XR16L2450IJ-F [EXAR]

Serial I/O Controller, 2 Channel(s), 0.1875MBps, CMOS, PQCC44, GREEN, PLASTIC, LCC-44;
XR16L2450IJ-F
型号: XR16L2450IJ-F
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Serial I/O Controller, 2 Channel(s), 0.1875MBps, CMOS, PQCC44, GREEN, PLASTIC, LCC-44

通信 时钟 数据传输 外围集成电路
文件: 总30页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
MAY 2005  
FEATURES  
GENERAL DESCRIPTION  
The XR16L2450 (L2450) is a dual universal asyn-  
chronous receiver and transmitter (UART). The  
XR16L2450 is an improved version of the  
ST16C2450 with lower operating voltage and 5 volt  
tolerant inputs. The L2450 provides enhanced UART  
functions, a modem control interface and data rates  
up to 1.5 Mbps. Onboard status registers provide the  
user with error indications and operational status. In-  
dependent programmable baud rate generators are  
provided to select transmit and receive clock rates up  
to 1.5 Mbps. An internal loopback capability allows  
onboard diagnostics. The L2450 is available in a 44-  
pin PLCC and 48-pin TQFP packages. The L2450 is  
fabricated in an advanced CMOS process capable of  
operating from 2.25 volt to 5.5 volt power supply with  
5 volt tolerant inputs.  
2.25 to 5.5 Volt Operation  
5 Volt Tolerant Inputs  
Pin-to-pin compatible to Exar’s ST16C2450,  
ST16C2550,  
XR16C2850  
XR16L2550,  
XR16L2750  
and  
Pin-to-pin compatible to TI’s TL16C752B on the 48-  
TQFP package  
2 independent UART channels  
Up to 1.5 Mbps data rate with a 24 MHz crystal  
oscillator or external clock frequency  
1 byte Transmit FIFO  
1 byte Receive FIFO with error tags  
Status report registers  
Modem control signals (CTS#, RTS#, DSR#,  
DTR#, RI#, CD#)  
APPLICATIONS  
Programmable character lengths (5, 6, 7, 8)  
Portable Appliances  
with even, odd, or no parity  
Telecommunication Network Routers  
Ethernet Network Routers  
Cellular Data Devices  
Crystal oscillator or external clock input  
TTL compatible inputs, outputs  
Industrial temperature ranges  
Factory Automation and Process Controls  
48-TQFP and 44-PLCC packages  
FIGURE 1. XR16L2450 BLOCK DIAGRAM  
2.25 to 5.5 Volt VCC  
*5V Tolerant inputs  
A2:A0  
D7:D0  
UART Channel A  
TXA  
THR  
IOR#  
IOW#  
UART  
Regs  
RHR  
RXA  
CSA#  
CSB#  
RTSA#, CTSA#,  
DTRA#, DSRA#,  
CDA#, RIA#, OP2A#  
Modem I/Os  
8-bit Data  
INTA  
INTB  
BRG  
Bus  
Interface  
TXB  
RXB  
UART Channel B  
RTSB#, CTSB#,  
DTRB#, DSRB#,  
CDB#, RIB#, OP2B#  
(same as Channel A)  
Reset  
XTAL1  
XTAL2  
Crystal Osc/Buffer  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
FIGURE 2. PIN OUT ASSIGNMENT  
RESET  
DTRB#  
DTRA#  
RTSA#  
OP2A#  
NC  
D5  
1
2
3
4
5
6
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
D6  
D7  
RXB  
RXA  
NC  
XR16L2450  
48-pin TQFP  
INTA  
INTB  
A0  
TXA  
TXB  
OP2B#  
7
8
9
A1  
CSA# 10  
CSB# 11  
NC 12  
A2  
NC  
D5  
D6  
D7  
7
8
9
39 RESET  
38 DTRB#  
37 DTRA#  
36 RTSA#  
35 OP2A#  
34 NC  
RXB 10  
RXA 11  
NC 12  
XR16L2450  
44-pin PLCC  
TXA 13  
33 INTA  
32 INTB  
31 A0  
TXB 14  
OP2B# 15  
CSA# 16  
CSB# 17  
30 A1  
29 A2  
Device  
ORDERING INFORMATION  
PART NUMBER  
XR16L2450IJ  
XR16L2450IM  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40°C to +85°C  
DEVICE STATUS  
Active  
44-Lead PLCC  
48-Lead TQFP  
-40°C to +85°C  
Active  
2
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
PACKAGE PIN DESCRIPTIONS  
PIN DESCRIPTIONS  
44-PLCC  
PIN #  
48-TQFP  
PIN #  
NAME  
TYPE  
DESCRIPTION  
DATA BUS INTERFACE  
A2  
A1  
A0  
29  
30  
31  
26  
27  
28  
I
Address data lines [2:0]. These 3 address lines select one of the inter-  
nal registers in UART channel A/B during a data bus transaction.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
9
8
7
6
5
4
3
2
3
IO  
Data bus lines [7:0] (bidirectional).  
2
1
48  
47  
46  
45  
44  
IOR#  
24  
19  
I
I
Input/Output Read Strobe (active low). The falling edge instigates an  
internal read cycle and retrieves the data byte from an internal register  
pointed to by the address lines [A2:A0]. The data byte is placed on the  
data bus to allow the host processor to read it on the rising edge.  
IOW#  
20  
15  
Input/Output Write Strobe (active low). The falling edge instigates an  
internal write cycle and the rising edge transfers the data byte on the  
data bus to an internal register pointed by the address lines.  
CSA#  
CSB#  
INTA  
16  
17  
33  
10  
11  
30  
I
I
UART channel A select (active low) to enable UART channel A in the  
device for data bus operation.  
UART channel B select (active low) to enable UART channel B in the  
device for data bus operation.  
O
UART channel A Interrupt output. The output state is defined by the  
user and through the software setting of MCR[3]. INTA is set to the  
active mode and OP2A# output to a logic 0 when MCR[3] is set to a  
logic 1. INTA is set to the three state mode and OP2A# to a logic 1  
when MCR[3] is set to a logic 0 (default).  
INTB  
32  
29  
O
UART channel B Interrupt output. The output state is defined by the  
user and through the software setting of MCR[3]. INTB is set to the  
active mode and OP2B# output to a logic 0 when MCR[3] is set to a  
logic 1. INTB is set to the three state mode and OP2B# to a logic 1  
when MCR[3] is set to a logic 0 (default).  
MODEM OR SERIAL I/O INTERFACE  
TXA  
RXA  
13  
11  
7
5
O
I
UART channel A Transmit Data. If it is not used, leave it unconnected.  
UART channel A Receive Data. Normal receive data input must idle at  
logic 1 condition. If it is not used, tie it to VCC or pull it high via a 100k  
ohm resistor.  
RTSA#  
36  
33  
O
UART channel A Request-to-Send (active low) or general purpose out-  
put. If it is not used, leave it unconnected.  
3
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
PIN DESCRIPTIONS  
44-PLCC  
48-TQFP  
PIN #  
NAME  
PIN #  
TYPE  
DESCRIPTION  
CTSA#  
40  
38  
I
UART channel A Clear-to-Send (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
DTRA#  
DSRA#  
37  
41  
34  
39  
O
I
UART channel A Data-Terminal-Ready (active low) or general purpose  
output. If it is not used, leave it unconnected.  
UART channel A Data-Set-Ready (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
CDA#  
RIA#  
42  
43  
35  
40  
41  
32  
I
I
UART channel A Carrier-Detect (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
UART channel A Ring-Indicator (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
OP2A#  
O
Output Port 2 Channel A - The output state is defined by the user and  
through the software setting of MCR[3]. INTA is set to the active mode  
and OP2A# output to a logic 0 when MCR[3] is set to a logic 1. INTA is  
set to the three state mode and OP2A# to a logic 1 when MCR[3] is set  
to a logic 0. This output should not be used as a general output else it  
will disturb the INTA output functionality. If it is not used at all, leave it  
unconnected.  
TXB  
RXB  
14  
10  
8
4
O
I
UART channel B Transmit Data. If it is not used, leave it unconnected.  
UART channel B Receive Data. Normal receive data input must idle at  
logic 1 condition. If it is not used, tie it to VCC or pull it high via a 100k  
ohm resistor.  
RTSB#  
CTSB#  
27  
28  
22  
23  
O
I
UART channel B Request-to-Send (active low) or general purpose out-  
put. If it is not used, leave it unconnected.  
UART channel B Clear-to-Send (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
DTRB#  
DSRB#  
38  
25  
35  
20  
O
I
UART channel B Data-Terminal-Ready (active low) or general purpose  
output. If it is not used, leave it unconnected.  
UART channel B Data-Set-Ready (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
CDB#  
RIB#  
21  
26  
16  
21  
I
I
UART channel B Carrier-Detect (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
UART channel B Ring-Indicator (active low) or general purpose input.  
This input should be connected to VCC when not used. This input has  
no effect on the UART.  
4
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
PIN DESCRIPTIONS  
44-PLCC  
48-TQFP  
PIN #  
NAME  
PIN #  
TYPE  
DESCRIPTION  
OP2B#  
15  
9
O
Output Port 2 Channel B - The output state is defined by the user and  
through the software setting of MCR[3]. INTB is set to the active mode  
and OP2B# output to a logic 0 when MCR[3] is set to a logic 1. INTB is  
set to the three state mode and OP2B# to a logic 1 when MCR[3] is set  
to a logic 0. This output should not be used as a general output else it  
will disturb the INTB output functionality. If it is not used, leave it uncon-  
nected.  
ANCILLARY SIGNALS  
XTAL1  
XTAL2  
RESET  
18  
19  
39  
13  
14  
36  
I
O
I
Crystal or external clock input.  
Crystal or buffered clock output.  
Reset (active high) - A longer than 40 ns logic 1 pulse on this pin will  
reset the internal registers and all outputs. The UART transmitter output  
will be held at logic 1, the receiver input will be ignored and outputs are  
reset during reset period.  
VCC  
GND  
N.C.  
44  
22  
42  
17  
Pwr 2.25V to 5.5V power supply. All inputs are 5V tolerant.  
Pwr Power supply common, ground.  
1, 12, 23,  
34  
6, 12, 18,  
24, 25, 31,  
37, 43  
-
No Connection. These pins are not connected internally.  
Pin type: I=Input, O=Output, IO= Input/output, OD=Output Open Drain.  
5
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
1.0 PRODUCT DESCRIPTION  
The XR16L2450 (L2450) integrates the functions of 2 16C450 Universal Asynchrounous Receiver and  
Transmitter (UART). Each UART is independently controlled having its own set of device configuration  
registers. The L2450 provides serial asynchronous receive data synchronization, parallel-to-serial and serial-  
to-parallel data conversions for both the transmitter and receiver sections. These functions are necessary for  
converting the serial data stream into parallel data that is required with digital data systems. Synchronization  
for the serial data stream is accomplished by adding start and stops bits to the transmit data to form a data  
character (character orientated protocol). Data integrity is ensured by attaching a parity bit to the data  
character. The parity bit is checked by the receiver for any transmission bit errors. The electronic circuitry to  
provide all these functions is fairly complex especially when manufactured on a single integrated silicon chip.  
The L2450 represents such an integration with greatly enhanced features. The L2450 is fabricated with an  
advanced CMOS process. The L2450 is capable of operation up to 1.5 Mbps with a 24 MHz clock. With a  
crystal or external clock input of 14.7456 MHz the user can select data rates up to 921.6 Kbps.  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
CPU Interface  
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and  
write transactions. The L2450 data interface supports the Intel compatible types of CPUs and it is compatible to  
the industry standard 16C450 UART. No clock (oscillator nor external clock) is required to operate a data bus  
transaction. Each bus cycle is asynchronous using CS#, IOR# and IOW# signals. Both UART channels share  
the same data bus for host operations. The data bus interconnections are shown in Figure 3.  
FIGURE 3. XR16L2450 DATA BUS INTERCONNECTIONS  
VCC  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TXA  
RXA  
DTRA#  
RTSA#  
CTSA#  
DSRA#  
UART  
Channel A  
RS-232 Serial Interface  
A0  
A1  
A2  
A0  
A1  
A2  
CDA#  
RIA#  
OP2A#  
IOR#  
IOW#  
IOR#  
IOW#  
TXB  
RXB  
CSA#  
CSB#  
UART_CSA#  
UART_CSB#  
DTRB#  
RTSB#  
CTSB#  
DSRB#  
CDB#  
UART_INTA  
UART_INTB  
INTA  
INTB  
UART  
Channel B  
RS-232 Serial Interface  
RIB#  
OP2B#  
UART_RESET  
RESET  
GND  
.
2.2  
5-Volt Tolerant Inputs  
The L2450 can accept up to 5V inputs even when operating at 3.3V or 2.5V. But note that if the L2450 is  
operating at 2.5V, its V may not be high enough to meet the requirements of the V of a CPU or a serial  
OH  
IH  
transceiver that is operating at 5V.  
2.3 Device Reset  
The RESET input resets the internal registers and the serial interface outputs in both channels to their default  
state (see Table 8). An active high pulse of at least 40 ns duration will be required to activate the reset function  
in the device.  
6
 
 
 
 
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
2.4  
Device Identification and Revision  
The L2450 provides a Device Identification code and a Device Revision code to distinguish the part from other  
devices and revisions. To read the identification code from the part, it is required to set the baud rate generator  
registers DLL and DLM both to 0x00. Now reading the content of the DLM will provide 0x02 to indicate L2450  
and reading the content of DLL will provide the revision of the part; for example, a reading of 0x01 means  
revision A.  
2.5  
Channel A and B Selection  
The UART provides the user with the capability to bi-directionally transfer information between an external  
CPU and an external serial communication device. A logic 0 on chip select pins, CSA# or CSB#, allows the  
user to select UART channel A or B to configure, send transmit data and/or unload receive data to/from the  
UART. Selecting both UARTs can be useful during power up initialization to write to the same internal registers,  
but do not attempt to read from both uarts simultaneously. Individual channel select functions are shown in  
Table 1.  
TABLE 1: CHANNEL A AND B SELECT  
CSA#  
CSB#  
FUNCTION  
1
0
1
0
1
1
0
0
UART de-selected  
Channel A selected  
Channel B selected  
Channel A and B selected  
2.6  
Channel A and B Internal Registers  
Each UART channel in the L2450 has a standard register set for controlling, monitoring and data loading and  
unloading. These registers function as data holding registers (THR/RHR), interrupt status and control registers  
(ISR/IER), receive line status and control registers (LSR/LCR), modem status and control registers (MSR/  
MCR), programmable data rate (clock) divisor registers (DLL/DLM), and a user accessible scratch pad register  
(SPR).  
2.7  
INTA and INTB Outputs  
The INTA and INTB interrupt output changes according to the operating mode and enhanced features setup.  
Table 2 summarizes the operating behavior for the transmitter and receiver. Also see Figure 12 and Figure 13.  
TABLE 2: INTA AND INTB PINS OPERATION FOR TRANSMITTER  
TRANSMITTER  
RECEIVER  
INTA/B Pin  
0 = a byte in THR  
1 = THR empty  
0 = no data  
1 = 1 byte  
2.8  
Crystal Oscillator or External Clock Input  
The L2450 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for both UART sections in the  
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a  
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the  
oscillator or external clock buffer input with XTAL2 pin being the output. For programming details, see  
“Programmable Baud Rate Generator.”  
7
 
 
 
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
FIGURE 4. TYPICAL OSCILLATOR CONNECTIONS  
XTAL1  
XTAL2  
R1  
0-120 Ω  
(Optional)  
R2  
500 ΚΩ − 1 ΜΩ  
1.8432 MHz  
to  
Y1  
24 MHz  
C1  
C2  
22-47 pF  
22-47 pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100 ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 4), with an external 500 kto  
1 Mresistor across it. Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal  
baud rate generator for standard or custom rates. Typical oscillator connections are shown in Figure 4. For  
further reading on oscillator circuit please see application note DAN108 on EXAR’s web site.  
2.9  
Programmable Baud Rate Generator  
A single baud rate generator is provided for the transmitter and receiver, allowing independent TX/RX channel  
control. The programmable Baud Rate Generator is capable of operating with a crystal frequency or external  
clock of up to 24 MHz.  
The L2450 divides the basic external clock by 16. The basic 16X clock provides table rates to support standard  
and custom applications using the same system design. The Baud Rate Generator divides the input 16X clock  
16  
by any divisor from 1 to 2 -1. The rate table is configured via the DLL and DLM internal register functions.  
Customized Baud Rates can be achieved by selecting the proper divisor values for the MSB and LSB sections  
of baud rate generator.  
Table 3 shows the standard data rates available with a 14.7456 MHz crystal or external clock at 16X sampling  
rate. When using a non-standard frequency crystal or external clock, the divisor value can be calculated for  
DLL/DLM with the following equation.  
divisor (decimal) = (XTAL1 clock frequency) / (serial data rate x 16)  
8
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
TABLE 3: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK  
DATA RATE  
ERROR (%)  
OUTPUT Data Rate  
MCR Bit-7=0  
DIVISOR FOR 16x  
Clock (Decimal)  
DIVISOR FOR 16x  
Clock (HEX)  
DLM PROGRAM  
VALUE (HEX)  
DLL PROGRAM  
VALUE (HEX)  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
2.10 Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 1 byte FIFO or Transmit  
Holding Register (THR). TSR shifts out every data bit with the 16X internal clock. A bit time is 16 clock periods.  
The transmitter sends the start-bit followed by the number of data bits, inserts the proper parity-bit if enabled,  
and adds the stop-bit(s). The status of the FIFO and TSR are reported in the Line Status Register (LSR bit-5  
and bit-6).  
2.10.1 Transmit Holding Register (THR) - Write Only  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
FIGURE 5. TRANSMITTER OPERATION  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X Clock  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
9
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
2.11 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 1 byte FIFO or Receive Holding  
Register (RHR). The RSR uses the 16X clock for timing. It verifies and validates every bit on the incoming  
character in the middle of each data bit. On the falling edge of a start or false start bit, an internal receiver  
counter starts counting at the 16X clock rate. After 8 clocks the start bit period should be at the center of the  
start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating the start bit in this  
manner prevents the receiver from assembling a false character. The rest of the data bits and stop bits are  
sampled and validated in this same manner to prevent false framing. If there were any error(s), they are  
reported in the LSR register bits 2-4. Once the data is received, the error tags are immediately updated to  
reflect the status of the data byte in RHR register. RHR will generate a receive data ready interrupt upon  
receiving a character if IER bit-0 has been enabled.  
2.11.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift  
Register. It provides the receive data interface to the host processor. The RHR register is part of the 1 byte  
receive FIFO that is 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. After the  
RHR is read, LSR bits 2-4 willl immediately be updated to reflect the errors for the next character byte  
transferred from the RSR.  
FIGURE 6. RECEIVER OPERATION  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
(RHR)  
Tags in  
LSR bits  
4:2  
RHR Interrupt (ISR bit-2)  
RXFIFO1  
10  
 
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
2.12 Internal Loopback  
The L2450 UART provides an internal loopback capability for system diagnostic purposes. The internal  
loopback mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 7 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX pin is held at logic 1 or mark condition while RTS# and DTR# are de-asserted, and  
CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held to a logic 1 during loopback  
test else upon exiting the loopback test the UART may detect and report a false “break” signal.  
FIGURE 7. INTERNAL LOOP BACK IN CHANNELS A AND B  
VCC  
TXA/TXB  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
RXA/RXB  
(RHR/FIFO)  
VCC  
RTSA#/RTSB#  
RTS#  
CTS#  
CTSA#/CTSB  
VCC  
DTRA#/DTRB#  
DTR#  
DSR#  
RI#  
DSRA#/DSRB#  
OP1#  
VCC  
RIA#/RIB#  
OP2A#/OP2B#  
OP2#  
CD#  
CDA#/CDB#  
11  
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
3.0 UART INTERNAL REGISTERS  
Each of the UART channel in the L2450 has its own set of configuration registers selected by address lines A0,  
A1 and A2 with CSA# or CSB# selecting the channel. The registers are 16C450 compatible. The complete  
register set is shown on Table 4 and Table 5.  
TABLE 4: UART CHANNEL A AND B UART INTERNAL REGISTERS  
A2,A1,A0 ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
16C550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
LCR[7] = 1  
THR - Transmit Holding Register  
DLL - Div Latch Low Byte  
DLM - Div Latch High Byte  
DREV - Device Revision  
DVID - Device ID  
0
0 0  
0 1  
0 0  
0 1  
0 1  
1 0  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
0
0
0
0
0
LCR[7] = 1,  
DLL = 0x00, DLM = 0x00  
IER - Interrupt Enable Register  
LCR[7] = 0  
ISR - Interrupt Status Register  
Reserved  
Read-only  
Write-only  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
Read/Write  
Read/Write  
MCR - Modem Control Register  
LSR - Line Status Register  
Reserved  
Read-only  
Write-only  
1
1
1 0  
1 1  
MSR - Modem Status Register  
Reserved  
Read-only  
Write-only  
SPR - Scratch Pad Register  
Read/Write  
12  
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
.
TABLE 5: INTERNAL REGISTERS DESCRIPTION  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
16C450 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0
Bit-6  
Bit-6  
0
Bit-5  
Bit-5  
0
Bit-4  
Bit-4  
0
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
WR  
LCR[7] = 0  
IER RD/WR  
Modem RXLine  
Stat.  
Int.  
TX  
Empty  
Int  
RX  
Data  
Int.  
Stat.  
Int.  
Enable Enable Enable Enable  
0 1 0  
0 1 1  
ISR  
RD  
0
0
0
0
INT INT INT INT  
Source Source Source Source  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
LCR RD/WR Divisor Set TX Set Par-  
Even  
Parity Enable  
Parity  
Stop  
Bits  
Word  
Length Length  
Word  
Enable  
Break  
ity  
Bit-1 Bit-0  
1 0 0  
1 0 1  
MCR RD/WR  
0
0
0
Internal OP2#/ Rsrvd RTS# DTR#  
Loop-  
back  
INT  
Output  
Output Output  
Control Control  
(OP1#)  
Enable Enable  
LSR  
RD  
0
THR &  
TSR  
THR  
Empty  
RX  
RX  
RX  
RX  
RX  
Break  
Fram- Parity Over-  
Data  
Empty  
ing  
Error  
run  
Ready  
Error  
Error  
1 1 0  
1 1 1  
MSR  
RD  
CD#  
Input  
RI#  
Input  
DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
Baud Rate Generator Divisor  
0 0 0  
0 0 1  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-7  
0
Bit-6  
Bit-6  
Bit-6  
0
Bit-5  
Bit-5  
Bit-5  
0
Bit-4  
Bit-4  
Bit-4  
0
Bit-3  
Bit-3  
Bit-3  
0
Bit-2  
Bit-2  
Bit-2  
0
Bit-1  
Bit-1  
Bit-1  
1
Bit-0  
Bit-0  
Bit-0  
0
LCR[7] = 1  
DREV  
DVID  
RD  
RD  
LCR[7]=1  
DLL=0x00  
DLM=0x00  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read- Only  
See “Receiver” on page 10.  
4.2  
Transmit Holding Register (THR) - Write-Only  
See “Transmitter” on page 9.  
4.3  
Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
13  
 
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
4.3.1  
Interrupt Mode Operation  
When the receive interrupt (IER BIT-0 = 1) is enabled, the RHR interrupt (see ISR bit-2) status will reflect the  
following:  
A. The receive data available interrupts are issued to the host when there is a character in the RHR. It will be  
cleared when the character has been read out of the RHR.  
B. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the RHR is empty.  
4.3.2  
Polled Mode Operation  
Since the receiver and transmitter have separate bits in the LSR either or both can be used in the polled mode  
by selecting respective transmit or receive control bit(s).  
A. LSR BIT-0 indicates there is data in the RHR.  
B. LSR BIT-1 indicates an overrun error has occurred and that data in the RHR may not be valid.  
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR BIT-5 indicates THR is empty.  
E. LSR BIT-6 indicates when both the THR and TSR are empty.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the Transmit FIFO becomes empty. If  
the Transmit FIFO is empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[7:4]: Reserved  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with four interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 6, shows the data values (bits 0-3) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
14  
 
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by data byte received in RHR.  
TXRDY is by THR empty.  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by a read to the LSR register.  
RXRDY interrupt is cleared by reading data out of RHR.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
]
TABLE 6: INTERRUPT SOURCE AND PRIORITY LEVEL  
ISR REGISTER STATUS BITS  
PRIORITY LEVEL  
SOURCE OF INTERRUPT  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
1
2
3
4
-
0
0
0
0
0
1
1
0
0
0
1
0
1
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
MSR (Modem Status Register)  
None (default)  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition).  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Table 6).  
ISR[7:4]: Reserved  
4.5  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
15  
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
BIT-2  
WORD LENGTH  
STOP BIT LENGTH (BIT TIME(S))  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 7 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR[5] = logic 0, parity is not forced (default).  
LCR[5] = logic 1 and LCR[4] = logic 0, parity bit is forced to a logical 1 for the transmit and receive data.  
LCR[5] = logic 1 and LCR[4] = logic 1, parity bit is forced to a logical 0 for the transmit and receive data.  
TABLE 7: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
Odd parity  
Even parity  
Force parity to mark, “1”  
Forced parity to space, “0”  
16  
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
LCR[7]: Baud Rate Divisors (DLL/DLM) Enable  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected.  
4.6  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force DTR# output to a logic 1 (default).  
Logic 1 = Force DTR# output to a logic 0.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: Reserved  
OP1# is not available as an output pin on the L2450. But it is available for use during Internal Loopback Mode.  
In the Loopback Mode, this bit is used to write the state of the modem RI# interface signal.  
MCR[3]: OP2# Output / INT Output Enable  
This bit enables and disables the operation of INT, interrupt output. If INT output is not used, OP2# can be  
used as a general purpose output.  
Logic 0 = INT (A-B) outputs disabled (three state mode) and OP2# output set to a logic 1 (default).  
Logic 1 = INT (A-B) outputs enabled (active mode) and OP2# output set to a logic 0.  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 7.  
MCR[7:5]: Reserved  
4.7  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register .  
17  
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
LSR[1]: Receiver Overrun Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while there is data in the RHR. In this case the previous data in the receive shift  
register is overwritten. Note that under this condition the data byte in the receive shift register is not  
transferred into the RHR, therefore the data in the RHR is not corrupted by the error. An interrupt will be  
generated immediately if LSR interrupt is enabled (IER bit-2).  
LSR[2]: Receive Data Parity Error Flag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR. If the LSR interrupt is enabled (IER  
bit-2), an interrupt will be generated when the character is in the RHR.  
LSR[3]: Receive Data Framing Error Flag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR. If the LSR interrupt is enabled (IER bit-2), an interrupt will be  
generated when the character is in the RHR.  
LSR[4]: Receive Break Flag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). The  
break indication remains until the RX input returns to the idle condition, “mark” or logic 1. If the LSR interrupt  
is enabled (IER bit-2), an interrupt will be generated when the character is in the RHR.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. This bit indicates that the transmitter is ready to  
accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the host  
when the THR interrupt enable is set. The THR bit is set to a logic 1 when the data byte is transferred from the  
transmit holding register to the transmit shift register. The bit is reset to logic 0 concurrently with the data  
loading to the transmit holding register by the host.  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or  
TSR contains a data character.  
LSR[7]: Reserved  
4.8  
Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface signals, or other peripheral device that the  
UART is connected. Lower four bits of this register are used to indicate the changed information. These bits  
are set to a logic 1 whenever a signal from the modem changes state. These bits may be used as general  
purpose inputs/outputs when they are not used with modem signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
18  
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
Normally this bit is the compliment of the CTS# input. However in the loopback mode, this bit is equivalent to  
the RTS# bit in the MCR register. The CTS# input may be used as a general purpose input when the modem  
interface is not used.  
MSR[5]: DSR Input Status  
Normally this bit is the compliment of the DSR# input. In the loopback mode, this bit is equivalent to the DTR#  
bit in the MCR register. The DSR# input may be used as a general purpose input when the modem interface is  
not used.  
MSR[6]: RI Input Status  
Normally this bit is the compliment of the RI# input. In the loopback mode this bit is equivalent to bit-2 in the  
MCR register. The RI# input may be used as a general purpose input when the modem interface is not used.  
MSR[7]: CD Input Status  
Normally this bit is the compliment of the CD# input. In the loopback mode this bit is equivalent to bit-3 in the  
MCR register. The CD# input may be used as a general purpose input when the modem interface is not used.  
4.9  
Scratch Pad Register (SPR) - Read/Write  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.10 Baud Rate Generator Registers (DLL and DLM) - Read/Write  
The Baud Rate Generator (BRG) is a 16-bit counter that generates the data rate for the transmitter. The rate is  
programmed through registers DLL and DLM which are only accessible when LCR bit-7 is set to ‘1’. See  
“Programmable Baud Rate Generator” on page 8. for more details.  
4.11 Device Identification Register (DVID) - Read Only  
This register contains the device ID (0x02 for XR16L2450). Prior to reading this register, DLL and DLM should  
be set to 0x00.  
4.12 Device Revision Register (DREV) - Read Only  
This register contains the device revision information. For example, 0x01 means revision A. Prior to reading  
this register, DLL and DLM should be set to 0x00.  
19  
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
TABLE 8: UART RESET CONDITIONS FOR CHANNEL A AND B  
REGISTERS  
DLM  
DLL  
RESET STATE  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
Bits 3-0 = Logic 0  
RHR  
THR  
IER  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 7-4 = Logic levels of the inputs  
inverted  
SPR  
I/O SIGNALS  
TX  
Bits 7-0 = 0xFF  
RESET STATE  
Logic 1  
Logic 1  
OP2#  
Logic 1  
RTS#  
Logic 1  
DTR#  
Three-State Condition  
INT  
20  
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
GND-0.3 V to VCC+0.3 V  
-40o to +85oC  
Operating Temperature  
-65o to +150oC  
500 mW  
Storage Temperature  
Package Dissipation  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)  
theta-ja =59oC/W, theta-jc = 16oC/W  
Thermal Resistance (48-TQFP)  
theta-ja = 50oC/W, theta-jc = 21oC/W  
Thermal Resistance (44-PLCC)  
ELECTRICAL CHARACTERISTICS  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA=-40O TO +85OC, VCC IS 2.25 TO 5.5V  
LIMITS  
2.5V  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNITS  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
VILCK  
VIHCK  
VIL  
Clock Input Low Level  
Clock Input High Level  
Input Low Voltage  
-0.3  
2.0  
0.2  
-0.3  
2.4  
0.6  
-0.5  
3.0  
0.6  
V
V
V
V
5.5  
0.6  
5.5  
5.5  
0.8  
5.5  
5.5  
0.8  
5.5  
0.4  
-0.3  
2.0  
-0.3  
2.0  
-0.5  
2.2  
VIH  
Input High Voltage  
Output Low Voltage  
VOL  
V
V
V
IOL = 6 mA  
IOL = 4 mA  
IOL = 2 mA  
0.4  
0.4  
VOH  
Output High Voltage  
2.4  
V
V
V
IOH = -6 mA  
IOH = -1 mA  
IOH = -400 uA  
2.0  
1.8  
IIL  
IIH  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
±10  
±10  
5
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
CIN  
ICC  
Power Supply Current  
1
1.3  
3
mA  
21  
 
 
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
AC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA=-40O TO +85OC, VCC IS 2.25V TO 5.5V,  
70 PF LOAD WHERE APPLICABLE  
LIMITS  
LIMITS  
3.3  
LIMITS  
SYMBOL  
PARAMETER  
2.5  
5.0  
UNIT  
MIN  
MAX  
MIN  
MAX MIN  
MAX  
-
Crystal Frequency  
8
16  
24  
MHz  
ns  
CLK  
OSC  
TAS  
External Clock Low/High Time  
External Clock Frequency  
Address Setup Time  
31  
25  
21  
16  
20  
24  
MHz  
ns  
10  
10  
10  
10  
75  
75  
75  
10  
10  
50  
50  
50  
TAH  
TCS  
Address Hold Time  
ns  
ns  
Chip Select Width  
150  
150  
150  
TRD  
IOR# Strobe Width  
ns  
TDY  
Read Cycle Delay  
ns  
TRDV  
TDD  
Data Access Time  
125  
45  
70  
30  
45  
30  
ns  
Data Disable Time  
0
0
0
ns  
TWR  
TDY  
IOW# Strobe Width  
150  
150  
25  
75  
75  
20  
10  
50  
50  
15  
10  
ns  
Write Cycle Delay  
ns  
TDS  
Data Setup Time  
ns  
TDH  
Data Hold Time  
15  
ns  
TWDO  
TMOD  
TRSI  
TSSI  
TINT  
Delay From IOW# To Output  
Delay To Set Interrupt From MODEM Input  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
150  
150  
150  
1
75  
75  
75  
1
50  
50  
50  
1
ns  
ns  
ns  
Bclk  
Bclk  
Delay From Initial INT Reset To Transmit  
Start  
8
24  
8
24  
8
24  
TWRI  
TRST  
N
Delay From IOW# To Reset Interrupt  
Reset Pulse Width  
150  
75  
50  
ns  
ns  
-
40  
1
40  
1
40  
1
216-1  
216-1  
216-1  
Baud Rate Divisor  
Bclk  
Baud Clock  
16X of data rate  
Hz  
22  
 
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
FIGURE 8. CLOCK TIMING  
CLK  
CLK  
EXTERNAL  
CLOCK  
OSC  
FIGURE 9. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A & B  
IOW #  
Active  
TW DO  
RTS#  
DTR#  
Change of state  
Change of state  
CD#  
CTS#  
DSR#  
Change of state  
Change of state  
TMOD  
TMOD  
Active  
INT  
Active  
Active  
Active  
TRSI  
IOR#  
Active  
Active  
TMOD  
Change of state  
RI#  
23  
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
FIGURE 10. DATA BUS READ TIMING  
A0-A2  
Valid Address  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
TCS  
CSA#/  
CSB#  
TDY  
TRD  
TRD  
IOR#  
TDD  
TDD  
TRDV  
TRDV  
D0-D7  
Valid Data  
Valid Data  
RDTm  
FIGURE 11. DATA BUS WRITE TIMING  
A0-A2  
Valid Address  
TCS  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
CSA#/  
CSB#  
TDY  
TWR  
TWR  
IOW#  
TDH  
TDH  
TDS  
Valid Data  
TDS  
Valid Data  
D0-D7  
16Write  
24  
 
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
FIGURE 12. INTERRUPT TIMING FOR CHANNELS A & B  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSI  
TSSI  
TSSI  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TRSI  
TRSI  
TRSI  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
FIGURE 13. INTERRUPT TIMING FOR CHANNELS A & B  
TX  
(Unloading)  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TINT  
TINT  
TINT  
IER[1]  
enabled  
INT*  
TWRI  
TWRI  
ISR is read  
TWRI  
ISR is read  
ISR is read  
IOW#  
(Loading data  
into THR)  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
TXNonFIFO  
25  
 
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)  
D
D
1
36  
25  
37  
24  
D
1
D
48  
13  
1
1
2
B
e
A
2
C
A
Seating  
Plane  
α
A
1
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
9.20  
7.10  
A
A1  
A2  
B
0.039  
0.002  
0.037  
0.007  
0.004  
0.346  
0.272  
0.047  
0.006  
0.041  
0.011  
0.008  
0.362  
0.280  
1.00  
0.05  
0.95  
0.17  
0.09  
8.80  
6.90  
C
D
D1  
e
0.020 BSC  
0.50 BSC  
L
0.018  
0.030  
0.45  
0.75  
α
0°  
7°  
0°  
7°  
26  
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV. 1.1.1  
PACKAGE DIMENSIONS (44 PIN PLCC)  
44 LEAD PLASTIC LEADED CHIP CARRIER  
(PLCC)  
Rev. 1.00  
C
D
Seating Plane  
D1  
45° x H  
1
45° x H  
2
A
2
2
1
44  
B
1
B
e
D
D
1
D
D
3
2
R
D
3
A
1
A
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
4.57  
3.05  
---  
A
A1  
A2  
B
0.165  
0.090  
0.020  
0.013  
0.026  
0.008  
0.685  
0.650  
0.590  
0.180  
0.120  
---  
4.19  
2.29  
0.51  
0.021  
0.032  
0.013  
0.695  
0.656  
0.630  
0.33  
0.53  
0.81  
0.32  
17.65  
16.66  
16.00  
B1  
0.66  
C
D
0.19  
17.40  
16.51  
14.99  
D1  
D2  
D3  
0.500 typ.  
0.050 BSC  
12.70 typ.  
1.27 BSC  
1.07  
e
H1  
0.042  
0.056  
0.048  
0.045  
1.42  
1.22  
1.14  
H2  
R
0.042  
0.025  
1.07  
0.64  
27  
 
XR16L2450  
2.25V TO 5.5V DUART  
xr  
REV. 1.1.1  
REVISION HISTORY  
DATE  
November 2002  
March 2003  
June 2003  
REVISION  
DESCRIPTION  
P1.0.0  
P1.0.1  
P1.0.2  
Preliminary Datasheet.  
Updated AC Electrical Characteristics.  
Added Device Status to Ordering Information.  
September 2003 1.0.0  
Final Production Release. Updated 5V tolerance information and AC Electrical  
Characteristics.  
September 2004 1.1.0  
Added Device Revision and Device ID registers and descriptions.  
Updated the Data Access Time (TRDV) in AC Electrical Characteristics.  
May 2005  
1.1.1  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2005 EXAR Corporation  
Datasheet May 2005.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
28  
 
xr  
XR16L2450  
2.25V TO 5.5V DUART  
REV.1.1.0  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
APPLICATIONS ............................................................................................................................................... 1  
FEATURES..................................................................................................................................................... 1  
FIGURE 1. XR16L2450 BLOCK DIAGRAM ......................................................................................................................................... 1  
FIGURE 2. PIN OUT ASSIGNMENT ..................................................................................................................................................... 2  
ORDERING INFORMATION ................................................................................................................................ 2  
PACKAGE PIN DESCRIPTIONS ...................................................................................... 3  
PIN DESCRIPTIONS ........................................................................................................................................ 3  
1.0 PRODUCT DESCRIPTION .................................................................................................................... 6  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................................ 6  
2.1 CPU INTERFACE ............................................................................................................................................. 6  
FIGURE 3. XR16L2450 DATA BUS INTERCONNECTIONS.................................................................................................................. 6  
2.2 5-VOLT TOLERANT INPUTS ........................................................................................................................... 6  
2.3 DEVICE RESET ................................................................................................................................................ 6  
2.4 DEVICE IDENTIFICATION AND REVISION .................................................................................................... 7  
2.5 CHANNEL A AND B SELECTION ................................................................................................................... 7  
TABLE 1: CHANNEL A AND B SELECT ............................................................................................................................................... 7  
2.6 CHANNEL A AND B INTERNAL REGISTERS ................................................................................................ 7  
2.7 INTA AND INTB OUTPUTS .............................................................................................................................. 7  
TABLE 2: INTA AND INTB PINS OPERATION FOR TRANSMITTER ........................................................................................................ 7  
2.8 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT ............................................................................. 7  
FIGURE 4. TYPICAL OSCILLATOR CONNECTIONS................................................................................................................................. 8  
2.9 PROGRAMMABLE BAUD RATE GENERATOR ............................................................................................. 8  
TABLE 3: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK ........................................................................ 9  
2.10 TRANSMITTER ............................................................................................................................................... 9  
2.10.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY......................................................................................... 9  
FIGURE 5. TRANSMITTER OPERATION ............................................................................................................................................... 9  
2.11 RECEIVER .................................................................................................................................................... 10  
2.11.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY .......................................................................................... 10  
FIGURE 6. RECEIVER OPERATION................................................................................................................................................... 10  
2.12 INTERNAL LOOPBACK ............................................................................................................................... 11  
FIGURE 7. INTERNAL LOOP BACK IN CHANNELS A AND B ................................................................................................................ 11  
3.0 UART INTERNAL REGISTERS ........................................................................................................... 12  
TABLE 4: UART CHANNEL A AND B UART INTERNAL REGISTERS ..................................................................................... 12  
TABLE 5: INTERNAL REGISTERS DESCRIPTION................................................................................................................... 13  
4.0 INTERNAL REGISTER DESCRIPTIONS ............................................................................................ 13  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY ............................................................................... 13  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................ 13  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ............................................................................. 13  
4.3.1 INTERRUPT MODE OPERATION .............................................................................................................................. 14  
4.3.2 POLLED MODE OPERATION .................................................................................................................................... 14  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................... 14  
4.4.1 INTERRUPT GENERATION: ...................................................................................................................................... 15  
4.4.2 INTERRUPT CLEARING: ........................................................................................................................................... 15  
TABLE 6: INTERRUPT SOURCE AND PRIORITY LEVEL ....................................................................................................................... 15  
4.5 LINE CONTROL REGISTER (LCR) - READ/WRITE ..................................................................................... 15  
TABLE 7: PARITY SELECTION .......................................................................................................................................................... 16  
4.6 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE 17  
4.7 LINE STATUS REGISTER (LSR) - READ ONLY ........................................................................................... 17  
4.8 MODEM STATUS REGISTER (MSR) - READ ONLY .................................................................................... 18  
4.9 SCRATCH PAD REGISTER (SPR) - READ/WRITE ...................................................................................... 19  
4.10 BAUD RATE GENERATOR REGISTERS (DLL AND DLM) - READ/WRITE .............................................. 19  
4.11 DEVICE IDENTIFICATION REGISTER (DVID) - READ ONLY .................................................................... 19  
4.12 DEVICE REVISION REGISTER (DREV) - READ ONLY .............................................................................. 19  
TABLE 8: UART RESET CONDITIONS FOR CHANNEL A AND B.............................................................................................. 20  
ABSOLUTE MAXIMUM RATINGS .................................................................................. 21  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)21  
ELECTRICAL CHARACTERISTICS................................................................................ 21  
I
 
XR16L2450  
REV. 1.1.0  
xr  
2.25V TO 5.5V DUART  
DC ELECTRICAL CHARACTERISTICS ..............................................................................................................21  
AC ELECTRICAL CHARACTERISTICS ..............................................................................................................22  
Unless otherwise noted: TA=-40o to +85oC, Vcc is 2.25V to 5.5V, ..........................................................................22  
70 PF LOAD WHERE APPLICABLE...................................................................................................................22  
FIGURE 8. CLOCK TIMING............................................................................................................................................................... 23  
FIGURE 9. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A & B ................................................................................................... 23  
FIGURE 11. DATA BUS WRITE TIMING............................................................................................................................................. 24  
FIGURE 10. DATA BUS READ TIMING.............................................................................................................................................. 24  
FIGURE 12. INTERRUPT TIMING FOR CHANNELS A & B.................................................................................................................... 25  
FIGURE 13. INTERRUPT TIMING FOR CHANNELS A & B.................................................................................................................... 25  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 MM)...............................................26  
PACKAGE DIMENSIONS (44 PIN PLCC) .......................................................................27  
REVISION HISTORY.......................................................................................................................................28  
TABLE OF CONTENTS ............................................................................................................I  
II  

相关型号:

XR16L2450IM

2.25V TO 5.5V DUART
EXAR

XR16L2450IM-F

Serial I/O Controller, 2 Channel(s), 0.1875MBps, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, GREEN, TQFP-48
EXAR

XR16L2450_05

2.25V TO 5.5V DUART
EXAR

XR16L2550

LOW VOLTAGE DUART WITH 16-BYTE FIFO
EXAR

XR16L2550IJ

LOW VOLTAGE DUART WITH 16-BYTE FIFO
EXAR

XR16L2550IJ-F

Serial I/O Controller, 2 Channel(s), 0.390625MBps, CMOS, PQCC44, GREEN, PLASTIC, LCC-44
EXAR

XR16L2550IJTR-F

Serial I/O Controller, CMOS, PQCC44
EXAR

XR16L2550IL

LOW VOLTAGE DUART WITH 16-BYTE FIFO
EXAR

XR16L2550IL-F

Serial I/O Controller, 2 Channel(s), 0.390625MBps, CMOS, 5 X 5 MM, 0.90 MM HEIGHT, GREEN, QFN-32
EXAR

XR16L2550ILTR-F

Serial I/O Controller, CMOS, PQCC32
EXAR

XR16L2550IM

LOW VOLTAGE DUART WITH 16-BYTE FIFO
EXAR

XR16L2550IM-F

IC UART FIFO 16B DUAL 48TQFP
ETC