XRD9836ACG [EXAR]

16-BIT PIXEL GAIN AFE; 16位的像素增益,AFE
XRD9836ACG
型号: XRD9836ACG
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

16-BIT PIXEL GAIN AFE
16位的像素增益,AFE

文件: 总32页 (文件大小:683K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
JUNE 2003  
REV. 1.0.0  
Sampling rates from 1.0 MSPS to 10.0 MSPS per chan-  
nel for 3 -Channel mode and up to 15.0 MSPS in single  
channel mode.  
GENERAL DESCRIPTION  
The XRD9836 is a precision 16-bit analog front-end  
(AFE) for use in 3-channel/1-channel CCD/CIS docu-  
ment imaging applications. Pixel-by-pixel gain and  
offset for each of the 3 channels are controlled using  
a time multiplexed parallel input. Offset and Gain are  
sequentially supplied for red, green, and blue. The  
outputs from each of the three channels are transmit-  
ted time multiplexed with the high order byte first fol-  
lowed by the low order byte for red, blue and green.  
Pixel-by-Pixel Offset and Gain control through a parallel  
interface running at a maximum 60 Mbyte/sec. data rate  
A microprocessor serial port to control various modes of  
operation  
Fixed Gain/Offset Mode (FGOM) or Pixel by Pixel Gain/  
Offset Mode (PPGOM)  
Alternate Pixel Offset Adjust Mode (APOAM)  
Low Power CMOS=280mW (typ. @ 3V); Power-Down  
Mode=1mW (typ. @ 3V with static clocks)  
FEATURES  
16-bit resolution ADC, 30MHz Sampling Rate  
Single Power Supply (3.0 to 3.6 Volts) with Max CCD  
input signal of 1V and reset pulse up to 0.5V  
10-bit accurate linear programmable gain range select-  
able as either 2-to-20 V/V or 1-to-10 V/V per channel  
High ESD Protection: 2000 Volts Minimum  
Fully-differential input pins and internal path  
APPLICATIONS  
Scanners, MFP’s  
FIGURE 1. BLOCK DIAGRAM  
CAPP  
GRN+ GRN-  
CAPN  
RED-  
BLUE+  
BLUE-  
CMREF  
REXT  
RED+  
IE  
ANALOG INPUTS  
BIAS  
Red Gain  
10  
RED GAIN  
REGISTER  
RED HIGH ORDER  
RED  
CDS &  
PGA  
ADC OUT  
XRD9836  
10  
RED OFFSET  
REGISTER  
RED LOW ORDER  
ADC OUT  
Red Offset  
D
E
M
U
X
OFFSET/GAIN  
INPUT 10  
GREEN GAIN  
REGISTER  
Green Gain  
10  
GREEN HIGH ORDER  
ADC OUT  
M
U
X
Green  
CDS &  
PGA  
16  
ADC  
OUT  
16-BIT  
30MHz  
ADC  
8
10  
GREEN OFFSET  
REGISTER  
GREEN LOW ORDER  
ADC OUT  
Green Offset  
BLUE GAIN  
REGISTER  
Blue Gain  
10  
BLUE HIGH ORDER  
ADC OUT  
BLUE  
CDS &  
PGA  
10  
BLUE OFFSET  
REGISTER  
BLUE LOW ORDER  
ADC OUT  
Blue Offset  
ADCLK  
SERIAL PORT  
SCLK  
POWER  
TIMING  
3
3
2
2
VSAMP  
BSAMP  
LCLMP  
Ognd  
Ovdd  
Dgnd  
Avdd  
Agnd  
Dvdd  
SDATA  
LOAD  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
FIGURE 2. PIN OUT OF THE DEVICE  
1
48  
47  
46  
45  
44  
ADCLK  
VSAMP  
Dgnd  
2
Dvdd  
3
BSAMP  
LCLMP  
IE  
OGI [0]  
OGI [1]  
OGI [2]  
OGI [3]  
OGI [4]  
OGI [5]  
OGI [6]  
OGI [7]  
OGI [8]  
OGI [9]  
ADCO [0]  
ADCO [1]  
ADCO [2]  
ADCO [3]  
Ognd  
4
5
6
43  
42  
SCLK  
SDIO  
LOAD  
Ovdd  
Ognd  
Avdd  
RED -  
RED+  
GRN -  
GRN+  
BLU -  
BLU+  
Agnd  
Rext  
7
8
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Ovdd  
ADCO [4]  
ADCO [5]  
ADCO [6]  
ADCO [7]  
Agnd  
Agnd  
Avdd  
CMREF  
CAPP  
CAPN  
Avdd  
TSSOP  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
0°C to +70°C  
XRD9836ACG  
48 - TSSOP  
2
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
PIN DESCRIPTIONS  
PIN #  
SYMBOL  
ADCLK  
TYPE  
DESCRIPTION  
1
clock  
ADC clock - 50Kohm internal pull-down resistor  
2
VSAMP  
BSAMP  
LCLMP  
IE  
clock  
clock  
Video Sample clock - 50Kohm internal pull-down resistor  
Black Sample clock - 50Kohm internal pull-down resistor  
Line Clamp clock  
3
4
clock  
5
digital  
Input Enable - 50Kohm internal pull-down resistor  
Serial Port serial clock - 50Kohm internal pull-down resistor  
Serial Port Data I/O - 50Kohm internal pull-down resistor  
Serial Port Load - 50Kohm pull-down resistor  
Output driver VDD  
6
SCLK  
clock  
7
SDIO  
digital in/out  
digital in  
power  
8
LOAD  
Ovdd  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Ognd  
ground  
power  
Output driver Ground  
Avdd  
ANALOG VDD  
RED-  
analog  
analog  
analog  
analog  
analog  
analog  
ground  
analog  
ground  
power  
RED ANALOG INPUT NEGATIVE  
RED ANALOG INPUT POSITIVE  
GREEN ANALOG INPUT NEGATIVE  
GREEN ANALOG INPUT POSITIVE  
BLUE ANALOG INPUT NEGATIVE  
BLUE ANALOG INPUT POSITIVE  
ANALOG GROUND  
RED+  
GRN-  
GRN+  
BLU-  
BLU+  
Agnd  
REXT  
Agnd  
External Bias Resistor -external 10Kohm resistor to ground  
ANALOG GROUND  
Avdd  
ANALOG VDD  
CMREF  
CAPP  
CAPN  
Avdd  
analog  
analog  
analog  
power  
Common Mode Reference for ADC  
ADC Reference By-Pass  
ADC Reference By-Pass  
ANALOG VDD  
Agnd  
ground  
output  
ANALOG GROUND  
ADCO[7]  
ADCO[6]  
ADCO[5]  
ADCO[4]  
Ovdd  
ADC parallel out 7  
ADC parallel out 6  
ADC parallel out 5  
ADC parallel out 4  
Output driver VDD  
Output driver Ground  
ADC parallel out 3  
ADC parallel out 2  
ADC parallel out 2  
ADC parallel out 1  
(MSB)  
output  
output  
output  
power  
Ognd  
ground  
output  
ADCO[3]  
ADCO[2]  
ADCO[1]  
ADCO[0]  
OGI[9]  
OGI[8]  
OGI[7]  
OGI[6]  
OGI[5]  
OGI[4]  
OGI[3]  
OGI[2]  
OGI[1]  
OGI[0]  
Dvdd  
output  
output  
output  
(LSB)  
digital in  
digital in  
digital in  
digital in  
digital in  
digital in  
digital in  
digital in  
digital in  
digital in  
power  
OFFSET AND GAIN PARALLEL IN 9 (MSB)  
OFFSET AND GAIN PARALLEL IN 8  
OFFSET AND GAIN PARALLEL IN 7  
OFFSET AND GAIN PARALLEL IN 6  
OFFSET AND GAIN PARALLEL IN 5  
OFFSET AND GAIN PARALLEL IN 4  
OFFSET AND GAIN PARALLEL IN 3  
OFFSET AND GAIN PARALLEL IN 2  
OFFSET AND GAIN PARALLEL IN 1  
OFFSET AND GAIN PARALLEL IN 0 (LSB)  
Digital VDD  
Dgnd  
ground  
Digital Ground  
3
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
ELECTRICAL CHARACTERISTICS - XRD9836  
Unless otherwise specified: AVDD=DVDD=3.3V, ADCLK = 30 MHz, REXT=10KW, Ta=25C  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
A/D CONVERTER  
Resolution  
R
16  
BITS  
Fc3  
1.0  
10  
15  
MSPS  
PER CHANNEL  
in 3-CH Mode  
Conversion Rate  
Fc1  
DNL  
ZSE  
1.0  
MSPS  
% FS  
mV  
PER CHANNEL  
in 1-CH Mode  
Differential Non-  
Linearity  
-0.024  
0.002  
40  
0.024  
Input Referred  
Offset  
Offset Drift  
ZSD  
FSE  
15  
uV/C  
%FS  
Input Referred  
Gain Error  
+/-2  
Gain Error Drift  
FSD  
IVR  
0.003  
2
%FS/C  
Vpp  
Input Voltage  
Range  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
VOLTAGE REFERENCES  
Vref+  
Vref-  
CAPP  
CAPN  
VCMR  
1.475  
0.425  
0.970  
1.7  
0.7  
1.925  
V
V
V
0.875  
1.430  
Vref  
1.15  
Common Mode  
Delta Vref  
DVREF  
0.85  
1.00  
1.15  
V
Vref(+) - Vref(-)  
4
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
ELECTRICAL CHARACTERISTICS - XRD9836 (con’t)  
Unless otherwise specified: AVDD=DVDD=3.3V, ADCLK = 30 MHz, REXT=10KW, Ta=25C  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
CDS - S/H  
Input Voltage  
Range  
1.0  
0.5  
1.2  
V
V
V
CCD Mode,  
Gain = 1 to 10  
CCD Mode,  
Gain = 2 to 20  
CIS Mode,  
INVSR  
Gain = 0.5 to 5  
Input Leakage  
Current  
Iin  
-40  
8
40  
nA  
At input pins: RED+/-,  
GRN+/-, BLU+/- when  
BSAMP is active  
Input Switch On  
Resistance  
Ron  
50  
150  
W
guaranteed by design  
At input pins: RED+/-,  
GRN+/-, BLU+/- when  
BSAMP is inactive  
Input Switch  
Off Resistance  
Roff  
100  
1.1  
MEGW  
guaranteed by design  
Internal Voltage  
Clamp CDS  
Input  
Vclampccd  
Vclampsh  
1.25  
0.0  
1.4  
0.2  
V
V
CCD MODE  
CIS MODE  
(inverting)  
Internal Voltage  
Clamp S/H Input  
(Non-inverting)  
-0.2  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
OFFSET SPECIFICATIONS  
Fine Offset  
Range  
FOFR-  
FOFR+  
-200  
80  
-128  
+127  
-80  
200  
mV  
mV  
Fine Offset  
Step  
FOFRES  
0.25  
mV  
10bit  
10bit  
Dynamic  
Offset Range  
DOFR-  
DOFR+  
-125  
120  
-80  
+160  
-55  
250  
mV  
mV  
Dynamic  
DOFRES  
0.25  
mV  
Offset Step  
5
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
ELECTRICAL CHARACTERISTICS - XRD9836 (con’t)  
Unless otherwise specified: AVDD=DVDD=3.3V, ADCLK = 30 MHz, REXT=10KW, Ta=25C  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
PGA SPECIFICATIONS  
Gain Range Min.  
(Absolute Value)  
GRAN  
MIN  
0.8  
1.8  
1.0  
2.05  
1.2  
2.2  
V/V  
V/V  
V/V  
Gain range = 1 to 10  
Gain range = 2 to 20  
Gain Range Max  
(Absolute Value)  
GRAN  
MAX  
7.8  
16  
9.2  
18.5  
10.8  
21  
Gain range = 1 to 10  
Gain range = 2 to 20  
Gain Resolution  
GRES  
0.008  
0.016  
Gain range = 1 to 10  
Gain range = 2 to 20  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
SYSTEM SPECIFICATIONS (INCLUDES CDS, PGA, AND A/D)  
Differential  
Non-Linearity  
DNL  
-0.024  
0.002  
+/- 0.1  
1.7  
+0.024  
%FS  
GAIN =1.5  
GAIN = 1.5  
Integral  
Non-Linearity  
INL  
-2.4  
2.4  
%FS  
Input Referred  
Noise  
IRNmin  
mVrms  
GAIN = 1, inputs shorted  
together.  
PGA Gain=1  
Input Referred  
Noise  
IRNmax  
0.2  
mVrms  
GAIN = 20, inputs shorted  
together.  
PGA Gain=20  
6
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
ELECTRICAL CHARACTERISTICS - XRD9836 (con’t)  
Unless otherwise specified: AVDD=DVDD=3.3V, ADCLK = 30 MHz, REXT=10KW, Ta=25C  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
CLOCK TIMING SPECIFICATIONS  
ADCLK  
Duty Cycle  
tadclk3  
tadclk1  
49  
49  
51  
51  
%
%
3-CH, Figure 17 & Figure 19  
1-CH, Figure 18 & Figure 20  
ADCLK period  
(1-Ch mode)  
tcp1  
tcp3  
tcr1  
66.6  
33.3  
66.6  
100  
20  
ns  
ns  
ns  
ns  
ns  
Figure 18 & Figure 20  
Figure 17 & Figure 19  
Figure 18 & Figure 20  
Figure 17 & Figure 19  
Figure 17 & Figure 19  
ADCLK period  
(3-Ch mode)  
Single Channel  
Conversion period  
Three Channel  
Conversion period  
tcr3  
BSAMP  
tpwb  
Pulse Width  
VSAMP Pulse Width  
tpwv  
tbvf  
20  
ns  
ns  
Figure 17 & Figure 19  
Figure 17 & Figure 19  
BSAMP sampling  
edge to VSAMP  
sampling edge  
50  
Min. Time  
negedge ADCLK to  
sampling VSAMP  
tvfcr  
tap  
12  
15  
ns  
ns  
Figure 17 & Figure 19  
Figure 17 & Figure 19  
VSAMP/BSAMP  
Acquisition time  
(aperture delay)  
6
9
Settling time  
Latency  
tstl  
tlat  
ns  
Figure 17 & Figure 19  
Figure 21 & Figure 22  
cycles  
7
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
ELECTRICAL CHARACTERISTICS - XRD9836 (con’t)  
Unless otherwise specified: AVDD=DVDD=3.3V, ADCLK = 30 MHz, REXT=10KW, Ta=25C  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
USIO TIMING SPECIFICATIONS  
10  
uSIO Data Setup  
Time  
Tuss  
Tush  
ns  
ns  
ns  
ns  
ns  
Figure 15 & Figure 16  
Figure 15 & Figure 16  
Figure 15 & Figure 16  
Figure 15 & Figure 16  
Figure 15 & Figure 16  
Figure 16  
uSIO Data Hold Time  
10  
10  
10  
40  
uSIO Load Setup  
Time  
Tusls  
Tuslh  
Tusp  
uSIO Load  
Hold Time  
uSIO Period  
uSIO Data Valid  
Delay  
Tusdvd  
0
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O TIMING SPECIFICATIONS  
OGI Enable time  
Tev  
Tva  
8
4
ns  
ns  
Figure 4  
VSAMP to ADC  
setup time  
Figure 4  
internal time adjustable  
ADC to OGI data  
setup time  
Togis  
Togih  
4
4
4
4
1
1
ns  
Figure 4  
internal time adjustable  
ADC to OGI data  
hold time  
Figure 4  
internal time adjustable  
ADCLK to ADCDO  
data out delay  
Tadcdo  
LCLMPd  
BLs  
ns  
pixels  
ns  
Figure 5  
internal time adjustable  
more pixels preferred  
LCLMP Pulse  
duration  
50  
BSAMP/LCLMP  
setup  
BSAMP/LCLMP hold  
BLh  
ns  
8
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
ELECTRICAL CHARACTERISTICS - XRD9836 (con’t)  
Unless otherwise specified: AVDD=DVDD=3.3V, ADCLK = 30 MHz, REXT=10KW, Ta=25C  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
POWER SUPPLIES - 1 CHANNEL MODE  
Analog IDD  
Digital IDD  
IAVDD  
IDVDD  
IOVDD  
IDD  
47  
5
mA  
mA  
mA  
mA  
mW  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.6V  
Output IDD  
5
IDD Total  
57  
188  
Power Dissipation  
PDISS  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
POWER SUPPLIES - 3 CHANNEL MODE  
Analog IDD  
Digital IDD  
IAVDD  
IDVDD  
IOVDD  
IDD  
60  
1
84  
9
110  
15  
mA  
mA  
mA  
mA  
mW  
mW  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.6V  
Tested @ 3.0V  
Output IDD  
1
11  
15  
IDD Total  
62  
220  
104  
343  
280  
140  
500  
Power Dissipation  
Power Dissipation  
PDISS  
PDISS  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
DIGITAL I/O  
Logic Input Low  
Logic Input High  
Vil  
Vih  
Iih  
0.5  
V
VDD-0.5  
-100  
V
OGI Input Current High  
OGI Input Current Low  
100  
100  
150  
nA  
nA  
uA  
Iil  
-100  
Control Inputs  
Current High  
Iinh  
50  
90  
50Kohm Pull down  
50Kohm Pull down  
Control Inputs  
Current Low  
Iinl  
-5  
0.1  
5
uA  
Logic Output Low  
Logic Output High  
Vol  
Voh  
0.5  
V
V
Isink=2.0mA  
Isrc=2.0ma  
VDD-0.5  
-100  
Tristate  
IOLeak  
0.1  
100  
nA  
Leakage  
9
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
SYSTEM OVERVIEW  
The XRD9836 provides a 16-bit Analog Front End  
functionality for Mid-to-High range, next-generation  
scanner applications. It has 3 channels of Correlated  
Double Sampling (CDS), using a 10-bit Dynamic Off-  
set DAC, a 10-bit Programmable Gain Amplifier  
(PGA) and a 10-bit Fine Offset DAC for Red, Green,  
and Blue CCD signals. A 16-bit 30MHz ADC is multi-  
plexed among these 3 channels to provide digitized  
image data for the scanner ASIC chip. In 3-channel  
mode, the order of channels is R, G, B. In the 1-chan-  
nel mode, only the selected channel is active. The  
XRD9836 provides one of the key requirements for  
the next generation scanner AFE’s, the ability to con-  
trol Pixel-by-Pixel Gain and Offset values. Figure 3  
shows the ASIC and AFE interface for the proposed  
system.  
A 10-bit parallel bus Offset Gain Input Port (OGI) is  
used to transfer 10 bits of Gain and 10 bits of Offset.  
In the 3-channel mode, the data is received sequen-  
tially in the following order: red gain, red offset, green  
gain, green offset, blue gain, blue offset. In 1-channel  
mode, the data is received sequentially gain then off-  
set. For an example of both 3-channel and 1-channel  
OGI timing see Figure 4.  
The Input Enable pin (IE) enables OGI port to pro-  
gram internal pixel gain and offset registers. If IE  
goes low, the gain and offset registers will store the  
last data while IE was high.  
For ADC outputs, the XRD9836 has an 8-bit parallel  
bus ADC Data Out (ADCDO). The ADC output data is  
transmitted sequentially in the following order for 3-ch  
mode red high order byte, red low order byte, green  
high order byte, green low order byte, blue high order  
byte, blue low order byte as shown in Figure 5  
A three-pin, Micro-controller Serial I/O link (uSIO) is  
used to write or read from the XRD9836’s internal  
configuration registers. The internal registers control  
the various modes of operation of the chip.  
FIGURE 3. SYSTEM BLOCK DIAGRAM  
10  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
also reminded that data coming out of the ADC out-  
puts will have latency from the gain and offset provid-  
ed (10 ADC cycles for single color and 12 cycles for  
3-color). This latency includes the cycles to put the  
gain and offset data into the registers and the latency  
of the ADC itself (9 ADCLK cycles).  
GAIN SELECT:  
The XRD9836’s Gain range is selectable to either 1 to  
10 or 2 to 20 with the Gain Select Bit. If Gain of 1 to  
10 is selected (Gain Select bit = 0), the maximum in-  
put is 1.0V. If Gain of 2 to 20 is selected (Gain Select  
bit = 1), the maximum input is 0.5V.  
Sampling of the OGI parallel input port is defined as  
the red gain data being the first pulse of ADCLK after  
VSAMP, therefor VSAMP must occur before a rising  
edge of ADCLK. It is also recommended that  
VSAMP__OGI_DLY (DelayD[7:4]) should be smaller  
than OGI_DLY (DelayA[7:4]) to make sure the correct  
data is sampled, and that relationship is not reversed  
internally.  
PARALLEL PORT FOR PIXEL OFFSET  
AND GAIN CONTROL (OGI):  
The timing diagram in Figure 4 shows the Offset and  
Gain Inputs (OGI) and ADCLK in relationship to  
VSAMP.  
3 - Channel OGI Timing  
Tev  
PARALLEL PORT FOR ADC OUTPUT  
(ADCDO):  
IE  
Tva  
VSAMP  
The timing diagram, Figure 5, shows the ADC output  
(ADCDO). The XRD9836 will be clocking ADC high  
order bytes on the rising edge of ADCLK and clocking  
ADC low order bytes on the falling edge of ADCLK.  
As noted the RGB data is synchronized to sampling  
edge of VSAMP.  
ADCLK  
OGI 10-bit  
parallel input  
RG  
RO  
GG  
GO  
BG  
BO  
RG  
Togis  
Togih  
1 - Channel OGI Timing  
Tev  
Tva  
IE  
VSAMP  
ADCLK  
3 - Channel ADCDO Timing  
VSAMP  
OGI 10-bit  
parallel input  
Gain  
Offset  
Gain  
Togis  
ADCLK  
Togih  
ADCDO 8-bit  
parallel output  
BDL  
RDH  
RDL  
GDH  
GDL  
BDH  
BDL  
Tadcdo  
FIGURE 4. OGI TIMING (ADCLK  
=0, VSAMP  
=0)  
POL  
POL  
1 - Channel ADCDO Timing  
The ASIC chip will be clocking OGI data at six times  
the pixel rate clock in 3-CH mode and two times the  
pixel rate in 1-CH mode. The gain data is grabbed on  
the rising edge of ADCLK and the offset data on the  
falling edge of ADCLK. The OGI port is read into in-  
ternal pixel gain and offset registers only when Input  
Enable (IE) is active before the sampling edge of  
VSAMP as shown above. As noted the RGB gain/off-  
set data is synchronized to sampling edge of VSAMP.  
Note that ADCLK frequency is 3X the pixel rate in 3-  
CH mode and 1X the pixel rate in 1-CH mode. The  
ADCLK’s duty cycle is required to be 50%. It is as-  
sumed that the OGI port and ADCLK input have  
matched output drivers inside the ASIC, matched  
trace lengths on the PCB between the ASIC and the  
XRD9836, and matched delays at input buffers inside  
the XRD9836 in order to receive OGI data on both  
edges of ADCLK error free.  
VSAMP  
ADCLK  
ADCDO 8-bit  
parallel output  
DH  
Tadcdo  
DL  
FIGURE 5. ADCDO TIMING (ADCLK  
=0, VSAMP  
=0)  
POL  
POL  
PIXEL GAIN/OFFSET CONTROL (FGOM  
OR PGOM):  
Figure 6 shows the block diagram of the CDS/PGA/  
Offset DACs/ADC signal path. The offset for each  
channel is controlled by a 10-bit Dynamic offset DAC  
before the CDS amplifier and a 10-bit Fine offset DAC  
after the PGA amplifier. Thus, the total offset of each  
channel is controlled by two 10-bit offset DACs. The  
Dynamic offset DAC will have a range of -80mV to  
+160mV, with the ability to adjust the CDS stage off-  
set to within +/- 0.25mV. The Fine offset DAC will  
The latency between the input of the parallel inputs  
and their effective application is 1 pixel. The user is  
11  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
have a range of +/- 128mV, with the ability to adjust  
PGA offsets to within +/- 0.25mV.  
There are two modes of operation for Pixel Gain and  
Offset control. The first is a fixed gain and offset con-  
trol mode where the gain and offset is adjusted once  
per line or per scan. The second mode is a pixel to  
pixel adjustment of gain and offset. This mode allows  
for gain and offset adjustment for each and every pix-  
el. These modes are controlled by bit D0, GOM (Gain  
Offset Mode), in the MODE register.  
OB Pixels  
VBlack  
Active Pixels  
VBlack  
VDark  
CCD  
Waveform  
VVideo  
In FGOM (Fixed Gain/Offset Mode, GOM=0), the us-  
er can program the PGA gain, Dynamic and Fine Off-  
set registers through the micro-controller serial inter-  
face (uSIO).  
FIGURE 7. CCD WAVEFORM - DEFINITION OF TERMS  
CCD OUTPUT INFORMATION = (VBLACK-VVIDEO  
)
LCLMP TIMING:  
In PPGOM (pixel-by-pixel gain and offset mode,  
GOM=1), the user can input 10 bits of Gain and 10  
bits of Dynamic offset data through the OGI port.  
In order to reject higher frequency power supply  
noise which is not attenuated near the sampling fre-  
quency, the XRD9836 utilizes a fully differential input  
structure. Since the CDS process uses AC coupled  
inputs, the coupling capacitor must be charged to the  
common-mode range of the analog front-end. This  
can be accomplished by clamping the coupling ca-  
pacitor to the internal clamp voltage when the CCD is  
at a reference level at the beginning of each line us-  
ing LCLMP. This needs to be done for enough clamp-  
ing time (Tclamp) which is determined by external  
Capacitor, internal switch resistance, BSAMP pulse  
width and number of samples during line clamp. The  
maximum capacitance is  
NC  
PGA  
10 Bit  
+
CDS  
+
CDS Signal  
3:1  
MUX  
ADC  
Fine  
Offset  
DAC  
Dynamic  
Offset  
DAC  
10 BIT  
10 BIT  
FIGURE 6. CDS TO ADC SIGNAL PATH  
N * tp w b  
CM A X  
=
CCD MODE(CORRELATED DOUBLE  
SAMPLING):  
V r - V c  
(Rc + R s ) * ln  
(
)
V e  
Correlated double sampling is a technique used to  
level shift and acquire CCD output signals whose in-  
formation is equal to the difference between consecu-  
tive reference (VBlack) and signal (VVideo) samples.  
where tpwb = clamp pulse width (BSAMP typ 25ns)  
N = number of pixels used for clamping  
Rc = clamp resistance (typ 50ohms)  
Rs = signal source resistance (typ 50ohms)  
Vr = black level  
The CDS process consists of three steps:  
1) Sampling and holding the reference black level  
(VBlack).  
2) Sampling the video level (VVideo).  
Vc = clamp voltage (1.2V)  
Ve = error voltage (3.05uV worst case)  
3) Subtracting the two samples to extract the video in-  
formation. (CCD signal information = VBlack- VVideo  
)
The clamp LCLMP should be active for at least 4 pix-  
els during Optical Black (OB) and should be inactive  
during all of the Active portion of the line. Usually OB  
lasts for 40 - 50 pixels. It is better if LCLMP remains  
active during as much of OB as possible. LCLMP  
should be set Active 1ns before BSAMP leading edge  
and should be held for at least 1ns after BSAMP trail-  
ing edge.  
Once the CCD signal information has been extracted,  
it can be processed further through amplification and/  
or offset adjustment. Since system noise is also  
stored and subtracted during the CDS process, sig-  
nals with bandwidths less than half the sampling fre-  
quency will be substantially attenuated.  
12  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
In addition to the above requirement for LCLMP on a  
line by line basis there is an additional requirement  
for a one time LCLMP upon power-up to provide the  
AC coupling capacitor’s initial charge. The one time  
LCLMP pulse width can also be determined from the  
Cmax equation above. A typical value, using 1 nf cap,  
with initial charge of 3V (Vr - Vc), and a BSAMP pulse  
width of 25ns, is estimated to be 1.4us. This is equiv-  
alent to one time LCLMP of 56 OB pixels upon power  
up.  
4. VSAMP should have typ > 25ns pulse width.  
5. LCLMP is not needed for CIS Applications. (except  
for APOAM even and odd selection)  
6. Input Voltage Range:  
Vcm @ Vin- = 0 to 1.4 V  
CIS Signal @ Vin+ = 0 to 1.2 V above Vcm offset  
CIS Signal  
3-CHANNEL CDS MODE:  
Vcm (DCoffset)  
This mode allows simultaneous CDS of the red,  
green and blue inputs. Black-level sampling occurs on  
each pixel and is equal to the width of the BSAMP  
sampling input. The black level is held on the sam-  
pling edge of BSAMP and the PGA will immediately  
begin to track the signal input until the sampling edge  
of VSAMP.  
3:1  
MUX  
ADC  
PGA  
10 bit  
NC  
CDS  
+
+
Dynamic  
Offset  
DAC  
Fine  
Offset  
DAC  
10 bit  
10 bit  
At the end of the video sampling phase, the differ-  
ence between the reference and video levels is invert-  
ed, amplified, and offset depending on the contents of  
the PGA gain and offset registers. The RGB channels  
are then sequentially converted by a high-speed A/D  
converter. Converted data appears on the data output  
bus after 9 ADCLK cycles. The red channel is syn-  
chronized on the rising edge of the first ADCLK after  
the sampling edge of VSAMP. The power-up default  
mode is for CDS sampling a CCD input.  
FIGURE 8. CIS SIGNAL PATH  
Pixel N-1  
Pixel N  
Pixel N+1  
Pixel N+2 Pixel N+3  
CIS  
W aveform  
INVSR  
Vcm  
FIGURE 9. CIS WAVEFORM -DEFINITION OF TERMS  
1-CHANNEL CDS MODE:  
The 1-Channel CDS mode allows high-speed acqui-  
sition and processing of a single channel. The timing,  
clamp and buffer configurations are similar to the 3-  
channel mode described previously. To select a single  
channel input, the color bits of configuration selected  
by CHAN[1:0] bits, in the MODE register, must be set  
to the appropriate value. The A/D input will begin to  
track the selected color input on the next positive  
edge of ADCLK. If the configuration is toggled from a  
single color mode to 3-channel mode, RGB scanning  
will not occur until the circuit is re-synchronized on  
the sampling edge of VSAMP.  
3-CHANNEL CIS AND S/H MODE  
The XRD9836 also supports operation for Contact  
Image Sensor (CIS) and S/H applications. The red  
channel is synchronized on the rising edge of the first  
ADCLK after the sampling edge of VSAMP.  
In this mode of operation, the BSAMP input is con-  
nected to DGND, and input sampling occurs on the  
falling edge of VSAMP(VSAMP_POL=0).  
1-CHANNEL CIS AND S/H MODE:  
The 1-channel CIS S/H mode allows high-speed ac-  
quisition and processing of a single channel. The tim-  
ing, clamp and buffer configurations are similar to the  
3-channel mode. In single channel mode one color  
channel is selected using CHAN[1:0]. If the configura-  
tion is toggled from single color to 3-channel mode,  
RGB scanning will not occur until the circuit is re-syn-  
chronized by the first sampling edge of VSAMP.  
CIS MODE:  
The AFE can be configured for inputs from a CCD or  
a CIS type device by setting the CCD_CIS bit. For  
CIS mode, the following interface features are provid-  
ed:  
1. DC Coupled Inputs.  
2. Gain Range is 0.5 to 5 with 10 bit resolution.  
3. It is assumed that CIS Sample and Hold Outputs  
and DC offset buffer have low output impedanc-  
es(~50 ohms).  
13  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
XRD9836 has included a programmable delay func-  
tion to help simplify this job.  
TIMING - CLOCK BASICS:  
The XRD9836 has 4 clock signals BSAMP, VSAMP,  
ADCLK and LCLMP. These inputs control the sam-  
pling, clamping and synchronization functions of the  
device.  
There are four serial interface registers, DelayA, De-  
layB, DelayC and DelayD, used to program various  
delays of the pixel timing and Data and OGI bus tim-  
ing. Each register is divided into 2 delay parameters.  
Each delay parameter is 4 bits wide.  
The pixel rate clocks are BSAMP, VSAMP and AD-  
CLK. BSAMP controls the sampling of the black refer-  
ence level of a CCD input signal. VSAMP controls the  
sampling of the video level of a CCD or CIS output  
signal. The ADCLK controls the internal sampling of  
the PGA by the ADC and ADC operation.  
DelayA[7:4] controls the OGI sampling delay. These  
bits program the delay of the ADCLK used to sample  
the OGI input bus. Delay is added in 1ns increments.  
See Figure 12.  
The line rate clock, LCLMP, performs the clamping  
and synchronization functions. The clamp function  
sets the bias point for the external AC coupling ca-  
pacitor on the inputs. Synchronization defines the odd  
pixel in the APOAM mode.  
DelayA[3:0] controls the ADCDO delay. These bits  
are used to program the timing delay added to the  
ADCDO data bus updates. Delay is added in 1ns in-  
crements. See Figure 11.  
DelayB[7:4] controls the amount of delay added to the  
leading edge of BSAMP. Delay to the leading edge  
will be added in 0.5ns increments. This can help to  
position the leading edge of the internal BSAMP away  
from the reset pulse of the CCD input. See Figure 11.  
CLOCK POLARITY  
Each of the 4 timing signals has a separate polarity  
control bit in the CONTROL register. Figure 10 shows  
the logic implementation of the polarity control. If the  
polarity bit is low (default) BSAMP and VSAMP sam-  
DelayB[3:0] controls the amount of delay added to the  
ple on the falling edge, LCLMP is active high and AD- trailing edge of BSAMP. Delay to the trailing edge will  
CLK must be low during the VSAMP falling edge. See  
timing examples if Figure 17 and Figure 18  
be added in 0.5ns increments. This will allow for ad-  
justment of the Black Level sampling position by the  
internal BSAMP. See Figure 11.  
If any of the external timing signals are inverted from  
the default timing simply write a “1” to the appropriate  
polarity bit to compensate.  
DelayC[7:4] controls the amount of delay added to  
the leading edge of VSAMP. Delay will be added in  
0.5ns increments. This can help to position the lead-  
ing edge of the internal VSAMP to track the video  
portion of the CCD input. See Figure 11.  
DelayC[3:0] controls the amount of delay added to  
the trailing edge of VSAMP. Delay will be added in  
0.5ns increments. This will allow for adjustment of the  
Video Level sampling position by the internal VSAMP.  
See Figure 11.  
BSAMP  
VSAMP  
ADCLK  
Polarity  
Polarity  
Polarity  
AFE  
ADC  
OGI  
Delays  
Clock  
Logic  
DelayD[7:4] controls the amount of delay added to  
the VSAMP OGI. The internal VSAMP_OGI is used  
to transfer the input OGI register data to the PGA and  
OFFSET control. Delay is added in 1ns increments.  
Please note the falling edge of the internal  
VSAMP_OGI must occur before the rising edge of  
the OGI sampling clock. See Figure 12.  
LCLMP  
Polarity  
FIGURE 10. CLOCK POLARITY AND DELAYS  
DELAY CONTROL  
One of the more difficult tasks in designing a scanner  
is optimizing the pixel and interface (data output &  
OGI) timing for a CCD, CDS and ADC. The  
DelayD[3:0] controls the amount of delay added to  
the ADCLK. Delay is added to the internal ADCLK in  
0.5ns increments. See Figure 11.  
14  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
tPIX  
Black Sample Point  
CCD  
Signal  
tBK  
Video Sample Point  
tVD  
DelayB[7:4]  
BSAMP  
DelayB[3:0]  
internal BSAMP  
VSAMP  
DelayC[3:0]  
internal VSAMP  
ADCLK  
DelayC[7:4]  
DelayD[3:0]  
DelayD[3:0]  
internal ADCLK  
ADCDO  
Output Bus  
Tadcdo  
DelayA[3:0]  
FIGURE 11. PIXEL TIMING & ADCDO (OUTPUT DATA) DELAY ADJUSTMENT  
Pixel (n-1)  
Pixel (n)  
tPIX  
Black Sample Point  
CCD  
Signal  
Video Sample Point  
OGI  
Input Bus  
Offset (n)  
Gain (n+1)  
Offset (n+1)  
Gain (n)  
OGI Gain  
Sample Point  
OGI Offset  
Sample Point  
Togis  
Togih  
VSAMP  
DelayD[7:4]  
internal OGI  
VSAMP  
DelayD[7:4]  
ADCLK  
DelayA[7:4]  
DelayA[7:4]  
internal OGI  
sample delay  
FIGURE 12. OGI TIMING DELAY ADJUSTMENT  
15  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
In the PPGOM mode, the APOAM can be selected  
only when Input Enable (IE) is disabled. The last dy-  
namic gain and offset programmed using the OGI  
port are used for the odd pixels.  
ALTERNATE PIXEL OFFSET ADJUST  
MODE (APOAM):  
In some applications, alternate pixels along a scan  
line come from two different rows of CCD’s, causing a  
systematic offset between alternate pixels. When the  
XRD9836 is operated in the Fixed Gain Offset Mode  
(FGOM), it does not have the ability to compensate  
for this alternating offset phenomenon.  
The APOAM dynamic offset and the APOAM fine reg-  
ister values, programmed through the USIO port are  
used for the even pixels. The gain value is fixed as the  
last received value through the serial port. This is  
shown in Figure 14.  
To compensate for these offsets, this chip has an Al-  
ternate Pixel Offset Adjust mode (APOAM), which  
can be enabled by writing a 1 to the APOAM bit (D1of  
the MODE register) through the serial port. In  
APOAM mode each channel has four 10-bit offset  
registers to control offset. Odd pixel offsets are com-  
pensated for by the Dynamic Offset Register value  
and the Fine Offset Register value. The even pixel off-  
sets are compensated for by the APOAM Dynamic  
Offset Register value and the APOAM Fine Offset  
Register value. The individual channel pixel gains do  
not change and are determined by the red, green and  
blue PGA gain register settings.  
SUMMARY OF APOAM USABILITY:  
MODE  
IE  
APOAM  
USABLE  
FIXED GAIN/OFFSET  
FIXED GAIN/OFFSET  
PIXEL GAIN/OFFSET  
PIXEL GAIN/OFFSET  
OFF  
ON  
USABLE  
OFF  
ON  
USABLE  
NOT USABLE  
TABLE 1: SUMMARY OF APOAM USABILITY  
NC  
3:1  
MUX  
LCLMP  
VSAMP  
ADC  
PGA  
10 Bit  
+
CDS  
+
CDS Signal  
DYNAMIC  
OFFSET  
ODD  
ODD  
EVEN  
EVEN  
ODD  
ODD  
EVEN  
EVEN  
Dyn. Reg.  
APOAM Dyn. Reg.  
Fine Reg.  
APOAM Fine Reg.  
FINE  
OFFSET  
FIGURE 13. APOAM MODE - CONFIGURATION OF OFF-  
SET REGISTERS  
Figure 14. APOAM SYNCHRONIZATION AND REGISTER  
ALTERNATION  
The offset alternates every other pixel. The first pixel  
and all odd pixels in the line use the dynamic offset  
and fine offset register values. The even pixels use  
the APOAM dynamic offset and the APOAM fine off-  
set register values. Odd pixels are defined from the  
first ADCLK after the fall of LCLMP.  
Note: LCLMP also defines which pixel is even or odd.  
The first pixel after LCLMP goes inactive is odd. Posi-  
tion LCLMP so that there are an even number of pix-  
els before start of active pixels.  
16  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
XRD9836 the SDIO pin stays configured as an input  
for entire 18 SCLK's before LOAD goes high. The E0  
and E1 bits are dummy (unused) bits.  
MICRO-CONTROLLER SERIAL PORT  
FOR MODE CONTROL (USIO):  
The uSIO is a bidirectional I/O port which is used for  
configuring various operating modes as well as phase  
aligning internal clocks (delay control). The serial port  
can be used to program any of the registers listed in  
the registers table. Note that SDIO is a bidirectional  
pin used to read or write the XRD9836 internal regis-  
ters. The R/W bit will define the direction of the bus  
after Address bits. If R/W = 0, a write to the XRD9836  
is performed. If R/W = 1, a read of the XRD9836’s in-  
ternal registers is performed.  
For a read of the XRD9836 internal registers (R/W=1)  
the E0 and E1 are used as a transition time for the  
SDIO pin going from an input to a output. During this  
time SDIO pin is tri-stated. SDIO is an input while se-  
rial port accepts the address of the register to be read  
and during the E0 and E1 time period transitions to  
an output for the read operation.  
During a read operation the first 18 positive edges are  
used. If there are less than 18, not all of the data will  
be output. If there are more than 18, only the first 18  
bits will be valid. The data becomes valid after the ris-  
ing edge of SCLK.  
During a write operation there must be 18 positive  
edges of SCLK between the fall of LOAD and the rise  
of LOAD. If there are more or less than 18, the write  
operation will not take place. For a write to the  
Tuslh  
Tusp  
Tusls  
Tuss  
Tush  
LOAD  
SCLK  
msb  
A4  
lsb  
A0  
msb  
D9  
lsb  
D0  
R/W  
A3  
A2  
A1  
E1  
E0  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SDIO  
Dummy  
bits  
Write  
Register Address  
Write Register Data  
SDIO  
configured  
as  
Input  
FIGURE 15. SERIAL PORT WRITE TIMING (R/W=0)  
Tuslh  
Tusls  
Tusp  
Tusdvd  
Tuss  
Tush  
LOAD  
SCLK  
msb  
lsb  
lsb  
A0  
msb  
A4  
A3  
A2  
A1  
E1  
E0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDIO  
Dummy  
bits  
Read  
Register Address  
Input  
Read Register Data  
Output  
SDIO  
configured  
as  
Tri-state  
FIGURE 16. SERIAL PORT READ TIMING (R/W=1)  
17  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
REGISTERS  
ADDRESS  
DATA BITS  
A
4
0
A
3
0
A
2
0
A
1
0
A
0
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RPGA  
[9]  
RPGA  
[8]  
RPGA  
[7]  
RPGA  
[6]  
RPGA  
[5]  
RPGA  
[4]  
RPGA  
[3]  
RPGA  
[2]  
RPGA  
[1]  
RPGA  
[0]  
RED  
PGA  
GPGA  
[9]  
GPGA  
[8]  
GPGA  
[7]  
GPGA  
[6]  
GPGA  
[5]  
GPGA  
[4]  
GPGA  
[3]  
GPGA  
[2]  
GPGA  
[1]  
GPGA  
[0]  
GREEN  
PGA  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
BPGA  
[9]  
BPGA  
[8]  
BPGA  
[7]  
BPGA  
[6]  
BPGA  
[5]  
BPGA  
[4]  
BPGA  
[3]  
BPGA  
[2]  
BPGA  
[1]  
BPGA  
[0]  
BLUE  
PGA  
RDOFF  
[9]  
RDOFF  
[8]  
RDOFF  
[7]  
RDOFF  
[6]  
RDOFF  
[5]  
RDOFF  
[4]  
RDOFF  
[3]  
RDOFF  
[2]  
RDOFF  
[1]  
RDOFF  
[0]  
RED DYNAMIC  
OFFSET  
GDOFF  
[9]  
GDOFF  
[8]  
GDOFF  
[7]  
GDOFF  
[6]  
GDOFF  
[5]  
GDOFF  
[4]  
GDOFF  
[3]  
GDOFF  
[2]  
GDOFF  
[1]  
GDOFF  
[0]  
GREEN  
DYNAMIC  
OFFSET  
BDOFF  
[9]  
BDOFF  
[8]  
BDOFF  
[7]  
BDOFF  
[6]  
BDOFF  
[5]  
BDOFF  
[4]  
BDOFF  
[3]  
BDOFF  
[2]  
BDOFF  
[1]  
BDOFF  
[0]  
BLUE DYNAMIC  
OFFSET  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
RFOFF  
[9]  
RF0FF  
[8]  
RFOFF  
[7]  
RF0FF  
[6]  
RFOFF  
[5]  
RFOFF  
[4]  
RFOFF  
[3]  
RFOFF  
[2]  
RFOFF  
[1]  
RFOFF  
[0]  
RED FINE  
OFFSET  
GFOFF  
[9]  
GF0FF  
[8]  
GFOFF  
[7]  
GF0FF  
[6]  
GFOFF  
[5]  
GFOFF  
[4]  
GFOFF  
[3]  
GFOFF  
[2]  
GFOFF  
[1]  
GFOFF  
[0]  
GREEN FINE  
OFFSET  
BFOFF  
[9]  
BF0FF  
[8]  
BFOFF  
[7]  
BF0FF  
[6]  
BFOFF  
[5]  
BFOFF  
[4]  
BFOFF  
[3]  
BFOFF  
[2]  
BFOFF  
[1]  
BFOFF  
[0]  
BLUE FINE  
OFFSET  
ARDOF  
[9]  
ARDOF  
[8]  
ARDOF  
[7]  
ARDOF  
[6]  
ARDOF  
[5]  
ARDOF  
[4]  
ARDOF  
[3]  
ARDOF  
[2]  
ARDOF  
[1]  
ARDOF  
[0]  
APOAM RED  
DYNAMIC  
OFFSET  
AGDOF  
[9]  
AGDOF  
[8]  
AGDOF  
[7]  
AGDOF  
[6]  
AGDOF  
[5]  
AGDOF  
[4]  
AGDOF  
[3]  
AGDOF  
[2]  
AGDOF  
[1]  
AGDOF  
[0]  
APOAM GREEN  
DYNAMIC  
0
0
1
1
0
0
1
1
0
1
OFFSET  
ABDOF  
[9]  
ABDOF  
[8]  
ABDOF  
[7]  
ABDOF  
[6]  
ABDOF  
[5]  
ABDOF  
[4]  
ABDOF  
[3]  
ABDOF  
[2]  
ABDOF  
[1]  
ABDOF  
[0]  
APOAM BLUE  
DYNAMIC  
OFFSET  
ARFOF  
[9]  
ARFOF  
[8]  
ARFOF  
[7]  
ARFOF  
[6]  
ARFOF  
[5]  
ARFOF  
[4]  
ARFOF  
[3]  
ARFOF  
[2]  
ARFOF  
[1]  
ARFOF  
[0]  
APOAM RED  
FINE OFFSET  
APOAM GREEN  
FINE OFFSET  
0
0
0
1
1
1
1
1
1
0
0
1
0
1
0
AGFOF  
[9]  
AGFOF  
[8]  
AGFOF  
[7]  
AGFOF  
[6]  
AGFOF  
[5]  
AGFOF  
[4]  
AGFOF  
[3]  
AGFOF  
[2]  
AGFOF  
[1]  
AGFOF  
[0]  
ABFOF  
[9]  
ABFOF  
[8]  
ABFOF  
[7]  
ABFOF  
[6]  
ABFOF  
[5]  
ABFOF  
[4]  
ABFOF  
[3]  
ABFOF  
[2]  
ABFOF  
[1]  
ABFOF  
[0]  
APOAM BLUE  
FINE OFFSET  
ADC  
POL  
LCLMP  
POL  
BSAMP  
POL  
VSAMP  
POL  
DLP  
Disable  
PwrDwn  
OEB  
RESET  
CNTRL/POL  
DELAY A  
DELAY B  
DELAY C  
DELAY D  
MODE  
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
DelayA  
[7]  
DelayA  
[6]  
DelayA  
[5]  
DelayA  
[4]  
DelayA  
[3]  
DelayA  
[2]  
DelayA  
[1]  
DelayA  
[0]  
DelayB  
[7]  
DelayB  
[6]  
DelayB  
[5]  
DelayB  
[4]  
DelayB  
[3]  
DelayB  
[2]  
DelayB  
[1]  
DelayB  
[0]  
DelayC  
[7]  
DelayC  
[6]  
DelayC  
[5]  
DelayC  
[4]  
DelayC  
[3]  
DelayC  
[2]  
DelayC  
[1]  
DelayC  
[0]  
DelayD  
[7]  
DelayD  
[6]  
DelayD  
[5]  
DelayD  
[4]  
DelayD  
[3]  
DelayD  
[2]  
DelayD  
[1]  
DelayD  
[0]  
NOFS2  
TEST  
ENABLE  
do not  
GAIN  
SELECT  
do not  
CCD/CIS  
CHAN  
[1]  
do not  
change  
CHAN  
[0]  
do not  
change  
APOAM  
GOM  
do not  
change  
do not  
change  
do not  
change  
do not  
change  
do not  
change  
do not  
change  
TEST  
change  
change  
Table 2:  
NOTE: Note: Shaded cells represent unused bits  
18  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
Red PGA  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RPGA  
[9]  
RPGA  
[8]  
RPGA  
[7]  
RPGA  
[6]  
RPGA  
[5]  
RPGA  
[4]  
RPGA  
[3]  
RPGA  
[2]  
RPGA  
[1]  
RPGA  
[0]  
RPGA  
(00000)  
default  
0
0
0
0
0
0
0
0
0
0
RPGA[9:0] is used to set the gain of the Programmable Gain Amplifier (PGA) for the red channel.  
Code = 0000000000 is minimum gain. Code = 1111111111 is maximum gain.  
Green PGA  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPGA  
[9]  
GPGA  
[8]  
GPGA  
[7]  
GPGA  
[6]  
GPGA  
[5]  
GPGA  
[4]  
GPGA  
[3]  
GPGA  
[2]  
GPGA  
[1]  
GPGA  
[0]  
GPGA  
(00001)  
default  
0
0
0
0
0
0
0
0
0
0
GPGA[9:0] is used to set the gain of the Programmable Gain Amplifier (PGA) for the green channel.  
Code = 0000000000 is minimum gain. Code = 1111111111 is maximum gain.  
Blue PGA  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BPGA  
[9]  
BPGA  
[8]  
BPGA  
[7]  
BPGA  
[6]  
BPGA  
[5]  
BPGA  
[4]  
BPGA  
[3]  
BPGA  
[2]  
BPGA  
[1]  
BPGA  
[0]  
BPGA  
(00010)  
default  
0
0
0
0
0
0
0
0
0
0
BPGA[9:0] sets the gain of the Programmable Gain Amplifier (PGA) for the blue channel.  
Code = 0000000000 is minimum gain. Code = 1111111111 is maximum gain.  
Red Dynamic  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Offset Register  
RDOFF  
[9]  
RDOFF  
[8]  
RDOFF  
[7]  
RDOFF  
[6]  
RDOFF  
[5]  
RDOFF  
[4]  
RDOFF  
[3]  
RDOFF  
[2]  
RDOFF  
[1]  
RDOFF  
[0]  
RDOFF  
(00011)  
default  
0
1
0
1
0
1
0
1
0
1
RDOFF[9:0] sets the course offset level prior to the PGA of the Red channel. Code = 0000000000 is -80mV.  
Code =1111111111 is +160mV. Default is Code 0101010101 = 0 mV.  
19  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
Green Dynamic  
Offset Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GDOFF  
[9]  
GDOFF  
[8]  
GDOFF  
[7]  
GDOFF  
[6]  
GDOFF  
[5]  
GDOFF  
[4]  
GDOFF  
[3]  
GDOFF  
[2]  
GDOFF  
[1]  
GDOFF  
[0]  
GDOFF  
(00100)  
default  
0
1
0
1
0
1
0
1
0
1
GDOFF[9:0] sets the course offset level prior to the PGA of the Green channel.  
Code = 0000000000 is -80mV. Code =1111111111 is +160mV. Default is Code 0101010101 = 0 mV.  
Blue Dynamic  
Offset Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BDOFF  
[9]  
BDOFF  
[8]  
BDOFF  
[7]  
BDOFF  
[6]  
BDOFF  
[5]  
BDOFF  
[4]  
BDOFF  
[3]  
BDOFF  
[2]  
BDOFF  
[1]  
BDOFF  
[0]  
BDOFF  
(00101)  
default  
0
1
0
1
0
1
0
1
0
1
BDOFF[9:0] sets the course offset level prior to the PGA of the Blue channel.  
Code = 0000000000 is -80mV. Code =1111111111 is +160mV. Default is Code 0101010101 = 0 mV.  
Red Fine  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Offset Register  
RFOFF  
[9]  
RF0FF  
[8]  
RFOFF  
[7]  
RF0FF  
[6]  
RFOFF  
[5]  
RFOFF  
[4]  
RFOFF  
[3]  
RFOFF  
[2]  
RFOFF  
[1]  
RFOFF  
[0]  
RFOFF  
(00110)  
default  
1
0
0
0
0
0
0
0
0
0
RFOFF[9:0] sets the fine offset level after the PGA in the Red channel.  
Code = 0000000000 is -128mV. Code =1111111111 is +128mV. Default is Code 1000000000 = 0 mV.  
Green Fine  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Offset Register  
GFOFF  
[9]  
GFOFF  
[8]  
GFOFF  
[7]  
GFOFF  
[6]  
GFOFF  
[5]  
GFOFF  
[4]  
GFOFF  
[3]  
GFOFF  
[2]  
GFOFF  
[1]  
GFOFF  
[0]  
GFOFF  
(00111)  
default  
1
0
0
0
0
0
0
0
0
0
GFOFF[9:0] sets the fine offset level after the PGA in the Green channel.  
Code = 0000000000 is -128mV. Code =1111111111 is +128mV. Default is Code 1000000000 = 0 mV.  
20  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
Blue Fine  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Offset Register  
BF0FF  
[9]  
BFOFF  
[8]  
BFOFF  
[7]  
BF0FF  
[6]  
BFOFF  
[5]  
BFOFF  
[4]  
BFOFF  
[3]  
BFOFF  
[2]  
BFOFF  
[1]  
BFOFF  
[0]  
BFOFF  
(01000)  
default  
1
0
0
0
0
0
0
0
0
0
BFOFF[9:0] sets the fine offset level after the PGA in the Blue channel.  
Code = 0000000000 is -128mV. Code =1111111111 is +128mV. Default is Code 1000000000 = 0 mV.  
APOAM Red  
Dynamic Offset  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ARDOF  
[9]  
ARDOF  
[8]  
ARDOF  
[7]  
ARDOF  
[6]  
ARDOF  
[5]  
ARDOF  
[4]  
ARDOF  
[3]  
ARDOF  
[2]  
ARDOF  
[1]  
ARDOF  
[0]  
ARDOF  
(01001)  
default  
0
1
0
1
0
1
0
1
0
1
RDOFF[9:0] sets the course offset level prior to the PGA of the Red channel for even pixels in APOAM Mode.  
Code = 0000000000 is -80mV. Code =1111111111 is +160mV. Default is Code 0101010101 = 0 mV.  
APOAM Green  
Dynamic Offset  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AGDOF  
[9]  
AGDOF  
[8]  
AGDOF  
[7]  
AGDOF  
[6]  
AGDOF  
[5]  
AGDOF  
[4]  
AGDOF  
[3]  
AGDOF  
[2]  
AGDOF  
[1]  
AGDOF  
[0]  
AGDOF  
(01010)  
default  
0
1
0
1
0
1
0
1
0
1
GDOFF[9:0] sets the course offset level prior to the PGA of the Green channel for even pixels in APOAM Mode.  
Code = 0000000000 is -80mV. Code =1111111111 is +160mV. Default is Code 0101010101 = 0 mV.  
APOAM Blue  
Dynamic Offset  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ABDOF  
[9]  
ABDOF  
[8]  
ABDOF  
[7]  
ABDOF  
[6]  
ABDOF  
[5]  
ABDOF  
[4]  
ABDOF  
[3]  
ABDOF  
[2]  
ABDOF  
[1]  
ABDOF  
[0]  
ABDOF  
(01011)  
default  
0
1
0
1
0
1
0
1
0
1
BDOFF[9:0] sets the course offset level prior to the PGA of the Blue channel for even pixels in APOAM Mode.  
Code = 0000000000 is -80mV. Code =1111111111 is +160mV. Default is Code 0101010101 = 0 mV.  
21  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
APOAM Red Fine  
Offset Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ARFOF  
[9]  
ARFOF  
[8]  
ARFOF  
[7]  
ARFOF  
[6]  
ARFOF  
[5]  
ARFOF  
[4]  
ARFOF  
[3]  
ARFOF  
[2]  
ARFOF  
[1]  
ARFOF  
[0]  
ARFOF  
(01100)  
default  
1
0
0
0
0
0
0
0
0
0
RFOFF[9:0] sets the fine offset level after the PGA of the Red channel for even pixels in APOAM Mode. The offset is  
adjusted in 1mV increments. Code = 0000000000 is -128mV. Code =1111111111 is +128mV. Default is Code  
1000000000 = 0 mV.  
APOAM Green Fine  
Offset Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AGFOF  
[9]  
AGFOF  
[8]  
AGFOF  
[7]  
AGFOF  
[6]  
AGFOF  
[5]  
AGFOF  
[4]  
AGFOF  
[3]  
AGFOF  
[2]  
AGFOF  
[1]  
AGFOF  
[0]  
AGFOF  
(01101)  
default  
1
0
0
0
0
0
0
0
0
0
GFOFF[9:0] sets the fine offset level after the PGA of the Green channel for even pixels in APOAM Mode. The off-  
set is adjusted in 1mV increments. Code = 0000000000 is -128mV. Code =1111111111 is +128mV. Default is Code  
1000000000 = 0 mV.  
APOAM Blue Fine  
Offset Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ABFOF  
[9]  
ABFOF  
[8]  
ABFOF  
[7]  
ABFOF  
[6]  
ABFOF  
[5]  
ABFOF  
[4]  
ABFOF  
[3]  
ABFOF  
[2]  
ABFOF  
[1]  
ABFOF  
[0]  
ABFOF  
(01110)  
default  
1
0
0
0
0
0
0
0
0
0
BFOFF[9:0] sets the fine offset level after the PGA of the Blue channel for even pixels in APOAM Mode. The offset is  
adjusted in 1mV increments. Code = 0000000000 is -128mV. Code =1111111111 is +128mV. Default is Code  
1000000000 = 0 mV.  
22  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
Control / Polarity  
Register  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADC  
POL  
LCLMP  
POL  
BSAMP  
POL  
VSAMP  
POL  
DLP  
DISABLE  
PWRDWN  
OEB  
RESET  
CNTRL / POL  
(01111)  
default  
0
0
0
0
0
0
0
0
The CNTRL / POL register is used to program various options including: input timing polarity control, dynamic low  
power disable, power down for the chip, output enable, and reset. Reset will reset ALL registers including reset.  
All the clock inputs (except the serial interface SCLK) can be programmed to be active high or active low. See the “Tim-  
ing” section for more information. ADCpol, LCLMPpol, BSAMPpol, and VSAMPpol set the polarity of ADCLK, LCLMP,  
BSAMP, and VSAMP respectively.  
ADCpol - Sets the polarity of the ADCLK input. ADCpol = 0, ADCLK low during VSAMP. ADCpol = 0, ADCLK inverted  
so that it is high during VSAMP.  
LCLMPpol - Sets the polarity of the LCLMP input. LCLMPpol = 0, LCMLP is active high during clamping operation and  
odd pixel determined from falling edge.  
BSAMPpol - Sets the polarity of the BSAMP input. BSAMPpol = 0, BSAMP is active high. The CCD black level is sam-  
ple by the falling edge. BSAMPpol = 1, BSAMP is active low. The CCD black level is sample by the rising edge.  
VSAMPpol - Sets the polarity of the VSAMP input. VSAMPpol = 0, VSAMP is active high. The CCD video level is sam-  
ple by the falling edge. VSAMPpol = 1, VSAMP is active low. The CCD video level is sample by the rising edge.  
DLP DISABLE (ADC Dynamic Low Power Disable)  
PWRDWN - Puts the XRD9836 into power down state. PWRDWN = 0, normal operation. PWRDWN = 1, low power  
state.  
OEB - Enables the ADCDO bus. OEB = 0, data valid on ADCDO bus. OEB = 1, ADCDO bus high impedance.  
RESET - Will reset the XRD9836 to default (power up) conditions. RESET = 0, normal operation. RESET = 1, all inter-  
nal registers set to default values and clears itself after ~ 10ns.  
23  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
Delay  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Registers  
DelayA  
(10000)  
DelayA  
[7]  
DelayA  
[6]  
DelayA  
[5]  
DelayA  
[4]  
DelayA  
[3]  
DelayA  
[2]  
DelayA  
[1]  
DelayA  
[0]  
1
0
0
0
0
0
0
0
default  
DelayB  
(10001)  
DelayB  
[7]  
DelayB  
[6]  
DelayB  
[5]  
DelayB  
[4]  
DelayB  
[3]  
DelayB  
[2]  
DelayB  
[1]  
DelayB  
[0]  
0
0
0
0
0
0
0
0
default  
DelayC  
(10010)  
DelayC  
[7]  
DelayC  
[6]  
DelayC  
[5]  
DelayC  
[4]  
DelayC  
[3]  
DelayC  
[2]  
DelayC  
[1]  
DelayC  
[0]  
0
0
0
0
0
0
0
0
default  
DelayD  
(10011)  
DelayD  
[7]  
DelayD  
[6]  
DelayD  
[5]  
DelayD  
[4]  
DelayD  
[3]  
DelayD  
[2]  
DelayD  
[1]  
DelayD  
[0]  
0
0
0
0
0
0
0
0
default  
DelayA[7:4] - Controls the OGI_DLY. These bits are used to program the timing delay of the ADCLK used to sample the  
Offset-Gain-Inputs (OGI). Code 0000 is delay of 0ns, and code 1111 is 15ns. Default is 1000 = 7 ns. OGI_DLY should  
be larger than VSAMP_OGI_DLY.  
DelayA[3:0] - Controls the ADCO_DLY. These bits are used to program the timing delay of ADCO outputs in relation to  
ADCLK. Code 0000 is delay of 0ns, and code 1111 is 15ns. Default is 0000 = 0ns. This is used to adjust setup and hold  
times of the output, for the ASIC chip.  
DelayB[7:4] - Controls the BSAMP_LEADING_EDGE_DLY. These bits set the delay for the leading edge of the internal  
BSAMP pulse. Code 0000 is no delay. The delay increases by 0.5 ns per step to a total of 7.5 ns. Default is 0000 = 0ns.  
DelayB[3:0] - Controls the BSAMP_TRAILING_EDGE_DLY. These bits set the delay for the trailing edge of the internal  
BSAMP pulse. Code 0000 is no delay. The delay increases by 0.5 ns per step to a total of 7.5 ns. Default is 0000 = 0ns.  
DelayC[7:4] - Controls the VSAMP_LEADING_EDGE_DLY. These bits set the delay for the leading edge of the internal  
VSAMP pulse. Code 0000 is no delay. The delay increases by 0.5 ns per step to a total of 7.5 ns. Default is 0000 = 0ns.  
DelayC[3:0] - Controls the VSAMP_TRAILING_EDGE_DLY. These bits set the delay for the trailing edge of the internal  
VSAMP pulse. Code 0000 is no delay. The delay increases by 0.5 ns per step to a total of 7.5 ns. Default is 0000 = 0ns.  
DelayD[7:4] - Controls the VSAMP_OGI_DLY. These bits set the delay for the internal VSAMP that is used to transfer  
the OGI register data to the PGA & OFFSET control registers.  
DelayD[3:0] - Controls the ADC_DLY. These bits set the delay of the internal clock used for ADC operation. Code 0000  
is no delay. The delay increases by 0.5 ns per step to a total of 7.5 ns. Default is 0000 = 0ns.  
24  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
Mode  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register  
NOFS2  
TEST  
ENABLE  
GAIN  
SELECT  
CCD/CIS  
CHAN  
[1]  
CHAN  
[0]  
APOAM  
GOM  
MODES of operation  
(10100)  
0
0
0
0
0
0
0
1
default  
NOFS2 - No full scale divided by 2.  
Test Enable - Do not modify.  
Gain Select - Gain range is 1-10 for Gain Select = 0, and 2-20 for Gain Select = 1.  
CCD mode is selected if CCD/CIS is 0, CIS mode is selected if CCD/CIS is 1.  
Three channel is selected if CHAN[1] = 0 and CHAN[0] = 0.  
One channel red is selected if CHAN[1] = 0 and CHAN[0] = 1.  
One channel green is selected if CHAN[1] = 1 and CHAN[0] = 0.  
One channel blue is selected if CHAN[1] = 1 and CHAN[0] = 1.  
The Alternate Pixel Adjust Mode is selected by setting APOAM to 1. It is used only in Fixed Gain mode i.e. with GOM=0.  
The GOM (gain offset mode) bit is used to select either Fixed Gain Offset Mode (GOM=0) or Pixel by Pixel  
Gain Offset Mode (GOM=1).  
TEST  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TEST  
(10101)  
0
0
0
0
0
0
0
0
0
0
default  
Test register used for factory test only. Do not modify  
25  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
TIMING DIAGRAMS  
tap  
tap  
X
CCDIN  
LCLMP  
X
tcp3  
taclk3 taclk3  
ADCLK  
BSAMP  
tvfcr  
tpwb  
tpwv  
tstl  
VSAMP  
Clamp  
tvbf  
tbvf  
tcr3  
(Internal to XRD9836)  
FIGURE 17. 3-CHANNEL CDS MODE (ALL POLARITY BITS =0)  
tap  
tap  
CCDIN  
LCLMP  
tcp1  
taclk1  
taclk1  
ADCLK  
BSAMP  
VSAMP  
tvfcr  
tpwb  
tbfcr  
tstl  
tcr1  
tvbf  
tbvf  
tpwv  
Clamp  
(Internal to XRD9836)  
FIGURE 18. 1-CHANNEL CDS MODE (ALL POLARITY BITS=0)  
26  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
tap  
CIS  
tcp3  
taclk3  
tvfcr  
taclk3  
ADCLK  
VSAMP  
tstl  
tcr3  
tpwv  
FIGURE 19. 3-CHANNEL CIS MODE (ALL POLARITY BITS = 0, CCD/CIS BIT = 1)  
tap  
CIS  
tcp1  
taclk1  
taclk1  
ADCCLK  
VSAMP  
tstl  
tvfcr  
tpwv  
tcr1  
FIGURE 20. 1-CHANNEL CIS MODE (ALL POLARITY BITS = 0, CCD/CIS BIT = 1)  
27  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
Pixel (n)  
GAIN & OFFSET  
G
R
N
G
R
N
R
E
D
R
E
D
B
L
U
B
L
U
G
a
i
G
a
i
G
a
i
O
f
O
f
O
f
n
f
n
f
n
f
OGI 10bit  
parallel  
IE  
Todih  
Tev  
Pixel  
(n+5)  
Pixel  
(n-1)  
Pixel  
(n)  
Pixel  
(n+1)  
Pixel  
(n+2)  
Pixel  
(n+3)  
Pixel  
(n+4)  
CCDOUT  
(Parallel RGB)  
BSAMP  
VSAMP  
CDS samples Red, Green, and  
Blue  
Tva  
ADCLK  
ADC Samples Red  
ADC Samples Green  
ADC Samples Blue  
R
D
H
R
D
L
G
D
H
G
D
L
B
D
H
B
D
L
tlat  
(9 ADCLK Latency)  
ADCDO  
8-bit parallel  
Tadcdo  
FIGURE 21. 3-CHANNEL LATENCY FOR PARALLEL ADCDO (OUTPUT DATA BUS) & OGI (INPUT BUS)  
Gain  
(n)  
Offset  
(n)  
Gain  
(n+1)  
Offset  
(n+1)  
Gain  
(n+2)  
Offset  
(n+2)  
Gain  
(n+3)  
Offset  
(n+3)  
Gain  
(n+4)  
Offset  
(n+4)  
Gain  
(n+5)  
Offset  
(n+5)  
Gain  
(n+6)  
Offset  
(n+6)  
Gain  
(n+7)  
Offset  
(n+7)  
Gain  
(n+8)  
Offset  
(n+8)  
Gain  
(n+9)  
Offset  
(n+9)  
Gain  
(n+10)  
Offset  
(n+10) (n+11)  
Gain  
Offset  
(n+11)  
OGI 10bit  
parallel  
IE  
Togih  
Tev  
Pixel  
(n+8)  
Pixel  
(n+9)  
Pixel  
(n+10)  
Pixel  
(n+4)  
Pixel  
(n+5)  
Pixel  
(n+6)  
Pixel  
(n+7)  
Pixel  
(n-1)  
Pixel  
(n)  
Pixel  
(n+1)  
Pixel  
(n+2)  
Pixel  
(n+3)  
CCDOUT  
(Parallel RGB)  
BSAMP  
VSAMP  
CDS samples input  
Tva  
ADCLK  
tlat  
(9 ADCLK Latency)  
Pixel (n-1)  
Pixel (n)  
MSB's  
DH(n-1)  
LSB's  
DL(n-1)  
MSB's  
DH(n)  
LSB's  
DL(n)  
ADCDO  
8-bit parallel  
Tadcdo  
FIGURE 22. 1-CHANNEL LATENCY FOR PARALLEL ADCDO (OUTPUT DATA BUS) & OGI (INPUT BUS)  
28  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
the XRD9836. All VDD’s should be supplied from a  
low noise, well filtered regulator which derives the  
power supply voltage from the CCD power supply. All  
of the AVDD pins are analog power supplies and  
should be decoupled locally to the nearest ground pin  
with at 0.1uF, high frequency capacitor. The DVDD  
and OVDD power pins should be locally decoupled to  
the nearest ground pin also. DVDD and OVDD should  
be connected to the same power supply network as  
the digital ASCI which receives data from the  
XRD9836.  
APPLICATION NOTES AND SCHEMAT-  
ICS  
See Figure 23 for a typical CCD application hookup.  
The diagram shows an interface to a standard 3  
channel output CCD. Both the ADC Output and OGI  
Control are parallel interfaces to the system ASIC  
controller. The timing inputs are provided by the sys-  
tem ASIC or timing generator (TG). The serial port  
control is typically sourced from a micro processor or  
the system ASIC.  
It is recommended that all AGND, DGND and OGND  
pins, be connected to the analog ground plane under  
It is recommended that each  
1uf  
0.1uf  
power pin be decoupled to  
ground with capacitors placed  
as close to power pin as  
possible.  
15V  
VDD3A VDD3D  
A
V
D
D
A
V
D
D
A
V
D
D
D
V
D
D
O
V
D
D
O
V
D
D
1nf  
1nf  
RED+  
RED-  
CCD  
ADCO7  
ADCO6  
ADCO5  
ADCO4  
ADCO3  
ADCO2  
ADCO1  
ADCO0  
1nf  
1nf  
ADC  
OUTPUT  
BUS  
GRN+  
GRN-  
1nf  
1nf  
BLU+  
BLU-  
OGI9  
OGI8  
OGI7  
OGI6  
OGI5  
OGI4  
OGI3  
OGI2  
OGI1  
OGI0  
9836  
REXT  
ASIC  
OGI  
CONTROL  
10K  
IE  
ADCCLKK  
VSAMP  
BSAMP  
LCLMP  
TG  
(timing generator)  
CAPP  
CAPN  
LOAD  
SCLK  
CMREF  
ASIC  
A
G
N
D
A
G
N
D
A
G
N
D
D
G
N
D
O
O
G
N
D
SDIO  
G
N
D
FIGURE 23. TYPICAL CCD APPLICATION DIAGRAM FOR THE XRD9836  
The XRD9836 has an input range limitation of 1V  
maximum for a CCD input. If the maximum CCD out-  
put signal swing is greater than 1V, a resisitive divider  
network on the inputs can be used to reduce the CCD  
output to meet the 1V input max requirement of the  
XRD9836 inputs. See Figure 24 for a typical imple-  
mentation of a resistor divider. Each input channel will  
require a matching divider network.  
15V  
Vin  
XRD9836  
R1  
R2  
C1 1nf  
C2 1nf  
RED+  
Vsig  
CCD  
RED -  
Vin  
Vsig(R1/(R1+R2))  
=
FIGURE 24. INPUT RESISTIVE DIVIDER NETWORK  
29  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
xr  
Supply Current vs. Temperature  
115  
VDD = 3.3V  
Fs = 30MHz  
3-Channel Mode  
105  
95  
85  
75  
-5  
5
15  
25  
35  
45  
55  
65  
75  
Temperature(C)  
FIGURE 25. XRD9836 TYPICAL IDD VS TEMPERTURE  
9836 System DNL  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65536  
Code  
FIGURE 26. TYPICAL XRD9836 DNL FOR RED CHANNEL IN 3-CH MODE  
30  
xr  
XRD9836  
16-BIT PIXEL GAIN AFE  
REV. 1.0.0  
PACKAGE DRAWING:  
31  
xr  
XRD9836  
1.0.0  
16BIT PIXEL GAIN AFE  
8/15/03  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order  
to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of  
any circuits described herein, conveys no license under any patent or other right, and makes no represen-  
tation that the circuits are free of patent infringement. Charts and schedules contained here in are only for  
illustration purposes and may vary depending upon a user’s specific application. While the information in  
this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where  
the failure or malfunction of the product can reasonably be expected to cause failure of the life support sys-  
tem or to significantly affect its safety or effectiveness. Products are not authorized for use in such applica-  
tions unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury  
or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corpo-  
ration is adequately protected under the circumstances.  
Copyright 2003 EXAR Corporation  
Datasheet June 2003.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
32  

相关型号:

XRD9836ACGF

Consumer Circuit, CMOS, PDSO48, 6.10 MM, TSSOP-48
EXAR

XRD9853AIV

CCD Image Digitizers with CDS, PGA, and 10-bit A/D
EXAR

XRD9855

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9855AIV

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9856

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9856AIV

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9859AIU

Consumer Circuit, PDSO28, 5.30 MM, SSOP-28
EXAR

XRD9859CAMAD9803EVAL

Analog Circuit
EXAR

XRD9859CAMAD9843EVAL

Analog Circuit
EXAR

XRD9861CAMAD9803EVAL

Analog Circuit
EXAR

XRD9861CAMAD9843EVAL

Analog Circuit
EXAR
EXAR