ability to program the wireless infrared encoder  
output pulse width, hence reducing the power  
consumption of a handheld unit.  
The ST16C650A device comes in the 44-pin PLCC  
and 48-pin TQFP packages in both the commercial  
and industrial temperature ranges.  
APPLICATIONS  
Battery Operated Electronics  
Handheld Terminal  
NOTE: 1 Covered by US patents #5,649,122.  
Personal Digital Assistants  
Cellular Phones DataPort  
Wireless Infrared Data Communications Systems  
FIGURE 1. BLOCK DIAGRAM  
RESET  
A2:A0  
32 Byte TX FIFO  
Transmitter  
TX  
D7:D0  
Infrared Encoder and  
Pulse Width Control  
IOR#  
IOR  
IOW#  
CTS Flow  
Control  
Intel or  
PC Data  
Bus  
UART  
Configuration  
Regs  
IOW  
DTR#, DSR#,  
RTS#, CTS#,  
CD#, RI#  
CS2#  
CS1  
CS0  
Modem Control Signals  
Interface  
RTS Flow  
Control  
Infrared  
INT  
Decoder  
TXRDY#  
Receiver with Auto  
Software Flow Control  
RDRDY#  
DDIS#  
RX  
32 Byte RX FIFO  
BRG  
Prescaler  
SEL  
Baud Rate Generator  
Crystal Osc/Buffer  
S1  
S2  
S3  
IRQA  
IRQB  
IRQC  
PC Mode:  
COM 1 to 4  
Decode Logic  
XTAL1/CLK  
XTAL2  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
FIGURE 2. INTEL AND PC MODE PIN OUT  
48-TQFP PACKAGE  
44-PLCC PACKAGE  
SEL  
N.C.  
D5  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
D5  
D6  
RESET  
OP1#  
DTR#  
RTS#  
OP2#  
SEL  
RESET  
OP1#  
DTR#  
RTS#  
OP2#  
INT  
8
D6  
3
9
D7  
D7  
4
10  
11  
12  
13  
14  
15  
16  
17  
RCLK  
RX  
RCLK  
N.C.  
5
6
ST16C650ACQ48  
Intel Bus Mode (SEL = VCC)  
N.C.  
ST16C650ACJ44  
Intel Bus Mode (SEL = VCC)  
RX  
7
TX  
INT  
RXRDY#  
A0  
TX  
8
CS0  
RXRDY#  
A0  
CS0  
9
CS1  
A1  
CS1  
10  
11  
12  
CS2#  
BAUDOUT#  
A1  
A2  
-CS2  
-BAUDOUT  
A2  
N.C.  
7
39  
D5  
RESET  
OP1#  
DTR#  
RTS#  
S3  
SEL  
RESET  
OP1#  
DTR#  
RTS#  
S3  
N.C.  
D5  
1
2
36  
8
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
D6  
D7  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
9
D6  
3
10  
11  
12  
13  
14  
15  
16  
17  
S2  
D7  
4
RX  
S2  
5
ST16C650ACQ48  
PC Mode (SEL = GND)  
A4  
SEL  
IRQA  
IRQB  
A0  
ST16C650ACJ44  
PC Mode (SEL = GND)  
A4  
6
RX  
7
IRQA  
IRQB  
A0  
TX  
TX  
8
A5  
A5  
9
A6  
A1  
A6  
10  
11  
12  
A7  
A1  
A2  
A7  
LPT1#  
A2  
N.C.  
LPT1#  
ORDERING INFORMATION  
OPERATING  
TEMPERATURE  
RANGE  
PART NUMBER  
PACKAGE  
DEVICE STATUS  
ST16C650ACJ44  
ST16C650ACQ48  
ST16C650AIJ44  
ST16C650AIQ48  
44-Lead PLCC  
48-Lead TQFP  
44-Lead PLCC  
48-Lead TQFP  
0°C to +70°C Active  
0°C to +70°C Active  
-40°C to +85°C Active  
-40°C to +85°C Active  
2
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
PIN DESCRIPTIONS  
44-  
PLCC TQFP TYPE  
PIN # PIN #  
48-  
NAME  
DESCRIPTION  
16 (Intel) MODE DATA BUS INTERFACE. The SEL pin is connected to VCC.  
A2  
A1  
A0  
29  
30  
31  
26  
27  
28  
I
Address bus lines [2:0]  
A2:A0 selects internal UART’s configuration registers.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
9
8
7
6
5
4
3
2
4
IO  
Data bus lines [7:0] (bidirectional)  
3
2
47  
46  
45  
44  
43  
IOR#  
24  
19  
I
Input/Output Read (active low)  
The falling edge instigates an internal read cycle and retrieves the data byte from  
an internal register pointed by the address lines [A2:A0], places it on the data bus  
to allow the host processor to read it on the leading edge. Its function is the same  
as IOR, except it is active low. Either an active IOR# or IOR is required to transfer  
data from 650A to CPU during a read operation. If this input is unused, it should  
be connected to VCC to minimize supply current.  
IOR  
25  
20  
20  
16  
I
I
Input/Output Read (active high)  
Same as IOR# but active high. If this input is unused, it should be connected to  
GND to minimize supply current.  
IOW#  
Input/Output Write (active low)  
The falling edge instigates the internal write cycle and the trailing edge transfers  
the data byte on the data bus to an internal register pointed by the address lines  
[A2:A0]. Its function is the same as IOW, except it is active low. Either an active  
IOW# or IOW is required to transfer data from 650A to the Intel type CPU during a  
write operation. If this input is unused, it should be connected to VCC to minimize  
supply current.  
IOW  
CS0  
21  
14  
17  
9
I
I
Input/Output Write (active high)  
Same as IOW# but active high. If this input is unused, it should be connected to  
GND to minimize supply current.  
Chip Select 0 input (active high)  
This input selects the ST16C650A device. If CS1 or CS2# is used as the chip  
select then this pin must be connected to VCC. The 650A is selected when all  
three chip selects are active. See Figure 3 and Figure 4.  
CS1  
15  
16  
10  
11  
I
I
Chip Select 1 input (active high)  
This input selects the ST16C650A device. If CS0 or CS2# is used as the chip  
select then this pin must be connected to VCC. The 650A is selected when all  
three chip selects are active. See Figure 3 and Figure 4.  
CS2#  
Chip Select 2 input (active low)  
This input selects the ST16C650A device. If CS0 or CS1 is used as the chip select  
then this pin must be connected to GND. The 650A is selected when all three chip  
selects are active. See Figure 3 and Figure 4.  
3
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
44-  
48-  
NAME  
PLCC TQFP TYPE  
DESCRIPTION  
PIN #  
PIN #  
INT  
33  
30  
O
Interrupt Output (active high)  
This output becomes active whenever the transmitter, receiver, line and/or modem  
status register has an active condition. See interrupt section for more details. This  
interrupt output may be set to normal active high or active high open source (see  
MCR bit-5) to provide wire-OR capability by connecting a 1k to 10k ohms resistor  
between this pin and ground.  
AS#  
28  
24  
I
Address Strobe input (active low)  
In the Intel bus mode, the leading-edge transition of AS# latches the chip selects  
(CS0, CS1, CS2#) and the address lines A0, A1 and A2. This input is used when  
the address lines are not stable for the duration of a read or write operation. In  
devices with top mark date code of "I2 YYWW" and newer, the address bus is  
latched even if this input is not used. These devices feature a ’0 ns’ address hold  
time. See “AC Electrical Characteristics” . If not required, this input can be perma-  
nently tied to GND.  
TXRDY#  
RXRDY#  
27  
32  
23  
29  
O
O
UART Transmitter Ready (active low)  
The output provides the TX FIFO/THR status. See Table 2. If it is not used,  
leave it unconnected.  
UART Receiver Ready (active low)  
This output provides the RX FIFO/RHR status for receive channel A. See  
Table 2. If it is not used, leave it unconnected.  
PC Mode Interface Signals. Connect SEL pin to GND to select PC Mode.  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
25  
12  
14  
15  
16  
21  
1
20  
6
I
PC mode additional Address Lines  
In the PC mode, these are the additional address lines from the host address bus.  
They are inputs to the on-board chip select decode function for COM 1-4 and LPT  
ports. See Table 1 for details. The pins A4 and A9 have internal 100kpull-up  
resistors.  
9
10  
11  
17  
37  
AEN#  
28  
24  
I
I
Address Enable input (active low)  
When AEN# transition to logic 0, it decodes and validates COM 1-4 ports address  
per S1, S2 and S3 inputs.  
S1  
S2  
S3  
23  
10  
35  
21  
5
Select 1 to 3  
These are the standard PC COM 1-4 ports and IRQ selection inputs. See Table 1  
and Table 3 for details. The S1 pin has an internal 100kpull-up resistor.  
31  
IRQA  
IRQB  
IRQC  
33  
32  
27  
30  
29  
23  
O
O
Interrupt Request A, B and C Outputs (active high, tri-state)  
These are the interrupt outputs associated with COM 1-4 to be connected to the  
host data bus. See interrupt section for details. The Interrupt Requests A, B or C  
functions as IRQx to the PC bus. IRQx is enabled by setting MCR bit-3 to logic 1  
and the desired interrupt(s) in the interrupt enable register (IER).  
LPT1#  
17  
12  
Line Printer Port-1 Decode Logic Output (active low)  
This pin functions as the PC standard LPT-1 printer port address decode logic out-  
put, see Table 1. The baud rate generator clock output, BAUDOUT#, is internally  
connected to the RCLK input in the PC mode.  
4
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
44-  
48-  
NAME  
PLCC TQFP TYPE  
DESCRIPTION  
PIN #  
PIN #  
LPT2#  
26  
22  
O
Line Printer Port-2 Decode Logic Output (active low)  
This pin functions as the PC standard LPT-2 printer port address decode logic out-  
put, see Table 1.  
MODEM OR SERIAL I/O INTERFACE  
TX  
13  
8
O
Transmit Data or wireless infrared transmit data  
This output is active low in normal standard serial interface operation (RS-232,  
RS-422 or RS-485) and active high in the infrared mode.  
RX  
11  
7
I
Receive Data or wireless infrared receive data  
Normal received data input idles at logic 1 condition and logic 0 in the infrared  
mode. The wireless infrared pulses are applied to the decoder. This input must be  
connected to its idle logic state in either normal, logic 1, or infrared mode, logic 0,  
else the receiver may report “receive break” and/or “error” condition(s).  
RTS#  
CTS#  
36  
40  
32  
38  
O
Request to Send or general purpose output (active low)  
This port may be used for one of two functions:  
1) automatic hardware flow control, see EFR bit-6, MCR bit-1and IER bit-6.  
2) RS485 half-duplex direction control, see XFR bits 2 and 5.  
RTS# output must be asserted before auto RTS flow control can start.  
I
Clear to Send or general purpose input (active low)  
If used for automatic hardware flow control, data transmission will be stopped  
when this pin is de-asserted and will resume when this pin is asserted again. See  
EFR bit-7 and IER bit-7.  
DTR#  
DSR#  
CD#  
37  
41  
42  
43  
33  
39  
40  
41  
O
I
Data Terminal Ready or general purpose output (active low)  
Data Set Ready input or general purpose input (active low)  
Carrier Detect input or general purpose input (active low)  
Ring Indicator input or general purpose input (active low)  
I
RI#  
I
ANCILLARY SIGNALS  
XTAL1  
XTAL2  
RCLK  
18  
19  
10  
14  
15  
5
I
O
I
Crystal or external clock input. Caution: this input is not 5V tolerant.  
Crystal or buffered clock output  
Receiver Clock  
This input is used as external 16X clock input to the receiver section. Connect the  
BAUDOUT# pin to this input externally.  
BAUDOUT#  
17  
12  
O
Baud Rate Generator Output (active low)  
This pin provides the 16X clock of the selected data rate from the baud rate gener-  
ator. The RCLK pin must be connected externally to BAUDOUT# when the  
receiver is operating at the same data rate.  
When the PC mode is selected, the baud rate generator clock output is internally  
connected to the RCLK input. This pin then functions as the LPT-1 printer port  
decode logic output, see Table 3.  
SEL  
34  
36  
I
PC Mode Select (active low)  
When this input is at logic 0, it enables the on-board chip select decode function  
according to PC ISA bus COM[4:1] and IRQ[4:3] port definitions. See Table 3 for  
details. This pin has an internal 100kpull-up resistor.  
5
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
44-  
48-  
NAME  
PLCC TQFP TYPE  
DESCRIPTION  
PIN #  
PIN #  
DDIS#  
26  
22  
O
I
Drive Disable Output  
This pin goes to a logic 0 whenever the host CPU is reading data from the 650A. It  
can control the direction of a data bus transceiver between the CPU and 650A or  
other logic functions.  
RESET  
39  
35  
Reset Input (active high)  
A 40 ns minimum active pulse on this pin will reset the internal registers and all  
outputs. The UART transmitter output will be held at logic 1, the receiver input will  
be ignored and outputs are reset. See UART Reset Conditions in Table 13.  
OP1#  
OP2#  
VCC  
38  
35  
44  
34  
31  
42  
O
O
Output Port 1  
General purpose output.  
Output Port 2  
General purpose output.  
Pwr 2.90V to 5.5V supply voltage  
All inputs are 5V tolerant except for XTAL for devices with date code top mark of  
"HC YYWW" and newer. Devices with date code top mark of "GC YYWW" and  
older do not have 5V tolerant inputs.  
GND  
NC  
22  
-
18  
Pwr Power supply common ground  
1, 13,  
25  
-
No Connect  
Pin type: I=Input, O=Output, IO= Input/output, OD=Output Open Drain.  
6
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
1.0 PRODUCT DESCRIPTION  
The ST16C650A (650A) is a low power UART that can operate from 2.90V to 5.5V power supplies. Its inputs  
are 5V tolerant to facilitate interconnection to transceiver devices of RS-232, RS-422 or RS-485. The 650A is  
software compatible to the industry standard 16C550 with some additional enhanced features.  
The 650A provides serial asynchronous receive data synchronization, parallel-to-serial data conversion for the  
transmitter section and serial-to-parallel data conversions for receiver section. These functions are necessary  
for converting the serial data stream into parallel data that is required with digital data systems.  
Synchronization for the serial data stream is accomplished by adding start and stop bits to the transmitted data  
to form a data character (character orientated protocol). Data integrity is ensured by attaching a parity bit to the  
data character. The parity bit is checked by the receiver for any transmission bit errors. The electronic circuitry  
to provide all these functions is fairly complex especially when manufactured on a single integrated silicon  
chip. The ST16C650A represents such an integration with greatly enhanced features. The 650A is fabricated  
with an advanced CMOS process.  
The 650A supports standard 8-bit Intel or PC bus interfaces through an input selection pin (SEL input pin). The  
Intel bus uses the standard read and write signals for all bus transactions. The PC bus mode associates with  
the PC ISA bus and follow the industry standard PC definitions for COM 1-4 serial port addresses. The 650A  
includes on-board chip select decode logic and selection for the proper interrupt request. This eliminates the  
need for an external logic array device.  
The 650A has 32-bytes each of transmit and receive FIFOs, automatic RTS/CTS hardware flow control with  
hysteresis, automatic Xon/Xoff and special character software flow control, selectable transmit and receive  
FIFO trigger levels, wireless infrared encoder and decoder (IrDA ver. 1.0), programmable baud rate generator  
with a prescaler of divide by 1 or 4, and data rates up to 3.125 Mbps with a 16X sampling clock rate.  
The 650A is an upward solution that provides 32 bytes of transmit and receive FIFO memory, instead of 16  
bytes provided in the 16C550, or none in the 16C450. The 650A is designed to work with high speed  
communication devices, that require fast data processing time. Increased performance is realized in the 650A  
by the larger transmit and receive FIFOs. This allows the external processor to handle more networking tasks  
within a given time. For example, the standard ST16C550 with a 16 byte FIFO, unloads 16 bytes of receive  
data in 1.53 ms (This example uses a character length of 11 bits, including start/stop bits at 115.2Kbps). This  
means the external CPU will have to service the receive FIFO at 1.53 ms intervals. However with the 32 byte  
FIFO in the 650A, the data buffer will not require unloading/loading for 3.05 ms. This increases the service  
interval giving the external CPU additional time for other applications and reducing the overall UART interrupt  
servicing time. In addition, the 4 selectable levels of FIFO trigger interrupt and automatic hardware/software  
flow control is uniquely provided for maximum data throughput performance especially when operating in a  
multi-channel environment. The combination of the above greatly reduces the bandwidth requirement of the  
external controlling CPU, increases performance, and reduces power consumption.  
The rich feature set of the 650A is available through internal registers. Automatic hardware/software flow  
control, selectable transmit and receive FIFO trigger levels, selectable TX and RX baud rates, infrared  
encoder/decoder interface, modem interface controls, and a sleep mode are all standard features. In the PC  
mode, two tri-state interrupt lines (IRQB and IRQC) and one selectable open source interrupt output (IRQA)  
are available. The open source interrupt scheme allows multiple interrupts to be combined in a “wire-OR”  
operation, thus reducing the number of interrupt lines in larger systems. Following a power on reset or an  
external reset, the 650A is software compatible with previous generation of UARTs, 16C450, 16C550 and  
ST16C580.  
7
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
Host Data Bus Interface  
The host interface is 8 data bits wide with 3 address lines and control signals to execute bus read and write  
transactions. The 650A supports 2 type of host interfaces: Intel and PC mode. The Intel bus interface is  
selected by connecting SEL to a logic 1. The Intel bus interconnections are shown in Figure 3. The special PC  
mode is selected when SEL is connected to a logic 0. The PC mode interconnections are shown in Figure 4.  
FIGURE 3. ST16C650A INTEL BUS INTERCONNECTIONS  
BAUDOUT#  
RCLK  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
VCC  
CS0  
CS1  
SEL  
A0  
A0  
A1  
A2  
A1  
A2  
TX  
RX  
IOR*  
IOR#  
IOW#  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
IOW*  
CS#  
INT  
CS2#  
INT  
OP1#  
OP2#  
RESET  
RESET  
IOW  
IOR  
AS#  
GND  
FIGURE 4. ST16C650A PC MODE INTERCONNECTIONS  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
CS0  
CS1  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TX  
RX  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
A14  
A15  
AEN#  
A8  
A9  
AEN*  
IOR#  
IOW#  
IOR#  
IOW#  
OP1#  
IRQn  
IRQ4  
IRQ3  
IRQA  
IRQB  
IRQC  
SEL  
IOW  
S3  
VCC  
GND  
GND  
IOR  
AS#  
GND  
S2  
S1  
RESET  
RESET  
8
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
2.1.1  
PC MODE  
The PC mode interface includes an on-chip address decoder and interrupt selection function for the standard  
PC COM 1-4 port addresses. The selection is made through three input signals: S1, S2 and S3. The selection  
summary is shown in Table 1. Although the on-chip address decoder was designed for PC applications  
ranging from 0x278 to 0x3FF, it can fit into an embedded applications by offsetting the address lines to the  
650A. An example is shown in Figure 5 where the UART is operating from 0x80F8 to 0x80FF address space.  
Operating in the PC mode eliminates external address decode components.  
TABLE 1: PC MODE INTERFACE ON-CHIP ADDRESS DECODER AND INTERRUPT SELECTION.  
S3, S2, S1  
INPUTS  
A9-A3 ADDRESS LINES TO  
ON-CHIP DECODER  
COM/LPT PORT  
SELECTION  
SEL INPUT  
IRQ OUTPUT SELECTION  
0
0
0
0
0
0
0
0
0
0
0 0 0  
0 0 1  
0 1 0  
0 0 0  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
- - -  
0x3F8 - 0x3FF  
0x2F8 - 0x2FF  
0x3E8 - 0x3EF  
0x3F8 - 0x3FF  
0x2F8 - 0x2FF  
0x3E8 - 0x3EF  
0x2E8 - 0x2EF  
0x3F8 - 0x3FF  
0x278 - 0x27F  
0x378 - 0x37F  
COM-1  
COM-2  
COM-3  
COM-4  
COM-1  
COM-2  
COM-3  
COM-4  
LPT-2  
IRQB (for PC’s IRQ4)  
IRQC (for PC’s IRQ3)  
IRQB (for PC’s IRQ4)  
IRQB (for PC’s IRQ4)  
IRQA (for PC’s IRQn  
IRQA (for PC’s IRQn)  
IRQA (for PC’s IRQn)  
IRQA (for PC’s IRQn)  
N/A  
- - -  
LPT-1  
N/A  
FIGURE 5. PC MODE INTERFACE IN AN EMBEDDED APPLICATION.  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TX  
RX  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
A8  
A9  
AEN*  
A14  
A15  
AEN#  
IOR#  
IOW #  
IOR#  
IOW #  
OP1#  
INT  
IRQA  
IRQB  
IRQC  
Em bedded Application set to operate  
VCC  
at address 0x80F8 to 0x80FF  
GND  
S3  
S2  
SEL  
GND  
S1  
GND  
RESET  
RESET  
9
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
2.2  
The 650A can acccept up to 5V inputs even when operating at 3.3V. Caution: XTAL1 is not 5 volt tolerant.  
2.3 Device Reset  
5-Volt Tolerant Inputs  
The RESET input resets the internal registers and the serial interface outputs to their default state (see  
Figure 13). An active high pulse of longer than 40 ns duration will be required to activate the reset function in  
the device.  
2.4  
Device Identification and Revision  
The ST16C650A provides a Device Identification code and a Device Revision code to distinguish the part from  
other devices and revisions. To read the identification code from the part, it is required to set the baud rate  
generator registers DLL and DLM both to 0x00. Now reading the content of the DLM will provide 0x04 for the  
ST16C650A and reading the content of DLL will provide the revision of the part; for example, a reading of 0x01  
means revision A.  
2.5  
DMA Mode  
The device does not support direct memory access. The DMA Mode (a legacy term) in this document does not  
mean “direct memory access” but refers to data block transfer operation. The DMA mode affects the state of  
the RXRDY# and TXRDY# output pins. The transmit and receive FIFO trigger levels provide additional  
flexibility to the user for block mode operation. The LSR bits 5-6 provide an indication when the transmitter is  
empty or has an empty location(s) for more data. The user can optionally operate the transmit and receive  
FIFO in the DMA mode (FCR bit-3=1). When the transmit and receive FIFO are enabled and the DMA mode is  
disabled (FCR bit-3 = 0), the 650A is placed in single-character mode for data transmit or receive operation.  
When DMA mode is enabled (FCR bit-3 = 1), the user takes advantage of block mode operation by loading or  
unloading the FIFO in a block sequence determined by the programmed trigger level. In this mode, the 650A  
sets the TXRDY# pin when the transmit FIFO becomes full, and sets the RXRDY# pin when the receive FIFO  
becomes empty. The following table shows their behavior. Also see Figures 23 through 28.  
TABLE 2: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE  
FCR BIT-0=0  
PINS  
FCR BIT-0=1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR BIT-3 = 0  
FCR BIT-3 = 1  
(DMA MODE DISABLED)  
(DMA MODE ENABLED)  
RXRDY#  
TXRDY#  
0 = 1 byte.  
0 = at least 1 byte in FIFO  
1 = FIFO empty.  
1 to 0 transition when FIFO reaches the trigger  
level, or timeout occurs.  
1 = no data.  
0 to 1 transition when FIFO empties.  
0 = THR empty.  
1 = byte in THR.  
0 = FIFO empty.  
0 = FIFO has at least 1 empty location.  
1 = FIFO is full.  
1 = at least 1 byte in FIFO.  
10  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
2.6  
Interrupt  
The output function of interrupt, INT, output changes according to the operating bus type and various factors.  
Table 3 summarizes its behavior in Intel and PC mode of operation. Multiple interrupts can be wire-OR’ed. This  
is accomplished by setting MCR bit-5 to a logic 1 and connecting a 1Kto 10Kresistor between this pin and  
ground to provide an acceptable logic 0 level.  
TABLE 3: INTERRUPT OUTPUT (INT AND IRQA) FUNCTIONS  
MCR BIT-5 MCR BIT-3  
S3 INPUT  
SEL INPUT  
(INT TYPE  
SELECT)  
(IRQN  
INTERRUPT OUTPUT (INT OR IRQA)  
ENABLE)  
Intel Bus Mode  
1
don’t care  
0
1
don’t care INT is logic 0 for inactive interrupt.  
INT is logic 1 for active interrupt (active high)  
1
don’t care  
don’t care INT is three-state for inactive interrupt  
INT is logic 1 for active interrupt (open source). Requires a 1K-  
10Kresistor to GND.  
PC Mode  
0
0
1
1
1
don’t care  
don’t care  
IRQA is three-state. Either IRQB or IRQC is used, see Table 1.  
0
0
0
don’t care  
0
1
1
IRQA is three-state.  
0
1
IRQA is logic 0 for inactive interrupt.  
IRQA is logic 1 for active interrupt (active high).  
IRQA is three-state for no interrupt.  
IRQA is logic 1 for active interrupt (active high, open source).  
11  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
2.7  
Crystal Oscillator or External Clock  
The 650A includes an on-chip oscillator (XTAL1 and XTAL2). The crystal oscillator provides the system clock  
to the Baud Rate Generators (BRG) in the UART. XTAL1 is the input to the oscillator or external clock buffer  
input with XTAL2 pin being the output. Caution if external clock is used: XTAL1 input is not 5 Volt tolerant. For  
programming details, see “Programmable Baud Rate Generator.”  
FIGURE 6. TYPICAL OSCILLATOR CONNECTIONS  
XTAL1  
XTAL2  
R1  
0-120 Ω  
(Optional)  
R2  
500 ΚΩ − 1 ΜΩ  
1.8432 MHz  
to  
Y1  
24 MHz  
C1  
C2  
22-47 pF  
22-47 pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100 ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 6). Alternatively, an external  
clock can be connected to the XTAL1 pin to clock the internal baud rate generator for standard or custom rates.  
Typically, the oscillator connections are shown in Figure 6. For further reading on oscillator circuit please see  
application note DAN108 on EXAR’s web site.  
2.8  
Programmable Baud Rate Generator  
The UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter. The prescaler is  
controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide the input  
crystal or external clock by 1 or 4. The clock output of the prescaler goes to the BRG. The BRG further divides  
16  
this clock by a programmable divisor between 1 and (2 -1) to obtain a 16X sampling clock of the serial data  
rate. The sampling clock is used by the transmitter for data bit shifting and receiver for data sampling. The BRG  
divisor (DLL and DLM registers) defaults to a random value upon power up or a reset. Therefore, the BRG  
must be programmed during initialization to the operating data rate.  
12  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
FIGURE 7. BAUD RATE GENERATOR  
DLL and DLM  
Registers  
MCR Bit-7=0  
(default)  
Prescaler  
Divide by 1  
16X  
Crystal  
Osc/  
Buffer  
XTAL1  
XTAL2  
Sampling  
Rate Clock to  
Transmitter  
Baud Rate  
Generator  
Logic  
Prescaler  
Divide by 4  
MCR Bit-7=1  
Programming the Baud Rate Generator Registers DLM and DLL provides the capability of selecting the  
operating data rate. Table 4 shows the standard data rates available with a 14.7456 MHz crystal or external  
clock at 16X clock rate. When using a non-standard data rate crystal or external clock, the divisor value can be  
calculated for DLL/DLM with the following equation.  
divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16)  
TABLE 4: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK  
DLM  
PROGRAM  
VALUE (HEX) VALUE (HEX)  
DLL  
PROGRAM  
DATA RATE  
ERROR (%)  
OUTPUT Data Rate OUTPUT Data Rate DIVISOR FOR 16x DIVISOR FOR 16x  
MCR Bit-7=1  
MCR Bit-7=0  
Clock (Decimal) Clock (HEX)  
100  
600  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
1200  
2400  
4800  
9600  
19.2k  
38.4k  
57.6k  
115.2k  
230.4k  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
2.9  
Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 32 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X internal  
clock. A bit time is 16 clock periods. The transmitter sends the start-bit followed by the number of data bits,  
inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are reported in  
the Line Status Register (LSR bit-5 and bit-6).  
13  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
2.9.1  
Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including a start bit, data bits,  
parity bit and stop bit(s). The least-significant-bit (Bit-0) is the first data bit to go out. The THR is the input  
register to the transmit FIFO of 32 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
2.9.2  
Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
FIGURE 8. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X Clock  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.9.3  
Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 32 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the  
amount of data in the FIFO falls below its programmed trigger level. The transmit empty interrupt is enabled by  
IER bit-1. The TSR flag (LSR bit-6) is set when TSR/FIFO becomes empty.  
FIGURE 9. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE  
Transmit  
FIFO  
Transmit  
Data Byte  
THR Interrupt (ISR bit-1) falls  
below the programmed Trigger  
Level and then when becomes  
empty. FIFO is Enabled by FCR  
bit-0=1  
Auto CTS Flow Control (CTS# pin)  
Flow Control Characters  
(Xoff1/2 and Xon1/2 Reg.  
Auto Software Flow Control  
16X Clock  
Transmit Data Shift Register  
(TSR)  
TXFIFO1  
14  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
2.10 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 32 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X clock for timing. It verifies and validates  
every bit on the incoming character in the middle of each data bit. On the falling edge of a start or false start bit,  
an internal receiver counter starts counting at the 16X clock rate. After 8 clocks the start bit period should be at  
the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating  
the start bit in this manner prevents the receiver from assembling a false character. The rest of the data bits  
and stop bits are sampled and validated in this same manner to prevent false framing. If there were any  
error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte from RHR, the  
receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status of the data  
byte in the RHR register. RHR can generate a receive data ready interrupt upon receiving a character or delay  
until it reaches the FIFO trigger level (XFR bit-3). Furthermore, data delivery to the host is guaranteed by a  
receive data ready time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus  
12 bits time. This is equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.  
2.10.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift  
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive  
FIFO of 32 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When  
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the  
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data  
byte are immediately updated in the LSR bits 2-4.  
FIGURE 10. RECEIVER OPERATION IN NON-FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Tags in  
LSR bits  
4:2  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
RHR Interrupt (ISR bit-2)  
(RHR)  
RXFIFO1  
15  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
FIGURE 11. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Example  
:
- RX FIFO trigger level selected at 16 bytes  
32 bytes by 11-bit  
wide FIFO  
Data falls to  
8
RTS# re-asserts when data falls below the flow  
control trigger level to restart remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data FIFO  
FIFO  
Trigger=16  
RHR Interrupt (ISR bit-2) programmed for  
desired FIFO trigger level.  
FIFO is Enabled by FCR bit-0=1  
Data fills to  
24  
RTS# de-asserts when data fills above the flow  
control trigger level to suspend remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data  
Receive Data  
Byte and Errors  
RXFIFO1  
2.11 Automatic RTS (Hardware) Flow Control  
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#  
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control  
features is enabled to fit specific application requirement (see Figure 12):  
Enable auto RTS flow control using EFR bit-6.  
The auto RTS function must be started by asserting RTS output pin (MCR bit-1 to logic 1 after it is enabled).  
With the Auto RTS function enabled, the RTS# output pin will not be de-asserted (logic 1) when the receive  
FIFO reaches the programmed trigger level, but will be de-asserted when the FIFO reaches the next trigger  
level (See Table 10). The RTS# output pin will be asserted again after the FIFO is unloaded to the next trigger  
level below the programmed trigger level. However, even under these conditions, the 650A will continue to  
accept data until the receive FIFO is full if the remote UART transmitter continues to send data.  
Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the  
RTS# pin is de-asserted (logic 1) during Auto RTS flow control mode: ISR bit-5 will be set to logic 1.  
2.12 Auto CTS Flow Control  
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is  
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific  
application requirement (see Figure 12):  
Enable auto CTS flow control using EFR bit-7.  
With the Auto CTS function enabled, the UART will suspend transmission as soon as the stop bit of the  
character in the Transmit Shift Register has been shifted out. Transmission is resumed after the CTS# input is  
re-asserted (logic 0), indicating more data may be sent.  
Enable CTS interrupt through IER bit-7 (after setting EFR bit-4). The UART issues an interrupt when the  
CTS# pin is de-asserted (logic 1) during Auto CTS flow control mode: ISR bit-5 will be set to 1.  
16  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
FIGURE 12. AUTO RTS AND CTS FLOW CONTROL OPERATION  
Local UART  
UARTA  
Remote UART  
UARTB  
RXA  
TXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
RTSA#  
TXA  
CTSB#  
Auto RTS  
Trigger Level  
Auto CTS  
Monitor  
RXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
CTSA#  
RTSB#  
Auto CTS  
Monitor  
Auto RTS  
Trigger Level  
Assert RTS# to Begin  
Transmission  
1
10  
11  
ON  
ON  
ON  
RTSA#  
OFF  
OFF  
7
2
ON  
3
CTSB#  
TXB  
8
Restart  
9
Data Starts  
6
Suspend  
4
RXA FIFO  
Receive  
Data  
RX FIFO  
12  
RTS High  
Threshold  
RTS Low  
Threshold  
5
RX FIFO  
Trigger Level  
Trigger Level  
INTA  
(RXA FIFO  
Interrupt)  
RTSCTS1  
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of  
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO  
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-  
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA  
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows  
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-  
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),  
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until  
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB  
with RTSB# and CTSA# controlling the data flow.  
2.13 Auto Xon/Xoff (Software) Flow Control  
When software flow control is enabled (See Table 12), the 650A compares one or two sequential receive data  
characters with the programmed Xon or Xoff-1,2 character value(s). If received character(s) (RX) match the  
programmed values, the 650A will halt transmission (TX) as soon as the current character has completed  
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output  
pin will be activated. Following a suspension due to a match of the Xoff character values, the 650A will monitor  
the receive data stream for a match to the Xon-1,2 character value(s). If a match is found, the 650A will resume  
operation and clear the flags (ISR bit-4).  
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user  
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/  
Xoff characters (See Table 12) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters  
are selected, the 650A compares two consecutive receive characters with two software flow control 8-bit  
values (Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow  
17  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
control mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or  
FIFO.  
In the event that the receive buffer is overfilling and flow control needs to be executed, the 650A automatically  
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The 650A sends the  
Xoff-1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate)  
after the receive FIFO crosses the programmed trigger level. To clear this condition, the 650A will transmit the  
programmed Xon-1,2 characters as soon as receive FIFO drops to one trigger level below the programmed  
trigger level. Table 5 below explains this:  
TABLE 5: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL  
XOFF CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
XON CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
RX TRIGGER LEVEL  
INT PIN ACTIVATION  
8
8
8*  
0
8
16  
24  
28  
16  
24  
28  
16*  
24*  
28*  
16  
24  
* After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2  
characters); for example, after 2.083ms has elapsed for 9600 baud and 10-bit word length setting.  
2.14 Special Character Detect  
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced  
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal  
incoming RX data.  
The 650A compares each incoming receive character with Xoff-2 data. If a match exists, the received data will  
be transferred to the RX FIFO and ISR bit-4 will be set to indicate detection of a special character.  
Although the Internal Register Table shows each X-Register with eight bits of character information, the actual  
number of bits is dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the  
number of character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1  
also determines the number of bits that will be used for the special character comparison. Bit-0 in the X-  
registers corresponds with the LSB bit for the receive character.  
2.15  
Auto RS485 Half-duplex Control  
The auto RS485 half-duplex direction control changes the behavior of the transmitter when enabled by XFR  
bit-3. By default, it asserts RTS# (logic 0) output following the last stop bit of the last character that has been  
transmitted. This helps in turning around the transceiver to receive the remote station’s response. When the  
host is ready to transmit next polling data packet again, it only has to load data bytes to the transmit FIFO. The  
transmitter automatically re-asserts RTS# (logic 1) output prior to sending the data. The RS485 half-duplex  
direction control output polarity can be inverted by enabling XFR bit-5.  
TABLE 6: RS485 HALF-DUPLEX CONTROL  
XFR BIT-2  
XFR BIT-5  
RTS# PIN  
0
1
X
0
RS485 Half-Duplex control disabled  
Logic 1 = TX  
Logic 0 = RX  
1
1
Logic 1 = RX  
Logic 0 = TX  
18  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
2.16 Infrared Mode  
The 650A UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data Association)  
version 1.0. The infrared mode can be enabled by setting MCR bit-6 to a ‘1’. In the infrared mode, the user can  
choose to send/receive data either half-duplex or full-duplex. The half-duplex mode is chosen by setting bit-0 of  
XFR register to a ‘1’. This prevents echoed data from reaching the receiver. When the infrared feature is  
enabled, the transmit data outputs, TX, idles at logic zero level. Likewise, the RX input assumes an idle level of  
logic zero, see Figure 13.  
The IrDA standard defines the infrared encoder sends out a 3/16 of a bit wide HIGH-pulse for each “0” bit in the  
transmit data stream. This signal encoding reduces the on-time of the infrared LED, hence reduces the power  
consumption. See Figure 13 below. The 650A has an additional feature to allow user to vary the transmit pulse  
width further reducing power consumption of the system where application permits (see IRPW register for  
details).  
The wireless infrared decoder receives the input pulse from the infrared sensing diode on RX pin. Each time it  
senses a light pulse, it returns a logic 0 to the data bit stream. The 650A also includes another feature -  
inversion of the IR pulse (XFR register bit-1), where a LOW IR pulse in the receive data stream is recognized  
as a ’0’ bit.  
FIGURE 13. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING  
Character  
Data Bits  
1
1
1
1
1
0
0
0
0
0
TX Data  
Transmit  
IR Pulse  
(TX Pin)  
1/2 Bit Time  
Bit Time  
3/16 Bit Time  
IrEncoder-1  
Receive  
IR Pulse  
(RX pin)  
Bit Time  
1/16 Clock Delay  
1
1
1 1  
1
0
0
0
0
0
RX Data  
Data Bits  
Character  
IRdecoder-  
19  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
2.17 Sleep Mode & Wake-up Indicator  
The 650A is designed to operate with low power consumption. A special sleep mode is included to further  
reduce power consumption when the chip is not being used. All of these conditions must be satisfied for the  
650A to enter sleep mode:  
no interrupts pending 650A (ISR bit-0 = 1)  
sleep mode is enabled (IER bit-4 = 1)  
modem inputs are not toggling (MSR bits 0-3 = 0)  
RX input pin is idling at a logic 1  
The 650A stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for  
no clock output as an indication that the device has entered the sleep mode.  
The 650A resumes normal operation by any of the following:  
a receive data start bit transition (logic 1 to 0)  
a data byte is loaded to the transmitter, THR or FIFO  
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#  
If the sleep mode is enabled and the 650A is awakened by one of the conditions described above, an interrupt  
is issued by the 650A to signal to the CPU that it is awake. The lower nibble of the interrupt source register  
(ISR) will read a value of 0x1 for this interrupt and reading the ISR clears this interrupt. Since the same value  
(0x1) is also used to indicate no pending interrupt, users should exercise caution while using the sleep mode.  
Once awakened, the 650A will return to the sleep mode automatically after any other interrupting condition (the  
true cause of waking up the 650A) has been serviced. If the 650A is awakened by the modem inputs, a read to  
the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an  
interrupt is pending. The 650A will stay in the sleep mode of operation until it is disabled by setting IER bit-4 to  
a logic 0.  
20  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
2.18 Internal Loopback  
The 650A UART provides an internal loopback capability for system diagnostic purposes. The internal  
loopback mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 14 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX pin is held at logic 1 or mark condition while RTS# and DTR# are de-asserted, and  
CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held to a logic 1 during loopback  
test else upon exiting the loopback test the UART may detect and report a false “break” signal. Also, Auto  
RTS/CTS is not supported during internal loopback.  
FIGURE 14. INTERNAL LOOP BACK  
VCC  
TX  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
(RHR/FIFO)  
RX  
VCC  
RTS#  
RTS#  
CTS#  
CTS#  
VCC  
DTR#  
DTR#  
DSR#  
DSR#  
VCC  
OP1#  
OP1#  
RI#  
RI#  
VCC  
OP2#  
OP2#  
CD#  
CD#  
21  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
3.0 UART CONFIGURATION REGISTERS  
The 650A has a set of configuration registers selected by address lines A0 to A2. The based page registers are  
16C550 compatible with EXAR enhanced feature registers located on the second page (mirror) addresses.  
The second page registers are only accessible by setting LCR register to a value of 0xBF. The register set is  
shown on Table 7 and Table 8. .  
TABLE 7: ST16C650A UART CONFIGURATION REGISTERS  
ADDRESS  
REGISTER  
READ/WRITE  
COMMENTS  
A2 A1 A0  
16550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
THR - Transmit Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
0
0 0  
0 1  
0 0  
DLL - Divisor Latch Low  
Read/Write  
Read/Write  
Read-only  
LCR[7] = 1, LCR 0xBF  
LCR[7] = 1, LCR 0xBF  
0
0
DLM - Divisor Latch High  
DREV - Device Revision Code  
LCR[7] = 1, LCR 0xBF,  
DLL, DLM = 0x00  
0
0 1  
DVID - Device Identification Code  
IER - Interrupt Enable Register  
Read-only  
Read/Write  
LCR[7] = 1, LCR 0xBF,  
DLL, DLM = 0x00  
0
0
0 1  
1 0  
LCR[7] = 0  
LCR[7] = 0  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
MCR - Modem Control Register  
LSR - Line Status Register  
Read/Write  
Read/Write  
Read-only  
Write-only  
Read-only  
Write-only  
Read/Write  
LCR[7] = 0  
LCR[7] = 0  
XFR - Extra Feature Register  
MSR - Modem Status Register  
IRPW - Infrared Pulse Width Register  
SPR - Scratch Pad Register  
LCR[7] = 0, EFR[4] = 1  
LCR[7] = 0  
1
1
1 0  
1 1  
LCR[7] = 0, EFR[4] = 1  
LCR[7] = 0  
ENHANCED REGISTERS  
0
1
1
1
1
1 0  
0 0  
0 1  
1 0  
1 1  
EFR - Enhanced Function Register  
Xon-1 - Xon Character 1  
Xon-2 - Xon Character 2  
Xoff-1 - Xoff Character 1  
Xoff-2 - Xoff Character 2  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
22  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
TABLE 8: UART CONFIGURATION REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1.  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0/  
Bit-6  
Bit-6  
0/  
Bit-5  
Bit-5  
0/  
Bit-4  
Bit-4  
0/  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
WR  
IER RD/WR  
Modem RXLine  
Stat.  
Int.  
TX  
Empty  
Int  
RX  
Data  
Int.  
Stat.  
Int.  
CTS Int. RTS Int. Xoff Int.  
Enable Enable Enable  
Sleep  
Mode  
Enable  
Enable Enable Enable Enable  
0 1 0  
ISR  
RD  
FIFOs  
Enabled Enabled  
FIFOs  
0/  
0/  
INT  
INT  
INT  
INT  
LCR[7] = 0  
Source Source Source Source  
Bit-3  
INT  
INT  
Bit-2  
Bit-1  
Bit-0  
Source Source  
Bit-5  
Bit-4  
0 1 0  
FCR  
WR RXFIFO RXFIFO  
Trigger Trigger  
0/  
0/  
DMA  
Mode  
TX  
FIFO  
RX  
FIFOs  
FIFO Enable  
TXFIFO TXFIFO  
Trigger Trigger  
Enable Reset Reset  
0 1 1  
1 0 0  
LCR RD/WR Divisor Set TX Set Par-  
Even  
Parity Enable  
Parity  
Stop  
Bits  
Word  
Length Length  
Bit-1 Bit-0  
Word  
Enable  
Break  
ity  
MCR RD/WR  
0/  
0/  
0/  
Internal OP2#/ OP1# RTS# DTR#  
Loop-  
back  
Enable Enable  
IRQn  
Output  
Output Output  
Control Control  
BRG  
Pres-  
caler  
IR Mode INTType  
ENable Select  
1 0 1  
LSR  
XFR  
RD  
RX FIFO  
Error  
TSR  
Empty  
THR  
Empty  
RX  
Break  
RX  
RX  
RX  
Data  
Over- Ready  
run  
RX  
Data  
Fram- Parity  
ing  
Error  
Error  
Error  
LCR[7]=0  
WR  
Rsrvd  
CD  
Rsrvd  
Invert  
RS485 XonAny  
Control  
Enable  
LSR  
INT  
Auto  
RS485 IR RX  
Invert Enable  
Half-  
Mode Enable Input duplex  
IR  
Output  
1 1 0  
1 1 1  
MSR  
RD  
RI  
DSR  
CTS  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
IRPW  
WR  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
SPR RD/WR  
23  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
TABLE 8: UART CONFIGURATION REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1.  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
Baud Rate Generator Divisor  
0 0 0  
0 0 1  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-7  
0
Bit-6  
Bit-6  
Bit-6  
0
Bit-5  
Bit-5  
Bit-5  
0
Bit-4  
Bit-4  
Bit-4  
0
Bit-3  
Bit-3  
Bit-3  
0
Bit-2  
Bit-2  
Bit-2  
1
Bit-1  
Bit-1  
Bit-1  
0
Bit-0  
Bit-0  
Bit-0  
0
LCR[7]=1  
LCR 0xBF  
DREV  
DVID  
RD  
RD  
LCR[7] = 1  
LCR 0xBF  
DLL=0x00  
DLM=0x00  
Enhanced Registers  
Enable  
0 1 0  
EFR  
R/W  
Auto  
CTS  
Enable Enable  
Auto  
RTS  
Special  
Char  
Select  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
IER [7:4],  
ISR [5:4],  
FCR[5:4],  
MCR[7:5]  
MSR[7:4]  
IRPW[7:0]  
XFR[7:0]  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
LCR=0xBF  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
XON1  
XON2  
R/W  
R/W  
Bit-7  
Bit-7  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
Bit-0  
XOFF1 R/W  
XOFF2 R/W  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read-Only  
SEE”RECEIVER” ON PAGE 15.  
4.2 Transmit Holding Register (THR) - Write-Only  
SEE”TRANSMITTER” ON PAGE 13.  
4.3 Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR) register.  
4.3.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR bit-0 = a logic 1) and receive interrupts (IER bit-0 = logic 1) are enabled, the RHR  
interrupts (see ISR bits 2 and 3) status will reflect the following:  
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed  
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.  
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register  
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.  
C. The receive data ready bit (LSR bit-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the FIFO is empty.  
24  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
4.3.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR bit-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the ST16C650A in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A. LSR bit-0 indicates there is data in RHR or RX FIFO.  
B. LSR bit-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.  
C. LSR bits 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR bit-5 indicates THR is empty.  
E. LSR bit-6 indicates when both the transmit FIFO and TSR are empty.  
F. LSR bit-7 indicates a data error in at least one character in the RX FIFO.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-  
FIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is  
empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Holding Register empty interrupt (default).  
Logic 1 = Enable Transmit Holding Register empty interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
Any change of state of the LSR register bits 1, 2, 3 or 4 will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the  
character has been received. LSR bits 2-4 generate an interrupt either when the character with errors is next  
to be read out of the FIFO (XFR[3] = 0) or when the received chracter is received (XFR[3] = 1).  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[4]: Sleep Mode Enable (requires EFR bit-4 = 1)  
Logic 0 = Disable Sleep Mode (default).  
Logic 1 = Enable Sleep Mode. SEE”SLEEP MODE & WAKE-UP INDICATOR” ON PAGE 20.  
IER[5]: Xoff Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the software flow control, receive Xoff interrupt (default).  
Logic 1 = Enable the software flow control, receive Xoff interrupt. SEE”AUTO XON/XOFF (SOFTWARE)  
FLOW CONTROL” ON PAGE 17.  
IER[6]: RTS# Output Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the RTS# interrupt (default).  
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition  
from LOW to HIGH.  
25  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
IER[7]: CTS# Input Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the CTS# interrupt (default).  
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from  
LOW to HIGH.  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others queue up for next  
service. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt Source  
Table, Table 9, shows the data values (bit 0-5) for the six prioritized interrupt levels and the interrupt sources  
associated with each of these interrupt levels.  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX trigger level and TX FIFO empty (or transmitter empty in auto RS485 control).  
MSR is by any of the MSR bits, 0, 1, 2 and 3.  
Receive Xoff/Special character is by detection of an Xoff or Special character.  
CTS# is when its transmitter toggles the input pin (from low to high) during auto CTS flow control.  
RTS# is when its receiver toggles the output pin (from low to high) during auto RTS flow control.  
Wake-up Indicator: when the UART comes out of sleep mode.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by a read to the LSR register.  
RXRDY is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading RHR.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
Xoff interrupt is cleared by a read to ISR or when Xon character(s) is received.  
Special character interrupt is cleared by a read to ISR or after the next character is received.  
RTS# and CTS# status change interrupts are cleared by a read to the MSR register.  
Wake-up Indicator is cleared by a read to the ISR register.  
26  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
]
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL  
PRIORITY  
ISR REGISTER STATUS BITS  
SOURCE OF INTERRUPT  
LEVEL  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
1
2
3
4
5
6
7
-
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
MSR (Modem Status Register)  
RXRDY (Received Xoff or Special character)  
CTS#, RTS# change of state  
None (default) or wake-up indicator  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition) or the device has come out of sleep mode.  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels 1, 2, 3 and 4 (See Interrupt  
Source Table 9).  
ISR[5:4]: Interrupt Status  
These bits are enabled when EFR bit-4 is set to a logic 1. ISR bit-4 indicates that the receiver detected a data  
match of the Xoff character(s). Note that once set to a logic 1, the ISR bit-4 will stay a logic 1 until a Xon  
character is received. ISR bit-5 indicates that CTS# or RTS# has changed state.  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
4.5  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA, and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default).  
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
27  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select  
Controls the behavior of the TXRDY# and RXRDY# pins. SEE”DMA MODE” ON PAGE 10.  
Logic 0 = DMA Mode disabled (default).  
Logic 1 = DMA Mode enabled.  
FCR[5:4]: Transmit FIFO Trigger Select  
(logic 0 = default, TX trigger level = one)  
These 2 bits set the trigger level for the transmit FIFO interrupt. The UART will issue a transmit interrupt when  
the number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that  
the FIFO did not get filled over the trigger level on last re-load. Table 10 below shows the selections. EFR bit-4  
must be set to ‘1’ before these bits can be accessed.  
FCR[7:6]: Receive FIFO Trigger Select  
(logic 0 = default, RX trigger level =1).  
These 2 bits are used to set the trigger level for the receiver FIFO interrupt. Table 10 shows the complete  
selections..  
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION WITH AUTO RTS HYSTERESIS  
AUTO RTS  
DE-ASSERT  
AUTO RTS  
RE-ASSERT  
FCR  
BIT-7  
FCR  
BIT-6  
FCR  
BIT-5  
FCR  
BIT-4  
TRANSMIT INT  
TRIGGER LEVEL  
RECEIVE INT  
TRIGGER LEVEL  
0
0
1
1
0
1
0
1
16  
8
24  
30  
0
0
1
1
0
1
0
1
8
16  
24  
28  
28  
0
8
16  
24  
28  
16  
24  
4.6  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
28  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
LCR[2]: TX and RX Stop-bit Length Select  
The length of the stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 11 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even the number of logic 1’s in the transmitted character.  
The receiver must be programmed to check the same format.  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR BIT-5 = logic 0, parity is not forced (default).  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive  
data.  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive  
data.  
TABLE 11: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
Odd parity  
Even parity  
Force parity to mark, “1”  
Forced parity to space, “0”  
LCR[6]: Transmit Break Enable  
When enabled the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
29  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
LCR[7]: Baud Rate Divisors Enable  
Baud rate generator divisor (DLL/DLM) enable.  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected if LCR 0xBF.  
4.7  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Pins  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used for  
general purpose.  
Logic 0 = Force DTR# output to a logic 1 (default).  
Logic 1 = Force DTR# output to a logic 0.  
MCR[1]: RTS# Pins  
The RTS# pin is a modem control output and may be used for automatic hardware flow control enabled by  
EFR bit-6. If the modem interface is not used, this output may be used for general purpose.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: OP1# Output  
OP1# is a general purpose output.  
Logic 0 = OP1# output is at logic 1 (default).  
Logic 1 = OP1# output is at logic 0  
MCR[3]: OP2# or IRQn Enable during PC Mode  
OP2# is a general purpose output available during the Intel bus interface mode of operation. In the PC bus  
mode, it enables the IRQn operation. See PC Mode section.  
During Intel Bus Mode Operation:  
Logic 0 = OP2# output is at logic 1 (default).  
Logic 1 = OP2# output is at logic 0.  
During PC Mode Operation:  
Logic 0 = Disable IRQn operation (default).  
Logic 1 = Enable IRQn operation.  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 14.  
MCR[5]: Active/Three-state Interrupt Output Enable  
Logic 0 = Enable active or three-state interrupt output (default).  
Logic 1 = Enable open source interrupt output mode. See Table 3 for detailed information.  
30  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
MCR[6]: Infrared Encoder/Decoder Enable  
Logic 0 = Enable the standard modem receive and transmit input/output interface (default).  
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the  
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface  
requirement. The infrared TX output is at logic 0 during idle condition. The infrared receive data input polarity  
is also logic 0, however, it may be inverted when using an infrared module that provides inverted signal  
output. Use register XFR bit-1 to invert the receive input signal level going to the infrared decoder. Also see  
XFR bit-0 for half-duplex operation where the receiver can be disabled while transmitting.  
MCR[7]: Clock Prescaler Select  
Logic 0 = Divide by one. The input clock from the crystal or external clock is fed directly to the Programmable  
Baud Rate Generator without further modification, i.e., divide by one (default).  
Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and  
feeds it to the Programmable Baud Rate Generator, hence, data rates become one forth.  
4.8  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or RX FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or RX FIFO.  
LSR[1]: Receiver Overrun Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register  
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into  
the FIFO, therefore the data in the FIFO is not corrupted by the error. If IER bit-2 is enabled, an interrupt is  
generated immediately.  
LSR[2]: Receive Data Parity Error Flag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR. If IER bit-2 is enabled, an interrupt  
is generated when the character is available in the RHR (XFR[3] = 0) or when the character is received  
(XFR[3] = 1).  
LSR[3]: Receive Data Framing Error Flag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR. If IER bit-2 is enabled, an interrupt is generated when the  
character is available in the RHR (XFR[3] = 0) or when the character is received (XFR[3] = 1).  
LSR[4]: Receive Break Flag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO. The break indication is cleared when LSR is  
read, but the RX input may still be a logic 0. If IER bit-2 is enabled, an interrupt is generated when the  
character is available in the RHR (XFR[3] = 0) or when the character is received (XFR[3] = 1).  
31  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte  
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0  
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set  
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.  
LSR[6]: Transmit Shift Register Empty Flag  
This bit is the Transmit Shift Register Empty indicator. This bit is set to a logic 1 whenever the transmitter goes  
idle. It is set to logic 0 whenever either the THR or TSR contains a data character. In the FIFO mode this bit is  
set to one whenever the transmit FIFO and transmit shift register are both empty.  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in the FIFO.  
4.9  
Extra Feature Register (XFR) - Write Only  
This register provides additional features and controls to the ST16C650A UART.  
XFR [0]: Half-duplex Infrared Mode Enable  
When infrared mode is enabled, MCR bit-6=1, this bit selects the infrared mode to operate in normal full-duplex  
or half-duplex mode. This half-duplex mode feature is very desirable when the UART does not want to “see” its  
own data that may be reflected.  
Logic 0 = Disable. The receiver is active during data transmission.  
Logic 1 = Enable half-duplex operation. The infrared receiver is disabled during data transmission.  
XFR [1]: Invert Received Infrared Input Signal  
This bit controls the input polarity of the infrared data.  
Logic 0 = Infrared data input idles at logic 0 (default).  
Logic 1 = Infrared data idles at logic 1, pulses low.  
XFR [2]: Auto RS485 Enable  
This bit enables the auto RS485 direction control feature for half-duplex operation with RS-485 transceiver.  
The feature should only be enabled when normal RTS# output and auto RTS flow control are not used.  
Logic 0 = Disable the auto RS485 direction control function. This allows normal RTS# output or auto RTS  
flow control operation.  
Logic 1 = Enable the auto RS485 direction function. The RTS# output will automatically change its logic state  
to control the RS-485 transceiver from sending and receiving. SEE”AUTO RS485 HALF-DUPLEX  
CONTROL” ON PAGE 18.  
XFR [3]: LSR Bad Data Interrupt Operation  
When the LSR interrupt is enabled, IER bit-2=1, this bit selects when the interrupt pin (INT) will report received  
character error: parity, framing or break. Use this feature only if application needs immediate knowledge when  
a bad character is received.  
Logic 0 = Received data error interrupt (LSR interrupt) will be generated when the bad character is available  
for reading from the FIFO. This is compatible to industry standard 16C550 operation.  
Logic 1 = Received data error interrupt (LSR interrupt) is generated immediately upon receipt of the bad  
character. It will be reset when LSR is read. If user does not read the bad character out, another bad  
character interrupt is generated when it’s available for reading from the FIFO.  
32  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
XFR [4]: Xon-Any Enable  
This bit enables and disables the Xon-Any function when Xon/Xoff software flow control is enabled.  
Logic 0 = Disable the Xon-Any function.  
Logic 1 = Enable the Xon-Any function. The receiver will use any received character as an Xon character  
and resume data transmission.  
XFR [5]: Invert Auto RS-485 Control Output  
When Auto RS485 feature is enabled, XFR[2]=1, RTS# output automatically changes its logic state to control  
the RS-485 transceiver.  
Logic 0 = During auto RS-485, RTS# control output signal to the transceiver is logic 1 for transmit and logic 0  
for receive.  
Logic 1 = The RTS# output control signal to the transceiver is logic 0 for transmit and logic 1 for receive. User  
must assert RTS# for operation to take effect.  
XFR [7:6]: Reserved  
4.10 Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface signals, or other peripheral device that the  
UART is connected. Lower four bits of this register are used to indicate the changed information. These bits  
are set to a logic 1 whenever a signal from the modem changes state. These bits may be used as general  
purpose inputs/outputs when they are not used with modem signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto  
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the  
modem CTS# signal. A logic 1 on the CTS# pin will stop UART transmitter as soon as the current character  
has finished transmission, and a logic 0 will resume data transmission. Normally MSR bit-4 bit is the  
compliment of the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR  
register. The CTS# input may be used as a general purpose input when the modem interface is not used.  
MSR[5]: DSR Input Status  
DSR# (active high, logical 1). Normally this bit is the compliment of the DSR# input. In the loopback mode, this  
bit is equivalent to the DTR# bit in the MCR register. The DSR# input may be used as a general purpose input  
when the modem interface is not used.  
33  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
MSR[6]: RI Input Status  
RI# (active high, logical 1). Normally this bit is the compliment of the RI# input. In the loopback mode this bit is  
equivalent to bit-2 in the MCR register. The RI# input may be used as a general purpose input when the  
modem interface is not used.  
MSR[7]: CD Input Status  
CD# (active high, logical 1). Normally this bit is the compliment of the CD# input. In the loopback mode this bit  
is equivalent to bit-3 in the MCR register. The CD# input may be used as a general purpose input when the  
modem interface is not used.  
4.11 Infrared Transmit Pulse Width Control Register (IRPW) - Write Only  
The IRPW register allows the user to program the encoder’s pulse width. This cuts the LED on-time, hence,  
reducing power consumption.  
IRPW [7:0]: Pulse width control  
A 0x00 value (default) will set the pulse width to normal width of 3/16 of the data bit rate. The programmable  
infrared pulse width can be calculated using the following equation:  
Infrared pulse width (PW) = Crystal clock period x ‘N’, where ‘N’ is the value in IRPW from 1 to 255.  
Examples:  
Crystal frequency = 14.7456MHz (clock period of 67.82ns)  
PW = 67.82 x ‘N’ or ranges from 67.82ns to 17.29ms  
Caution: Never allow PW to exceed the operating data rate bit period, else the encoder stops.  
4.12 Scratch Pad Register (SPR)  
This is an 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.13 Baud Rate Generator Divisors (DLL and DLM) - Read/Write  
The Baud Rate Generator (BRG) is a 16-bit counter that generates the data rate for the transmitter. The rate is  
programmed through registers DLL and DLM which are only accessible when LCR bit-7 is set to ‘1’. See  
Programmable Baud Rate Generator section for more details. The concatenation of the contents of DLM and  
DLL gives the 16-bit divisor value which is used to calculate the baud rate:  
Baud Rate = (Clock Frequency / 16) / Divisor  
Also see MCR bit-7 and Table 4.  
4.14 Device Identification Register (DVID) - Read Only  
This register contains the device ID (0x04 for ST16C650A). Prior to reading this register, DLL and DLM should  
be set to 0x00.  
4.15 Device Revision Register (DREV) - Read Only  
This register contains the device revision information. For example, 0x01 means revision A. Prior to reading  
this register, DLL and DLM should be set to 0x00.  
4.16 Enhanced Feature Register (EFR)  
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive  
character software flow control selection (see Table 12). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes  
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that  
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before  
programming a new setting.  
34  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
EFR[3:0]: Software Flow Control Select  
Combinations of software flow control can be selected by programming these bits.  
TABLE 12: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
EFR BIT-2  
EFR BIT-1  
EFR BIT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
No TX and RX flow control (default and reset)  
No transmit flow control  
0
0
1
0
1
X
X
X
1
0
0
0
1
1
X
X
X
0
0
X
X
X
X
0
1
0
1
0
X
X
X
X
0
Transmit Xon1/Xoff1  
Transmit Xon2/Xoff2  
Transmit Xon1 and Xon2/Xoff1 and Xoff2  
No receive flow control  
0
Receiver compares Xon1/Xoff1  
Receiver compares Xon2/Xoff2  
1
1
Transmit Xon1/ Xoff1,  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
0
1
0
1
1
0
1
1
1
1
1
1
Transmit Xon2/Xoff2,  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
Transmit Xon1 and Xon2/Xoff1 and Xoff2,  
Receiver compares Xon1 and Xon2/Xoff1 and Xoff2  
No transmit flow control,  
Receiver compares Xon1 and Xon2/Xoff1 and Xoff2  
EFR[4]: Enhanced Function Bits Enable  
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 5-7, XFR bits  
0-7 and IRPW bits 0-7 to be modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to  
latch the new values. This feature prevents legacy software from altering or overwriting the enhanced functions  
once set. Normally, it is recommended to leave it enabled, logic 1.  
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 5-  
7, XFR bits 0-7 and IRPW bits 0-7 are saved to retain the user settings. After a reset, the IER bits 4-7, ISR  
bits 4-5, FCR bits 4-5, MCR bits 5-7, XFR bits 0-7 and IRPW bits 0-7 are set to a logic 0 to be compatible with  
ST16C550 mode. (default).  
Logic 1 = Enables the above-mentioned register bits to be modified by the user.  
EFR[5]: Special Character Detect Enable  
Logic 0 = Special Character Detect Disabled. (default)  
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with  
data in Xoff-2 register. If a match exists, the received data will be transferred to FIFO and ISR bit-4 will be set  
to indicate detection of the special character. Bit-0 corresponds with the LSB bit for the receive character. If  
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]=10) then flow control and special character work  
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]=01) then flow control works  
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character  
interrupt.  
35  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
EFR[6]: Auto RTS Flow Control Enable  
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is  
selected, an interrupt will be generated (if IER bit-6 = 1) when the receive FIFO is filled to the programmed  
trigger level and RTS de-asserts to a logic 1 at the next upper trigger level. RTS# will return to a logic 0 when  
FIFO data falls below the next lower trigger level. The RTS# output must be asserted (logic 0) before the auto  
RTS can take effect. RTS# pin will function as a general purpose output when hardware flow control is  
disabled.  
Logic 0 = Automatic RTS flow control is disabled. (default)  
Logic 1 = Enable Automatic RTS flow control.  
EFR[7]: Auto CTS Flow Control Enable  
Automatic CTS Flow Control.  
Logic 0 = Automatic CTS flow control is disabled. (default)  
Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts to logic  
1. Data transmission resumes when CTS# input returns to a logic 0.  
4.17 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write  
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.  
For more details, see Table 5.  
36  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
TABLE 13: UART RESET CONDITIONS  
RESET STATE  
REGISTERS  
DLL  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
Bits 7-0 = 0x00  
Bits 3-0 = logic 0  
DLM  
RHR  
THR  
IER  
FCR  
ISR  
LCR  
MCR  
LSR  
XFR  
MSR  
Bits 7-4 = logic levels of the inputs  
IRPW  
SPR  
Bits 7-0 = 0x00  
Bits 7-0 = 0xFF  
EFR  
Bits 7-0 = 0x00  
XON1  
XON2  
XOFF1  
XOFF2  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
I/O SIGNALS  
RESET STATE  
TX  
Normal = logic 1  
Infrared = logic 0  
RTS#  
DTR#  
Logic 1  
Logic 1  
Logic 1  
Logic 1  
Logic 0  
Logic 1  
Logic 0  
OP1#  
OP2#  
TXRDY#  
RXRDY#  
INT (Intel Mode)  
IRQA, IRQB, IRQC (PC Mode) Three-State Condition  
37  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
-0.5 to 7V  
-40o to +85oC  
Operating Temperature  
-65o to +150oC  
500 mW  
Storage Temperature  
Package Dissipation  
theta-ja = 59oC/W, theta-jc = 16oC/W  
theta-ja = 53oC/W, theta-jc = 21oC/W  
Thermal Resistance (48-TQFP)  
Thermal Resistance (44-PLCC)  
ELECTRICAL CHARACTERISTICS  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.90V TO  
5.5V  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNITS  
CONDITION  
MIN  
MAX MIN  
MAX  
VILCK  
VIHCK  
VIL  
Clock Input Low Level  
-0.3  
2.4  
0.6  
VCC  
0.8  
-0.5  
0.6  
VCC  
0.8  
V
V
V
V
Clock Input High Level  
Input Low Voltage  
3.0  
-0.5  
2.0  
-0.3  
2.0  
VIH  
Input High Voltage  
VCC  
VCC  
(top mark date code of "GC YYWW" and older)  
VIH  
Input High Voltage  
2.0  
5.5  
0.4  
2.0  
5.5  
0.4  
V
(top mark date code of "HC YYWW" and newer)  
VOL  
VOL  
VOH  
VOH  
IIL  
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
Power Supply Current  
Sleep Current  
V
V
IOL = 5 mA  
IOL = 4 mA  
IOH = -5 mA  
IOH = -1 mA  
2.4  
V
2.0  
V
+/-10  
+/-10  
5
+/-10  
+/-10  
5
uA  
uA  
pF  
mA  
uA  
IIH  
CIN  
ICC  
1.3  
3.0  
ISLEEP  
30  
100  
See Test1  
Test 1: The following inputs should remain steady at VCC or GND state to minimize sleep current: A0-A2, D0-D7, IOR#,  
IOW#, CS# and modem inputs. Also, RX input must idle at logic 1 state while in sleep mode. In mixed voltage  
environments, where the voltage at any of the inputs of the 650A is lower than its VCC supply voltage, the sleep current will  
be higher than the maximum values given here.  
38  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.90V TO 5.5V, 70 PF LOAD  
WHERE APPLICABLE  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX MIN  
MAX  
CLK  
OSC  
OSC  
TAS  
Clock Pulse Duration  
Crystal Frequency  
30  
20  
ns  
MHz  
MHz  
ns  
20  
33  
24  
50  
External Clock Frequency  
Address Setup Time (AS# tied to GND)  
5
5
TAH  
Address Hold Time (AS# tied to GND)  
10  
10  
ns  
(top mark date code of "HC YYWW" and older)  
TAH  
Address Hold Time (AS# tied to GND)  
0
0
ns  
(top mark date code of "I2 YYWW" and newer)  
TCS  
TRD  
Chip Select Width  
50  
50  
40  
40  
40  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOR# Strobe Width  
TDY  
Read/Write Cycle Delay  
TRDV  
TDD  
Data Access Time  
40  
15  
30  
10  
Data Disable Time  
0
50  
20  
5
0
40  
10  
5
TWR  
TDS1  
TDH1  
TASW  
TAS1  
TAH1  
TAS2  
TAH2  
TCS1  
TCSH  
TCS2  
TRD1  
TRD2  
TDIS  
TWR1  
IOW# Strobe Width  
Data Setup Time (AS# tied to GND)  
Data Hold Time (AS# tied to GND)  
Address Strobe Width  
35  
5
25  
5
Address Setup Time (AS# used)  
Address Hold Time (AS# used)  
Address Setup Time (AS# used)  
Address Hold Time (AS# used)  
Delay from Chip Select to AS#  
Delay from AS# to Chip Select  
Delay from AS# to Chip Select  
Delay from AS# to Read  
Delay from Chip Select to IOR#  
Delay from IOR# to DDIS#  
Delay from AS# to IOW#  
10  
5
10  
5
10  
5
10  
5
0
0
5
5
10  
10  
15  
10  
10  
10  
10  
10  
39  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.90V TO 5.5V, 70 PF LOAD  
WHERE APPLICABLE  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX MIN  
MAX  
TDS2  
TDH2  
TAS3  
TRD3  
TRD4  
TWR2  
TWR3  
TDS3  
TDH3  
TWDO  
TMOD  
TRSI  
TSSI  
TRRI  
TSI  
Data Setup Time (AS# used)  
20  
10  
ns  
ns  
Data Hold Time (AS# used)  
5
5
Address Setup Time (PC Mode)  
Delay from AEN# to IOR#  
5
5
ns  
10  
10  
10  
10  
20  
5
10  
10  
10  
10  
10  
5
ns  
Delay from IOR# to AEN#  
ns  
Delay from AEN# to IOW#  
ns  
Delay from IOW# to AEN#  
ns  
Data Setup Time (PC Mode)  
Data Hold Time (PC Mode)  
ns  
ns  
Delay From IOW# To Output  
Delay To Set Interrupt From MODEM Input  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
Delay From IOR# To Reset Interrupt  
Delay From Stop To Interrupt  
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Delay From Stop To Set RXRDY#  
Delay From IOR# To Reset RXRDY#  
Delay From IOW# To Set TXRDY#  
Delay From Center of Start To Reset TXRDY#  
Reset Pulse Width  
50  
40  
40  
1
40  
35  
35  
1
ns  
ns  
ns  
Bclk  
ns  
45  
45  
24  
45  
1
40  
40  
24  
40  
1
ns  
TINT  
TWRI  
TSSR  
TRR  
8
8
Bclk  
ns  
Bclk  
ns  
45  
45  
8
40  
40  
8
TWT  
ns  
TSRT  
TRST  
N
Bclk  
ns  
40  
1
40  
1
216-1  
216-1  
Baud Rate Divisor  
-
Bclk  
Baud Clock  
16X of data rate  
Hz  
40  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
FIGURE 15. CLOCK TIMING  
CLK  
CLK  
EXTERNAL  
CLOCK  
OSC  
FIGURE 16. MODEM INPUT/OUTPUT TIMING  
IOW#  
Active  
IOW  
TWDO  
Change of state  
RTS#  
DTR#  
Change of state  
CD#  
CTS#  
DSR#  
Change of state  
Change of state  
TMOD  
TMOD  
Active  
INT  
Active  
Active  
Active  
TRSI  
IOR#  
IOR  
Active  
Active  
TMOD  
Change of state  
RI#  
41  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
FIGURE 17. DATA BUS READ TIMING IN INTEL BUS MODE WITH AS# TIED TO GND  
A0-  
A2  
Valid  
Address  
Valid  
Address  
TAS  
TAS  
TAH  
TAH  
CS2#  
TCS  
TCS  
CS0  
CS1  
TDY  
IOR#  
IOR  
TRD  
TRD  
TDD  
TDD  
TRDV  
TRDV  
Valid  
Data  
Valid  
Data  
D0-D7  
Note: Only one chipselect and one read strobe should be used.  
FIGURE 18. DATA BUS WRITE TIMING IN INTEL BUS MODE WITH AS# TIED TO GND  
A0-  
A2  
Valid  
Address  
Valid  
Address  
TAS  
TAS  
TAH  
TAH  
CS2#  
TCS  
TCS  
CS1  
CS0  
TDY  
IOW#  
IOW  
TWR  
TWR  
TDH1  
TDH1  
TDS1  
Valid  
TDS1  
Valid  
Data  
D0-D7  
Data  
Note: Only one chipselect and one write strobe should be used.  
42  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
FIGURE 19. DATA BUS READ TIMING IN INTEL BUS MODE USING AS#  
TASW  
TASW  
AS#  
TAH1  
TAH2  
TAS1  
TAS2  
Valid  
Address  
Valid  
Address  
A0-A2  
TCSH  
TCSH  
TCS2  
TCS1  
CS2#  
TCS  
TCS  
CS0 or CS1  
TRD1  
TDY  
TRD2  
IOR#  
IOR  
TRD  
TRD  
TDIS  
TDIS  
DDIS#  
D0-D7  
TDD  
TDD  
TRDV  
TRDV  
Valid  
Data  
Valid  
Data  
Note: Only one chipselect and one read strobe should be used.  
FIGURE 20. DATA BUS WRITE TIMING IN INTEL BUS MODE USING AS#  
TASW  
TASW  
AS#  
TAH1  
TAH2  
TAS1  
TAS2  
Valid  
Address  
Valid  
Address  
A0-A2  
TCSH  
TCSH  
TCS1  
TCS1  
CS2#  
TCS  
TCS  
CS0 or CS1  
TDY  
TWR1  
TWR1  
IOW#  
IOW  
TWR  
TDS2  
TWR  
TDS2  
TDH2  
TDH2  
Valid  
Data  
Valid  
Data  
D0-D7  
Note: Only one chipselect and one write strobe should be used.  
43  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
FIGURE 21. DATA BUS READ TIMING IN PC MODE  
Valid  
Address  
Valid  
Address  
A0-A9  
TAS3  
TAS3  
AEN#  
TCS  
TCS  
TRD3  
TRD4  
TRD3  
TRD4  
IOR#  
TRD  
TRD  
TDY  
TDD  
TDD  
TRDV  
TRDV  
Valid  
Data  
Valid  
Data  
D0-D7  
FIGURE 22. DATA BUS WRITE TIMING IN PC MODE  
Valid  
Address  
Valid  
Address  
A0-A9  
TAS3  
TAS3  
AEN#  
TCS  
TCS  
TWR2  
TWR3  
TWR2  
TWR3  
IOW#  
TWR  
TWR  
TDY  
TDS3  
TDS3  
TDH3  
TDH3  
Valid  
Data  
Valid  
Data  
D0-D7  
44  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE]  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSR  
TSSR  
TSSR  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TSSR  
TSSR  
TSSR  
Active  
Data  
Active  
Data  
Active  
Data  
RXRDY#  
Ready  
Ready  
Ready  
TRR  
TRR  
TRR  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE]  
TX  
(Unloading)  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
IER[1]  
enabled  
ISR is read  
ISR is read  
ISR is read  
INT*  
TWRI  
TWRI  
TWRI  
TSRT  
TSRT  
TSRT  
TXRDY#  
TWT  
TWT  
TWT  
IOW#  
(Loading data  
into THR)  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
TXNonFIFO  
45  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
FIGURE 25. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED]  
Start  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
Stop  
Bit  
RX FIFO drops  
below RX  
Trigger Level  
INT  
TSSR  
FIFO  
Empties  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
RXRDY#  
First Byte is  
Received in  
RX FIFO  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXINTDMA#  
FIGURE 26. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED]  
Start  
Bit  
Stop  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
RX FIFO drops  
below RX  
Trigger Level  
INT  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
TSSR  
FIFO  
Empties  
RXRDY#  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXFIFODMA  
46  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
FIGURE 27. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED]  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
(Unloading)  
T
S
S
S
T
S
T
S
D0:D7  
D0:D7  
T
S D0:D7  
T
D0:D7  
T
D0:D7  
D0:D7  
T
ISR is read  
TSI  
IER[1]  
enabled  
ISR is read  
TSRT  
INT*  
TX FIFO  
Empty  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
Data in  
TX FIFO  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.  
TXDMA#  
FIGURE 28. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED]  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX  
(Unloading)  
S
D0:D7  
S
D0:D7  
S
S
D0:D7  
T
T
T
D0:D7  
D0:D7  
S
D0:D7  
T
S D0:D7  
T
T
IER[1]  
enabled  
ISR Read  
ISR Read  
TSI  
TSRT  
INT*  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
At least 1  
empty location  
in FIFO  
TX FIFO  
Full  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT cleared when the ISR is read or when TX FIFO fills up to trigger level.  
TXDMA  
47  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)  
D
D
1
36  
25  
37  
24  
D
1
D
48  
13  
1
1
2
B
e
A
2
C
A
Seating  
Plane  
α
A
1
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
1.20  
0.15  
A
0.039  
0.002  
0.047  
0.006  
1.00  
0.05  
A
1
A
0.037  
0.007  
0.004  
0.346  
0.272  
0.041  
0.011  
0.008  
0.362  
0.280  
0.95  
0.17  
0.09  
8.80  
6.90  
1.05  
0.27  
0.20  
9.20  
7.10  
2
B
C
D
D
1
e
L
α
0.020 BSC  
0.50 BSC  
0.018  
0.030  
0.45  
0.75  
0°  
7°  
0°  
7°  
48  
xr  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
REV. 5.0.1  
PACKAGE DIMENSIONS (44 PIN PLCC)  
44 LEAD PLASTIC LEADED CHIP CARRIER  
(PLCC)  
Rev. 1.00  
C
D
Seating Plane  
D1  
45° x H  
1
45° x H  
2
A
2
2
1
44  
B
1
B
e
D
D
1
D
D
3
2
R
D
3
A
1
A
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
4.57  
3.05  
A
0.165  
0.090  
0.180  
0.120  
4.19  
2.29  
A
1
A
0.020  
0.013  
0.026  
0.008  
0.685  
0.650  
---  
0.51  
0.33  
---  
2
B
0.021  
0.032  
0.013  
0.695  
0.656  
0.53  
0.81  
0.32  
17.65  
16.66  
B
0.66  
1
C
D
0.19  
17.40  
16.51  
D
1
D
0.590  
0.630  
14.99  
16.00  
2
D
0.500 typ.  
0.050 BSC  
12.70 typ.  
1.27 BSC  
1.07  
3
e
H
0.042  
0.056  
0.048  
0.045  
1.42  
1.22  
1.14  
1
H
0.042  
0.025  
1.07  
0.64  
2
R
49  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
xr  
REV. 5.0.1  
REVISION HISTORY  
DATE  
REVISION  
DESCRIPTION  
January 2001  
4.20  
Updated information specific to Device Revision "FC" and newer:  
2.90V to 5.5V Operation with 5V tolerant inputs  
3.125 Mbps dta rate at 5V and 2 Mbps at 3.3V  
Auto RS485 Half-duplex control output  
Wireless Infrared (IrDA) encoder with programmable pulse width capability  
and decoder interface  
Description of Device ID & Revision, IRPW and XFR registers  
December 2001  
January 2004  
4.30  
Updated values in AC Electrical Characteristics Table.  
5.0.0  
Changed to standard style format. Clarified timing diagrams. Added Device Status  
to Ordering Information. Devices with top mark date code of "I2 YYWW" and newer  
have 0 ns address hold time. Devices with top mark date code of "HC YYWW" and  
older do not have this feature.  
August 2005  
5.0.1  
Removed discontinued 40-pin PDIP from Ordering Information.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2005 EXAR Corporation  
Datasheet August 2005.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
50  
xr  
REV. 5.0.1  
ST16C650A  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
FEATURES .................................................................................................................................................. 1  
APPLICATIONS............................................................................................................................................. 1  
FIGURE 1. BLOCK DIAGRAM..................................................................................................................................................................... 1  
ORDERING INFORMATION ............................................................................................................................. 2  
FIGURE 2. INTEL AND PC MODE PIN OUT ................................................................................................................................................. 2  
PIN DESCRIPTIONS ........................................................................................................ 3  
1.0 Product Description ................................................................................................................ 7  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................... 8  
2.1 HOST DATA BUS INTERFACE ............................................................................................................... 8  
FIGURE 3. ST16C650A INTEL BUS INTERCONNECTIONS .......................................................................................................................... 8  
FIGURE 4. ST16C650A PC MODE INTERCONNECTIONS ........................................................................................................................... 8  
2.1.1 PC MODE .................................................................................................................................................. 9  
TABLE 1: PC MODE INTERFACE ON-CHIP ADDRESS DECODER AND INTERRUPT SELECTION. ...................................................................... 9  
FIGURE 5. PC MODE INTERFACE IN AN EMBEDDED APPLICATION.............................................................................................................. 9  
2.2 5-VOLT TOLERANT INPUTS ................................................................................................................ 10  
2.3 DEVICE RESET .................................................................................................................................. 10  
2.4 DEVICE IDENTIFICATION AND REVISION .............................................................................................. 10  
2.5 DMA MODE ...................................................................................................................................... 10  
TABLE 2: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE .................................................................................................. 10  
2.6 INTERRUPT ....................................................................................................................................... 11  
TABLE 3: INTERRUPT OUTPUT (INT AND IRQA) FUNCTIONS ................................................................................................................... 11  
2.7 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK ..................................................................................... 12  
FIGURE 6. TYPICAL OSCILLATOR CONNECTIONS ...................................................................................................................................... 12  
2.8 PROGRAMMABLE BAUD RATE GENERATOR ......................................................................................... 12  
FIGURE 7. BAUD RATE GENERATOR ...................................................................................................................................................... 13  
TABLE 4: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK.............................................................................. 13  
2.9 TRANSMITTER ................................................................................................................................... 13  
2.9.1 Transmit Holding Register (THR) - Write Only......................................................................................... 14  
2.9.2 Transmitter Operation in non-FIFO Mode ................................................................................................ 14  
FIGURE 8. TRANSMITTER OPERATION IN NON-FIFO MODE...................................................................................................................... 14  
2.9.3 Transmitter Operation in FIFO Mode ....................................................................................................... 14  
FIGURE 9. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE............................................................................................. 14  
2.10 RECEIVER ....................................................................................................................................... 15  
2.10.1 Receive Holding Register (RHR) - Read-Only ....................................................................................... 15  
FIGURE 10. RECEIVER OPERATION IN NON-FIFO MODE ......................................................................................................................... 15  
FIGURE 11. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE............................................................................... 16  
2.11 AUTOMATIC RTS (HARDWARE) FLOW CONTROL .............................................................................. 16  
2.12 AUTO CTS FLOW CONTROL ............................................................................................................ 16  
FIGURE 12. AUTO RTS AND CTS FLOW CONTROL OPERATION .............................................................................................................. 17  
2.13 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ............................................................................... 17  
TABLE 5: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL....................................................................................................................... 18  
2.14 SPECIAL CHARACTER DETECT ......................................................................................................... 18  
2.15 AUTO RS485 HALF-DUPLEX CONTROL ........................................................................................... 18  
TABLE 6: RS485 HALF-DUPLEX CONTROL ............................................................................................................................................. 18  
2.16 INFRARED MODE ............................................................................................................................. 19  
FIGURE 13. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING ................................................................................. 19  
2.17 SLEEP MODE & WAKE-UP INDICATOR .............................................................................................. 20  
2.18 INTERNAL LOOPBACK ...................................................................................................................... 21  
FIGURE 14. INTERNAL LOOP BACK......................................................................................................................................................... 21  
3.0 UART CONFIGURATION REGISTERS ................................................................................. 22  
TABLE 7: ST16C650A UART CONFIGURATION REGISTERS .......................................................................................................... 22  
TABLE 8: UART CONFIGURATION REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1........................... 23  
4.0 Internal register descriptions .............................................................................................. 24  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY ............................................................................ 24  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ......................................................................... 24  
I
ST16C650A  
xr  
REV.5.0.1  
2.90V TO 5.5V UART WITH 32-BYTE FIFO  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ........................................................................... 24  
4.3.1 IER versus Receive FIFO Interrupt Mode Operation................................................................................ 24  
4.3.2 IER versus Receive/Transmit FIFO Polled Mode Operation.................................................................... 25  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................ 26  
4.4.1 Interrupt Generation: ................................................................................................................................ 26  
4.4.2 Interrupt Clearing:..................................................................................................................................... 26  
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL............................................................................................................................... 27  
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ............................................................................... 27  
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION WITH AUTO RTS HYSTERESIS....................................................... 28  
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE ................................................................................. 28  
TABLE 11: PARITY SELECTION................................................................................................................................................................ 29  
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE ........ 30  
4.8 LINE STATUS REGISTER (LSR) - READ ONLY ..................................................................................... 31  
4.9 EXTRA FEATURE REGISTER (XFR) - WRITE ONLY .............................................................................. 32  
4.10 MODEM STATUS REGISTER (MSR) - READ ONLY ............................................................................. 33  
4.11 INFRARED TRANSMIT PULSE WIDTH CONTROL REGISTER (IRPW) - WRITE ONLY ............................. 34  
4.12 SCRATCH PAD REGISTER (SPR) ...................................................................................................... 34  
4.13 BAUD RATE GENERATOR DIVISORS (DLL AND DLM) - READ/WRITE .................................................. 34  
4.14 DEVICE IDENTIFICATION REGISTER (DVID) - READ ONLY .................................................................. 34  
4.15 DEVICE REVISION REGISTER (DREV) - READ ONLY ......................................................................... 34  
4.16 ENHANCED FEATURE REGISTER (EFR) ............................................................................................ 34  
TABLE 12: SOFTWARE FLOW CONTROL FUNCTIONS ............................................................................................................................... 35  
4.17 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE ............... 36  
TABLE 13: UART RESET CONDITIONS ............................................................................................................................................. 37  
ELECTRICAL CHARACTERISTICS ................................................................................38  
DC ELECTRICAL CHARACTERISTICS ...........................................................................................................38  
AC ELECTRICAL CHARACTERISTICS............................................................................................................39  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.90V TO 5.5V, 70 PF LOAD  
WHERE APPLICABLE39  
FIGURE 15. CLOCK TIMING .................................................................................................................................................................... 41  
FIGURE 16. MODEM INPUT/OUTPUT TIMING............................................................................................................................................ 41  
FIGURE 17. DATA BUS READ TIMING IN INTEL BUS MODE WITH AS# TIED TO GND................................................................................. 42  
FIGURE 18. DATA BUS WRITE TIMING IN INTEL BUS MODE WITH AS# TIED TO GND ............................................................................... 42  
FIGURE 20. DATA BUS WRITE TIMING IN INTEL BUS MODE USING AS# ................................................................................................... 43  
FIGURE 19. DATA BUS READ TIMING IN INTEL BUS MODE USING AS#..................................................................................................... 43  
FIGURE 22. DATA BUS WRITE TIMING IN PC MODE................................................................................................................................ 44  
FIGURE 21. DATA BUS READ TIMING IN PC MODE ................................................................................................................................. 44  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] ................................................................................................... 45  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] ................................................................................................. 45  
FIGURE 25. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED].................................................................................. 46  
FIGURE 26. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED]................................................................................... 46  
FIGURE 27. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] ..................................................................... 47  
FIGURE 28. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] ...................................................................... 47  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 MM)..................................................................................48  
PACKAGE DIMENSIONS (44 PIN PLCC).......................................................................................................49  
REVISION HISTORY ....................................................................................................................................50  
TABLE OF CONTENTS ................................................................................................................................. I  
II  

相关型号:

ST16C650A_09

2.90V TO 5.5V UART WITH 32-BYTE FIFO
EXAR

ST16C650CJ44-F

Serial I/O Controller, CMOS, PQCC44
EXAR

ST16C650CQ48-F

Serial I/O Controller, CMOS, PQFP48
EXAR

ST16C654

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654CJ68

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654CJ68-F

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQCC68, GREEN, PLASTIC, LCC-68
EXAR

ST16C654CQ100

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654CQ100-F

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQFP100, 14 X 20 MM, GREEN, PLASTIC, QFP-100
EXAR