XR-2206P [EXAR]

Waveform Generator/Support ; 波形发生器/支持\n
XR-2206P
型号: XR-2206P
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Waveform Generator/Support
波形发生器/支持\n

模拟波形发生功能 信号电路 光电二极管
文件: 总16页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR-2206  
Monolithic  
Function Generator  
...the analog plus companyTM  
June 1997-3  
FEATURES  
APPLICATIONS  
D Waveform Generation  
D Sweep Generation  
D AM/FM Generation  
D V/F Conversion  
D Low-Sine Wave Distortion, 0.5%, Typical  
D Excellent Temperature Stability, 20ppm/°C, Typ.  
D Wide Sweep Range, 2000:1, Typical  
D Low-Supply Sensitivity, 0.01%V, Typ.  
D Linear Amplitude Modulation  
D FSK Generation  
D TTL Compatible FSK Controls  
D Phase-Locked Loops (VCO)  
D Wide Supply Range, 10V to 26V  
D Adjustable Duty Cycle, 1% TO 99%  
GENERAL DESCRIPTION  
The XR-2206 is a monolithic function generator  
integrated circuit capable of producing high quality sine,  
square, triangle, ramp, and pulse waveforms of  
high-stabilityand accuracy. The output waveforms can be  
both amplitude and frequency modulated by an external  
voltage. Frequency of operation can be selected  
externally over a range of 0.01Hz to more than 1MHz.  
The circuit is ideally suited for communications,  
instrumentation, and function generator applications  
requiring sinusoidal tone, AM, FM, or FSK generation. It  
hasatypicaldriftspecificationof20ppm/°C. Theoscillator  
frequency can be linearly swept over a 2000:1 frequency  
range with an external control voltage, while maintaining  
low distortion.  
ORDERING INFORMATION  
Operating  
Temperature Range  
Part No.  
Package  
16 Lead 300 Mil CDIP  
XR-2206M  
-55°C to +125°C  
–40°C to +85°C  
0°C to +70°C  
XR-2206P  
XR-2206CP  
XR-2206D  
16 Lead 300 Mil PDIP  
16 Lead 300 Mil PDIP  
16 Lead 300 Mil JEDEC SOIC  
0°C to +70°C  
Rev. 1.03  
E1972  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z (510) 668-7017  
1
XR-2206  
V
GND  
12  
BIAS  
10  
CC  
4
11 SYNCO  
5
6
TC1  
Timing  
Capacitor  
VCO  
TC2  
7
TR1  
Timing  
Resistors  
Current  
Switches  
Multiplier  
And Sine  
Shaper  
8
9
+1  
TR2  
FSKI  
AMSI  
2
3
STO  
MO  
1
WAVEA1 13  
WAVEA2 14  
SYMA1 15  
SYMA2 16  
Figure 1. XR-2206 Block Diagram  
Rev. 1.03  
2
XR-2206  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AMSI  
STO  
MO  
SYMA2  
SYMA1  
1
2
3
4
5
16  
15  
14  
13  
12  
SYMA2  
SYMA1  
AMSI  
STO  
MO  
WAVEA2  
WAVEA1  
GND  
WAVEA2  
WAVEA1  
GND  
V
CC  
V
CC  
TC1  
TC1  
TC2  
TR1  
TR2  
SYNCO  
BIAS  
FSKI  
6
7
11  
10  
9
SYNCO  
BIAS  
FSKI  
TC2  
TR1  
TR2  
8
16 Lead PDIP, CDIP (0.300”)  
16 Lead SOIC (Jedec, 0.300”)  
PIN DESCRIPTION  
Pin #  
1
Symbol  
AMSI  
STO  
Type Description  
I
Amplitude Modulating Signal Input.  
2
O
O
Sine or Triangle Wave Output.  
Multiplier Output.  
3
MO  
4
VCC  
Positive Power Supply.  
Timing Capacitor Input.  
Timing Capacitor Input.  
Timing Resistor 1 Output.  
Timing Resistor 2 Output.  
Frequency Shift Keying Input.  
Internal Voltage Reference.  
5
TC1  
I
6
TC2  
I
7
TR1  
O
O
I
8
TR2  
9
FSKI  
10  
11  
12  
13  
14  
15  
16  
BIAS  
O
O
SYNCO  
GND  
Sync Output. This output is a open collector and needs a pull up resistor to VCC  
Ground pin.  
.
WAVEA1  
WAVEA2  
SYMA1  
SYMA2  
I
I
I
I
Wave Form Adjust Input 1.  
Wave Form Adjust Input 2.  
Wave Symetry Adjust 1.  
Wave Symetry Adjust 2.  
Rev. 1.03  
3
XR-2206  
DC ELECTRICAL CHARACTERISTICS  
Test Conditions: Test Circuit of Figure 2 Vcc = 12V, T = 25°C, C = 0.01mF, R = 100kW, R = 10kW, R = 25kW  
A
1
2
3
Unless Otherwise Specified. S open for triangle, closed for sine wave.  
1
XR-2206M/P  
Typ.  
XR-2206CP/D  
Parameters  
General Characteristics  
Single Supply Voltage  
Split-Supply Voltage  
Supply Current  
Min.  
Max.  
Min.  
Typ.  
Max.  
Units Conditions  
10  
+5  
26  
+13  
17  
10  
+5  
26  
+13  
20  
V
V
12  
14  
mA  
R1 10kW  
Oscillator Section  
Max. Operating Frequency  
Lowest Practical Frequency  
Frequency Accuracy  
0.5  
1
0.5  
1
MHz  
Hz  
C = 1000pF, R1 = 1kW  
C = 50mF, R1 = 2MW  
0.01  
+1  
0.01  
+2  
+4  
% of fo fo = 1/R1C  
Temperature Stability  
Frequency  
+10  
+50  
+20  
ppm/°C 0°C TA 70°C  
R1 = R2 = 20kW  
Sine Wave Amplitude Stability2  
Supply Sensitivity  
4800  
0.01  
4800  
0.01  
ppm/°C  
0.1  
%/V  
VLOW = 10V, VHIGH = 20V,  
R1 = R2 = 20kW  
Sweep Range  
1000:1 2000:1  
2000:1  
fH = fL fH @ R1 = 1kW  
fL @ R1 = 2MW  
Sweep Linearity  
10:1 Sweep  
2
8
2
8
%
%
%
fL = 1kHz, fH = 10kHz  
1000:1 Sweep  
FM Distortion  
fL = 100Hz, fH = 100kHz  
+10% Deviation  
0.1  
0.1  
Recommended Timing Components  
Timing Capacitor: C  
Timing Resistors: R1 & R2  
Triangle Sine Wave Output1  
Triangle Amplitude  
0.001  
100  
0.001  
1
100  
mF  
Figure 5  
1
2000  
2000  
kW  
Figure 3  
160  
60  
6
160  
60  
6
mV/kW Figure 2, S1 Open  
Sine Wave Amplitude  
Max. Output Swing  
Output Impedance  
40  
80  
mV/kW Figure 2, S1 Closed  
Vp-p  
W
600  
1
600  
1
Triangle Linearity  
%
Amplitude Stability  
0.5  
0.5  
dB  
For 1000:1 Sweep  
Sine Wave Distortion  
Without Adjustment  
With Adjustment  
2.5  
0.4  
2.5  
0.5  
%
%
R1 = 30kW  
1.0  
1.5  
See Figure 7 and Figure 8  
Notes  
1 Output amplitude is directly proportional to the resistance, R3, on Pin 3. See Figure 3.  
2 For maximum amplitude stability, R3 should be a positive temperature coefficient resistor.  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Rev. 1.03  
4
XR-2206  
DC ELECTRICAL CHARACTERISTICS (CONT’D)  
XR-2206M/P  
XR-2206CP/D  
Parameters  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Units Conditions  
Amplitude Modulation  
Input Impedance  
Modulation Range  
Carrier Suppression  
Linearity  
50  
100  
100  
55  
50  
100  
100  
55  
kW  
%
dB  
%
2
2
For 95% modulation  
Square-Wave Output  
Amplitude  
12  
250  
50  
12  
250  
50  
Vp-p  
ns  
ns  
V
Measured at Pin 11.  
CL = 10pF  
Rise Time  
Fall Time  
CL = 10pF  
Saturation Voltage  
Leakage Current  
FSK Keying Level (Pin 9)  
Reference Bypass Voltage  
0.2  
0.1  
1.4  
3.1  
0.4  
20  
0.2  
0.1  
1.4  
3
0.6  
100  
2.4  
3.5  
IL = 2mA  
mA  
V
VCC = 26V  
0.8  
2.9  
2.4  
3.3  
0.8  
2.5  
See section on circuit controls  
Measured at Pin 10.  
V
Notes  
1 Output amplitude is directly proportional to the resistance, R3, on Pin 3. See Figure 3.  
2 For maximum amplitude stability, R3 should be a positive temperature coefficient resistor.  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Specifications are subject to change without notice  
ABSOLUTE MAXIMUM RATINGS  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . 750mW  
Derate Above 25°C . . . . . . . . . . . . . . . . . . . . . . 5mW/°C  
Total Timing Current . . . . . . . . . . . . . . . . . . . . . . . . 6mA  
Storage Temperature . . . . . . . . . . . . -65°C to +150°C  
SYSTEM DESCRIPTION  
The XR-2206 is comprised of four functional blocks; a  
voltage-controlled oscillator (VCO), an analog multiplier  
and sine-shaper; a unity gain buffer amplifier; and a set of  
current switches.  
terminals to ground. With two timing pins, two discrete  
output frequencies can be independently produced for  
FSK generation applications by using the FSK input  
control pin. This input controls the current switches which  
select one of the timing resistor currents, and routes it to  
the VCO.  
The VCO produces an output frequency proportional to  
an input current, which is set by a resistor from the timing  
Rev. 1.03  
5
XR-2206  
V
CC  
1mF  
4
Symmetry Adjust  
25K  
1
5
16  
Mult.  
S = Open For Triangle  
1
And  
Sine  
Shaper  
C
15  
14  
VCO  
= Closed For Sinewave  
6
S
1
THD Adjust  
500  
13  
9
7
8
FSK Input  
R1  
R2  
Triangle Or  
Sine Wave  
Output  
Square Wave  
Output  
Current  
Switches  
2
+1  
11  
XR-2206  
10 12  
3
10K  
R3  
25K  
1mF  
+
V
CC  
1mF  
V
CC  
5.1K  
5.1K  
Figure 2. Basic Test Circuit  
6
26  
22  
18  
70°C Max.  
Package  
Dissipation  
Triangle  
5
1KW  
4
Sinewave  
2KW  
3
2
1
10KW  
14  
10  
30KW  
8
12  
16  
20  
(V)  
24  
28  
0
20  
40  
60  
80  
100  
R in (KW)  
3
V
CC  
Figure 3. Output Amplitude  
as a Function of the Resistor,  
R3, at Pin 3  
Figure 4. Supply Current vs  
Supply Voltage, Timing, R  
Rev. 1.03  
6
XR-2206  
10M  
1M  
MAXIMUM TIMING R  
4V  
4V  
1.0  
NORMAL RANGE  
100K  
TYPICAL VALUE  
0.5  
0
10K  
1K  
MINIMUM TIMING R  
-2  
V
CC  
/ 2  
2
4
6
10  
10  
10  
10  
10  
Frequency (Hz)  
DC Voltage At Pin 1  
Figure 5. R versus Oscillation Frequency.  
Figure 6. Normalized Output Amplitude  
versus DC Bias at AM Input (Pin 1)  
5
5
4
4
C = 0.01mF  
R=3KW  
Trimmed For Minimum  
Distortion At 30 KW  
V
OUT  
=0.5VRMS Pin 2  
R =10KW  
L
3
3
2
2
1
1
0
0
3
1.0  
10  
100  
Timing R K(W)  
10  
10  
100  
1K  
10K  
100K 1M  
Frequency (Hz)  
Figure 7. Trimmed Distortion versus  
Timing Resistor.  
Figure 8. Sine Wave Distortion versus  
Operating Frequency with  
Timing Capacitors Varied.  
Rev. 1.03  
7
XR-2206  
3
C=0.01mF  
2
R=1MW  
R=2KW  
R=10KW  
R=200KW  
1
R=200KW  
0
I
I
C
T
R=10KW  
R=2KW  
Pin 7  
or 8  
Rc  
R=1MW  
Sweep  
Input  
-1  
+
R=1KW  
I
V
B
C
-
+
-2  
-3  
3V  
-
R
R=1KW  
12  
-50 -25  
0
25  
50  
75  
125  
100  
Ambient Temperature (C°)  
Figure 9. Frequency Drift versus  
Temperature.  
Figure 10. Circuit Connection for Frequency Sweep.  
V
CC  
1mF  
4
1
5
16  
S Closed For Sinewave  
1
Mult.  
And  
Sine  
15  
14  
C
VCO  
6
Shaper  
S
1
200  
13  
9
7
Current  
Switches  
Triangle Or  
2
8
+1  
Sine Wave Output  
R
2M  
1K  
1
11  
Square Wave  
Output  
XR-2206  
10 1 2  
3
R
R
50K  
3
10K  
+
1mF  
+
V
CC  
10mF  
V
CC  
5.1K  
5.1K  
Figure 11. Circuit tor Sine Wave Generation without External Adjustment.  
(See Figure 3 for Choice of R )  
3
Rev. 1.03  
8
XR-2206  
V
CC  
1mF  
4
Symmetry Adjust  
1
5
16  
25K  
R
Mult.  
And  
Sine  
B
15  
14  
S Closed For Sinewave  
1
VCO  
C
1
RC  
F =  
2M  
6
9
Shaper  
S
1
R
A
13  
500  
7
8
Current  
Switches  
2
Triangle Or  
+1  
R
Sine Wave Output  
Square Wave  
Output  
1K  
1
11  
10 12  
3
R
XR-2206  
R
3
10K  
50K  
+
1mF  
+
V
CC  
10mF  
V
CC  
5.1K  
5.1K  
Figure 12. Circuit for Sine Wave Generation with Minimum Harmonic Distortion.  
(R Determines Output Swing - See Figure 3)  
3
V
CC  
1mF  
4
1
5
16  
15  
14  
Mult.  
And  
Sine  
C
F
F
VCO  
>2V  
<1V  
1
6
Shaper  
2
200  
13  
9
7
8
FSK Input  
R
R
1
2
Current  
Switches  
2
+1  
FSK Output  
11  
F1=1/R1C  
F2=1/R2C  
10 12  
3
XR-2206  
R
3
50K  
+
1mF  
+
10mF  
V
CC  
5.1K  
5.1K  
Figure 13. Sinusoidal FSK Generator  
Rev. 1.03  
9
XR-2206  
V
CC  
2
1
ƪ ƫ  
f +  
1mF  
C R1 ) R2  
4
1
5
R1  
16  
Duty Cycle =  
R1 ) R2  
Mult.  
And  
Sine  
C
15  
14  
VCO  
6
Shaper  
9
7
8
13  
R
R
1
2
Current  
Switches  
2
Sawtooth Output  
Pulse Output  
+1  
11  
10 12  
3
XR-2206  
R
3
5.1K  
V
24K  
+
1mF  
+
CC  
10mF  
V
CC  
5.1K  
5.1K  
Figure 14. Circuit for Pulse and Ramp Generation.  
APPLICATIONS INFORMATION  
Frequency-Shift Keying  
The XR-2206 can be operated with two separate timing  
resistors, R and R , connected to the timing Pin 7 and 8,  
Sine Wave Generation  
1
2
respectively, as shown in Figure 13. Depending on the  
polarity of the logic signal at Pin 9, either one or the other  
of these timing resistors is activated. If Pin 9 is  
open-circuited or connected to a bias voltage 2V, only  
Without External Adjustment  
Figure 11 shows the circuit connection for generating a  
sinusoidal output from the XR-2206. The potentiometer,  
R at Pin 7, provides the desired frequency tuning. The  
maximum output swing is greater than V /2, and the  
R is activated. Similarly, if the voltage level at Pin 9 is  
1
1
+
1V, only R is activated. Thus, the output frequency can  
2
typical distortion (THD) is < 2.5%. If lower sine wave  
distortion is desired, additional adjustments can be  
provided as described in the following section.  
be keyed between two levels. f and f , as:  
1
2
f = 1/R C and f = 1/R C  
1
1
2
2
For split-supply operation, the keying voltage at Pin 9 is  
referenced to V .  
The circuit of Figure 11 can be converted to split-supply  
-
operation, simply by replacing all ground connections  
-
with V . For split-supply operation, R can be directly  
3
connected to ground.  
Output DC Level Control  
The dc level at the output (Pin 2) is approximately the  
same as the dc bias at Pin 3. In Figure 11, Figure 12 and  
Figure 13, Pin 3 is biased midway between V+ and  
+
ground, to give an output dc level of V /2.  
Rev. 1.03  
10  
XR-2206  
With External Adjustment:  
PRINCIPLES OF OPERATION  
Description of Controls  
Frequency of Operation:  
The harmonic content of sinusoidal output can be  
reduced to -0.5% by additional adjustments as shown in  
Figure 12. The potentiometer, R , adjusts the  
A
The frequency of oscillation, f , is determined by the  
o
sine-shaping resistor, and R provides the fine  
B
external timing capacitor, C, across Pin 5 and 6, and by  
the timing resistor, R, connected to either Pin 7 or 8. The  
frequency is given as:  
adjustment for the waveform symmetry. The adjustment  
procedure is as follows:  
1. Set R at midpoint and adjust R for minimum  
B
A
distortion.  
1
RC  
f0 +  
Hz  
2. With R set as above, adjust R to further reduce  
A
B
distortion.  
and can be adjusted by varying either R or C. The  
recommended values of R, for a given frequency range,  
as shown in Figure 5. Temperature stability is optimum  
for 4kW < R < 200kW. Recommended values of C are from  
1000pF to 100mF.  
Triangle Wave Generation  
The circuits of Figure 11 and Figure 12 can be converted  
to triangle wave generation, by simply open-circuiting Pin  
Frequency Sweep and Modulation:  
13 and 14 (i.e., S open). Amplitude of the triangle is  
Frequency of oscillation is proportional to the total timing  
1
approximately twice the sine wave output.  
current, I , drawn from Pin 7 or 8:  
T
320IT (mA)  
f +  
Hz  
FSK Generation  
C(mF)  
Figure 13 shows the circuit connection for sinusoidal FSK  
signal operation. Mark and space frequencies can be  
independently adjusted by the choice of timing resistors,  
Timing terminals (Pin 7 or 8) are low-impedance points,  
and are internally biased at +3V, with respect to Pin 12.  
Frequency varies linearly with IT, over a wide range of  
current values, from 1mA to 3mA. The frequency can be  
R
1
and R ; the output is phase-continuous during  
2
transitions. The keying signal is applied to Pin 9. The  
circuit can be converted to split-supply operation by  
simply replacing ground with V .  
controlled by applying a control voltage, V , to the  
activated timing pin as shown inFigure 10. Thefrequency  
of oscillation is related to VC as:  
C
-
VC  
ǒ1 Ǔ  
3
1
RC  
R
RC  
f +  
ǒ
1 )  
Ǔ
Hz  
Pulse and Ramp Generation  
Figure 14 shows the circuit for pulse and ramp waveform  
generation. In this mode of operation, the FSK keying  
terminal (Pin 9) is shorted to the square-wave output (Pin  
11), and the circuit automatically frequency-shift keys  
itself between two separate frequencies during the  
positive-going and negative-going output waveforms.  
The pulse width and duty cycle can be adjusted from 1%  
where V is in volts. The voltage-to-frequency conversion  
gain, K, is given as:  
C
0.32  
RCC  
K + ēfńēVC + –  
HzńV  
to 99% by the choice of R and R . The values of R and  
R should be in the range of 1kW to 2MW.  
2
CAUTION: For safety operation of the circuit, IT should be  
limited to 3mA.  
1
2
1
Rev. 1.03  
11  
XR-2206  
Output Amplitude:  
Maximum output amplitude is inversely proportional to  
at Pin 1 is approximately 100kW. Output amplitude varies  
the external resistor, R , connected to Pin 3 (see  
linearly with the applied voltage at Pin 1, for values of dc  
3
Figure 3). For sine wave output, amplitude is  
bias at this pin, within 14 volts of V /2 as shown in  
CC  
approximately 60mV peak per kW of R ; for triangle, the  
Figure 6. As this bias level approaches V /2, the phase  
3
CC  
peak amplitude is approximately 160mV peak per kW of  
of the output signal is reversed, and the amplitude goes  
through zero. This property is suitable for phase-shift  
keying and suppressed-carrier AM generation. Total  
dynamic range of amplitude modulation is approximately  
55dB.  
R . Thus, for example, R = 50kW would produce  
3
3
approximately 13V sinusoidal output amplitude.  
Amplitude Modulation:  
CAUTION: AM control must be used in conjunction with a  
Output amplitude can be modulated by applying a dc bias  
and a modulating signal to Pin 1. The internal impedance  
well-regulated supply, since the output amplitude now becomes  
a function of V  
.
CC  
VR  
V
CC  
11  
15 V2  
5
14 16 6  
13  
1
3 2  
V
CC  
7
6
5
8
10  
V
CC  
VR  
V1  
4
VR  
V1  
V2  
Int’nI.  
Reg.  
VR  
9
12  
Figure 15. Equivalent Schematic Diagram  
Rev. 1.03  
12  
XR-2206  
16 LEAD CERAMIC DUAL-IN-LINE  
(300 MIL CDIP)  
Rev. 1.00  
16  
9
8
1
E
E
1
D
A
1
Base  
Plane  
A
Seating  
Plane  
L
e
c
B
B
1
α
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.100  
0.015  
0.014  
0.045  
0.008  
0.740  
0.250  
0.200  
0.060  
0.026  
0.065  
0.018  
0.840  
0.310  
2.54  
0.38  
0.36  
1.14  
0.20  
18.80  
6.35  
5.08  
1.52  
0.66  
1.65  
0.46  
21.34  
7.87  
A
B
B
c
1
1
D
E
E
e
L
1
0.300 BSC  
0.100 BSC  
7.62 BSC  
2.54 BSC  
0.125  
0.200  
3.18  
5.08  
α
0°  
15°  
0°  
15°  
Note: The control dimension is the inch column  
Rev. 1.03  
13  
XR-2206  
16 LEAD PLASTIC DUAL-IN-LINE  
(300 MIL PDIP)  
Rev. 1.00  
9
8
16  
1
E
1
E
D
A
2
A
L
Seating  
Plane  
C
α
A
1
B
e
B
e
A
B
1
e
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.145  
0.015  
0.115  
0.014  
0.030  
0.008  
0.745  
0.300  
0.240  
0.210  
0.070  
0.195  
0.024  
0.070  
0.014  
0.840  
0.325  
0.280  
3.68  
0.38  
2.92  
0.36  
0.76  
0.20  
5.33  
1.78  
4.95  
0.56  
1.78  
0.38  
21.34  
8.26  
7.11  
A
A
B
B
1
2
1
C
D
E
18.92  
7.62  
6.10  
E
e
1
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
e
A
e
B
L
α
0.310  
0.430  
0.160  
15°  
7.87  
10.92  
4.06  
15°  
0.115  
2.92  
0°  
0°  
Note: The control dimension is the inch column  
Rev. 1.03  
14  
XR-2206  
16 LEAD SMALL OUTLINE  
(300 MIL JEDEC SOIC)  
Rev. 1.00  
D
16  
1
9
E
H
8
C
A
Seating  
Plane  
α
e
B
A
1
L
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.093  
0.004  
0.013  
0.009  
0.398  
0.291  
0.104  
0.012  
0.020  
0.013  
0.413  
0.299  
2.35  
0.10  
0.33  
0.23  
2.65  
0.30  
0.51  
0.32  
10.50  
7.60  
A
B
1
C
D
E
e
10.10  
7.40  
0.050 BSC  
1.27 BSC  
H
L
0.394  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
0.016  
α
0°  
8°  
0°  
8°  
Note: The control dimension is the millimeter column  
Rev. 1.03  
15  
XR-2206  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary  
depending upon a user’s specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 1972 EXAR Corporation  
Datasheet June 1997  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 1.03  
16  

相关型号:

XR-2206_08

Monolithic Function Generator
EXAR

XR-2207

Voltage-Controlled Oscillator
EXAR

XR-2207CP

Voltage-Controlled Oscillator
EXAR

XR-2207D

Voltage-Controlled Oscillator
EXAR

XR-2207ID

Voltage-Controlled Oscillator
EXAR

XR-2207M

Voltage-Controlled Oscillator
EXAR

XR-2208

OPERATIONAL MULTIPLIER
EXAR

XR-2208CN

Analog Multiplier
EXAR

XR-2208CP

Analog Multiplier
EXAR

XR-2208M

Analog Multiplier
EXAR

XR-2208N

Analog Multiplier
EXAR

XR-2208P

Analog Multiplier
EXAR