XR16L570IL24 [EXAR]

SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE; 体积最小1.62V至5.5V UART,具有16字节FIFO和省电模式
XR16L570IL24
型号: XR16L570IL24
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
体积最小1.62V至5.5V UART,具有16字节FIFO和省电模式

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路 先进先出芯片 数据传输 时钟
文件: 总46页 (文件大小:1060K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
xr  
XR16L570  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
DECEMBER 2005  
REV. 1.0.0  
FEATURES  
GENERAL DESCRIPTION  
Smallest Full Featured UART  
1.62V to 5.5V Supply Voltage  
5V Tolerant Inputs (except XTAL1/CLK)  
’0 ns’ Address Hold Time (TAH and TADH  
Software Compatible to industry standard 16C450,  
16C550, ST16C580, ST16C650A, XR16C850 and  
XR16L580  
The XR16L570 (L570) is a 1.62 to 5.5 volt Universal  
Asynchronous Receiver and Transmitter (UART) with 5 volt  
tolerant inputs and a reduced pin count. It is software  
compatible to industry standard 16C450, 16C550,  
ST16C580, ST16C650A, XR16C850 and XR16L580  
UARTs. It has 16 bytes of TX and RX FIFOs and is capable  
of operating with a serial data rate of up to 4 Mbps at 5V, 3  
Mbps at 3.3V,1 Mbps at 2.5V and 750 Kbps at 1.8V. The  
internal registers are compatible to the 16C550 register set  
plus enhanced registers for additional features to support  
today’s high bandwidth data communication needs. The  
)
16-byte Transmit FIFO  
16-byte Receive FIFO with Errors Flags  
Selectable RX and TX FIFO Trigger Levels  
Automatic Hardware (RTS/CTS) Flow Control  
Automatic Software (Xon/Xoff) Flow Control  
Up to 4 Mbps data rate at 5.0V Operation  
Up to 3 Mbps data rate at 3.3V Operation  
Up to 1 Mbps data rate at 2.5V Operation  
Up to 750 Kbps data rate at 1.8V Operation  
Infrared (IrDA) Encoder/Decoder  
enhanced features include  
automatic hardware and  
software flow control to prevent data loss, selectable RX  
and TX trigger levels for more efficient interrupt service,  
wireless infrared (IrDA) encoder/decoder for wireless  
applications and a unique Power-Save mode to increase  
battery operating time. The device comes in 32-QFN and  
24-QFN packages in industrial temperature range.  
APPLICATIONS  
Handheld Terminals and Tablets  
Handheld Computers  
Wireless Portable Point-of-Sale Terminals  
Cellular Phones DataPort  
GPS Devices  
Personal Digital Assistants Modules  
Battery Operated Instruments  
Complete Modem Interface  
Power-Save Mode to conserve battery power  
Sleep Mode with Wake-up Interrupt  
Very small packages: 24-QFN (4x4x0.9mm) and 32-QFN  
(5x5x0.9mm)  
Industrial Temperature Grade(-40 to +85oC)  
FIGURE 1. BLOCK DIAGRAM  
VCC  
(1.62 to 5.5 V)  
*5 V Tolerant Inputs  
(Except for CLK)  
PwrSave  
A2:A0  
GND  
D7:D0  
IOR#  
UART  
TX  
RX  
IOW#  
CS#  
16 Byte TX FIFO  
RTS#  
CTS#  
DTR#  
DSR#  
CD#  
RI#  
UART  
Regs  
IR  
TX & RX  
ENDEC  
INT  
Data Bus  
Interface  
RESET  
16 Byte RX FIFO  
Clock Buffer  
BRG  
XTAL1 (CLK)  
XTAL2  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
FIGURE 2. PACKAGE AND PIN OUT (24-PIN QFN PACKAGE)  
24  
23  
22 21 20 19 18  
32-pin QFN  
17  
NC  
DSR# 25  
16  
15  
14  
13  
12  
11  
10  
9
18 17 16 15 14 13  
CD#  
RI#  
VCC  
D0  
26  
27  
28  
29  
30  
31  
NC  
VCC  
D0  
A2  
19  
12  
IOR#  
GND  
IOW#  
XTAL2  
XTAL1  
NC  
IOR#  
20  
11  
D1 21  
D2 22  
10 GND  
24-pin QFN  
9
8
7
IOW#  
D1  
D2  
23  
24  
D3  
D4  
CLK  
PwrSave  
32  
D3  
1
2
3
4
5
6
7
3 4 5 6  
8
2
1
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40°C to +85°C  
XR16L570IL24  
24-pin QFN  
32-pin QFN  
XR16L570IL32  
-40°C to +85°C  
2
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
PIN DESCRIPTIONS  
Pin Descriptions  
24-QFN 32-QFN  
NAME  
TYPE  
DESCRIPTION  
PIN#  
PIN#  
DATA BUS INTERFACE  
A2  
A1  
A0  
12  
13  
14  
17  
18  
19  
I
Address data lines [2:0]. These 3 address lines select one of the internal registers in  
the UART during a data bus transaction.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
3
5
4
I/O  
Data bus lines [7:0] (bidirectional).  
2
1
3
24  
23  
22  
21  
20  
1
32  
31  
30  
29  
IOR#  
11  
14  
I
I
This input is the read strobe (active low). The falling edge instigates an internal read  
cycle and retrieves the data byte from an internal register pointed by the address  
lines [A2:A0], puts the data byte on the data bus to allow the host processor to read it  
on the rising edge.  
IOW#  
9
12  
This input is the write strobe (active low). The falling edge instigates the internal write  
cycle and the rising edge transfers the data byte on the data bus to an internal regis-  
ter pointed by the address lines.  
CS#  
INT  
6
8
I
This input is chip select (active low) to enable the device.  
15  
20  
O
This output is the active high device interrupt output. The output state is defined by  
the user through the software setting of MCR[3]. INT is set to the active mode when  
MCR[3] is set to a logic 1. INT is set to the three state mode when MCR[3] is set to a  
logic 0. See MCR[3].  
MODEM OR SERIAL I/O INTERFACE  
TX  
5
7
O
UART Transmit Data or infrared encoder data. Standard transmit and receive inter-  
face is enabled when MCR[6] = 0. In this mode, the TX signal will be a logic 1 during  
reset or idle (no data). Infrared IrDA transmit and receive interface is enabled when  
MCR[6] = 1. In the Infrared mode, the inactive state (no data) for the Infrared  
encoder/decoder interface is a logic 0. If it is not used, leave it unconnected.  
RX  
4
6
I
O
I
UART Receive Data or infrared receive data. Normal receive data input must idle at  
logic 1 condition. The infrared receiver idles at logic 0.  
RTS#  
CTS#  
16  
18  
21  
24  
UART Request-to-Send (active low) or general purpose output. This output must be  
asserted prior to using auto RTS flow control, see EFR[6], MCR[1] and IER[6].  
UART Clear-to-Send (active low) or general purpose input. It can be used for auto  
CTS flow control, see EFR[7], MSR[4] and IER[7]. This input should be connected to  
VCC when not used.  
DTR#  
DSR#  
-
-
22  
25  
O
I
UART Data-Terminal-Ready (active low) or general purpose output. This pin is not  
available in the 24-QFN package.  
UART Data-Set-Ready (active low) or general purpose input. This input should be  
connected to VCC when not used. This input has no effect on the UART. This pin is  
not available in the 24-QFN package.  
3
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
Pin Descriptions  
24-QFN 32-QFN  
NAME  
TYPE  
DESCRIPTION  
PIN#  
PIN#  
CD#  
-
26  
I
UART Carrier-Detect (active low) or general purpose input. This input should be con-  
nected to VCC when not used. This input has no effect on the UART. This pin is not  
available in the 24-QFN package.  
RI#  
-
27  
I
UART Ring-Indicator (active low) or general purpose input. This input should be con-  
nected to VCC when not used. This input has no effect on the UART. This pin is not  
available in the 24-QFN package.  
ANCILLARY SIGNALS  
XTAL1  
(CLK)  
8
10  
I
Crystal or external clock input. This input is not 5V tolerant.  
XTAL2  
-
11  
O
Crystal or buffered clock output. This output may be use to drive a clock buffer which  
can drive other device(s). This pin is not available in the 24-QFN package.  
PwrSave  
7
-
I
Power-Save (active high). This feature isolates the L570’s data bus interface from  
the host preventing other bus activities that cause higher power drain during sleep  
mode. See Sleep Mode with Auto Wake-up and Power-Save Feature section for  
details. This pin is not available in the 28-QFN package.  
RESET  
17  
23  
I
This input is the active high RESET signal.  
A 40 ns minimum active pulse on this pin will reset the internal registers and all out-  
puts of the UART. The UART transmitter output will be held at logic 1, the receiver  
input will be ignored and outputs are reset during reset period (see UART Reset Con-  
ditions).  
VCC  
GND  
GND  
19  
10  
28  
13  
Pwr  
Pwr  
1.62V to 5.5V power supply. All input pins, except CLK, are 5V tolerant.  
Power supply common, ground.  
Center Center Pwr  
Pad Pad  
The center pad on the backside of the QFN packages is metallic and should be con-  
nected to GND on the PCB. The thermal pad size on the PCB should be the approxi-  
mate size of this center pad and should be solder mask defined. The solder mask  
opening should be at least 0.0025" inwards from the edge of the PCB thermal pad.  
NOTE: Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain.  
4
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
1.0 PRODUCT DESCRIPTION  
The XR16L570 (L570) is an enhanced 16C550 Universal Asynchronous Receiver and Transmitter (UART). Its  
features set is compatible to the ST16C580 device and additionally offers Power-Save to isolate the data bus  
interface during Sleep mode. The XR16L570 can operate from 1.62V to 5.5V with 5 volt tolerant inputs. The  
configuration registers set is 16550 UART compatible for control, status and data transfer. Also, the L570 has  
16-bytes of transmit and receive FIFOs, automatic RTS/CTS hardware flow control, automatic Xon/Xoff and  
special character software flow control, transmit and receive FIFO trigger levels, infrared encoder and decoder  
(IrDA ver 1.0), programmable baud rate generator with a prescaler of divide by 1 or 4. The L570 is fabricated  
using an advanced CMOS process.  
Enhanced Features  
The L570 UART provides a solution that supports 16 bytes of transmit and receive FIFO memory. The L570 is  
designed to work with low supply voltage and high performance data communication systems, that require fast  
data processing time. Increased performance is realized in the L570 by the transmit and receive FIFOs, FIFO  
trigger level controls and automatic flow control mechanism. This allows the external processor to handle more  
networking tasks within a given time. This increases the service interval giving the external CPU additional time  
for other applications and reducing the overall UART interrupt servicing time. In addition, the L570 provides the  
Power-Save mode that drastically reduces the power consumption when the device is not used. The  
combination of the above greatly reduces the CPU’s bandwidth requirement, increases performance, and  
reduces power consumption.  
Data Bus Interface  
The L570 provides a host interface that supports a microprocessor (CPU) data bus interface. The interface  
allows direct interconnect to Intel compatible type of CPUs using IOR#, IOW# and CS# inputs for data bus  
operation. See pin description section for details on all the control signals.  
Data Rate  
The L570 is capable of operation up to 4 Mbps at 5V, 3 Mbps at 3.3V, 1 Mbps at 2.5V and 750 Kbps at 1.8V  
with 16X internal sampling clock rate by using an external clock source on the XTAL1 (CLK) pin.  
Internal Enhanced Register Sets  
The L570 UART has a set of enhanced registers providing control and monitoring functions. Interrupt enable/  
disable and status, FIFO enable/disable, selectable TX and RX FIFO trigger levels, automatic hardware/  
software flow control enable/disable, programmable baud rates, infrared encoder/decoder enable/disable,  
modem interface controls and status, sleep mode and Power-Save mode (in the 24-QFN package) are all  
standard features. Following a power on reset or an external reset, the registers defaults to the reset condition  
and it is compatible with previous generation of UARTs, 16C450, 16C550, 16C580, 16L580, 16C650A and  
16C850.  
5
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
CPU Interface  
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and  
write transactions. The L570 data interface supports the Intel compatible types of CPUs and it is compatible to  
the industry standard 16C550 UART. No clock (oscillator nor external clock) is required to operate a data bus  
transaction. Each bus cycle is asynchronous using CS#, IOR# and IOW# inputs. A typical data bus  
interconnection is shown in Figure 3.  
FIGURE 3. XR16L570 TYPICAL DATA BUS INTERCONNECTIONS  
VCC  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TX  
RX  
Serial Interface of  
RS-232 or RS-422  
A0  
A1  
A2  
A0  
A1  
A2  
RTS#  
CTS#  
IOR#  
IOW#  
IOR#  
IOW#  
CS#  
UART_CS#  
UART_INT  
INT  
PwrSave  
GND  
UART_RESET  
RESET  
Data Bus Interconnections  
6
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
2.2  
5-Volt Tolerant Inputs  
The L570 can accept up to 5V inputs when operating at 3.3V, 2.5V or 1.8V. But note that if the L570 is  
operating at 2.5V or below, its V may not be high enough to meet the requirements of the V of a CPU or a  
OH  
IH  
serial transceiver that is operating at 5V. Note that the XTAL1 (CLK) pin is not 5V tolerant.  
2.3  
Device Hardware Reset  
The RESET input resets the internal registers and the serial interface outputs in both channels to their default  
state (see Table 11). An active pulse of longer than 40 ns duration will be required to activate the reset function  
in the device.  
2.4  
Device Identification and Revision  
The XR16L570 provides a Device Identification code and a Device Revision code. To read the identification  
code from the part, it is required to set the baud rate generator registers DLL and DLM both to 0x00. Now  
reading the content of the DLM will provide 0x01 to indicate XR16L570 and reading the content of DLL will  
provide the revision of the part; for example, a reading of 0x01 means revision A.  
2.5  
Internal Registers  
The L570 has a set of enhanced registers for control, monitoring and data loading and unloading. The  
configuration register set is compatible to those already available in the standard 16C550. These registers  
function as data holding registers (THR/RHR), interrupt status and control registers (ISR/IER), a FIFO control  
register (FCR), receive line status and control registers (LSR/LCR), modem status and control registers (MSR/  
MCR), programmable data rate (clock) divisor registers (DLL/DLM), and an user accessible Scratchpad  
register (SPR).  
Beyond the general 16C550 features and capabilities, the L570 offers enhanced feature registers (EFR, Xon1,  
Xoff 1, Xon1 and Xoff2) that provide automatic RTS and CTS hardware flow control and Xon/Xoff software flow  
control. All the register functions are discussed in full detail later in “Section 3.0, UART INTERNAL  
REGISTERS” on page 19.  
2.6  
DMA Mode  
The DMA Mode (a legacy term) refers to data block transfer operation. The DMA mode affects the state of the  
RXRDY# and TXRDY# output pins available in the original 16C550. These pins are not available in the  
XR16L570. The DMA Enable bit (FCR bit-3) does not have any function in this device and can be a ’0’ or a ’1’.  
2.7  
INT Output  
The interrupt output changes according to the operating mode and enhanced features setup. Table 1 and  
Table 2 below summarize the operating behavior for the transmitter and receiver. Also see Figures 18  
through 21.  
TABLE 1: INT PIN OPERATION FOR TRANSMITTER  
FCR BIT-0 = 0 (FIFO DISABLED)  
0 = one byte in THR  
FCR BIT-0 = 1 (FIFO ENABLED)  
INT Pin  
0 = FIFO above trigger level  
1 = FIFO below trigger level or FIFO empty  
1 = THR empty  
TABLE 2: INT PIN OPERATION FOR RECEIVER  
FCR BIT-0 = 0  
FCR BIT-0 = 1  
(FIFO DISABLED)  
(FIFO ENABLED)  
INT Pin  
0 = no data  
1 = 1 byte  
0 = FIFO below trigger level  
1 = FIFO above trigger level  
7
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
2.8  
Crystal or External Clock Input  
The L570 includes an on-chip oscillator in the 32-QFN package (XTAL1 and XTAL2) to generate a clock when  
a crystal is connected between the XTAL1 and XTAL2 pins of the device. Alternatively, an external clock can be  
supplied through the XTAL1 or CLK pin. The CPU data bus does not require this clock for bus operation. The  
crystal oscillator provides a system clock to the Baud Rate Generators (BRG) section. XTAL1 is the input to the  
oscillator or external clock input and XTAL2 pin is the bufferred output which can be used as a clock signal for  
other devices in the system. Please note that the XTAL1 input is not 5V tolerant and therefore, the maximum  
voltage at that pin should be VCC when an external clock is supplied. For programming details, see “Section  
2.9, Programmable Baud Rate Generator” on page 9.  
FIGURE 4. TYPICAL CRYSTAL CONNECTIONS  
XTAL1  
XTAL2  
R1  
0-120  
(Optional)  
R2  
500K - 1M  
1.8432 MHz  
to  
Y1  
24 MHz  
C1  
C2  
22-47pF  
22-47pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 4). When VCC = 5V, the on-  
chip oscillator can operate with a crystal whose frequency is not greater than 24 MHz. On the other hand, the  
L570 can accept an external clock of up to 64MHz at XTAL1 pin, with a 2K ohms pull-up resistor on XTAL2 pin  
(as shown in Figure 5). The 2K ohms pull-up resistor may be required for external clock frequencies of greater  
than 24MHz. This translates to a maximum of 4Mbps serial data rate at 5V.  
FIGURE 5. EXTERNAL CLOCK CONNECTION FOR EXTENDED DATA RATE  
E xternal C lock  
vcc  
XTA L1  
gnd  
V C C  
R 1  
2K  
XTA L2  
For further reading on the oscillator circuit please see the Application Note DAN108 on the EXAR web site at  
http://www.exar.com.  
8
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
2.9  
Programmable Baud Rate Generator  
The L570 UART has its own Baud Rate Generator (BRG) with a prescaler. The prescaler is controlled by a  
software bit (bit-7) in the MCR register. This bit selects the prescaler to divide the input external clock by a  
factor of 1 or 4. The clock output of the prescaler goes to the BRG. The BRG further divides this clock by a  
16  
programmable divisor (via DLL and DLM registers) between 1 and (2 -1) to obtain a 16X sampling rate clock  
of the serial data rate. The sampling rate clock is used by the transmitter for data bit shifting and receiver for  
data sampling. The BRG divisor defaults to the maximum baud rate (DLL = 0x01 and DLM = 0x00) upon power  
up.  
FIGURE 6. BAUD RATE GENERATOR AND PRESCALER  
DLL and DLM  
Registers  
MCR Bit-7=0  
(default)  
Prescaler  
Divide by 1  
16X  
Sampling  
Rate Clock to  
Transmitter  
Baud Rate  
Generator  
Logic  
Clock  
Buffer  
CLK  
Prescaler  
Divide by 4  
MCR Bit-7=1  
Programming the Baud Rate Generator Registers DLM and DLL provides the capability of selecting the  
operating data rate. Table 3 shows the standard data rates available with a 14.7456 MHz external clock at 16X  
sampling rate clock rate. When using a non-standard data rate external clock, the divisor value can be  
calculated for DLL/DLM with the following equation.  
divisor (decimal) = (clock frequency / prescaler) / (serial data rate x 16)  
9
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
TABLE 3: TYPICAL DATA RATES WITH A 14.7456 MHZ EXTERNAL CLOCK  
OUTPUT Data Rate OUTPUT Data Rate  
DLM  
PROGRAM  
VALUE (HEX) VALUE (HEX)  
DLL  
PROGRAM  
DATA RATE  
ERROR (%)  
DIVISOR FOR 16x DIVISOR FOR 16x  
Clock (Decimal) Clock (HEX)  
MCR Bit-7=1  
MCR Bit-7=0  
(DEFAULT)  
100  
600  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
1200  
2400  
4800  
9600  
19.2k  
38.4k  
57.6k  
115.2k  
230.4k  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
2.10 Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 16 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X internal  
clock. A bit time is 16 clock periods. The transmitter sends the start-bit followed by the number of data bits,  
inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are reported in  
the Line Status Register (LSR bit-5 and bit-6).  
2.10.1 Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,  
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input  
register to the transmit FIFO of 16 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
2.10.2 Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
10  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X Clock  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.10.3 Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 16 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the  
amount of data in the FIFO falls below its programmed trigger level. The transmit empty interrupt is enabled by  
IER bit-1. The Transmitter Empty Flag (LSR bit-6) is set when both the TSR and the FIFO become empty.  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE  
THR Interrupt (ISR bit-1):  
Transmit  
FIFO  
Transmit  
Data Byte  
- When the TX FIFO falls below the  
programmed Trigger Level, and  
- When the TX FIFO becomes empty.  
Auto CTS Flow Control (CTS# pin)  
FIFO is Enabled by FCR bit-0=1  
Flow Control Characters  
(Xoff1,2 and Xon1,2 Reg.)  
Auto Software Flow Control  
16X Clock  
Transmit Data Shift Register  
(TSR)  
TXFIFO1  
2.11 RECEIVER  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 16 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X clock for timing. On the falling edge of a  
start or a false start bit, an internal receiver counter starts counting at the 16X clock rate. After 8 clocks the start  
bit period should be at the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is  
validated as a start bit. Evaluating the start bit in this manner prevents the receiver from assembling a false  
character. Each of the data, parity and stop bits is sampled at the middle of the bit to prevent false framing. If  
there were any error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte  
from RHR, the receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status  
of the data byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character  
or delay until it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a  
receive data ready time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus  
12 bits time. This is equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.  
11  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
2.11.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift  
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive  
FIFO of 16 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When  
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the  
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data  
byte are immediately updated in the LSR bits 2-4.  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
(RHR)  
Tags in  
LSR bits  
4:2  
RHR Interrupt (ISR bit-2)  
RXFIFO1  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Example  
:
RX FIFO trigger level selected at 8 bytes  
16 bytes by 11-bit  
wide  
Data falls to  
RTS# re-asserts when data falls below the flow  
FIFO  
4
control trigger level to restart remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
RHR Interrupt (ISR bit-2) programmed for  
desired FIFO trigger level.  
Data FIFO  
FIFO Trigger=8  
FIFO is Enabled by FCR bit-0=1  
Data fills to  
14  
RTS# de-asserts when data fills above the flow  
control trigger level to suspend remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data  
Receive Data  
Byte and Errors  
RXFIFO1  
12  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
2.12  
Auto RTS (Hardware) Flow Control  
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#  
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control  
features is enabled to fit specific application requirement (see Figure 11):  
Enable auto RTS flow control using EFR bit-6.  
The auto RTS function must be started by asserting RTS# output pin (MCR bit-1 to logic 1 after it is enabled).  
If using the Auto RTS interrupt:  
Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the  
RTS# pin makes a transition from low to high: ISR bit-5 will be set to logic 1.  
2.13  
Auto RTS Hysteresis  
The L570 has a new feature that provides flow control trigger hysteresis while maintaining compatibility with  
the ST16C550 UART. With the Auto RTS function enabled, an interrupt is generated when the receive FIFO  
reaches the programmed RX trigger level. The RTS# pin will not be forced to a logic 1 (RTS off), until the  
receive FIFO reaches one trigger level above the programmed trigger level in the trigger table (Table 8). The  
RTS# pin will return to a logic 0 after the RX FIFO is unloaded to one trigger level lower than the programmed  
trigger level. This is described in Figure 11. Under the above described conditions, the L570 will continue to  
accept data until the receive FIFO gets full. The Auto RTS function is initiated when the RTS# output pin is  
asserted to a logic 0 (RTS On).  
2.14  
Auto CTS Flow Control  
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is  
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific  
application requirement (see Figure 11):  
Enable auto CTS flow control using EFR bit-7.  
If using the Auto CTS interrupt:  
Enable CTS interrupt through IER bit-7 (after setting EFR bit-4). The UART issues an interrupt when the  
CTS# pin is de-asserted (HIGH): ISR bit-5 will be set to 1, and UART will suspend transmission as soon as  
the stop bit of the character in process is shifted out. Transmission is resumed after the CTS# input is re-  
asserted (LOW), indicating more data may be sent.  
13  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION  
Local UART  
UARTA  
Remote UART  
UARTB  
RXA  
TXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
RTSA#  
TXA  
CTSB#  
RXB  
Auto RTS  
Trigger Level  
Auto CTS  
Monitor  
Receiver FIFO  
Trigger Reached  
Transmitter  
CTSA#  
RTSB#  
Auto CTS  
Monitor  
Auto RTS  
Trigger Level  
Assert RTS# to Begin  
Transmission  
1
10  
11  
ON  
ON  
ON  
RTSA#  
OFF  
OFF  
7
2
ON  
3
CTSB#  
TXB  
8
Restart  
9
Data Starts  
6
Suspend  
4
RXA FIFO  
Receive  
Data  
RX FIFO  
Trigger Level  
RTS High  
Threshold  
RTS Low  
Threshold  
5
RX FIFO  
Trigger Level  
12  
INTA  
(RXA FIFO  
Interrupt)  
RTSCTS1  
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of  
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO  
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-  
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA  
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows  
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-  
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),  
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until  
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB  
with RTSB# and CTSA# controlling the data flow.  
14  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
2.15  
Auto Xon/Xoff (Software) Flow Control  
When software flow control is enabled (See Table 10), the L570 compares one or two sequential receive data  
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the  
programmed values, the L570 will halt transmission (TX) as soon as the current character has completed  
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output  
pin will be activated. Following a suspension due to a match of the Xoff character, the L570 will monitor the  
receive data stream for a match to the Xon-1,2 character. If a match is found, the L570 will resume operation  
and clear the flags (ISR bit-4).  
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user  
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/  
Xoff characters (See Table 10) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters  
are selected, the L570 compares two consecutive receive characters with two software flow control 8-bit  
values (Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow  
control mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or  
FIFO.  
In the event that the receive buffer is overfilling and flow control needs to be executed, the L570 automatically  
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The L570 sends the  
Xoff character(s) two-character-times (= time taken to send two characters at the programmed baud rate) after  
the receive FIFO crosses the programmed trigger level. To clear this condition, the L570 will transmit the  
programmed Xon character(s) as soon as receive FIFO is less than one trigger level below the programmed  
trigger level (see Table 8). The table below describes this.  
TABLE 4: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL  
XOFF CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
XON CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
RX TRIGGER LEVEL  
INT PIN ACTIVATION  
1
4
1
4
1*  
4*  
0
1
4
8
8
8
8*  
14  
14  
14*  
* After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2  
characters); for example, after 2.083ms has elapsed for 9600 baud and 8-bit word length, no parity and 1 stop bit setting.  
2.16  
Special Character Detect  
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced  
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal  
incoming RX data.  
The L570 compares each incoming receive character with the programmed Xoff-2 data. If a match exists, the  
received data will be transferred to the RX FIFO and ISR bit-4 will be set to indicate detection of special  
character. Although the Internal Register Table shows Xon, Xoff Registers with eight bits of character  
information, the actual number of bits is dependent on the programmed word length. Line Control Register  
(LCR) bits 0-1 defines the number of character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length  
selected by LCR bits 0-1 also determines the number of bits that will be used for the special character  
comparison. Bit-0 in the Xon, Xoff Registers corresponds with the LSB bit for the receive character.  
15  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
2.17 Infrared Mode  
The L570 UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data Association)  
version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-  
pulse for each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the infrared LED,  
hence reduces the power consumption. See Figure 12 below.  
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. When the infrared feature  
is enabled, the transmit data output, TX, idles at logic zero level. Likewise, the RX input assumes an idle level  
of logic zero from a reset and power up, see Figure 12.  
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin.  
Each time it senses a light pulse, it returns a logic 1 to the data bit stream. However, this is not true with some  
infrared modules on the market which indicate a logic 0 by a light pulse. So the L570 has a provision to invert  
the input polarity to accommodate this. In this case, the user can enable MCR bit-2 to invert the IR signal at the  
RX pin.  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING  
Character  
Data Bits  
1
1
1
1
1
0
0
0
0
0
TX Data  
Transmit  
IR Pulse  
(TX Pin)  
1/2 Bit Time  
Bit Time  
3/16 Bit Time  
IrEncoder-1  
Receive  
IR Pulse  
(RX pin)  
Bit Time  
1/16 Clock Delay  
1
1
1 1  
1
0
0
0
0
0
RX Data  
Data Bits  
Character  
IRdecoder-  
16  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
2.18  
Sleep Mode with Wake-Up Interrupt and Power-Save Feature  
The L570 supports low voltage system designs, hence, a sleep mode with wake-up interrupt and Power-Save  
feature is included to reduce power consumption when the device is not actively used.  
2.18.1 Sleep Mode  
All of these conditions must be satisfied for the L570 to enter sleep mode:  
no interrupts pending (ISR bit-0 = 1)  
the 16-bit divisor programmed in DLM and DLL registers is a non-zero value  
sleep mode is enabled (IER bit-4 = 1)  
modem inputs are not toggling (MSR bits 0-3 = 0)  
RX input pin is idling at a logic 1  
The L570 resumes normal operation by any of the following:  
a receive data start bit transition (HIGH to LOW)  
a data byte is loaded to the transmitter, THR or FIFO  
a change of logic state on the modem or general purpose serial input CTS#  
If the L570 is awakened by any one of the above conditions, it issues an interrupt as soon as the oscillator  
circuit is up and running and the device is ready to transmit/receive. This interrupt has the same encoding (bit-  
0 of ISR register = 1) as "no interrupt pending" and will clear when the ISR register is read. This will show up in  
the ISR register only if no other interrupts are enabled. The L570 will return to the sleep mode automatically  
after all interrupting conditions have been serviced and cleared. If the L570 is awakened by the modem input  
CTS#, a read to the MSR is required to reset the modem input. In any case, the sleep mode will not be entered  
while an interrupt is pending. The L570 will stay in the sleep mode of operation until it is disabled by setting IER  
bit-4 to a logic 0.  
2.18.2 Power-Save Feature  
If the address lines, data bus lines, IOW#, IOR#, CS# and modem input lines remain steady when the L570 is  
in sleep mode, the maximum current will be in the microamp range as specified in the DC Electrical  
Characteristics on page 34. If the input lines are floating or are toggling while the L570 is in sleep mode, the  
current can be up to 100 times more. If not using the Power-Save feature, an external buffer would be required  
to keep the address and data bus lines from toggling or floating to achieve the low current. But if the Power-  
Save feature is enabled (PwrSave pin connected to VCC), this will eliminate the need for an external buffer by  
internally isolating the address, data and control signals (see Figure 1 on page 1) from other bus activities that  
could cause wasteful power drain. The L570 enters Power-Save mode when this pin is connected to VCC and  
the L570 is in sleep mode (see Sleep Mode section above).  
Since Power-Save mode isolates the address, data and control signals, the device will wake-up only by:  
a receive data start bit transition (HIGH to LOW) at the RX input or  
a change of logic state on the modem or general purpose serial input CTS#  
The L570 will return to the Power-Save mode automatically after a read to the MSR (to reset the modem input  
CTS#) and all interrupting conditions have been serviced and cleared. The L570 will stay in the Power-Save  
mode of operation until it is disabled by setting IER bit-4 to a logic 0 and/or the Power-Save pin is connected to  
GND. The Power-Save feature is only available in the 24-QFN package only.  
17  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
2.19  
Internal Loopback  
The L570 UART provides an internal loopback capability for system diagnostic purposes. The internal  
loopback mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally  
including automatic hardware and software flow control. Figure 13 shows how the modem port signals are re-  
configured. The general purpose outputs OP1#, OP2#, the modem output DTR# and the modem inputs DSR#,  
RI# and CD# are not available in the 24-QFN package of the L570. However, in internal loopback mode, the  
DTR#, OP1# and OP2# bits in the MCR register, control the DSR#, RI# and CD# bits in the MSR register  
respectively. Transmit data from the transmit shift register output is internally routed to the receive shift register  
input allowing the system to receive the same data that it was sending. The TX pin is held HIGH while RTS# is  
de-asserted, and CTS# input is ignored. Caution: the RX input pins must be held HIGH during loopback test  
else upon exiting the loopback test the UART may detect and report a false “break” signal.  
FIGURE 13. INTERNAL LOOP BACK  
VCC  
TX  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
(RHR/FIFO)  
RX  
VCC  
RTS#  
RTS#  
CTS#  
CTS#  
VCC  
DTR#  
DTR#  
DSR#  
DSR#  
OP1#  
RI#  
RI#  
OP2#  
CD#  
CD#  
18  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
3.0 UART INTERNAL REGISTERS  
The L570 has a set of configuration registers selected by address lines A0, A1 and A2 with CS# asserted. The  
complete register set is shown on Table 5 and Table 6.  
TABLE 5: UART INTERNAL REGISTERS  
A2,A1,A0 ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
16C550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
LCR[7] = 1  
THR - Transmit Holding Register  
0
0 0  
0 1  
0 0  
0 1  
0 1  
1 0  
DLL - Div Latch Low Byte  
Read/Write  
Read/Write  
Read-only  
Read-only  
Read/Write  
0
0
0
0
0
DLM - Div Latch High Byte  
DREV - Device Revision Code  
DVID - Device Identification Code  
IER - Interrupt Enable Register  
DLL, DLM = 0x00,  
LCR[7] = 1  
LCR[7] = 0  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
LCR 0xBF  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
Read/Write  
Read/Write  
MCR - Modem Control Register  
LSR - Line Status Register  
Reserved  
Read-only  
Write-only  
LCR 0xBF  
LCR 0xBF  
1
1
1 0  
1 1  
MSR - Modem Status Register  
Reserved  
Read-only  
Write-only  
SPR - Scratchpad Register  
Read/Write  
ENHANCED REGISTERS  
0
1
1
1
1
1 0  
0 0  
0 1  
1 0  
1 1  
EFR - Enhanced Function Register  
Xon-1 - Xon Character 1  
Xon-2 - Xon Character 2  
Xoff-1 - Xoff Character 1  
Xoff-2 - Xoff Character 2  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
LCR = 0xBF  
19  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
.
TABLE 6: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0/  
Bit-6  
Bit-6  
0/  
Bit-5  
Bit-5  
0/  
Bit-4  
Bit-4  
0/  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
WR  
IER RD/WR  
Modem RXLine  
Stat. Int.  
Enable  
TX  
Empty  
Int  
RX  
Data  
Int.  
LCR[7]=0  
Stat.  
Int.  
CTS Int. RTS Int. Xoff Int.  
Enable Enable Enable  
Sleep  
Mode  
Enable  
Enable Enable Enable  
0 1 0  
ISR  
RD  
FIFOs  
FIFOs  
0/  
0/  
INT  
INT  
INT  
INT  
Enabled Enabled  
Source Source Source Source  
INT  
INT  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
Source Source  
Bit-5  
Bit-4  
LCR 0xBF  
0 1 0  
FCR  
WR RXFIFO RXFIFO  
Trigger Trigger  
0/  
0/  
DMA  
Mode  
Enable  
TX  
FIFO  
Reset Reset  
RX  
FIFOs  
FIFO Enable  
TXFIFO TXFIFO  
Trigger Trigger  
0 1 1  
1 0 0  
LCR RD/WR Divisor Set TX Set Par-  
Even  
Parity  
Parity  
Enable  
Stop  
Bits  
Word  
Length Length  
Bit-1 Bit-0  
Word  
Enable  
Break  
ity  
MCR RD/WR  
0/  
0/  
0/  
Internal INT Out- (OP1#) RTS# DTR#  
Loop-  
back  
Enable  
put  
Enable  
Output Output  
Control Control  
BRG  
Pres-  
caler  
IR Mode XonAny  
ENable  
Invert  
IR RX  
(OP2#)  
1 0 1  
LSR  
RD  
RD  
RX FIFO THR &  
THR  
Empty  
RX  
Break  
RX Fram-  
ing Error Parity Over-  
RX  
RX  
RX  
Data  
Ready  
LCR 0xBF  
Global  
Error  
TSR  
Empty  
Error  
run  
Error  
1 1 0  
1 1 1  
MSR  
CD#  
RI#  
DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
Input  
Input  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0 LCR 0xBF  
Baud Rate Generator Divisor  
LCR[7]=1  
0 0 0  
0 0 1  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-7  
0
Bit-6  
Bit-6  
Bit-6  
0
Bit-5  
Bit-5  
Bit-5  
0
Bit-4  
Bit-4  
Bit-4  
0
Bit-3  
Bit-3  
Bit-3  
0
Bit-2  
Bit-2  
Bit-2  
0
Bit-1  
Bit-1  
Bit-1  
0
Bit-0  
Bit-0  
Bit-0  
1
DREV  
DVID  
RD  
RD  
LCR[7]=1  
DLL=0x00  
DLM=0x00  
20  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
TABLE 6: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
Enhanced Registers  
Enable  
0 1 0  
EFR RD/WR  
Auto  
CTS  
Enable Enable  
Auto  
RTS  
Special  
Char  
Select  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
IER [7:4],  
ISR [5:4],  
FCR[5:4],  
MCR[7:5],  
MCR[2]  
Bit-2  
Bit-1  
Bit-0  
Bit-3  
LCR=0XBF  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
XON1  
XON2  
WR  
WR  
WR  
WR  
Bit-7  
Bit-7  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
Bit-0  
XOFF1  
XOFF2  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read- Only  
SEE”RECEIVER” ON PAGE 11.  
4.2 Transmit Holding Register (THR) - Write-Only  
SEE”TRANSMITTER” ON PAGE 10.  
4.3 Baud Rate Generator Divisors (DLL and DLM) - Read/Write  
The Baud Rate Generator (BRG) is a 16-bit counter that generates the data rate for the transmitter. The rate is  
programmed through registers DLL and DLM which are only accessible when LCR bit-7 is set to ‘1’.  
SEE”PROGRAMMABLE BAUD RATE GENERATOR” ON PAGE 9.  
4.4  
Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
4.4.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts  
(see ISR bits 2 and 3) status will reflect the following:  
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed  
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.  
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register  
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.  
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the FIFO is empty.  
21  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
4.4.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR bit-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16L570 in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A. LSR BIT-0 indicates there is data in RHR or RX FIFO.  
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.  
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR BIT-5 indicates THR is empty.  
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.  
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-  
FIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is  
empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the  
character has been received. LSR bits 2-4 generate an interrupt when the character with errors is ready to be  
read out of the FIFO.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[4]: Sleep Mode Enable (requires EFR bit-4 = 1)  
Logic 0 = Disable Sleep Mode (default).  
Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.  
IER[5]: Xoff Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the software flow control, receive Xoff interrupt. (default)  
Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for  
details.  
IER[6]: RTS# Output Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the RTS# interrupt (default).  
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition  
from low to high.  
22  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
IER[7]: CTS# Input Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the CTS# interrupt (default).  
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from  
low to high.  
4.5  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 7, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
4.5.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX trigger level or TX FIFO empty.  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
Receive Xoff/Special character is by detection of a Xoff or Special character.  
CTS# is when its transmitter toggles the input pin (from low to high) during auto CTS flow control enabled by  
EFR bit-7.  
RTS# is when its receiver toggles the output pin (from low to high) during auto RTS flow control enabled by  
EFR bit-6.  
Wake-up Interrupt is when the device wakes up from sleep mode. See Sleep Mode section for more details.  
4.5.2  
Interrupt Clearing:  
LSR interrupt is cleared by reading the LSR register (but FIFO error bit does not clear until the character(s)  
that generated the interrupt(s) is (are) read from the FIFO).  
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading the RHR register.  
TXRDY interrupt is cleared by reading the ISR register or writing to the THR register.  
MSR interrupt is cleared by reading the MSR register.  
Xoff interrupt is cleared by reading the ISR or when Xon character(s) is received.  
Special character interrupt is cleared by reading the ISR or after the next character is received.  
RTS# and CTS# flow control interrupts are cleared by reading the MSR register.  
Wake-up interrupt is cleared by reading the ISR register.  
23  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
]
TABLE 7: INTERRUPT SOURCE AND PRIORITY LEVEL  
PRIORITY  
ISR REGISTER STATUS BITS  
SOURCE OF INTERRUPT  
LEVEL  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
1
2
3
4
5
6
7
-
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
MSR (Modem Status Register)  
RXRDY (Received Xoff or Special character)  
CTS#, RTS# change of state  
None (default) or Wake-up Interrupt  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition) or wake-up interrupt. The wake-up interrupt is issued when  
the L570 has been awakened from sleep mode.  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Interrupt Source Table 7).  
ISR[5:4]: Interrupt Status  
These bits are enabled when EFR bit-4 is set to a logic 1. ISR bit-4 indicates that the receiver detected a data  
match of the Xoff character(s). Note that once set to a logic 1, the ISR bit-4 will stay a logic 1 until a Xon  
character is received. ISR bit-5 indicates that CTS# or RTS# has changed state.  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
4.6  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA, and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default)  
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
24  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select (Legacy)  
This bit has no function and should be left at ’0’.  
FCR[5:4]: Transmit FIFO Trigger Select  
(’00’ = default, TX trigger level = 1)  
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the  
number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that the  
FIFO did not get filled over the trigger level on last re-load. Table 8 below shows the selections. EFR bit-4 must  
be set to ‘1’ before these bits can be accessed.  
FCR[7:6]: Receive FIFO Trigger Select  
(’00’ = default, RX trigger level =1)  
These 2 bits are used to set the trigger level for the receive FIFO. The UART will issue a receive interrupt when  
the number of the characters in the FIFO crosses the trigger level. Table 8 shows the selections.  
TABLE 8: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION  
FCR  
BIT-7  
FCR  
BIT-6  
FCR  
BIT-5  
FCR  
RECEIVE  
TRANSMIT  
COMPATIBILITY  
BIT-4 TRIGGER LEVEL TRIGGER LEVEL  
0
0
1
1
0
1
0
1
1 (default)  
16C580 and 16L580 compati-  
ble.  
4
8
14  
0
0
1
1
0
1
0
1
1 (default)  
16C550, 16C580, 16L580,  
16C554, 16C2550 and 16C2552  
compatible  
4
8
14  
4.7  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
25  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 9 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR BIT-5 = logic 0, parity is not forced (default).  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive  
data.  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive  
data.  
TABLE 9: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
Odd parity  
Even parity  
Force parity to mark, “1”  
Forced parity to space, “0”  
26  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
LCR[7]: Baud Rate Divisors Enable  
Baud rate generator divisor (DLL/DLM) enable.  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected.  
4.8  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is not available in the 24-QFN package of the L570. This bit is used to control the status of the  
DSR bit in the MSR register in the internal loopback mode.  
Logic 0 = Set DTR bit to be 0 (default)  
Logic 1 = Set DTR bit to be 1.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by  
EFR bit-6. If the modem interface is not used, this output may be used as a general purpose output.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: Invert Infrared RX Data or OP1# (legacy term)  
If IrDA mode is enabled by setting MCR[6]=1 and if EFR[4] = 1, this bit acts as ’Invert Infrared RX data’  
command. If EFR[4] = 0 or in internal loopback mode, this bit functions like the OP1# in the 16C550.  
Logic 0 = Select RX input as active-low encoded IrDA data (if IrDA Mode is enabled by setting MCR[6] = 1  
and EFR[4] = 1) (default).  
Logic 1 = Select RX input as active-high encoded IrDA data (if MCR[6] = 1 and EFR[4] = 1). In this mode, this  
bit is write-only.  
In the Internal Loopback Mode, this bit controls the state of the modem input RI# bit in the MSR register as  
shown in Figure 13.  
MCR[3]: INT Output Enable or OP2# (legacy term)  
This bit enables and disables the operation of interrupt output.  
Logic 0 = INT output disabled (three state mode) (default).  
Logic 1 = INT output enabled (active mode).  
In the Internal Loopback Mode, this bit functions like the OP2# in the 16C550 and is used to set the state of the  
modem input CD# bit in the MSR register.  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 13.  
27  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
MCR[5]: Xon-Any Enable  
Logic 0 = Disable Xon-Any function (for 16C550 compatibility, default).  
Logic 1 = Enable Xon-Any function. In this mode, any RX character received will resume transmit operation.  
The RX character will be loaded into the RX FIFO, unless the RX character is an Xon or Xoff character and  
the L570 is programmed to use the Xon/Xoff flow control.  
MCR[6]: Infrared Encoder/Decoder Enable  
Logic 0 = Enable the standard modem receive and transmit input/output interface (default).  
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the  
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface  
requirement. While in this mode, the infrared TX output will be a logic 0 during idle data conditions.  
MCR[7]: BRG Clock Prescaler Select  
Logic 0 = Divide by one. The input clock from the external clock is fed directly to the Programmable Baud  
Rate Generator without further modification, i.e., divide by one (default).  
Logic 1 = Divide by four. The prescaler divides the input clock from the external clock by four and feeds it to  
the Programmable Baud Rate Generator, hence, data rates get reduced 4 times.  
4.9  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.  
LSR[1]: Receiver Overrun Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register  
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into  
the FIFO, therefore the data in the FIFO is not corrupted by the error.  
LSR[2]: Receive Data Parity Error Flag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR.  
LSR[3]: Receive Data Framing Error Flag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR.  
LSR[4]: Receive Break Flag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO. The break indication remains until the RX  
input returns to the idle condition, “mark” or logic 1.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte  
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0  
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set  
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.  
28  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or  
TSR contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and  
transmit shift register are both empty.  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the  
RX FIFO.  
4.10 Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface input signals. Lower four bits of this register are  
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem  
changes state. These bits may be used for general purpose inputs when they are not used with modem  
signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[1]: Delta DSR# Input Flag  
Since the 24-QFN package of the L570 does not have the DSR# modem input, this bit has functionality only in  
internal loopback mode when the DSR bit (MSR[4]) can be controlled via the DTR bit (MCR[0]).  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Since the 24-QFN package of the L570 does not have the RI# modem input, this bit has functionality only in  
internal loopback mode when the RI bit (MSR[6]) can be controlled via the OP1# bit (MCR[2]).  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Since the 24-QFN package of the L570 does not have the CD# modem input, this bit has functionality only in  
internal loopback mode when the CD bit (MSR[7]) can be controlled via the OP2# bit (MCR[3]).  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto  
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the  
modem CTS# signal. A logic 1 on the CTS# pin will stop UART transmitter as soon as the current character  
has finished transmission, and a logic 0 will resume data transmission. Normally MSR bit-4 bit is the  
complement of the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the  
MCR register. The CTS# input may be used as a general purpose input when the modem interface is not used.  
29  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
MSR[5]: DSR Input Status  
Normally MSR bit-5 is the complement of the DSR# input in the 32-QFN package. In internal loopback mode,  
this bit is equivalent to the DTR# bit (MCR[0]). The 24-QFN package of the L570 does not have the DSR#  
modem input.  
MSR[6]: RI Input Status  
Normally MSR bit-6 is the complement of the RI# input in the 32-QFN package. In internal loopback mode, this  
bit is equivalent to the OP1# bit (MCR[2]). The 24-QFN package of the L570 does not have the RI# modem  
input.  
MSR[7]: CD Input Status  
Normally MSR bit-5 is the complement of the CD# input in the 32-QFN package. In internal loopback mode,  
this bit is equivalent to the OP2# bit (MCR[3]). The 24-QFN package of the L570 does not have the CD#  
modem input.  
4.11 Scratchpad Register (SPR) - Read/Write  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.12 Baud Rate Generator Registers (DLL and DLM) - Read/Write  
The concatenation of the contents of DLM and DLL gives the 16-bit divisor value which is used to calculate the  
baud rate:  
Baud Rate = (Clock Frequency / 16) / Divisor  
See MCR bit-7 and the baud rate table also.  
4.13 Device Identification Register (DVID) - Read Only  
This register contains the device ID (0x01 for XR16L570). Prior to reading this register, DLL and DLM should  
be set to 0x00.  
4.14 Device Revision Register (DREV) - Read Only  
This register contains the device revision information. For example, 0x01 means revision A. Prior to reading  
this register, DLL and DLM should be set to 0x00.  
4.15  
Enhanced Feature Register (EFR)  
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive  
character software flow control selection (see Table 10). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes  
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that  
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before  
programming a new setting.  
EFR[3:0]: Software Flow Control Select  
Single character and dual sequential characters software flow control is supported. Combinations of software  
flow control can be selected by programming these bits.  
30  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
TABLE 10: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
CONT-3  
EFR BIT-2  
CONT-2  
EFR BIT-1  
CONT-1  
EFR BIT-0  
CONT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
0
0
1
0
1
X
X
X
1
0
0
0
1
1
X
X
X
0
0
X
X
X
X
0
1
0
1
0
X
X
X
X
0
No TX and RX flow control (default and reset)  
No transmit flow control  
Transmit Xon1, Xoff1  
Transmit Xon2, Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2  
No receive flow control  
0
Receiver compares Xon1, Xoff1  
Receiver compares Xon2, Xoff2  
1
1
Transmit Xon1, Xoff1  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
0
1
0
1
1
0
1
1
1
1
1
1
Transmit Xon2, Xoff2  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
No transmit flow control,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
EFR[4]: Enhanced Function Bits Enable  
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 2, 5, 6 and 7  
to be modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the new values.  
This feature prevents legacy software from altering or overwriting the enhanced functions once set. Normally, it  
is recommended to leave it enabled, logic 1.  
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR  
bits 2, 5-7 are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and  
MCR bits 2, 5-7 are set to a logic 0 to be compatible with ST16C550 mode (default).  
Logic 1 = Enables the above-mentioned register bits to be modified by the user.  
EFR[5]: Special Character Detect Enable  
Logic 0 = Special Character Detect Disabled (default).  
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with  
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set  
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If  
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work  
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works  
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character  
interrupt, if enabled via IER bit-5.  
31  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
EFR[6]: Auto RTS Flow Control Enable  
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is  
selected, an interrupt will be generated when the receive FIFO is filled to the programmed trigger level and  
RTS de-asserts to a logic 1 at one trigger level above the programmed trigger level. RTS# will return to a logic  
0 when FIFO data falls below one trigger level below the programmed trigger level. The RTS# output must be  
asserted (logic 0) before the auto RTS can take effect. RTS# pin will function as a general purpose output  
when hardware flow control is disabled.  
Logic 0 = Automatic RTS flow control is disabled (default).  
Logic 1 = Enable Automatic RTS flow control.  
EFR[7]: Auto CTS Flow Control Enable  
Automatic CTS Flow Control.  
Logic 0 = Automatic CTS flow control is disabled (default).  
Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts to logic  
1. Data transmission resumes when CTS# returns to a logic 0.  
4.16 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Write Only  
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.  
For more details, refer to “Section 2.15, Auto Xon/Xoff (Software) Flow Control” on page 15.  
32  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
TABLE 11: UART RESET CONDITIONS FOR CHANNEL A AND B  
REGISTERS  
RESET STATE  
DLM and DLL  
Bits 15-0 = 0x0001. Resets upon power up only and not when only  
the Reset Pin is asserted.  
RHR  
THR  
IER  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
FCR  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 7-5, 3-0 = Logic 0  
Bits 4 = Logic level of the CTS# input inverted  
SPR  
EFR  
Bits 7-0 = 0xFF  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
RESET STATE  
HIGH  
XON1  
XON2  
XOFF1  
XOFF2  
I/O SIGNALS  
TX  
RTS#  
HIGH  
DTR#  
HIGH  
INT  
Three-State Condition  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
GND-0.3 V to 7 V  
o
o
Operating Temperature  
-40 to +85 C  
o
o
Storage Temperature  
Package Dissipation  
-65 to +150 C  
500 mW  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)  
o
o
Thermal Resistance (24-QFN)  
Thermal Resistance (32-QFN)  
theta-ja = 38 C/W, theta-jc = 26 C/W  
o
o
theta-ja = 33 C/W, theta-jc = 22 C/W  
33  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA= -40O TO +85OC, VCC=2.97 - 5.5V  
LIMITS  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
3.3V  
UNITS  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
V
Clock Input Low Level  
-0.3  
0.6  
-0.5  
0.6  
VCC  
0.8  
V
V
V
V
ILCK  
V
Clock Input High Level  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
2.4  
-0.3  
2.0  
VCC  
0.8  
3.0  
-0.5  
2.2  
IHCK  
V
IL  
V
5.5  
5.5  
IH  
V
0.4  
V
V
I
I
= 6 mA  
= 4 mA  
OL  
OL  
OL  
0.4  
V
Output High Voltage  
2.4  
V
V
I
I
= -6 mA  
= -1 mA  
OH  
OH  
OH  
2.0  
I
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
IL  
I
IH  
C
IN  
I
Power Supply Current  
2
3
mA  
uA  
CC  
I
/I  
Sleep / Power-Save Current  
15  
30  
See Test  
SLEEP PWRSV  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA= -40O TO +85OC, VCC=1.62 - 2.75V  
LIMITS  
1.8V  
LIMITS  
SYMBOL  
PARAMETER  
2.5V  
UNITS  
CONDITIONS  
MIN  
-0.3  
1.4  
MAX  
MIN  
MAX  
V
Clock Input Low Level  
0.3  
VCC  
0.2  
-0.3  
0.6  
V
V
V
V
ILCK  
V
Clock Input High Level  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
1.8  
-0.3  
1.8  
VCC  
0.5  
IHCK  
V
-0.3  
1.4  
IL  
V
5.5  
5.5  
IH  
V
0.4  
V
V
I
I
= 2 mA  
OL  
OL  
OL  
0.4  
= 1.5 mA  
V
Output High Voltage  
1.8  
V
V
I
I
= -400 uA  
= -200 uA  
OH  
OH  
OH  
1.4  
I
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
Power Supply Current  
Sleep Current  
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
IL  
I
IH  
C
IN  
I
0.5  
3
1
mA  
uA  
CC  
I
/I  
6
See Test  
SLEEP PWRSV  
Test: The following inputs must remain steady at VCC or GND state to minimize sleep current: A0-A2, D0-D7, IOR#, IOW#,  
CS# and all modem inputs. Also, RX input must idle at logic 1 state while asleep. Floating inputs may result in sleep  
currents in the mA range.  
For PowerSave, the UART internally isolates all of these inputs (except the modem input CTS# and Reset pins) therefore  
eliminating any unnecessary external buffers to keep the inputs steady. SEE”POWER-SAVE FEATURE” ON PAGE 17. To  
achieve minimum power drain, the voltage at any of the inputs of the L570 should NOT be lower than its VCC supply.  
34  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
AC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA= -40O TO +85OC, VCC=2.97 - 5.5V, 70 PF LOAD WHERE APPLICABLE  
LIMITS  
3.3  
LIMITS  
SYMBOL  
PARAMETER  
5.0  
UNIT  
MIN  
MAX MIN  
MAX  
24  
-
Crystal Oscillator Frequency  
20  
33  
MHz  
MHz  
ns  
OSC  
CLK  
External Clock Frequency*  
External Clock Low/High Time*  
Address Setup Time  
50  
15  
5
10  
T
10  
0
ns  
AS  
T
Address Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bclk  
ns  
ns  
Bclk  
ns  
ns  
-
AH  
T
T
T
Chip Select Width  
50  
50  
50  
30  
30  
30  
CS  
RD  
DY  
IOR# Strobe Width  
Read Cycle Delay  
T
Data Access Time  
50  
20  
25  
20  
RDV  
T
Data Disable Time  
0
0
DD  
T
IOW# Strobe Width  
50  
50  
15  
3
30  
30  
12  
5
WR  
T
T
T
Write Cycle Delay  
DY  
DS  
DH  
Data Setup Time  
Data Hold Time  
T
Delay From IOW# To Output  
Delay To Set Interrupt From MODEM Input  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
Delay From IOR# To Reset Interrupt  
Delay From Stop To Interrupt  
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Reset Pulse Width  
75  
75  
75  
1
50  
50  
50  
1
WDO  
T
MOD  
T
RSI  
SSI  
RRI  
T
T
75  
75  
24  
75  
50  
50  
24  
50  
T
SI  
T
8
8
INT  
WRI  
T
T
40  
1
40  
1
RST  
16  
16  
N
Baud Rate Divisor  
2
-1  
2
-1  
Bclk  
Baud Clock  
16X of data rate  
Hz  
NOTE: * For faster data rates, see the data rate characterization data on page 37.  
35  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
AC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA= -40O TO +85OC, VCC=1.62 - 2.75V, 70 PF LOAD WHERE APPLICABLE  
LIMITS  
1.8  
LIMITS  
2.5  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX MIN  
MAX  
18  
-
Crystal Oscillator Frequency  
12  
12  
MHz  
MHz  
ns  
OSC  
CLK  
External Clock Frequency*  
External Clock Low/High Time*  
Address Setup Time  
24  
40  
5
20  
T
5
0
ns  
AS  
T
Address Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bclk  
ns  
ns  
Bclk  
ns  
ns  
-
AH  
T
T
T
Chip Select Width  
250  
250  
250  
100  
100  
100  
CS  
RD  
DY  
IOR# Strobe Width  
Read Cycle Delay  
T
Data Access Time  
175  
30  
75  
30  
RDV  
T
Data Disable Time  
0
0
DD  
T
IOW# Strobe Width  
250  
250  
75  
100  
100  
25  
WR  
T
T
T
Write Cycle Delay  
DY  
DS  
DH  
Data Setup Time  
Data Hold Time  
3
3
T
Delay From IOW# To Output  
Delay To Set Interrupt From MODEM Input  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
Delay From IOR# To Reset Interrupt  
Delay From Stop To Interrupt  
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Reset Pulse Width  
200  
200  
200  
1
150  
150  
150  
1
WDO  
T
MOD  
T
RSI  
SSI  
RRI  
T
T
200  
200  
24  
150  
150  
24  
T
SI  
T
8
8
INT  
WRI  
T
T
200  
150  
40  
1
40  
1
RST  
16  
16  
N
Baud Rate Divisor  
2
-1  
2 -1  
Bclk  
Baud Clock  
16X of data rate  
Hz  
NOTE: * For faster data rates, see the data rate characterization data on page 37.  
36  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
DATA RATE CHARACTERIZATION AT 5V  
OPERATING TEMPERATURE RANGE = -40O TO +85OC  
PARAMETER  
MIN  
4.5  
TYP  
MAX  
UNIT  
V
Supply Voltage, VCC  
5
5.5  
Input High Voltage, V  
0.6*VCC  
V
IH  
Input Low Voltage, V  
0.6  
64  
V
IL  
External Clock/Oscillator Frequency  
External Clock Low/High Time  
Serial Data Rate  
MHz  
ns  
8
4
Mbps  
DATA RATE CHARACTERIZATION AT 3.3V  
OPERATING TEMPERATURE RANGE = -40O TO +85OC  
PARAMETER  
MIN  
2.97  
2.4  
TYP  
MAX  
UNIT  
V
Supply Voltage  
3.3  
3.63  
Input High Voltage, V  
V
IH  
Input Low Voltage, V  
0.6  
48  
V
IL  
External Clock/Oscillator Frequency  
External Clock Low/High Time  
Serial Data Rate  
MHz  
ns  
10  
3
Mbps  
DATA RATE CHARACTERIZATION AT 2.5V  
OPERATING TEMPERATURE RANGE = -40O TO +85OC  
PARAMETER  
MIN  
2.25  
2.0  
TYP  
MAX  
UNIT  
V
Supply Voltage  
2.5  
2.75  
Input High Voltage, V  
V
IH  
Input Low Voltage, V  
0.6  
16  
V
IL  
External Clock/Oscillator Frequency  
External Clock Low/High Time  
Serial Data Rate  
MHz  
ns  
30  
1
Mbps  
DATA RATE CHARACTERIZATION AT 1.8V  
OPERATING TEMPERATURE RANGE = -40O TO +85OC  
PARAMETER  
MIN  
1.62  
1.4  
TYP  
MAX  
UNIT  
V
Supply Voltage  
1.8  
1.98  
Input High Voltage, V  
V
IH  
Input Low Voltage, V  
0.4  
12  
V
IL  
External Clock/Oscillator Frequency  
External Clock Low/High Time  
Serial Data Rate  
MHz  
ns  
40  
750  
Kbps  
37  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
FIGURE 14. CLOCK TIMING  
CLK  
CLK  
EXTERNAL  
CLOCK  
OSC  
FIGURE 15. MODEM INPUT/OUTPUT TIMING  
IOW#  
TWDO  
Change of state  
RTS#  
Change of state  
Change of state  
Change of state  
CTS#  
TMOD  
TMOD  
Active  
Active  
Active  
Active  
INT  
TRSI  
Active  
Active  
IOR#  
38  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
FIGURE 16. DATA BUS READ TIMING  
A0-  
Valid  
Valid  
A2  
Address  
Address  
TAS  
TAS  
TAH  
TAH  
TCS  
TCS  
CS#  
TDY  
TRD  
TRD  
IOR#  
TDD  
TDD  
TRDV  
TRDV  
Valid  
Data  
Valid  
Data  
D0-D7  
RDTm  
FIGURE 17. DATA BUS WRITE TIMING  
A0-  
A2  
Valid  
Address  
Valid  
Address  
TAS  
TAS  
TAH  
TAH  
TCS  
TWR  
TDS  
TCS  
CS#  
IOW#  
D0-D7  
TDY  
TWR  
TDH  
TDH  
TDS  
Valid  
Valid  
Data  
Data  
16Write  
39  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
FIGURE 18. RECEIVE READY INTERRUPT TIMING [NON-FIFO MODE]  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSR  
TSSR  
TSSR  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TRR  
TRR  
TRR  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
FIGURE 19. TRANSMIT READY INTERRUPT TIMING [NON-FIFO MODE]  
TX  
(Unloading)  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
IER[1]  
enabled  
ISR is read  
ISR is read  
ISR is read  
INT*  
TWRI  
TWRI  
TWRI  
TSRT  
TSRT  
TSRT  
IOW#  
(Loading data  
into THR)  
TXNonFIFO  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
40  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
FIGURE 20. RECEIVE READY INTERRUPT TIMING [FIFO MODE]  
Start  
Bit  
RX  
S
S
S
S
S
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
T
D0:D7 T  
D0:D7 T  
S
D0:D7  
T
Stop  
Bit  
RX FIFO drops  
below RX  
Trigger Level  
INT  
TSSR  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
TRRI  
IOR#  
(Reading data out  
of RX FIFO)  
RXINTDMA#  
FIGURE 21. TRANSMIT READY INTERRUPT TIMING [FIFO MODE]  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
T
S
S
D0:D7  
S
S
T
S
D0:D7  
D0:D7  
T
S D0:D7  
T
T
D0:D7  
T
D0:D7  
T
ISR is read  
TSI  
IER[1]  
enabled  
ISR is read  
INT*  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
IOW#  
(Loading data  
into FIFO)  
TX INT  
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.  
41  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
PACKAGE DIMENSIONS (32 PIN QFN - 5 X 5 X 0.9 mm)  
D2  
D
D
D2  
L
b
e
Note: The actual center pad is  
metallic and the size (D2) is  
device-dependent with a typical  
tolerance of 0.3mm  
A1  
A
Seating Plane  
A3  
Note: The control dimension is in millimeter.  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.039  
0.002  
0.010  
0.201  
0.150  
0.012  
MIN  
0.80  
0.00  
0.15  
4.90  
3.50  
0.18  
MAX  
1.00  
0.05  
0.25  
5.10  
3.80  
0.30  
A
A1  
A3  
D
0.031  
0.000  
0.006  
0.193  
0.138  
0.007  
D2  
b
e
0.0197 BSC  
0.012 0.020  
0.50 BSC  
L
0.30  
0.50  
42  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
PACKAGE DIMENSIONS (24 PIN QFN - 4 X 4 X 0.9 mm)  
Top  
Bottom  
Note: the actual center pad  
is metallic and the size (D2 )  
is devic-e dependent with a  
typical tolerance of 0.3mm  
Note: The control dimension is in millimeter.  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
0.80  
0.00  
0.15  
3.90  
2.50  
0.18  
MAX  
1.00  
0.05  
0.25  
4.10  
2.80  
0.30  
A
A1  
A3  
D
0.031  
0.000  
0.006  
0.154  
0.098  
0.007  
0.039  
0.002  
0.010  
0.161  
0.110  
0.012  
D2  
b
e
0.0197 BSC  
0.014 0.018  
0.50 BSC  
L
0.35  
0.45  
43  
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
REVISION HISTORY  
DATE  
REVISION  
P1.0.0  
1.0.0  
DESCRIPTION  
December 2005  
December 2005  
Preliminary Datasheet.  
Initial Datasheet Release. Updated 1.8V Electrical Characteristics.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2005 EXAR Corporation  
Datasheet December 2005.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
44  
xr  
XR16L570  
REV. 1.0.0  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
APPLICATIONS ............................................................................................................................................... 1  
FEATURES..................................................................................................................................................... 1  
FIGURE 1. BLOCK DIAGRAM ............................................................................................................................................................. 1  
FIGURE 2. PACKAGE AND PIN OUT (24-PIN QFN PACKAGE).............................................................................................................. 2  
ORDERING INFORMATION ................................................................................................................................ 2  
PIN DESCRIPTIONS ......................................................................................................... 3  
1.0 PRODUCT DESCRIPTION .................................................................................................................... 5  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................................ 6  
2.1 CPU INTERFACE ............................................................................................................................................. 6  
FIGURE 3. XR16L570 TYPICAL DATA BUS INTERCONNECTIONS ........................................................................................................ 6  
2.2 5-VOLT TOLERANT INPUTS ........................................................................................................................... 7  
2.3 DEVICE HARDWARE RESET .......................................................................................................................... 7  
2.4 DEVICE IDENTIFICATION AND REVISION .................................................................................................... 7  
2.5 INTERNAL REGISTERS ................................................................................................................................... 7  
2.6 DMA MODE ...................................................................................................................................................... 7  
2.7 INT OUTPUT ..................................................................................................................................................... 7  
TABLE 1: INT PIN OPERATION FOR TRANSMITTER............................................................................................................................. 7  
TABLE 2: INT PIN OPERATION FOR RECEIVER.................................................................................................................................. 7  
2.8 CRYSTAL OR EXTERNAL CLOCK INPUT ..................................................................................................... 8  
FIGURE 4. TYPICAL CRYSTAL CONNECTIONS..................................................................................................................................... 8  
FIGURE 5. EXTERNAL CLOCK CONNECTION FOR EXTENDED DATA RATE............................................................................................ 8  
2.9 PROGRAMMABLE BAUD RATE GENERATOR ............................................................................................ 9  
FIGURE 6. BAUD RATE GENERATOR AND PRESCALER ....................................................................................................................... 9  
TABLE 3: TYPICAL DATA RATES WITH A 14.7456 MHZ EXTERNAL CLOCK.......................................................................................... 10  
2.10 TRANSMITTER ............................................................................................................................................. 10  
2.10.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY....................................................................................... 10  
2.10.2 TRANSMITTER OPERATION IN NON-FIFO MODE................................................................................................ 10  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE .............................................................................................................. 11  
2.10.3 TRANSMITTER OPERATION IN FIFO MODE ......................................................................................................... 11  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE ..................................................................................... 11  
2.11 RECEIVER .................................................................................................................................................... 11  
2.11.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY .......................................................................................... 12  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE.................................................................................................................... 12  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE ....................................................................... 12  
2.12 AUTO RTS (HARDWARE) FLOW CONTROL ............................................................................................ 13  
2.13 AUTO RTS HYSTERESIS ........................................................................................................................... 13  
2.14 AUTO CTS FLOW CONTROL ..................................................................................................................... 13  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION....................................................................................................... 14  
2.15 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL .................................................................................. 15  
TABLE 4: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ............................................................................................................... 15  
2.16 SPECIAL CHARACTER DETECT ............................................................................................................... 15  
2.17 INFRARED MODE ........................................................................................................................................ 16  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING.......................................................................... 16  
2.18 SLEEP MODE WITH WAKE-UP INTERRUPT AND POWER-SAVE FEATURE ........................................ 17  
2.18.1 SLEEP MODE ........................................................................................................................................................... 17  
2.18.2 POWER-SAVE FEATURE ........................................................................................................................................ 17  
2.19 INTERNAL LOOPBACK .............................................................................................................................. 18  
FIGURE 13. INTERNAL LOOP BACK ................................................................................................................................................. 18  
3.0 UART INTERNAL REGISTERS ........................................................................................................... 19  
TABLE 5: UART INTERNAL REGISTERS.................................................................................................................................... 19  
TABLE 6: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1.......................................... 20  
4.0 INTERNAL REGISTER DESCRIPTIONS ............................................................................................ 21  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY ............................................................................... 21  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................ 21  
4.3 BAUD RATE GENERATOR DIVISORS (DLL AND DLM) - READ/WRITE ................................................... 21  
4.4 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ............................................................................. 21  
4.4.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................. 21  
4.4.2 IER VERSUS RECEIVE/TRANSMIT FIFO POLLED MODE OPERATION................................................................ 22  
I
XR16L570  
xr  
SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE  
REV. 1.0.0  
4.5 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................... 23  
4.5.1 INTERRUPT GENERATION: ...................................................................................................................................... 23  
4.5.2 INTERRUPT CLEARING: ........................................................................................................................................... 23  
TABLE 7: INTERRUPT SOURCE AND PRIORITY LEVEL ....................................................................................................................... 24  
4.6 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ...................................................................................... 24  
TABLE 8: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION .............................................................................................. 25  
4.7 LINE CONTROL REGISTER (LCR) - READ/WRITE ...................................................................................... 25  
TABLE 9: PARITY SELECTION .......................................................................................................................................................... 26  
4.8 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE 27  
4.9 LINE STATUS REGISTER (LSR) - READ ONLY ........................................................................................... 28  
4.10 MODEM STATUS REGISTER (MSR) - READ ONLY .................................................................................. 29  
4.11 SCRATCHPAD REGISTER (SPR) - READ/WRITE ..................................................................................... 30  
4.12 BAUD RATE GENERATOR REGISTERS (DLL AND DLM) - READ/WRITE .............................................. 30  
4.13 DEVICE IDENTIFICATION REGISTER (DVID) - READ ONLY .................................................................... 30  
4.14 DEVICE REVISION REGISTER (DREV) - READ ONLY .............................................................................. 30  
4.15 ENHANCED FEATURE REGISTER (EFR) ................................................................................................. 30  
TABLE 10: SOFTWARE FLOW CONTROL FUNCTIONS........................................................................................................................ 31  
4.16 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - WRITE ONLY ................ 32  
TABLE 11: UART RESET CONDITIONS FOR CHANNEL A AND B............................................................................................ 33  
ABSOLUTE MAXIMUM RATINGS...................................................................................33  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)33  
DC ELECTRICAL CHARACTERISTICS ..............................................................................................................34  
DC ELECTRICAL CHARACTERISTICS ..............................................................................................................34  
AC ELECTRICAL CHARACTERISTICS ..............................................................................................................35  
Unless otherwise noted: TA= -40o to +85oC, Vcc=2.97 - 5.5V, 70 pF load where applicable..................................35  
AC ELECTRICAL CHARACTERISTICS ..............................................................................................................36  
Unless otherwise noted: TA= -40o to +85oC, Vcc=1.62 - 2.75V, 70 pF load where applicable................................36  
DATA RATE CHARACTERIZATION AT 5V..........................................................................................................37  
Operating Temperature Range = -40o to +85oC.......................................................................................................37  
DATA RATE CHARACTERIZATION AT 3.3V.......................................................................................................37  
Operating Temperature Range = -40o to +85oC.......................................................................................................37  
DATA RATE CHARACTERIZATION AT 2.5V.......................................................................................................37  
Operating Temperature Range = -40o to +85oC.......................................................................................................37  
DATA RATE CHARACTERIZATION AT 1.8V.......................................................................................................37  
Operating Temperature Range = -40o to +85oC.......................................................................................................37  
FIGURE 14. CLOCK TIMING............................................................................................................................................................. 38  
FIGURE 15. MODEM INPUT/OUTPUT TIMING .................................................................................................................................... 38  
FIGURE 16. DATA BUS READ TIMING.............................................................................................................................................. 39  
FIGURE 17. DATA BUS WRITE TIMING............................................................................................................................................. 39  
FIGURE 18. RECEIVE READY INTERRUPT TIMING [NON-FIFO MODE] ............................................................................................... 40  
FIGURE 19. TRANSMIT READY INTERRUPT TIMING [NON-FIFO MODE] ............................................................................................. 40  
FIGURE 20. RECEIVE READY INTERRUPT TIMING [FIFO MODE] ....................................................................................................... 41  
FIGURE 21. TRANSMIT READY INTERRUPT TIMING [FIFO MODE] ..................................................................................................... 41  
PACKAGE DIMENSIONS (32 PIN QFN - 5 X 5 X 0.9 MM)..............................................42  
PACKAGE DIMENSIONS (24 PIN QFN - 4 X 4 X 0.9 MM)..............................................43  
REVISION HISTORY.......................................................................................................................................44  
TABLE OF CONTENTS ............................................................................................................I  
II  

相关型号:

XR16L570IL24-F

Serial I/O Controller, 1 Channel(s), 0.5MBps, CMOS, 4 X 4 MM, 0.90 MM HEIGHT, GREEN, QFN-24
EXAR

XR16L570IL32

SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L570IL32-F

Serial I/O Controller, 1 Channel(s), 0.5MBps, CMOS, 5 X 5 MM, 0.90 MM HEIGHT, GREEN, QFN-32
EXAR

XR16L570_07

SMALLEST 1.62V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L580

SMALLEST 2.25V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L580IL

SMALLEST 2.25V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L580IL24

SMALLEST 2.25V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L580IL24TR-F

暂无描述
EXAR

XR16L580IL28

SMALLEST 2.25V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L580ILTR-F

Serial I/O Controller, 1 Channel(s), 0.390625MBps, CMOS, 5 X 5 MM, 0.90 MM HEIGHT, GREEN, QFN-32
EXAR

XR16L580IM

SMALLEST 2.25V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR

XR16L580_07

SMALLEST 2.25V TO 5.5V UART WITH 16-BYTE FIFO AND POWERSAVE
EXAR