XR10910 [EXAR]

16:1 Sensor Interface;
XR10910
型号: XR10910
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

16:1 Sensor Interface

文件: 总22页 (文件大小:1030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR10910  
16:1 Sensor Interface AFE  
FEATURES  
 
General Description  
Integrated features for interfacing multiple  
bridge sensors with an MCU or FPGA:  
16:1 differential mux with I2C interface  
Instrumentation amplifier  
The XR1ꢀ91ꢀ is a unique sensor interface integrated circuit with an on-board  
16:1 multiplexer, offset correction DAC, instrumentation amplifier and voltage  
reference0 The XR1ꢀ91ꢀ is designed to integrate multiple bridge sensors  
with a microcontroller (MCU) or field-programmable gate array (FPGA)0  
LDO  
Offset correction DAC with I2C interface  
(±±6ꢀmꢁ offset correction range - RTI)  
The integrated offset correction DAC provides digital calibration of the  
variable and in many cases substantial offset voltage generated by the  
bridge sensors0 The DAC is controlled by an I2C compatible 2 wire serial  
interface0The serial interface also provides the user with easy controls to the  
XR1ꢀ91ꢀ’s many functions such as input and gain selection0  
■  
Eight selectable voltage gains from 2ꢁ/ꢁ  
to 76ꢀꢁ/ꢁ with only ±ꢀ0±5 gain error  
1mꢁ maximum input offset voltage  
1ꢀꢀpA maximum input bias current  
■  
■  
■  
±±6μA maximum supply current  
207ꢁ to ±ꢁ analog supply voltage range  
108ꢁ to ±ꢁ digital supply voltage range  
-4ꢀ˚C to +8±˚C temperature range  
An integrated LDO provides a regulated voltage to power the input bridge  
sensors and is selectable, between 3ꢁ and 206±, via the serial interface  
for lower voltage compatibility0 The LDO current can be sensed and a  
proportional voltage present at the output of the IC for monitoring the LDO  
current0  
■  
■  
■  
■  
6mm x 6mm QFN-4ꢀ package  
The XR1ꢀ91ꢀ offers 8 fixed gain settings (from 2ꢁ/ꢁ to 76ꢀꢁ/ꢁ), each with  
an error of only ±ꢀ0±5, that are selectable via the I2C interface0 It also offers  
less than 1mꢁ maximum input offset voltage, 1ꢀꢀpA maximum input bias  
current, and 1ꢀꢀpA maximum input offset current0  
APPLICATIONS  
■  
Bridge sensor interface  
■  
Pressure & temperature sensors  
■  
Strain gauge amplifier  
■  
Industrial process controls  
The XR1ꢀ91ꢀ is designed to operate from 207ꢁ to ±ꢁ supplies and is specified  
over the industrial temperature range of -4ꢀ°C to +8±°C0 It is offered in a  
space saving 6mm x 6mm QFN-4ꢀ package0 It consumes less than ±±6μA  
maximum supply current and offers a sleep mode for added power savings0  
■  
Weigh scales  
Ordering Information - back page  
The low power, low input bias current and integrated features make the  
XR1ꢀ91ꢀ well suited for both industrial and consumer applications using  
bridge sensors0  
Typical Application  
m
DD  
m
CC  
6.8μF  
+
6.8μF  
+
2.5  
2
ꢀ.1μF  
mDD  
ꢀ.1μF  
BRDG  
mCC  
ꢀ.1μF  
1ꢀk  
BRIDGE 16  
1.5  
1
LDO  
IN16+  
IN16-  
0.5  
0
OUT  
INA /  
PGA  
ADC  
µC  
1ꢀnF  
16:1  
MUX  
±±6ꢀ0m  
OFFSET TRIM  
-0.5  
-1  
m
m
DD  
DD  
BRIDGE 1  
1ꢀ-BIT  
DAC  
PGA  
4.7k  
4.7k  
-1.5  
-2  
IN1+  
IN1-  
SDA  
SCL  
2
I C  
CONTROL  
-2.5  
0
2
4
6
8
10  
Time (sec)  
XR10910  
AGND  
DGND  
Figure 10 Typical Application  
Figure 20 ꢀ01Hz to 1ꢀHz RTI ꢁoltage Noise  
REV 1E  
1/22  
XR10910  
Absolute Maximum Ratings  
Operating Conditions  
Analog Supply ꢁoltage Range 0000000000000000000000000000000000207ꢁ to ±02±ꢁ  
Digital Supply ꢁoltage Range 000000000000000000000000000000000000107ꢁ to ±02±ꢁ  
Operating Temperature Range 000000000000000000000000000000000-4ꢀ°C to 8±°C  
Junction Temperature 000000000000000000000000000000000000000000000000000000000001±ꢀ°C  
Storage Temperature Range00000000000000000000000000000000000-6±°C to 1±ꢀ°C  
Lead Temperature (Soldering, 1ꢀs) 0000000000000000000000000000000000000026ꢀ°C  
Stresses beyond the limits listed below may cause  
permanent damage to the device0 Exposure to any Absolute  
Maximum Rating condition for extended periods may affect  
device reliability and lifetime0  
Analog Supply ꢁoltage (ꢁCC)00000000000000000000000000000000000000000ꢁ to ±0±ꢁ  
Digital Supply ꢁoltage (ꢁDD)000000000000000000000000000000000000000000ꢁ to ±0±ꢁ  
Digital Input/Output (ꢁDDIO)0000000000000000000000000000000000000000000ꢁ to ±0±ꢁ  
IN 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000ꢀ to ꢁCC  
Differential Input ꢁoltage (current limit of 1ꢀmA)0000000000000000000000 ꢁCC  
ESD Rating (HBM - Human Body Model)0000000000000000000000000000000004kꢁ  
Package thermal resistance θJA 0000000000000000000000000000000000000000 32°C/W  
NOTE:  
1. JEDEC standard, multi-layer test boards, still air0  
REV 1E  
2/22  
XR10910  
Electrical Characteristics  
T = 2±°C, ꢁ = 303, ꢁ = 108, R = 1ꢀkΩ to 10±ꢁ; G = 76ꢀ; unless otherwise noted0  
A
CC  
DD  
L
Symbol  
Parameter  
Conditions  
Min  
-1  
Typ  
Max  
Units  
DC Performance  
IO  
Input offset voltage  
Input referred  
±ꢀ0ꢀ2  
3
1
mꢁ  
μꢁ/°C  
pA  
d
Input offset voltage average drift  
Input bias current  
Input offset current  
Power supply rejection ratio  
Gain = 2  
ꢁIO  
I
I
-1ꢀꢀ  
-1ꢀꢀ  
6ꢀ  
1±  
1ꢀꢀ  
1ꢀꢀ  
B
1
pA  
OS  
PSRR  
Gain  
CC  
= 207ꢁ to ±ꢁ  
91  
dB  
20ꢀ  
ꢁ/ꢁ  
ꢁ/ꢁ  
ꢁ/ꢁ  
ꢁ/ꢁ  
ꢁ/ꢁ  
ꢁ/ꢁ  
ꢁ/ꢁ  
ꢁ/ꢁ  
5
Gain = 2ꢀ  
2ꢀ0ꢀ  
4ꢀ0ꢀ  
8ꢀ0ꢀ  
1±ꢀ0ꢀ  
29909  
±9906  
7±904  
Gain = 4ꢀ  
Gain = 8ꢀ  
Nominal; refer to Gain Register Table (pg0 1ꢀ)  
Gain = 1±ꢀ  
Gain = 3ꢀꢀ  
Gain = 6ꢀꢀ  
Gain = 76ꢀ  
G
Gain error  
-ꢀ0±  
ꢀ0±  
E
Gain error vs temperature  
±1ꢀ  
43±  
48  
ppm/°C  
μA  
I
I
I
I
CC  
supply current  
No load to output; no load to LDO  
±3ꢀ  
±9  
SꢁCC  
Disable ꢁ supply current  
No load to output; no load to LDO  
μA  
SꢁCCD  
SꢁDD  
CC  
supply current  
No load to output; no load to LDO; I2C running  
22  
26  
μA  
DD  
Total supply current  
No load to output; no load to LDO  
4±7  
4±  
±±6  
μA  
STOTAL  
No load to output; no load to LDO; LDO DIS  
No load to output; no load to LDO; LDO EN  
μA  
I
Total disable supply current  
SDTOTAL  
7ꢀ  
8±  
μA  
Input Characteristics  
1ꢀ13 || 1102  
Input impedance  
Ω || pF  
ꢀ023 to  
30ꢀ6  
CMIR  
Common mode input range  
Common mode rejection ratio  
ꢀ0±  
7±  
20±  
CMRR  
Input referred0 ꢁ  
= ꢀ0± to 20ꢀꢁ  
88  
dB  
CM  
Output Characteristics  
ꢀ0ꢀ4 to  
3029  
Output voltage swing  
R = 1ꢀkΩ to 10±ꢁ  
ꢀ01  
104  
301  
106  
OUT  
L
OO  
Output offset  
Offset DAC ꢀ ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ; G = 2  
RTI (referred to input)  
10±  
Offset DAC  
Offset DAC range  
Offset monotonicity  
±±6ꢀ  
8
mꢁ  
1ꢀ  
Bits  
LDO  
10±k load, LDO bit LOW  
10±k load, LDO bit HIGH  
-65  
-65  
3
+65  
+65  
1±ꢀ  
Output voltage  
206±  
Dropout voltage  
Output current  
CC  
= 208ꢁ, LDO = 206±ꢁ, I  
= 1ꢀmA  
mꢁ  
mA  
dB  
dB  
LOAD  
1ꢀ  
4±  
4±  
2±  
63  
63  
Output referred, ꢁ = 3ꢁ to ±ꢁ, LDO = 206±ꢁ  
CC  
Power supply rejection ratio  
Output referred, ꢁ = 303ꢁ to±ꢁ, LDO = 3ꢁ  
CC  
Output current sense transimpedance  
slope  
Output voltage relative to 10±ꢁ / LDO current,  
G = 2  
ꢀ0ꢀ8  
ꢀ01  
ꢀ012  
ꢁ/mA  
mA  
Output current sense range clip  
G = 2  
1808  
REV 1E  
3/22  
XR10910  
Electrical Characteristics (Continued)  
T = 2±°C, ꢁ = 303, ꢁ = 108, R = 1ꢀkΩ to 10±ꢁ; G = 76ꢀ; unless otherwise noted0  
A
CC  
DD  
L
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Dynamic Performance  
BW -3dB bandwidth  
SR Slew rate  
G = 76ꢀ  
G = 2  
66  
13ꢀꢀ  
1
kHz  
kHz  
OUT  
= 1ꢁ ; Gain = 2  
ꢁ/μs  
pp  
f = 1ꢀHz  
f = 1ꢀꢀHz  
f = 1kHz  
f = 1ꢀHz  
7±  
nꢁ/√Hz  
nꢁ/√Hz  
nꢁ/√Hz  
fA/√Hz  
e
Input voltage noise - RTI  
46  
ni  
3±  
i
n
Input current noise  
Peak-to-peak noise  
Crosstalk  
ꢀ06  
2
e
npp  
f = ꢀ01 to 1ꢀHz  
μꢁ  
pp  
XTALK  
Channel-to-channel, f = 1kHz  
9ꢀ  
dB  
T
T
Set-up time, 15 settling  
Wake up time, 15 settling  
Analog ready after serial register finished write  
Wake from ACK of SLEEP_OUT command  
30±  
906  
μs  
μs  
S
WAKE  
Digital Characteristics (CMOS)  
Symbol  
Parameter  
Conditions  
Min  
ꢀ07 x ꢁ  
Typ  
Max  
Units  
IH  
Logic Input HIGH  
DD  
DD  
IL  
Logic Input LOW  
Input Leakage HIGH  
Input Leakage LOW  
Clock Rate  
ꢀ03 x ꢁ  
μA  
DD  
I
I
ꢁ = ꢁ  
S
1ꢀ  
IH  
IL  
I
ꢁ = ꢀ  
I
-1ꢀ  
μA  
CLK  
ꢀ04  
MHz  
F
I2C Bus Timing  
T = -4ꢀ to +8±°C, ꢁ = 108 - ±ꢁ; unless otherwise noted0  
A
DD  
Standard Mode  
I2C-BUS  
Fast Mode  
I2C-BUS  
Symbol  
Parameter  
Units  
Min  
Max  
1ꢀꢀ  
Min  
Max  
4ꢀꢀ  
f
Operating frequency  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
SCL  
T
T
T
T
T
T
T
T
T
T
T
T
Bus free time between STOP and START  
START condition hold time  
START condition setup time  
Data hold time  
407  
40ꢀ  
407  
103  
ꢀ06  
ꢀ06  
BUF  
HD;STA  
SU;STA  
HD;DAT  
ꢁD;ACK  
ꢁD;DAT  
SU;DAT  
LOW  
Data valid acknowledge  
SCL LOW to data out valid  
Data setup time  
ꢀ06  
ꢀ06  
ꢀ06  
ꢀ06  
2±ꢀ  
407  
40ꢀ  
1±ꢀ  
103  
ꢀ06  
Clock LOW period  
Clock HIGH period  
HIGH  
F
Clock/data fall time  
3ꢀꢀ  
3ꢀꢀ  
3ꢀꢀ  
Clock/data rise time  
1ꢀꢀꢀ  
R
Pulse width of spikes tolerance  
ꢀ0±  
ꢀ0±  
SP  
REV 1E  
4/22  
XR10910  
Electrical Characteristics (Continued)  
Figure 3: I2C Bus Timing Diagram  
REV 1E  
±/22  
XR10910  
Register Information  
Table 10 Register List  
R/  
W/  
C
Reg No0  
Byte of  
Parameter  
Default Power-up  
Name  
Function  
Parameter  
Remark  
Code  
Condition  
Hex Dec  
Does not execute a function0 NOP  
is used to test successful I2C  
communication  
NOP  
ꢀxꢀꢀ  
No operation  
C
C
N/A  
Reset  
SW_RESET  
Software reset  
Read Device ID  
Resets all registers to default values  
ꢀxꢀ1  
1
N/A  
Read ID  
Instructs the XR1ꢀ91ꢀ to report its  
device ID “ꢀ91ꢀ” in binary form  
(ꢀꢀꢀꢀ 1ꢀꢀ1 ꢀꢀꢀ1 ꢀꢀꢀꢀ)  
[1±:ꢀ]: report “ꢀ91ꢀ” in  
BCD  
DEꢁICE_ID  
ꢀxꢀ91ꢀ  
N/A  
ꢀxꢀ2  
2
3
R
R
2
2
[1±:12]: reserved  
Read HW & SW  
version numbers  
ꢁERSION_ID  
[11:8]: Hardware version #  
[7:ꢀ]: Software version #  
Initial H/W version number is ‘ꢀ’;  
Initial S/W version number is ‘ꢀ1’0  
ꢀxꢀ3  
Sleep in/out  
Normal operating  
mode, system  
active  
SLEEP_OUT  
_ REG  
Puts the XR1ꢀ19ꢀ into active mode0  
(wake up)  
ꢀxꢀ4  
4
C
C
N/A  
N/A  
Active  
Active  
Puts the analog portion of the XR1ꢀ91ꢀ  
into sleep mode0  
During sleep mode, the only I2C command  
that can be received/processed is the  
SLEEP_OUT command (ꢀxꢀ4)0 All other  
register addresses will be ignored0  
SLEEP_IN_  
REG  
Sleep Mode  
ꢀxꢀ±  
±
Basic Config  
Eight gain settings are selectable (from  
2ꢁ/ꢁ to 76ꢀꢁ/ꢁ), refer to the Gain Register  
Table for more information0  
Bit ꢀ controls the LDO voltage (ꢀ: 3ꢁ;  
1: 206±ꢁ)0  
Bit 1 (Sleep Mode only)0 Bit 1 controls  
whether the LDO shuts down or stays on  
during Sleep Mode0 (ꢀ: Enable; 1: Disable)0  
When the XR1ꢀ91ꢀ is active, the LDO is  
always on0  
Gain  
= 2  
Gain  
LDO  
Gain select  
R/W  
R/W  
[2:ꢀ]: Gain select  
ꢀxꢀ6  
6
1
1
ꢀxꢀꢀ  
ꢀxꢀꢀ  
[ꢀ]:LDO 3, 206±ꢁ  
[1]:LDO disable  
LDO  
= 3ꢁ  
LDO Settings  
ꢀxꢀ7  
ꢀxꢀ8  
7
When on, the LDO current is sensed and  
a proportional voltage is present at the  
output of the XR1ꢀ91ꢀ0  
Current Sense Mode remains active until  
an input select command is received by  
the XR1ꢀ91ꢀ0  
LDO Current  
Sense Select  
LDO Current Sense  
8
C
N/A  
Off  
REV 1E  
6/22  
XR10910  
R/  
W/  
C
Reg No0  
Byte of  
Parameter  
Default Power-up  
Name  
Function  
Parameter  
Remark  
Code  
Condition  
Hex Dec  
Channel Switch (Input Mux Select)  
Select_  
Select Channel 1  
Select Channel 2  
Select Channel 3  
Select Channel 4  
Select Channel ±  
Select Channel 6  
Select Channel 7  
Select Channel 8  
Select Channel 9  
Select Channel 1ꢀ  
Select Channel 11  
Select Channel 12  
Select Channel 13  
Select Channel 14  
Select Channel 1±  
Select Channel 16  
ꢀx1ꢀ 16  
ꢀx11 17  
ꢀx12 18  
ꢀx13 19  
ꢀx14 2ꢀ  
ꢀx1± 21  
ꢀx16 22  
ꢀx17 23  
ꢀx18 24  
ꢀx19 2±  
ꢀx1A 26  
ꢀx1B 27  
ꢀx1C 28  
ꢀx1D 29  
ꢀx1E 3ꢀ  
ꢀx1F 31  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Select +IN1, -IN1; Channel 1  
Select +IN2, -IN2; Channel 2  
Select +IN3, -IN3; Channel 3  
Select +IN4, -IN4; Channel 4  
Select +IN±, -IN±; Channel ±  
Select +IN6, -IN6; Channel 6  
Select +IN7, -IN7; Channel 7  
Select +IN8, -IN8; Channel 8  
Select +IN9, -IN9; Channel 9  
Select +IN1ꢀ, -IN1ꢀ; Channel 1ꢀ  
Select +IN11, -IN11; Channel 11  
Select +IN12, -IN12; Channel 12  
Select +IN13, -IN13; Channel 13  
Select +IN14, -IN14; Channel 14  
Select +IN1±, -IN1±; Channel 1±  
Select +IN16, -IN16; Channel 16  
Input_1  
Select_  
Input_2  
Select_  
Input_3  
Select_  
Input_4  
Select_  
Input_±  
Select_  
Input_6  
Select_  
Input_7  
Select_  
Input_8  
Channel  
1 is  
selected  
N/A  
Select_  
Input_9  
Select_  
Input_1ꢀ  
Select_  
Input_11  
Select_  
Input_12  
Select_  
Input_13  
Select_  
Input_14  
Select_  
Input_1±  
Select_  
Input_16  
REV 1E  
7/22  
XR10910  
R/  
W/  
C
Reg No0  
Byte of  
Parameter  
Default Power-up  
Name  
Function  
Parameter  
Remark  
Code  
Condition  
Hex Dec  
Offset DAC Config  
Configures DAC  
offset applied to  
Channel 1  
DAC1  
ꢀx2ꢀ 32  
ꢀx21 33  
ꢀx22 34  
ꢀx23 3±  
ꢀx24 36  
ꢀx2± 37  
ꢀx26 38  
ꢀx27 39  
ꢀx28 4ꢀ  
ꢀx29 41  
ꢀx2A 42  
ꢀx2B 43  
ꢀx2C 44  
ꢀx2D 4±  
ꢀx2E 46  
ꢀx2F 47  
NOTE:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Configures DAC  
offset applied to  
Channel 2  
DAC2  
DAC3  
DAC4  
DAC±  
DAC6  
DAC7  
DAC8  
DAC9  
DAC1ꢀ  
DAC11  
DAC12  
DAC13  
DAC14  
DAC1±  
DAC16  
Configures DAC  
offset applied to  
Channel 3  
Configures DAC  
offset applied to  
Channel 4  
Configures DAC  
offset applied to  
Channel ±  
Configures DAC  
offset applied to  
Channel 6  
Configures DAC  
offset applied to  
Channel 7  
Configures DAC  
offset applied to  
Channel 8  
Bit 1ꢀ controls the sign of the DAC offset  
voltage0 Bits 9 thru ꢀ control the value of  
the DAC offset voltage0  
[1ꢀ]: DAC Sign  
ꢀmꢁ  
offset  
ꢀxꢀꢀ  
[9:ꢀ]: DAC Range  
Configures DAC  
offset applied to  
Channel 9  
[1ꢀ]: DAC Sign ꢀ = positive; 1 = negative  
Configures DAC  
offset applied to  
Channel 1ꢀ  
Configures DAC  
offset applied to  
Channel 11  
Configures DAC  
offset applied to  
Channel 12  
Configures DAC  
offset applied to  
Channel 13  
Configures DAC  
offset applied to  
Channel 14  
Configures DAC  
offset applied to  
Channel 1±  
Configures DAC  
offset applied to  
Channel 16  
Register Numbers not listed above have no function0  
REV 1E  
8/22  
XR10910  
Table 20 DAC Registers  
Hex  
D1ꢀ D9  
D8  
1
D7  
1
D6  
1
D±  
1
D4  
1
D3  
1
D2  
1
D1  
1
Dꢀ  
1
Offset 5 of FS Input  
ꢁoltage RTI  
ꢀx3FF  
ꢀxꢀꢀꢀ  
ꢀx7FF  
ꢀx4ꢀꢀ  
1
1
1
1
±ꢀ  
+±6ꢀmꢁ  
-±6ꢀmꢁ  
1
1
1
1
1
1
1
1
1
-±ꢀ  
DAC  
Sign  
1ꢀ-bit DAC Range  
Table 3: Gain Registers  
Hex  
D2  
D1  
Dꢀ  
Gain  
ꢀxꢀꢀ  
ꢀxꢀ1  
ꢀxꢀ2  
ꢀxꢀ3  
ꢀxꢀ4  
ꢀxꢀ±  
ꢀxꢀ6  
ꢀxꢀ7  
1
1
1
1
1
1
1
1
1
1
1
1
2
2ꢀ  
4ꢀ  
8ꢀ  
1±ꢀ  
3ꢀꢀ  
6ꢀꢀ  
76ꢀ  
REV 1E  
9/22  
XR10910  
Pin Configuration  
ꢉꢅ1ꢋ  
ꢉꢅ1ꢆ  
ꢉꢅ1ꢏꢆ  
ꢉꢅ1ꢏꢋ  
ꢉꢅ1ꢇꢆ  
ꢉꢅ1ꢇꢋ  
ꢉꢅ1ꢊꢆ  
ꢉꢅ1ꢊꢋ  
ꢉꢅ1ꢈꢆ  
ꢉꢅ1ꢈꢋ  
ꢉꢅ11ꢆ  
1
ꢊꢁ  
ꢈꢂ  
ꢈꢍ  
ꢈꢎ  
ꢈꢌ  
ꢈꢏ  
ꢈꢇ  
ꢈꢊ  
ꢈꢈ  
ꢈ1  
ꢉꢅꢈꢋ  
ꢉꢅꢈꢆ  
ꢉꢅꢊꢋ  
ꢉꢅꢊꢆ  
ꢉꢅꢇꢋ  
ꢉꢅꢇꢆ  
ꢉꢅꢏꢋ  
ꢉꢅꢏꢆ  
ꢀR1ꢁꢂ1ꢁ  
ꢃꢄꢅꢆꢇꢁ  
ꢉꢅ11ꢋ  
1ꢁ  
NOTE:  
MaxLinear recommends grounding the exposed pad0  
Pin Functions  
Pin No0  
Pin Name  
IN1+  
IN1-  
Description  
Pin No0  
Pin Name  
IN11+  
IN11-  
IN12+  
IN12-  
IN13+  
IN13-  
IN14+  
IN14-  
IN1±+  
IN1±-  
IN16+  
IN16-  
BRDG  
AGND  
OUT  
Description  
1
2
Positive Input 1  
Negative Input 1  
Positive Input 2  
Negative Input 2  
Positive Input 3  
Negative Input 3  
Positive Input 4  
Negative Input 4  
Positive Input ±  
Negative Input ±  
Positive Input 6  
Negative Input 6  
Positive Input 7  
Negative Input 7  
Positive Input 8  
Negative Input 8  
Positive Input 9  
Negative Input 9  
Positive Input 1ꢀ  
Negative Input 1ꢀ  
21  
22  
23  
24  
2±  
26  
27  
28  
29  
3ꢀ  
31  
32  
33  
34  
3±  
36  
37  
38  
39  
4ꢀ  
Positive Input 11  
Negative Input 11  
Positive Input 12  
Negative Input 12  
Positive Input 13  
Negative Input 13  
Positive Input 14  
Negative Input 14  
Positive Input 1±  
Negative Input 1±  
Positive Input 16  
Negative Input 16  
3
IN2+  
IN2-  
4
±
IN3+  
IN3-  
6
7
IN4+  
IN4-  
8
9
IN±+  
IN±-  
1ꢀ  
11  
12  
13  
14  
1±  
16  
17  
18  
19  
2ꢀ  
IN6+  
IN6-  
IN7+  
IN7-  
BRDG Power Connection ( LDO output )  
Analog Ground  
IN8+  
IN8-  
Output  
ꢁCC  
Analog Supply  
IN9+  
IN9-  
DGND  
SCL  
Digital Ground  
Serial Clock Input  
Serial Data Input/Output  
Digital Supply  
IN1ꢀ+  
IN1ꢀ-  
SDA  
ꢁDD  
REV 1E  
1ꢀ/22  
XR10910  
Typical Performance Characteristics  
T = 2±°C, ꢁ = 303, ꢁ = 108, R = 1ꢀkΩ to 10±ꢁ; G = 76ꢀ; unless otherwise noted0  
A
CC  
DD  
L
2
1.75  
1.5  
G = 2, Vout = 2.5Vpp  
G = 2, Vout = 0.5Vpp  
3
2.5  
2
1.5  
1
1.25  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
Time (µs)  
25  
30  
35  
40  
Time (µs)  
Figure 40 Small Signal Pulse Response at G = 2  
Figure ±0 Large Signal Pulse Response at G = 2  
2
G = 300, Vout = 2.5Vpp  
3
G = 300, Vout = 0.5Vpp  
2.5  
2
1.75  
1.5  
1.25  
1
1.5  
1
0.5  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Time (µs)  
Time (µs)  
Figure 60 Small Signal Pulse Response at G = 3ꢀꢀ  
Figure 70 Large Signal Pulse Response at G = 3ꢀꢀ  
3
3
G = 2  
G = 300  
0
0
-3  
-3  
-6  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
VOUT = 1Vpp  
VOUT = 1Vpp  
-6  
VOUT = 2.5Vpp  
VOUT = 2.5Vpp  
-9  
-9  
-12  
-12  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Figure 80 Frequency Response at G = 2  
Figure 90 Frequency Response at G = 3ꢀꢀ  
REV 1E  
11/22  
XR10910  
Typical Performance Characteristics  
T = 2±°C, ꢁ = 303, ꢁ = 108, R = 1ꢀkΩ to 10±ꢁ; G = 76ꢀ; unless otherwise noted0  
A
CC  
DD  
L
3.5  
4
3.5  
3
G = 2  
Current Sense Mode Active  
VCC = 5V  
3
2.5  
2
2.5  
2
VCC = 3.3V  
1.5  
1
0.5  
0
1.5  
0
5
10  
15  
20  
25  
0
10  
20  
30  
40  
50  
ILDO (mA)  
ILDO (mA)  
Figure 1ꢀ0 LDO Current vs0 Output ꢁoltage  
Figure 110 LDO Output Current  
5
4
1.55  
1.53  
1.51  
1.49  
1.47  
1.45  
1.43  
1.41  
1.39  
1.37  
1.35  
G = 2  
G = 2  
3
G = 300  
2
G = 760  
1
0
-1  
0.25  
0.75  
1.25  
1.75  
2.25  
2.75  
-10  
-5  
0
5
10  
Input Common Mode Voltage (V)  
Output Current (mA)  
Figure 120 Output Offset ꢁoltage vs0 Output Current  
Figure 130 Output Offset vs0 Input Common Mode ꢁoltage  
100  
90  
2.5  
2
G = 760  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0.01  
0.1  
1
10  
100  
1000  
0
2
4
6
8
10  
Frequency (KHz)  
Time (sec)  
Figure 140 Input ꢁoltage Noise vs0 Frequency  
Figure 1±0 ꢀ01Hz to 1ꢀHz RTI ꢁoltage Noise  
REV 1E  
12/22  
XR10910  
Typical Performance Characteristics  
T = 2±°C, ꢁ = 303, ꢁ = 108, R = 1ꢀkΩ to 10±ꢁ; G = 76ꢀ; unless otherwise noted0  
A
CC  
DD  
L
2.5  
2
4
3.5  
3
G = 2  
Stop Time = 1% Settling  
Stop Time = 1% Settling  
SDA  
1.5  
1
2.5  
2
DUT OUTPUT  
DUT OUTPUT  
SDA  
1.5  
1
0.5  
0
Start Time = 50% Acknowledge  
0.5  
0
Start Time = 50% Acknowledge  
-0.5  
0
5
10  
15  
20  
0
5
10  
Time (µs)  
15  
20  
Time (µs)  
Figure 160 Sleep to Wake Time (DUT Output)  
Figure 170 Set-up Time - from G = 2 to G = 3ꢀꢀ  
(DUT Output)  
4
3.5  
3
3.5  
3
2.5  
2
LDO OUTPUT  
SDA  
Stop Time = 1% Settling  
2.5  
2
1.5  
1
1.5  
1
LDO Output  
SDA  
0.5  
0
Stop Time = 1% Settling  
0.5  
0
Start Time = 50% Acknowledge  
Start Time = 50% Acknowledge  
10 20 30  
-0.5  
-0.5  
0
50  
100  
150  
200  
250  
0
40  
50  
Time (µs)  
Time (µs)  
Figure 180 LDO Enable to Disable Time  
Figure 190 LDO Disable to Enable Time  
REV 1E  
13/22  
XR10910  
Functional Block Diagram  
Vꢌꢌ  
ꢟꢋꢇ ꢇꢙꢆꢪꢙꢆ  
1ꢎV  
Rꢊꢈꢊꢏꢊꢐꢑꢊ  
ꢟꢋꢇ Eꢐꢖꢄꢗꢊ  
ꢟꢋꢇ ꢝꢊꢗꢊꢑꢆ ꢠ ꢡVꢍꢔꢎV ꢣ  
ꢂꢁꢐꢩ  
ꢜꢐꢪꢙꢆ 1 ꢒꢫꢓ  
ꢜꢐꢪꢙꢆ ꢛ ꢒꢫꢓ  
ꢜꢐꢪꢙꢆ ꢡ ꢒꢫꢓ  
ꢜꢐꢪꢙꢆ ꢬ ꢒꢫꢓ  
ꢀꢁꢂ  
ꢇꢙꢆꢪꢙꢆ  
ꢜꢐꢪꢙꢆ 1ꢬ ꢒꢫꢓ  
ꢜꢐꢪꢙꢆ 1ꢎ ꢒꢫꢓ  
ꢜꢐꢪꢙꢆ 1ꢔ ꢒꢫꢓ  
1ꢃ ꢄꢅꢆ ꢇꢈꢈꢉꢊꢆ ꢋꢂꢌ  
Vꢋꢋ  
ꢝꢋꢂ  
ꢝꢌꢟ  
ꢜꢛꢌ ꢝꢊꢏꢅꢖꢗ ꢋꢅꢞꢅꢆꢖꢗ ꢜꢐꢆꢊꢏꢈꢖꢑꢊ  
ꢋꢁꢐꢩ  
Figure 2ꢀ: Functional Block Diagram  
Application Information  
The XR1ꢀ91ꢀ also provides the ability to monitor the LDO  
current0 When the XR1ꢀ91ꢀ is in Current Sense Mode, an  
internal 2:1 mux allows a voltage proportional to the LDO  
current to be present at the output0 Once all channels have  
been calibrated, the LDO current can be used to indirectly  
monitor any voltage or resistive changes seen by the inputs0  
The XR1ꢀ91ꢀ sensor interface includes a 16:1 differential  
multiplexor (mux), a programmable gain instrumentation  
amplifier, a 1ꢀ-bit offset correction DAC and an LDO0 An  
I2C interface controls the many functions and features of the  
XR1ꢀ91ꢀ0 The XR1ꢀ91ꢀ is designed to integrate multiple  
bridge sensors with an ADC/MCU or FPGA0  
The XR1ꢀ91ꢀ also includes an internal 10±ꢁ reference that  
is used by the internal LDO circuitry and used to set the  
reference voltage for the programmable gain instrumentation  
amplifier0  
Each bridge sensor connected to the XR1ꢀ91ꢀ has its  
own inherent offset that if not calibrated out can decrease  
sensitivity and overall performance of the sensor system0The  
on-board DAC introduces an offset into the instrumentation  
amplifier to calibrate the offset voltage generated by the  
sensors0 An independent offset can be set for each of the  
16 channels0 Only the offset voltage of the active channel is  
applied to the PGA0  
During sleep mode, the analog components of the XR1ꢀ91ꢀ  
are powered down for added power savings0  
The XR1ꢀ91ꢀ offers many functions, each controlled by the  
I2C compatible serial interface:  
The programmable gain instrumentation amplifier offers 8  
selectable gains from 2ꢁ/ꢁ to 76ꢀꢁ/ꢁ to amplify the signal  
such that it falls within the input range of the ADC0  
■  
Input Selection  
■  
Gain Selection  
■  
Offset Correction  
An integrated LDO provides a regulated voltage to power  
the input bridge sensors and is selectable, between 3ꢁ and  
206±0 The LDO can be set to turn off when the XR1ꢀ91ꢀ is  
in Sleep Mode to save power0  
■  
LDO Enable / Select  
■  
Current Sense Mode  
■  
Sleep Mode (Analog Power Down)  
REV 1E  
14/22  
XR10910  
Application Information (Continued)  
Power Up  
Data Cycle  
After initial system power up, the I2C master must provide  
one SCL clock pulse prior to the first I2C access (first start  
condition)0 The first access to the XR1ꢀ91ꢀ must be a  
RESET command0  
After the master detects this acknowledge, the next byte  
transmitted by the master is the sub-address0 This 8-bit  
sub-address contains the address of the register to access0  
The XR1ꢀ91ꢀ Register List is shown in Table 10 Depending  
on the register accessed, there will be up to two additional  
data bytes transmitted by the master0 Refer to the “Byte of  
Parameter” column in the Register Table0 The XR1ꢀ91ꢀ will  
respond to each write with an acknowledge0  
SDA  
SCL  
Stop Condition  
Figure 21: I2C Power Up  
I2C Bus Interface  
To signal the end of the data transfer, the master generates  
a stop condition by pulling the SDA line from low to high  
while the SCL line is high, as shown in Figure 220  
The I2C-bus interface consists of two lines: serial data (SDA)  
and serial clock (SCL)0 The XR1ꢀ91ꢀ works as a slave and  
supports both standard mode transfer rates (1ꢀꢀ kbps) and  
fast mode transfer rates (4ꢀꢀ kbps) as defined in the I2C-  
Bus specification0 The I2C-bus interface follows all standard  
I2C protocols0 Some information is provided below, for  
additional information, refer to the I2C-bus specifications0  
Figures 23 and 24 illustrate a write and a read cycle0 For  
complete details, see the I2C-bus specifications0  
SLAꢁE  
ADDRESS  
REGISTER  
ADDRESS  
S
W
A
A
nDATA  
A
P
NOTES:  
White Block = host to XR1ꢀ91ꢀ, Red Block = XR1ꢀ91ꢀ to host  
Figure 23: Master Writes to Slave (XR1ꢀ91ꢀ)  
SLAꢁE  
ADDRESS  
REGISTER  
ADDRESS  
SLAꢁE  
ADDRESS  
LAST  
DATA  
nDATA  
S
W A  
A S  
R A  
A
NA P  
NOTES:  
White Block = host to XR1ꢀ91ꢀ, Red Block = XR1ꢀ91ꢀ to host  
Figure 22: I2C Start and Stop Conditions  
Figure 24: Master Reads from Slave (XR1ꢀ91ꢀ)  
I2C Bus Addressing  
The basic I2C access cycle for the XR1ꢀ91ꢀ consists of:  
■  
A start condition  
The XR1ꢀ91ꢀ uses a 7-bit address space0 For the standard  
XR1ꢀ91ꢀ, the default address is ꢀx67 (11ꢀ ꢀ111)0  
■  
A slave address cycle  
■  
Zero, one, or two data cycles - depending on the XR1ꢀ91ꢀ  
Table 4: XR1ꢀ91ꢀ I2C Address Map  
register accessed  
■  
A stop condition  
I2C Address  
ꢀx67  
Orderable Part Number  
XR1ꢀ91ꢀIL4ꢀTR-F  
Start Condition  
The master initiates data transfer by generating a start  
condition0The start condition is when a high-to-low transition  
occurs on the SDA line while SCL is high, as shown in  
Figure 220  
A read or write transaction is determined by bit-ꢀ of the  
slave address, (shown as an “x” in Table 4 above)0 If bit-ꢀ is  
’ꢀ,’ then it is a write transaction0 If bit-ꢀ is ’1,’ then it is a read  
transaction0  
Slave Address Cycle  
An I2C sub-address is sent by the I2C master following  
the slave address0 The sub-address contains the XR1ꢀ91ꢀ  
register address being accessed0 Table 1 illustrates the  
available XR1ꢀ91ꢀ register addresses0  
After the start condition, the first byte sent by the master  
is the 7-bit address and the read/write direction bit R/W  
on the SDA line0 If the address matches the XR1ꢀ91ꢀ’s  
internal fixed address, the XR1ꢀ91ꢀ will respond with an  
acknowledge by pulling the SDA line low for one clock cycle  
while SCL is high0  
After the last read or write transaction, the I2C-bus master  
will set the SCL signal back to its idle state (HIGH)0  
REV 1E  
1±/22  
XR10910  
Application Information (Continued)  
Gain Selection  
Inputs and Input Selection  
The XR1ꢀ91ꢀ offers 8 selectable fixed gains ranging from  
2ꢁ/ꢁ to 76ꢀꢁ/0 When the XR1ꢀ91ꢀ is powered-up, the  
default gain is 2ꢁ/0  
The gain is selected via I2C using the register address ꢀxꢀ6  
followed by another byte of data to select the gain0 Refer  
to the Register List in Table 1 and the Gain Register list in  
Table 30  
The XR1ꢀ91ꢀ includes 16 differential inputs and a 16:1  
differential mux that is controlled by an I2C compatible 2  
wire serial interface0 The XR1ꢀ91ꢀ is designed to accept 16  
differential inputs0  
■  
If fewer than 16 differential inputs are required, tie the unused  
inputs to GND0  
■  
If single ended inputs are required, tie the unused inputs to  
10±ꢁ0  
Example: The example below illustrates how to select a  
gain of 1±ꢀꢁ/0  
The input common mode range of the XR1ꢀ91ꢀ is typically  
ꢀ06ꢁ to 204ꢁ when running from a 303ꢁ supply0 The XR1ꢀ91ꢀ  
offers a very wide gain range0 In most cases, the output  
voltage swing will be the limiting factor0  
To start communication with the XR1ꢀ91ꢀ, repeat steps 1-3  
as shown in the Inputs and Input Selection section on page  
160  
When the XR1ꢀ91ꢀ is powered-up, the default input selected  
is Channel 10  
Inputs are selected via I2C using one of 16 register addresses  
ꢀx1ꢀ thru ꢀx1F0 Refer to the Register List in Table 10  
Step 4  
7
6
±
4
3
2
1
1
1
Master sends address of register to  
access  
Gain Select  
register address = ꢀxꢀ6  
Example: The example below illustrates how to select  
Channel ±0  
Step ±  
9
Step 1  
XR1ꢀ91ꢀ sends acknowledge  
A
Master sends start condition  
S
Since the Gain Select register was accessed, the XR1ꢀ91ꢀ  
is expecting another byte of data from the master to complete  
the command0 Refer to the “Byte of Parameter” column in  
the Register List (Table 1)0 Dꢀ thru D2 are used to select  
the gain0 Refer to the Gain Register list in Table 3, 1±ꢀꢁ/ꢁ is  
D2 = 1, D1 = ꢀ, and Dꢀ = ꢀ0 This translates to a hex code of  
ꢀxꢀ4, since a full byte of data (8-bits) will be sent0  
Step 2  
7
1
6
1
±
4
3
1
2
1
1
1
Master sends XR1ꢀ91ꢀ address with  
write bit  
7-bit XR1ꢀ91ꢀ  
Address = ꢀx67  
W
Step 3  
9
Step 6  
7
6
±
4
3
2
1
1
XR1ꢀ91ꢀ sends acknowledge  
A
Master sends gain register data to select  
G=1±ꢀ  
Step 4  
7
6
±
4
1
3
2
1
1
Gain of 1±ꢀꢁ/ꢁ = ꢀxꢀ4  
Master sends address of register to  
access  
Select_Input 5  
register address = ꢀx14  
Step 7  
9
XR1ꢀ91ꢀ sends acknowledge  
A
Step ±  
9
Step 8  
XR1ꢀ91ꢀ sends acknowledge  
A
Master sends stop condition  
P
White Block = host to XR1ꢀ91ꢀ, Red Block = XR1ꢀ91ꢀ to host  
Grey Block = Notes  
Step 6  
Master sends stop condition  
P
White Block = host to XR1ꢀ91ꢀ, Red Block = XR1ꢀ91ꢀ to host  
Grey Block = Notes  
REV 1E  
16/22  
XR10910  
Application Information (Continued)  
Offset Correction  
The XR1ꢀ91ꢀ has a 1ꢀ-bit offset correction DAC that can be  
used to provide digital calibration on each of the 16 inputs0  
Only the offset voltage of the active channel is applied to  
the PGA0  
The DAC offset of each channel is controlled by the I2C  
compatible interface0 At any time, the master can read or  
write to any of the DAC offset registers0 The DAC offset for  
each channel is set via I2C using the register addresses  
ꢀx2ꢀ thru ꢀx2F followed by another two bytes of data to  
set the polarity and value of the offset voltage0 Refer to the  
Register List in Table 10  
Step ±  
9
XR1ꢀ91ꢀ sends acknowledge  
A
Since a DAC Offset register was accessed, the XR1ꢀ91ꢀ  
is expecting another two bytes of data from the master to  
complete the command0 Refer to the “Byte of Parameter”  
column in the Register List (Table 1)0 Dꢀ thru D9 are used  
to set the offset voltage and D1ꢀ is used to set the sign of  
the offset voltage, ꢀ = positive and 1 = negative0 Refer to the  
DAC Offset register list in Table 20  
To determine what DAC output level corresponds to 7±m,  
use the following equation:  
A ±±6ꢀmꢁ offset correction range is available0 The full  
range of the DAC offset is only available at a gain of 20 At  
higher gains, the output voltage range of the XR1ꢀ91ꢀ will  
be exceeded if the full range of the DAC offset is used0 The  
internal 1ꢀ-bit DAC allows 1,ꢀ24 different offset voltage  
settings between ꢀmꢁ and ±6ꢀm0 The polarity of the  
offset correction is set with an additional bit0 The unit offset  
is determined by the following:  
ꢀꢈꢏꢍꢐꢈꢑ ꢃꢎꢎꢏꢅ  
ꢋꢌꢍꢅ ꢃꢎꢎꢏꢈꢅ  
ꢔꢒꢖꢕ  
ꢒꢓꢔnꢕ  
ꢀꢁꢂ ꢃꢄꢅꢆꢄꢅ ꢇꢈꢉꢈꢊ  
ꢗꢘꢔ  
A decimal value of 137 corresponds to 7±m0 Therefore:  
■  
ꢀx89 (hex) or ꢀ ꢀꢀ 1ꢀꢀꢀ 1ꢀꢀ1 (binary) applies a +7±mꢁ  
offset  
■  
ꢀx489 (hex) or 1 ꢀꢀ 1ꢀꢀꢀ 1ꢀꢀ1 (binary) applies a -7±mꢁ  
offset  
ꢏꢄꢃꢐꢍ ꢑꢅꢅꢆꢇꢃ  
ꢈꢉꢊ ꢄꢋꢃꢌꢋꢃ ꢍꢇꢎꢇꢍꢆ  
ꢖꢗꢓꢘꢙ  
ꢒꢓꢔꢕ  
ꢀꢁꢂꢃ ꢄꢅꢅꢆꢇꢃ  
ꢖꢕꢚnꢙ  
1± 14 13 12 11  
1ꢀ  
9
8
Step 6  
Master sends 1st byte  
of DAC offset register  
data to select an offset  
of +7±mꢁ  
From Table 3:  
■  
ꢀxꢀꢀ (hex) or ꢀ ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (binary) applies a ꢀmꢁ offset  
2 MSBs of 1ꢀ-bit DAC  
output level that corre-  
sponds to 137 (ꢀx89)  
■  
■  
ꢀx3FF (hex) or ꢀ 11 1111 1111 (binary) applies a +±6ꢀmꢁ  
offset  
Sign  
ꢀx7FF (hex) or 1 11 1111 1111 (binary) applies a -±6ꢀmꢁ  
offset  
Each DAC output level provides an additional ±47µꢁ of  
offset0 To determine what DAC output level corresponds to  
a specific desired offset, use the following equation:  
Step 7  
9
XR1ꢀ91ꢀ sends acknowledge  
A
7
6
±
4
3
2
1
Step 8  
Master sends 2nd byte of DAC offset  
register data to select an offset of +7±mꢁ  
1
1
1
See example below for additional information0  
8 LSBs of 1ꢀ-bit DAC output  
level that corresponds to 137  
(ꢀx89)  
Example: The example below illustrates how to set the DAC  
offset for channel 4 to a value of 7±m0  
To start communication with the XR1ꢀ91ꢀ, repeat steps 1-3  
as shown in the Inputs and Input Selection section on page  
160  
Step 9  
9
XR1ꢀ91ꢀ sends acknowledge  
A
Step 4  
7
6
±
1
4
3
2
1
1
1
Master sends address of register to  
access  
Step 1ꢀ  
Master sends stop condition  
P
DAC4 register address  
= ꢀx2±  
White Block = host to XR1ꢀ91ꢀ, Red Block = XR1ꢀ91ꢀ to host  
Grey Block = Notes  
REV 1E  
17/22  
XR10910  
Application Information (Continued)  
7
6
±
4
3
2
1
Step 6  
LDO Enable / Select (Power to External Bridge Sensors)  
Master sends code to select LDO  
voltage of 206±ꢁ and Enable LDO  
during Sleep Mode  
The XR1ꢀ91ꢀ includes an on-board LDO that provides a  
regulated voltage that can be used to power external input  
bridge sensors0 Two voltage options are available, 3ꢁ and  
206±0 The LDO voltage is selected via the I2C compatible  
two-wire serial interface0  
ꢀ =  
1 =  
Enable 206±ꢁ  
When the XR1ꢀ91ꢀ is powered-up, the default LDO voltage  
is 30  
Step 7  
9
XR1ꢀ91ꢀ sends acknowledge  
A
When the XR1ꢀ91ꢀ is active (not in sleep mode), the LDO  
is always on0 If the LDO voltage is not used, the LDO output  
can be left floating0The LDO can either stay on or shut down  
while the XR1ꢀ91ꢀ is in Sleep Mode0  
Step 8  
Master sends stop condition  
P
■  
Set LDO to shut down while XR1ꢀ91ꢀ is in Sleep Mode to  
White Block = host to XR1ꢀ91ꢀ, Red Block = XR1ꢀ91ꢀ to host  
Grey Block = Notes  
save power  
■  
Set LDO to stay on while XR1ꢀ91ꢀ is in Sleep Mode to  
improve wake-up time  
The LDO voltage and disable setting are selected via I2C  
using the register address ꢀxꢀ7 followed by another byte  
of data to select the voltage and disable setting0 Refer to  
the Register List in Table 1 and the example below for more  
information0  
Current Sense Mode (Monitoring the LDO Current)  
Current Sense Mode is activated via I2C using the register  
address ꢀxꢀ80 When activated, the LDO current is sensed  
and a proportional voltage is present at the output of the  
XR1ꢀ91ꢀ (ILDO = ꢁOUT/RL)0 Current Sense Mode stays  
active until the XR1ꢀ91ꢀ receives any input select command  
(ꢀx1ꢀ thru ꢀx1F)0  
Example: The example below illustrates how to select an  
LDO voltage of 206±ꢁ and keep the LDO enabled during  
Sleep Mode0  
Current sense mode can be used to monitor the change  
over time of the bridge impedance0  
To start communication with the XR1ꢀ91ꢀ, repeat steps 1-3  
as shown in the Inputs and Input Selection section on page  
110  
Sleep Mode (Analog Power Down)  
Sleep Mode is activated via I2C using the register address  
ꢀxꢀ±0 When activated, the XR1ꢀ91ꢀ will enter Sleep Mode0  
During Sleep Mode, the analog portion of the XR1ꢀ91ꢀ  
is disabled0 All register settings are retained during Sleep  
Mode0  
Step 4  
7
6
±
4
3
2
1
1
1
1
Master sends address of register to  
access  
LDO Settings  
register address = ꢀxꢀ7  
During Sleep Mode, the nominal supply current will drop  
below 7ꢀµA (with LDO on) and below 4±µA (with LDO off)0  
Step ±  
9
XR1ꢀ91ꢀ sends acknowledge  
A
During Sleep Mode, the master can read the value in any  
register that saves a value during sleep mode0 The only  
I2C commands that can be received or processed is the  
SLEEP_OUT (wake up) command (ꢀxꢀ4) or the LDO on/off  
and voltage command (ꢀxꢀ7)0 All other register addresses  
will be ignored0  
Since the LDO Settings register was accessed, the  
XR1ꢀ91ꢀ is expecting another byte of data from the master  
to complete the command0 Refer to the “Byte of Parameter”  
column in the Register List (Table 1)0 Dꢀ and D1 are used to  
select the LDO voltage and enable/disable the LDO during  
Sleep Mode0 Bit ꢀ (Dꢀ) controls the LDO voltage (ꢀ: 3ꢁ;  
1: 206±ꢁ)0 Bit 1 (D1) is only applicable in Sleep Mode0 Bit  
1 controls whether the LDO shuts down or stays on during  
sleep mode (ꢀ: Enable; 1: Disable)0 When the XRꢀ91ꢀ is  
active, the LDO is always on0  
Register address ꢀxꢀ4 is used to return to normal operation  
(exit Sleep Mode)0  
By default, the XR1ꢀ91ꢀ is active0  
REV 1E  
18/22  
XR10910  
Application Information (Continued)  
Typical Application – 16:1 Bridge Sensor Interface  
The XR1ꢀ91ꢀ was designed to interface multiple bridge sensors with a microcontroller or FPGA as illustrated in Figure 2±0  
The bridge output signal is differential (ꢁo+ and ꢁo-)0 Ideally, the unloaded bridge output is zero (ꢁo+ and ꢁo- are identical)0  
However, in-exact resistive values result in a difference between ꢁo+ and ꢁo-0 This bridge offset voltage can be substantial  
and vary between sensors0 The XR1ꢀ91ꢀ provides the ability to calibrate the bridge offset on each of the 16 bridge sensors  
using the on-board DAC0  
mDD  
mCC  
6.8μF  
6.8μF  
+
+
ꢀ.1μF  
ꢀ.1μF  
BRDG  
mCC  
mDD  
ꢀ.1μF  
BRIDGE 16  
LDO  
IN16+  
IN16-  
1ꢀk  
OUT  
INA /  
PGA  
ADC  
µC  
1ꢀnF  
16:1  
MUX  
±±6ꢀ0m  
OFFSET TRIM  
mDD  
4.7k  
mDD  
4.7k  
BRIDGE 1  
1ꢀ-BIT  
DAC  
PGA  
IN1+  
IN1-  
SDA  
SCL  
2
I C  
CONTROL  
XR10910  
AGND  
DGND  
Figure 2±: 16:1 Bridge Sensor Interface  
Layout Considerations  
General layout and supply bypassing play major roles in high frequency performance0 Follow the steps below as a basis for  
high frequency layout:  
■  
Include 608µF and ꢀ01µF ceramic capacitors for power supply decoupling  
■  
Place the 608µF capacitor within ꢀ07± inches of the power pin  
■  
Place the ꢀ01µF capacitor within ꢀ01 inches of the power pin  
■  
Connection to the exposed pad is not required0 Exposed pad can be connected to ground (GND)0  
■  
Minimize all trace lengths to reduce series inductances  
REV 1E  
19/22  
XR10910  
Mechanical Dimensions  
QFN-4ꢀ Package  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
TERMINAL DETAILS  
Drawing No.: POD-00000041  
Revision: B.3  
REV 1E  
2ꢀ/22  
XR10910  
Recommended Land Pattern and Stencil  
QFN-4ꢀ Package  
TYPICAL RECOMMENDED LAND PATTERN  
TYPICAL RECOMMENDED STENCIL  
Drawing No.: POD-00000041  
Revision: B.3  
REV 1E  
21/22  
XR10910  
Ordering Information(1)  
Part Number  
Operating Temperature Range  
-4ꢀ°C to +8±°C  
Lead-Free  
Yes(2)  
Package  
QFN-4ꢀ  
Packaging Method  
XR1ꢀ91ꢀIL4ꢀ-F  
Tray  
XR1ꢀ91ꢀIL4ꢀTR-F  
XR1ꢀ91ꢀIL4ꢀEꢁB  
Tape & Reel  
Evaluation Board  
NOTES:  
10 Refer to www0exar0com/XR1ꢀ91ꢀ for most up-to-date Ordering Information0  
20 ꢁisit www0exar0com for additional information on Environmental Rating0  
Revision History  
Part  
1A  
Part  
Part  
May 2ꢀ1±  
July 2ꢀ1±  
Initial Release  
1B  
Added Typical Performance Characteristics section0  
Updated to latest format and added figure numbers0 Updated Figures 1 and 2±0 Added  
Figure 20 Updated page number reference in Gain section of Electrical Characteristics table0  
Updated Figure 240 Added clarity to I2C Bus Addressing section0 Updated Table 40 Updated  
Step 2 in Inputs and Input Selection section0  
1C  
May 2ꢀ16  
Updated to MaxLinear logo0 Updated format and Ordering information table0 Added I2C  
Power Up section0  
1D  
1E  
March 2ꢀ18  
January 2ꢀ19  
Correct typo in Recommended Stencil0  
Corporate Headquarters:  
±966 La Place Court  
Suite 1ꢀꢀ  
Carlsbad, CA 92ꢀꢀ8  
Tel0:+1 (76ꢀ) 692-ꢀ711  
Fax: +1 (76ꢀ) 444-8±98  
www0maxlinear0com  
The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes  
no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the  
user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic,  
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.  
Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support  
system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the  
risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.  
MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written  
license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.  
Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.  
© 2016 - 2019 MaxLinear, Inc. All rights reserved  
XR10910_DS_011519  
REV 1E  
22/22  

相关型号:

XR10910IL40-F

Analog Circuit,
EXAR

XR10910IL40EVB

EVALUATION BOARD FOR XR10910
EXAR

XR10910IL40TR-F

IC AFE 14BIT 16:1 I2C 40QFN
EXAR

XR1099

7Channel Graphic Equalizer Filter with A/D Converter and Improved mP Interface(105.88 k )
ETC

XR13600MD

Operational Amplifier, 2 Func, 5000uV Offset-Max, BIPolar, PDSO16
EXAR

XR1424

Xscend Rectifier
POWER-ONE

XR146

Analog Circuit
EXAR

XR1468

High-Voltage, High-Current Darlington Transistor Arrays
EXAR

XR1468CN

暂无描述
EXAR

XR146M

Operational Amplifier, 4 Func, 6000uV Offset-Max, BIPolar, CDIP16
EXAR

XR1488

Quad Operational Amplitier
EXAR