XR76201EVB [EXAR]

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator;
XR76201EVB
型号: XR76201EVB
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator

文件: 总16页 (文件大小:1464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR76201  
40V PowerBloxTM 1.5A Synchronous  
Step-Down COT Regulator  
Description  
FEATURES  
The XR76201 is a synchronous step-down regulator combining the  
controller, drivers, bootstrap diode and MOSFETs in a single package  
for point-of-load supplies. The XR76201 is capable of supplying  
steady state loads of 1.5A. A wide 5V to 40V input voltage range  
allows for single supply operation from 12V battery systems required  
to withstand load dump, industry standard 24V 10ꢀ, 18V to 36V, and  
rectified 18VAC and 24VAC rails.  
ꢀ■  
Controller, drivers, bootstrap diode and  
MOSFETs integrated in one package  
1.5A step-down regulator  
ꢀ■  
Wide 5V to 40V input voltage range  
>0.6V adjustable output voltage  
Proprietary constant on-time control  
No loop compensation required  
Stable ceramic output capacitor  
operation  
ꢀ■  
With a proprietary emulated current mode Constant On-Time (COT)  
control scheme, the XR76201 provides extremely fast line and load  
transient response using ceramic output capacitors. They require  
no loop compensation, simplifying circuit implementation and  
reducing overall component count. The control loop also provides  
0.05ꢀ load and 0.15ꢀ line regulation and maintains constant  
operating frequency. A selectable power saving mode allows the user  
to operate in Discontinuous Conduction Mode (DCM) at light current  
loads thereby significantly increasing the converter efficiency.  
Programmable 100ns to 1µs on-time  
Constant 400kHz to 800kHz  
frequency  
Selectable CCM or CCM/DCM  
CCM/DCM for high efficiency at  
light-load  
ꢀ■  
CCM for constant frequency at  
light-load  
Programmable hiccup current limit with  
thermal compensation  
ꢀ■  
A host of protection features, including overcurrent, over temperature,  
short-circuit and UVLO, helps achieve safe operation under abnormal  
operating conditions.  
ꢀ■  
ꢀ■  
ꢀ■  
Precision enable and power good flag  
Programmable soft-start  
30-pin 5mm x 5mm QFN package  
The XR76201 is available in a RoHS-compliant, green/halogen-free  
space-saving 5mm x 5mm QFN package.  
APPLICATIONS  
ꢀ■  
Automotive systems  
Industrial  
ꢀ■  
ꢀ■  
Military  
Ordering Information – back page  
Typical Application  
3.340  
3.330  
3.320  
3.310  
3.300  
3.290  
3.280  
3.270  
3.260  
V
IN  
VIN  
PVIN  
BST  
SW  
C
BST  
ENABLE/MODE  
EN/MODE  
PGOOD  
VCC  
V
L1  
POWER GOOD  
OUT  
C
IN  
R
PGOOD  
R
LIM  
XR76201  
SS  
ILIM  
FB  
C
R
FF  
1
C
OUT  
TON  
C
C
SS  
R
VCC  
ON  
R
2
AGND  
PGND  
5
10  
15  
20  
25  
30  
35  
40  
V
(V)  
IN  
Figure 1. Typical Application  
Figure 2. Line Regulation  
REV1A  
1/16  
XR76201  
Absolute Maximum Ratings  
Operating Conditions  
Stresses beyond the limits listed below may cause  
permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect  
device reliability and lifetime.  
PV ......................................................................5V to 40V  
IN  
V
........................................................................5V to 40V  
IN  
SW, ILIM...........................................................-1V to 40V(1)  
PGOOD, VCC, TON, SS, EN, FB................... -0.3V to 5.5V  
Switching frequency ............................ 400kHz to 800kHz(3)  
Junction temperature range......................... -40°C to 125°C  
PV , V .......................................................... -0.3V to 43V  
IN  
IN  
V
CC  
................................................................. -0.3V to 6.0V  
BST................................................................-0.3V to 48V(1)  
BST-SW............................................................. -0.3V to 6V  
SW, ILIM........................................................ -1V to 43V(1)(2)  
ALL other pins .....................................-0.3V to VCC + 0.3V  
Storage temperature.................................... -65°C to 150°C  
Junction temperature................................................. 150°C  
Power dissipation ...................................... Internally limited  
Lead temperature (soldering, 10 sec)........................ 300°C  
ESD rating (HBM - Human Body Model)....................... 2kV  
JEDEC51 package thermal resistance, θ .............28°C/W  
JA  
Package power dissipation at 25°C.............................3.6W  
NOTES:  
1. No external voltage applied.  
2. SW pin’s minimum DC range is -1V, transient is -5V for less than 50ns.  
3. Recommended frequency for optimum performance.  
Electrical Characteristics  
Unless otherwise noted: T = 25°C, V = 24V, BST = V , SW = AGND = PGND = 0V, C = 4.7µF. Limits applying over  
J
IN  
CC  
VCC  
the full operating temperature range are denoted by a •.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Power Supply Characteristics  
V
Input voltage range  
V
regulating  
5.5  
40  
2
V
IN  
CC  
I
I
I
V
input supply current  
input supply current  
Not switching, V = 24V, V = 0.7V  
0.7  
12  
1
mA  
mA  
µA  
VIN  
VIN  
OFF  
IN  
IN  
IN  
FB  
V
f = 300kHz, R = 215k, V = 0.58V  
ON  
FB  
Shutdown current  
Enable = 0V, V = 12V  
IN  
Enable and Under-Voltage Lock-Out UVLO  
V
EN pin rising threshold  
EN pin hysteresis  
1.8  
2.8  
1.9  
70  
2.0  
3.1  
V
IH_EN_1  
EN_H_1  
V
mV  
EN pin rising threshold for DCM/CCM  
operation  
V
V
3.0  
V
IH_EN_2  
EN_H_2  
EN pin hysteresis  
100  
4.25  
230  
mV  
V
V
CC  
V
CC  
UVLO start threshold, rising edge  
UVLO hysteresis  
4.00  
4.40  
mV  
REV1A  
2/16  
XR76201  
Electrical Characteristics (Continued)  
Unless otherwise noted: T = 25°C, V = 24V, BST = V , SW = AGND = PGND = 0V, C = 4.7µF. Limits applying over  
J
IN  
CC  
VCC  
the full operating temperature range are denoted by a •.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Voltage  
0.596  
0.594  
0.600  
0.600  
0.604  
0.606  
V
V
V
REF  
Reference voltage  
V = 5.5V to 40V, V regulating  
IN CC  
CCM, closed loop, V = 5.5V-40V, applies to  
IN  
DC line regulation  
DC load regulation  
0.15  
0.05  
any C  
OUT  
CCM, closed loop, applies to any C  
OUT  
Programmable Constant On-Time  
t
On-time 1  
R
= 6.04k, V = 24V  
85  
100  
830  
117  
980  
ns  
ON1  
ON  
IN  
V
OUT  
= 1.8V, V = 24V, R = 6.04k,  
IN ON  
= 1.5A  
f Corresponding to on-time 1  
710  
kHz  
I
OUT  
t
t
t
Minimum programmable on-time  
On-time 2  
R
R
R
= 6.04k, V = 24V  
85  
100  
205  
479  
117  
236  
550  
ns  
ns  
ns  
ON(MIN)  
ON2  
ON  
IN  
= 14k, V = 24V  
174  
407  
ON  
IN  
On-time 3  
= 35.7k, V = 24V  
IN  
ON3  
ON  
V
= 1.8V, V = 24V, R = 14k,  
IN ON  
= 1.5A  
OUT  
f corresponding to on-time 2  
Minimum off-time  
345  
400  
250  
470  
350  
kHz  
ns  
I
OUT  
Diode Emulation Mode  
Zero crossing threshold  
DC value measured during test  
-2  
mV  
Soft-Start  
SS charge current  
-14  
1
-10  
-6  
µA  
SS discharge current  
Fault present  
mA  
VCC Linear Regulator  
V
V
= 6V to 40V, I  
= 0 to 30mA  
4.8  
5.0  
4.7  
5.2  
V
V
IN  
LOAD  
V
CC  
output voltage  
= 5V, I  
= 0 to 20mA  
4.51  
IN  
LOAD  
Power Good Output  
Power good threshold  
-10  
1
-6.9  
1.6  
-5  
4
Power good hysteresis  
Power good sink current  
mA  
REV1A  
3/16  
XR76201  
Electrical Characteristics (Continued)  
Unless otherwise noted: T = 25°C, V = 24V, BST = V , SW = AGND = PGND = 0V, C = 4.7µF. Limits applying over  
J
IN  
CC  
VCC  
the full operating temperature range are denoted by a •.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Protection: OCP, OTP, Short-Circuit  
Hiccup timeout  
110  
50  
ms  
µA  
I
I
pin source current  
45  
-8  
55  
8
LIM  
LIM  
current temperature coefficient  
0.4  
0
ꢀ/°C  
mV  
ns  
OCP comparator offset  
Current limit blanking  
GL rising > 1V  
100  
150  
15  
Thermal shutdown threshold(1)  
Thermal hysteresis(1)  
Rising temperature  
°C  
°C  
VSCTH feedback pin short-circuit  
threshold  
Percent of V  
, short-circuit is active  
REF  
50  
60  
70  
after PGOOD is asserted  
Output Power Stage  
High-side MOSFET R  
115  
40  
160  
59  
mΩ  
mΩ  
A
DSON  
R
DSON  
I
= 1A  
DS  
Low-side MOSFET R  
DSON  
I
Maximum output current  
1.5A  
OUT  
V
= 24V, V  
= 5V, I  
= 5V, I  
= 1.5A,  
= 1.5A,  
IN  
OUT  
OUT  
OUT  
100  
110  
°C  
°C  
f = 700kHz  
Maximum ambient temperature at  
continuous load  
V
IN  
= 12V, V  
OUT  
f = 600kHz  
NOTE:  
1. Guaranteed by design.  
REV1A  
4/16  
XR76201  
Pin Configuration, Top View  
BST  
30  
SW PVIN PVIN PVIN PVIN PVIN PVIN  
29  
28  
27  
26  
25  
24  
23  
22 PVIN  
21 PVIN  
20 SW  
ILIM  
EN  
1
2
3
4
5
6
7
PVIN PAD  
TON  
SS  
19 PGND  
18 PGND  
PGOOD  
FB  
SW PAD  
AGND PAD  
PGND 17 PGND  
PAD  
16 PGND  
AGND  
15 PGND  
8
9
10  
11  
12  
SW  
13  
14  
VIN  
VCC AGND SW  
SW  
SW  
Pin Functions  
Pin Number  
1
Pin Name  
Type  
Description  
ILIM  
EN/MODE  
TON  
A
Overcurrent protection programming. Connect with a resistor to SW.  
Precision enable pin. Pulling this pin above 1.9V will turn the regulator on and it will operate in CCM.  
If the voltage is raised above 3.0V then the regulator will operate in DCM/CCM depending on load.  
2
3
4
5
6
I
A
A
Constant on-time programming pin. Connect with a resistor to AGND.  
Soft-start pin. Connect an external capacitor between SS and AGND to program the soft-start rate  
based on the 10uA internal source current.  
SS  
PGOOD  
FB  
O, OD  
A
Power-good output. This open-drain output is pulled low when V  
is outside the regulation.  
OUT  
Feedback input to feedback comparator. Connect with a set of resistors to VOUT and AGND in order  
to program V  
.
OUT  
7, 10,  
AGND Pad  
AGND  
A
Signal ground for control circuitry. Connect AGND Pad with a short trace to pins 7 and 10.  
8
9
VIN  
A
A
Supply input for the regulator’s LDO. Normally it is connected to PVIN.  
VCC  
The output of regulator’s LDO. For operation using a 5V rail, VCC should be shorted to VIN.  
11-14, 20, 29,  
SW Pad  
Switch node. Drain of the low-side N-channel MOSFET. Source of the high-side MOSFET is wire-  
bonded to the SW Pad. Pins 20 and 29 are internally connected to SW pad.  
SW  
PWR  
PWR  
15-19,  
PGND Pad  
Ground of the power stage. Should be connected to the system’s power ground plane. Source of the  
low-side MOSFET is wire-bonded to PGND Pad.  
PGND  
21-28,  
PVIN Pad  
PVIN  
BST  
PWR  
A
Input voltage for power stage. Drain of the high-side N-channel MOSFET.  
30  
High-side driver supply pin. Connect a bootstrap capacitor between BST and pin 29.  
NOTE:  
A = Analog, I = Input, O = Output, OD = Open Drain, PWR = Power.  
REV1A  
5/16  
XR76201  
Typical Performance Characteristics  
Unless otherwise noted: V = 24V, V  
= 3.3V, I  
= 1.5A, f = 600kHz, T = 25°C. Application Circuit from the Application  
IN  
OUT  
OUT  
A
Information section.  
3.340  
3.330  
3.320  
3.310  
3.300  
3.290  
3.280  
3.270  
3.260  
3.340  
3.330  
3.320  
3.310  
3.300  
3.290  
3.280  
3.270  
3.260  
5
10  
15  
20  
25  
30  
35  
40  
0.0  
0.2  
0.4  
0.6  
0.8  
(A)  
1.0  
1.2  
1.4  
I
V
(V)  
OUT  
IN  
Figure 3.  
Figure 4.  
Load Regulation  
Line Regulation  
800  
700  
600  
500  
400  
300  
200  
100  
Calculated  
Typical  
900  
700  
500  
300  
100  
Calculated  
Typical  
5
10  
15  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
50  
60  
V
(V)  
IN  
R
(kΩ)  
ON  
Figure 5.  
Figure 6.  
t
vs. R  
t
vs. V , R = 16.9k  
ON IN ON  
ON  
ON  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
5
10  
15  
20  
25  
30  
35  
40  
I
(A)  
V
(V)  
IN  
OUT  
Figure 7.  
Figure 8.  
frequency vs. I  
frequency vs. V  
OUT  
IN  
REV1A  
6/16  
XR76201  
Typical Performance Characteristics (Continued)  
Unless otherwise noted: V = 24V, V  
= 3.3V, I  
= 1.5A, f = 600kHz, T = 25°C. Application Circuit from the Application  
IN  
OUT  
OUT  
A
Information section.  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
70  
60  
50  
40  
30  
0.8  
1.0  
1.2  
1.4  
(kΩ)  
1.6  
1.8  
-40  
-20  
0
20  
40  
T (°C)  
J
60  
80  
100  
120  
R
LIM  
Figure 9.  
Figure 10.  
vs. temperature  
I
vs. R  
I
LIM  
OCP  
LIM  
610  
605  
600  
595  
590  
530  
520  
510  
500  
490  
480  
470  
460  
450  
440  
430  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
T (°C)  
J
T (°C)  
J
Figure 11.  
vs. Temperature  
Figure 12.  
vs. Temperature, R = 35.7kΩ  
V
REF  
t
ON  
ON  
REV1A  
7/16  
XR76201  
Typical Performance Characteristics (Continued)  
Unless otherwise noted: V = 24V, V  
= 3.3V, I  
= 1.5A, f = 600kHz, T = 25°C. Application Circuit from the Application  
IN  
OUT  
OUT  
A
Information section.  
SW  
SW  
V
OUT  
AC-coupled 20MHz  
24mVp-p  
V
OUT  
33mVp-p  
AC-coupled 20MHz  
IL  
IL  
400µs/div  
2µs/div  
Figure 13.  
Figure 14.  
Steady State, I  
= 1.5A  
Steady State, DCM, I  
= 0A  
OUT  
OUT  
V
V
IN  
IN  
EN  
EN  
V
V
OUT  
OUT  
IL  
IL  
4ms/div  
4ms/div  
Figure 15.  
Figure 16.  
Power Up, Forced CCM  
Power Up, DCM/CCM  
SW  
SW  
V
OUT  
V
OUT  
AC-coupled 20MHz  
90mV  
AC-coupled 20MHz  
92mV  
68mV  
172mV  
Di/Dt = 2.5A/µs  
I
I
Di/Dt = 2.5A/µs  
OUT  
OUT  
20µs/div  
100µs/div  
Figure 17.  
Figure 18.  
Load Step, Forced CCM, 0A-0.8A  
Load Step, DCM/CCM, 0.05A-0.85A  
REV1A  
8/16  
XR76201  
Typical Performance Characteristics (Continued)  
Efficiency  
Unless otherwise noted: T  
= 25°C, no air flow, L = 6.8µH, inductor losses are included, Application Circuit from the  
AMBIENT  
Application Information section.  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
800kHz  
700kHz  
600kHz  
90  
85  
80  
75  
70  
65  
60  
55  
50  
500kHz  
400kHz  
600kHz  
400kHz  
12.0V CCM  
5.0V CCM  
3.3V CCM  
1.8V CCM  
12.0V DCM  
5.0V DCM  
3.3V DCM  
1.8V DCM  
5.0V CCM  
3.3V CCM  
1.8V CCM  
5.0V DCM  
3.3V DCM  
1.8V DCM  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
(A)  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
(A)  
I
I
OUT  
OUT  
Figure 19.  
Efficiency, V = 12V  
Figure 20.  
Efficiency, V = 24V  
IN  
IN  
REV1A  
9/16  
XR76201  
Functional Block Diagram  
VCC  
TON  
BST  
PVIN  
V
UVLO  
OTP  
CC  
Switching  
Enabled  
Enable LDO  
4.25V  
LDO  
VIN  
V
V
CC  
CC  
T
J
FB  
0.6V  
150 C  
Current  
PGOOD  
Emulation &  
V
IN  
DC Correction  
On Time  
10µA  
SS  
FB  
Switching  
Enabled  
Feedback  
Comparator  
0.6V  
t
GH  
GL  
ON  
R
S
Q
Q
Dead  
Time  
PGOOD Comparator  
SW  
V
CC  
Minimum  
On Time  
Control  
0.555V  
Short-Circuit Detection  
0.36V  
Switching  
Enabled  
Enable  
Hiccup  
R
S
Q
Q
Hiccup  
Mode  
Enable LDO  
Enable LDO  
EN/MODE  
If 4  
1.9V  
consecutive OCP  
OCP  
CCM or CCM/DCM  
If 8 consecutive  
ZCD then DCM  
if 1 non-ZCD  
Comparator  
3V  
50µA  
then exit DCM  
Zero Cross Detect  
XR76201  
SW  
-2mV  
AGND  
ILIM  
PGND  
Figure 21. Functional Block Diagram  
REV1A  
10/16  
XR76201  
Applications Information  
Functional Description  
Selecting the DCM/CCM Mode  
XR76201 is a synchronous step-down proprietary emulated  
current-mode Constant On-Time (COT) regulators. The on-  
In order to set the regulator operation to DCM/CCM,  
a voltage between 3.1V and 5.5V must be applied to  
EN/MODE pin. If an external control signal is available,  
it can be directly connected to EN/MODE. In applications  
where an external control is not available, EN/MODE input  
time, which is programmed via R , is inversely proportional  
ON  
to V  
and maintains a nearly constant frequency.  
IN  
The emulated current-mode control is stable with ceramic  
output capacitors.  
can be derived from V . If V is well regulated, use a  
IN  
IN  
resistor divider and set the voltage to 4V. If V varies over  
a wide range, the circuit shown in Figure 23 can be used to  
generate the required voltage.  
IN  
Each switching cycle begins with GH signal turning on the  
high-side (control) FET for a preprogrammed time. At the  
end of the on-time, the high-side FET is turned off and  
the low-side (synchronous) FET is turned on for a preset  
minimum time (250ns nominal). This parameter is termed  
minimum off-time. After the minimum off-time, the voltage at  
the feedback pin FB is compared to an internal voltage ramp  
V
IN  
RZ  
10k  
at the feedback comparator. When V drops below the  
FB  
ramp voltage, the high-side FET is turned on and the cycle  
repeats. This voltage ramp constitutes an emulated current  
ramp and makes possible the use of ceramic capacitors,  
in addition to other capacitor types, for output filtering.  
R1  
30.1k, 1%  
Zener  
MMSZ4685T1G or  
Equivalent  
Enable/Mode Input (EN/MODE)  
EN/MODE pin accepts a tri-level signal that is used to  
control turn on/off. It also selects between two modes of  
operation: ‘forced CCM’ and ‘DCM/CCM’. If EN is pulled  
below 1.8V, the regulator shuts down. A voltage between  
2.0V and 2.8V selects the forced CCM mode which will run  
the regulator in continuous conduction at all times. A voltage  
higher than 3.1V selects the DCM/CCM mode which will run  
the regulator in discontinuous conduction at light loads.  
EN/MODE  
R2  
35.7k, 1%  
Figure 22.  
Selecting Forced CCM by Deriving EN/MODE from V  
IN  
Selecting the Forced CCM Mode  
In order to set the regulator to operate in forced CCM,  
a voltage between 2.0V and 2.8V must be applied to  
EN/MODE. This can be achieved with an external  
control signal that meets the above voltage requirement.  
Where an external control is not available, the EN/MODE  
V
IN  
RZ  
10k  
can be derived from V . If V is well regulated, use a  
IN  
IN  
resistor divider and set the voltage to 2.5V. If V varies  
IN  
over a wide range, the circuit shown in Figure 22 can be  
V
EN  
used to generate the required voltage. Note that at V  
IN  
of 5.5V and 40V the nominal Zever voltage is 4.0V and  
5.0V respectively. Therefore for V in the range of 5.5V  
EN/MODE  
Zener  
MMSZ4685T1G or  
Equivalent  
IN  
to 40V, the circuit shown in Figure 22 will generate V  
required for forced CCM.  
EN  
Figure 23.  
Selecting DCM/CCM by Deriving EN/MODE from V  
IN  
REV1A  
11/16  
XR76201  
Applications Information (Continued)  
Programming the On-Time  
Overcurrent Protection (OCP)  
If load current exceeds the programmed overcurrent I ,  
OCP  
The on-time t is programmed via resistor R according  
ON  
ON  
to following equation:  
for four consecutive switching cycles, the module enters  
hiccup mode of operation. In hiccup, the MOSFET gates  
are turned off for 110ms (hiccup timeout). Following the  
hiccup timeout, a soft-start is attempted. If OCP persists,  
hiccup timeout will repeat. The module will remain in  
hiccup mode until load current is reduced below the  
V
× [t  
(2.5 × 10-8)]  
IN  
ON  
3.05 x 10-10  
vs. R , using the above equation, is  
R
=
ON  
A graph of t  
ON  
ON  
compared to typical test data in Figure 5. The graph shows  
that calculated data matches typical test data within 3ꢀ.  
programmed I  
. In order to program the overcurrent  
OCP  
protection, use the following equation:  
The t  
corresponding to a particular set of operating  
ON  
(I × 59mΩ) + 8mV  
OCP  
conditions can be calculated based on empirical data from:  
R
=
LIM  
I
LIM  
V
OUT  
t
=
where:  
ON  
V
× 0.97 x f  
IN  
ꢀ■  
R
LIM  
is resistor value for programming I  
OCP  
Where:  
ꢀ■  
I
is the overcurrent threshold to be  
OCP  
ꢀ■  
f is the desired switching frequency at 1.5A  
programmed  
Substituting for t in the first equation we get:  
ꢀ■  
ꢀ■  
ON  
8mV is the OCP comparator maximum offset  
I
is the internal current that generates  
V
LIM  
OUT  
[(2.5 × 10-8) × V ]  
IN  
the necessary OCP comparator threshold  
(use 45μA).  
0.97 x f  
R
=
ON  
(3.05 × 10-10)  
Note that I  
has a positive temperature coefficient  
LIM  
Now R  
conditions V , V  
can be calculated in terms of operating  
ON  
of 0.4ꢀ/°C, Figure 10. This is meant to roughly match  
and compensate for positive temperature coefficient of  
the synchronous FET. The above equation is for worst-  
case analysis and safeguards against premature OCP.  
and f using the above equation.  
IN  
OUT  
At V = 24V, I  
= 1.5A we get the following R  
:
IN  
OUT  
ON  
Typical value of I  
, for a given R , will be higher than  
OCP  
LIM  
VOUT (V)  
f (kHZ)  
RON (kΩ)  
that predicted by the above equation. Graph of calculated  
vs. R is compared to typical I in Figure 9.  
12  
5
800  
700  
600  
400  
48.7  
22.2  
16.6  
13.2  
I
OCP  
LIM  
OCP  
Short-Circuit Protection (SCP)  
If the output voltage drops below 60ꢀ of its programmed  
value, the module will enter hiccup mode. Hiccup will persist  
until short-circuit is removed. SCP circuit becomes active  
after PGOOD asserts high.  
3.3  
1.8  
Over-Temperature (OTP)  
OTP triggers at a nominal die temperature of 150°C.  
The gate of switching FET and synchronous FET are  
turned off. When die temperature cools down to 135°C,  
soft-start is initiated and operation resumes.  
Programming the Output Voltage  
Use an external voltage divider as shown in the Application  
Circuit to program the output voltage V  
.
OUT  
V
0.6V  
OUT  
R = R ×  
1  
1
2
where: R2 has a nominal value of 2kΩ  
REV1A  
12/16  
XR76201  
Applications Information (Continued)  
Programming the Soft-Start  
Maximum Allowable Voltage Ripple at FB Pin  
Note that the steady-state voltage ripple at feedback pin  
FB (V ) must not exceed 50mV in order for the  
Place a capacitor CSS between the SS and AGND pins to  
program the soft-start. In order to program a soft-start time  
of TSS, calculate the required capacitance CSS from the  
following equation:  
FB,RIPPLE  
regulator to function correctly. If V  
is larger than  
FB,RIPPLE  
50mV then C  
should be increased as necessary in order  
OUT  
to keep the V  
below 50mV.  
FB,RIPPLE  
10µA  
C
= t  
SS SS  
×
0.6V  
Feed-Forward Resistor (R  
)
FF  
FETswitchingnoisemaycoupletoV  
capacitance across the inductor, and to the FB pin via C .  
throughtheparasitic  
OUT  
Feed-Forward Capacitor (C  
)
FF  
FF  
A feed-forward capacitor (C ) may be necessary depending  
Excessive noise at FB will cause poor load regulation.  
FF  
on the Equivalent Series Resistance (ESR) of C  
. If only  
OUT  
To solve this problem place a resistor R  
in series  
FF  
ceramic output capacitors are used for C  
then a C  
with C . R value up to 2ꢀ of R1 is acceptable.  
OUT  
FF  
FF  
FF  
is necessary. Calculate C from:  
FF  
1
C
=
FF  
2 ×  
π
× R x 7 x f  
1 LC  
where:  
ꢀ■  
R1 is the resistor that is parallel with C  
FF  
ꢀ■  
f
is calculated by the equation below:  
LC  
1
f
=
LC  
2 x  
π
x L x C  
OUT  
f
frequency must be less than 11kHz when using ceramic  
LC  
C . If necessary, increase L and/or C  
OUT  
in order to meet  
OUT  
this constraint  
When using capacitors with higher ESR, such as  
PANASONIC TPE series, a C is not required provided  
FF  
following conditions are met:  
1.The frequency of output filter LC double-pole f  
should be less than 11kHz  
LC  
2.The frequency of ESR Zero f  
should be  
ZERO,ESR  
at least five times larger than f  
LC  
Note that if f  
is less than 5 x f , then it is  
LC  
ZERO,ESR  
recommended to set the f at less than 2kHz. C is still  
LC  
FF  
not required.  
REV1A  
13/16  
XR76201  
Applications Information (Continued)  
Application Circuit  
C
0.1µF  
BST  
R4 2k  
R3 18.2k  
P
24V  
IN  
VIN  
22  
21  
20  
19  
18  
17  
16  
15  
C
IN  
4.7µF/50V  
R
1.8k  
LIM  
1
2
3
4
5
6
7
PVIN  
PVIN  
SW  
ILIM  
EN  
R
16.9k  
ON  
X
SW  
TON  
SS  
C
47nf  
PGND  
PGND  
PGND  
PGND  
PGND  
SS  
V
R5 10k  
CC  
FB  
XR76201  
PGOOD  
FB  
AGND  
600kHz 3.3V at 0-1.5A  
C
SW  
Coilcraft XAL4030-682ME  
6.8µH  
C
0.1µf  
IN1  
OUT  
47µF/10V  
C
FF  
P
VIN  
R1 9.09k  
270pF  
V
CC  
R
FF  
20Ω  
C
4.7µf  
VCC  
FB  
R2 2k  
Figure 24. Application Circuit  
REV1A  
14/16  
XR76201  
Package Description  
REV1A  
15/16  
XR76201  
Ordering Information(1)  
Part Number  
Operating Temperature Range  
Lead-Free  
Yes(2)  
Package  
QFN 5x5  
Packaging Method  
XR76201EL  
Tray  
XR76201ELTR  
XR76201ELMTR  
XR76201EVB  
-40°C ≤ T ≤ 125°C  
Tape and Reel  
Mini Tape and Reel  
J
XR76201 Evaluation Board  
NOTE:  
1. Refer to www.exar.com/XR76201 for most up-to-date Ordering Information.  
2. Visit www.exar.com for additional information on Environmental Rating.  
Revision History  
Revision  
1A  
Date  
Description  
Sept 2016  
Initial Release  
www.exar.com  
48760 Kato Road  
Fremont, CA 94538  
USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7001  
Email: powertechsupport@exar.com  
Exar Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Exar Corporation conveys  
no license under any patent or other right and makes no representation that the circuits are free of patent infringement. While the information in this publication has been  
carefully checked, no responsibility, however, is assumed for inaccuracies.  
Exar Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected  
to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Exar Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of  
Exar Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of Exar Corporation is prohibited. Exar, XR and the XR logo are registered trademarks of Exar Corporation.  
All other trademarks are the property of their respective owners.  
©2016 Exar Corporation  
XR76201_DS_093016  
REV1A  
16/16  

相关型号:

XR76203

3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203-Q

AEC-Q100 Qualified 40V PowerBlox 3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203EL-F

3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203EL-Q

AEC-Q100 Qualified 40V PowerBlox 3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203ELMTR-F

Switching Regulator,
EXAR

XR76203ELTR-F

Switching Regulator
EXAR

XR76203ELTR-Q

AEC-Q100 Qualified 40V PowerBlox 3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203EVB

3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203EVB-Q

EVAL BOARD FOR XR76203-Q
EXAR

XR76205

3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76205-Q

AEC-Q100 Qualified 40V PowerBlox 3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76205EL-F

3A/5A/8A Synchronous Step Down COT Regulator
EXAR