XRT5894 [EXAR]

Four-Channel E1 Line Interface (3.3V or 5.0V); 四通道E1线路接口( 3.3V或5.0V )
XRT5894
型号: XRT5894
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Four-Channel E1 Line Interface (3.3V or 5.0V)
四通道E1线路接口( 3.3V或5.0V )

文件: 总19页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRT5894  
Four-Channel E1  
Line Interface (3.3V or 5.0V)  
March 2000-3  
FEATURES  
D Compliant with ITU G.703 Pulse Mask Template for  
D Logical Inputs Accept either 3.3V or 5.0V Levels  
D Ultra-Low Power Dissipation  
2.048Mbps (E1) Rates  
D Four Independent CEPT Transceivers  
D +3.3V or 5.0V Supply Operations  
D Supports Differential Transformer Coupled  
D Individual Transmit Channel Over Temperature  
Receivers and Transmitters  
Protection  
D On Chip Pulse Shaping for Both 75and 120Line  
Drivers  
APPLICATIONS  
D Compliant with ITU G.775 LOS Declaration/Clearing  
Recommendation  
D SDH Multiplexer  
D Optional User Selectable LOS Declaration/Clearing  
Delay  
D Digital Cross Connects  
GENERAL DESCRIPTION  
The XRT5894 is an optimized four channel 3.3V line  
interface unit fabricated using low power CMOS  
technology. The device contains four independent E1  
channels. Each channel performs the driver and receiver  
functions necessary to convert bipolar signals to logical  
levels and vice versa. The device requires transformers  
on both receiver and transmitter sides, and supports both  
balanced and unbalanced interfaces.  
The device offers two distinct modes of LOS detection.  
The first method, which does not require an external  
clock, provides an LOS output indication signal with  
thresholds and delay that comply with the ITU G.775  
requirements. In the second mode, the user provides an  
external clock that increases the delay for LOS  
declaration and clearing. This feature provides the user  
with the flexibility to implement LOS specifications that  
require a delay greater than the G.775 requirements.  
ORDERING INFORMATION  
Part No.  
Operating  
Package  
64 Lead TQFP (10 x 10 x 1.4mm)  
Temperature Range  
XRT5894IV  
-40°C to +85°C  
Rev. 1.10  
E2000  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017  
XRT5894  
BLOCK DIAGRAM  
Transceiver 1  
Transceiver 2  
Transceiver 3  
Tranceiver 4  
RTIP4 (43)  
RXPOS4 (47)  
1:2  
R1  
R2  
Signal  
Peak  
Detector  
Receive  
Comparators  
RXNEG4 (46)  
TIP  
RX Input  
RING  
RRING4 (42)  
V
CC  
1
Mux  
LOS4 (48)  
LOS  
Detect  
Loss  
Delay  
O
LOSCNT (45)  
LOSSEL (25)  
Counter  
Transmit  
Duty  
Cycle  
Adjust  
TXCLK4 (51)  
Line  
Drivers  
TXPOS4 (49)  
TXNEG4 (50)  
TTIP4 (53)  
R3  
0
0
NRZ  
To  
RZ  
2:1  
TIP  
9.1  
Pulse  
Shaping  
TX OUTPUT  
RING  
Mux  
TRING4 (55)  
R4  
9.1  
1
1
Figure 1. XRT5894 Block Diagram  
Receiver Notes  
D The same type 1:2CT ratio transformer may be  
D LOSCNT (pin 45) is unconnected when LOSSEL is  
logic 1, or connected to an external clock when  
LOSSEL is logic 0.  
used at the receiver input and transmitter output.  
D R1 and R2 are both 150for 75operation, or  
240for 120operation.  
Transmitter Notes  
D Return loss exceeds ITU G.703 specification with  
D Return loss exceeds ETSI 300 166 specification  
these resistors and a 1:2CT ratio input transformer.  
with a 1:2 ratio transformer.  
LOS (Loss of Signal) Notes  
D R3 and R4 are always 9.1for both 75and 120Ω  
applications.  
D LOSSEL (pin 25) is connected to logic “1” for ITU  
G.775 compliant LOS delay, or to logic 0 for user  
programmable additional delay.  
Rev. 1.10  
2
XRT5894  
PIN CONFIGURATION  
48  
33  
32  
49  
TXPOS4  
TXCLK3  
TXNEG3  
TXPOS3  
LOS3  
TXNEG4  
TXCLK4  
GND  
TTIP4  
RXPOS3  
RXNEG3  
GND  
V
CC  
TRING4  
GND  
LOSSEL  
NC  
GND  
TRING1  
V
CC  
V
CC  
RXNEG2  
TTIP1  
GND  
RXPOS2  
LOS2  
TXPOS2  
TXNEG2  
TXCLK2  
TXCLK1  
TXNEG1  
TXPOS1  
64  
17  
1
16  
64 LEAD THIN QUAD FLAT PACK  
(10 x 10 x 1.4 mm, TQFP)  
Rev. 1.10  
3
XRT5894  
PIN DESCRIPTION  
Pin #  
1
Symbol  
LOS1  
Type  
O
Des cription  
Receiver 1 Los s of Signal. Asserted during LOS condition.  
Receiver 1 Pos itive Data Out. Positive RZ data output for channel 1.  
Receiver 1 Negative Data Out. Negative RZ data output for channel 1.  
Pos itive Supply (+3.3V or +5.0V + 5%). Digital circuitry.  
Receiver 1 Pos itive Bipolar Input.  
2
RXPOS1  
RXNEG1  
VCC  
O
3
O
4
5
RTIP1  
I
I
6
RRING1  
VCC  
Receiver 1 Negative Bipolar Input.  
7
Pos itive Supply (+3.3V or +5.0V + 5%). Analog circuitry.  
Analog Ground.  
8
GND  
9
VCC  
Pos itive Supply. (+3.3V or +5.0V + 5%). Analog circuitry.  
Analog Ground.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GND  
TRING2  
VCC  
O
O
Trans mitter 2 Negative Bipolar Output.  
Pos itive Supply (+3.3V or +5.0V + 5%). Transmitter channel 2.  
Trans mitter 2 Pos itive Bipolar Output.  
TTIP2  
GND  
Analog Ground. Transmitter channel 2.  
RTIP2  
I
I
Receiver 2 Pos itive Bipolar Input.  
RRING2  
TXCLK2  
TXNEG2  
TXPOS2  
LOS2  
Receiver 2 Negative Bipolar Input.  
I
Trans mitter 2 Clock Input. Use for clocked mode with NRZ data.1  
Trans mitter 2 Negative Data Input. Negative NRZ or RZ data input.1  
Trans mitter 2 Pos itive Data Input. Positive NRZ or RZ data input.1  
Receiver 2 Los s of Signal. Asserted during LOS condition.  
Receiver 2 Pos itive Data Out. Positive RZ data output for channel 2.  
Receiver 2 Negative Data Out. Negative RZ data output for channel 2.  
Pos itive Supply (+3.3V or +5.0V + 5%). Digital circuitry.  
No Connect.  
I
I
O
O
O
RXPOS2  
RXNEG2  
VCC  
NC  
LOSSEL  
GND  
I
Los s of Signal Delay Select. Hi” selects G.775, Lo” selects user programmable.1  
Digital Ground.  
RXNEG3  
RXPOS3  
LOS3  
O
O
O
I
Receiver 3 Negative Data Out. Negative RZ data output for channel 3.  
Receiver 3 Pos itive Data Out. Positive RZ data output for channel 3.  
Receiver 3 Los s of Signal. Asserted during LOS condition.  
Trans mitter 3 Pos itive Data Input. Positive NRZ or RZ data input.1  
Trans mitter 3 Negative Data Input. Negative NRZ or RZ data input.1  
Trans mitter 3 Clock Input. Use for clocked mode with NRZ data.1  
Receiver 3 Negative Bipolar Input.  
TXPOS3  
TXNEG3  
TXCLK3  
RRING3  
RTIP3  
I
I
I
I
Receiver 3 Pos itive Bipolar Input.  
Note:  
1
Has internal pull-up 50Kresistor.  
Rev. 1.10  
4
XRT5894  
PIN DESCRIPTION (CONT’D)  
Pin #  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Symbol  
GND  
Type  
Des cription  
Analog Ground.  
TTIP3  
O
Trans mitter 3 Pos itive Bipolar Output.  
Pos itive Supply (+3.3V or +5.0V + 5%). Transmitter channel 3.  
Trans mitter 3 Negative Bipolar Output.  
Analog Ground. Transmitter channel 3.  
Pos itive Supply (+3.3V or +5.0V + 5%). Analog circuitry.  
Analog Ground.  
VCC  
TRING3  
GND  
O
VCC  
GND  
RRING4  
RTIP4  
GND  
I
I
Receiver 4 Negative Bipolar Input.  
Receiver 4 Pos itive Bipolar Input.  
Analog Ground.  
LOSCNT  
RXNEG4  
RXPOS4  
LOS4  
I
O
O
O
I
Los s of Signal Timing Clock Input. For user--programmable LOS delay.1  
Receiver 4 Negative Data Out. Negative RZ data output for channel 4.  
Receiver 4 Pos itive Data Out. Positive RZ data output for channel 4.  
Receiver 4 Los s of Signal. Asserted during LOS condition.  
Trans mitter 4 Pos itive Data Input. Positive NRZ or RZ data input.1  
Trans mitter 4 Negative Data Input. Negative NRZ or RZ data input.1  
Trans mitter 4 Clock Input. Use for clocked mode with NRZ data.1  
Analog Ground. Transmitter channel 4.  
TXPOS4  
TXNEG4  
TXCLK4  
GND  
I
I
TTIP4  
O
O
Trans mitter 4 Pos itive Bipolar Output.  
VCC  
Pos itive Supply (+3.3V or +5.0V + 5%). Transmitter channel 4.  
Trans mitter 4 Negative Bipolar Output.  
TRING4  
GND  
Digital Ground.  
GND  
Analog Ground.  
TRING1  
VCC  
O
O
Trans mitter 1 Negative Bipolar Output.  
Pos itive Supply (+3.3V or +5.0V + 5%). Transmitter channel 1.  
Trans mitter 1 Pos itive Bipolar Output.  
TTIP1  
GND  
Analog Ground. Transmitter channel 1.  
TXCLK1  
TXNEG1  
TXPOS1  
I
I
I
Trans mitter 1 Clock Input. Use for clocked mode with NRZ data.1  
Trans mitter 1 Negative Data Input. Negative NRZ or RZ data input.1  
Trans mitter 1 Pos itive Data Input. Positive NRZ or RZ data input.1  
Note:  
1
Has internal pull-up 50Kresistor.  
Rev. 1.10  
5
XRT5894  
ELECTRICAL CHARACTERISTICS  
Tes t Conditions : V = 3.3V or 5.0V + 5%, T = -40 to 25 to 85°C, Unles s Otherwis e Specified  
CC  
A
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
DC Electrical Characteris tics  
Parameters  
VCC  
VCC  
Voltage Supply  
Voltage Supply  
3.135  
4.75  
3.3  
5.0  
3.465  
5.25  
V
V
3.3V Operation  
5V Operation  
Inputs  
VIH  
VIL  
Input High Level  
Input Low Level  
2.0  
2.4  
0
5.0  
0.8  
V
V
Outputs  
VOH  
Output High Level  
Output Low Level  
V
V
IOH = -4mA  
IOL = 4mA  
VOL  
0.4  
12  
Receiver Specifications  
RXCL  
Allowable Cable Loss  
10  
dB  
Cable loss at 1.024MHz (Relative  
to 0dB = 2.37Vp measured from  
RTIP or RRING to ground).  
RXIM  
RXXI  
Interference Margin  
-15  
-12  
50  
dB  
%
With 6dB cable loss  
Receiver Slicing Threshold  
45  
55  
% of peak input voltage at -3dB  
cable loss  
RXLOSSET LOS Must Be Set If RX Sig.  
Atten. ² 32dB (For Any Valid  
Data Pattern)  
15  
12  
32  
dB  
dB  
Relative to 0dB = 2.37Vp  
Measured from RTIP or RRING to  
ground.  
RXLOSCLR LOS Must Be Cleared If RX Sig.  
Atten. < 9dB  
9
Relative to 0dB = 2.37Vp  
measured from RTIP or RRING to  
ground.  
RXLOSHYST Hysteresis on Input Data  
1
5
dB  
For LOS output state change  
RXIN  
Input Impedance  
k  
Up to 3.072MHz (Measured from  
RTIP or RRING to ground).  
Power Specifications VCC = 3.3V  
PD  
Power Dissipation  
460  
590  
mW  
All 1s Transmit and Receive 75Ω  
PD  
PC  
PC  
Power Dissipation  
117  
770  
555  
155  
900  
675  
mW  
mW  
mW  
All Drivers Power Down  
Power Consumption 75Ω  
Power Consumption 75Ω  
All 1s Transmit and Receive  
50% data density, Transmit and Re-  
ceive  
PC  
PC  
Power Consumption 120Ω  
Power Consumption 120Ω  
635  
475  
780  
605  
mW  
mW  
All 1s Transmit and Receive  
50% data density, Transmit and Re-  
ceive  
Power Specifications VCC = 5.0V  
PD  
PD  
PC  
Power Dissipation  
945  
235  
1240  
290  
mW  
mW  
mW  
All 1s Transmit and Receive 75Ω  
All Drivers Power Down  
Power Dissipation  
Power Consumption 75Ω  
1250  
1555  
All 1s Transmit and Receive  
Note:  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Rev. 1.10  
6
XRT5894  
ELECTRICAL CHARACTERISTICS (CONT’D)  
Tes t Conditions : V = 3.3V or 5.0V + 5%, T = -40 to 25 to 85°C, Unles s Otherwis e Specified  
CC  
A
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Power Specifications VCC =5.0V (Contd)  
PC  
PC  
Power Consumption 120  
Power Consumption 75Ω  
1075  
1025  
1345  
1300  
mW  
mW  
All 1s Transmit and Receive  
50% data density, Transmit and Re-  
ceive  
PC  
Power Consumption 120Ω  
940  
1220  
mW  
50% data density, Transmit and Re-  
ceive  
AC Electrical Characteris tics  
VTXOUT Output Pulse Amplitude  
2.13  
2.70  
224  
2.37  
3.0  
2.60  
3.30  
264  
V
V
Trans. = 1:2 ratio, 9.1in series  
with each end of primary  
(RL = 75)  
VTXOUT  
Output Pulse Amplitude  
(RL = 120)  
Trans. = 1:2 ratio, 9.1in series  
with each end of primary  
TXPW  
PNIMP  
T1  
Output Pulse Width  
244  
5
ns  
%
ns  
%
ns  
Pos/Neg Pulse Unbalanced  
TXCLK Clock Period (E1)  
TXCLK Duty Cycle  
488  
50  
T2  
30  
75  
70  
TSU  
Data Set-up Time, TDATA to  
TXCLK  
50% TXCLK Duty Cycle  
50% TXCLK Duty Cycle  
THO  
Data Hold Time, TDATA to  
TXCLK  
30  
ns  
TR  
TF  
TXCLK Rise Time (10% to 90%)  
TXCLK Fall Time (10% to 90%)  
40  
40  
35  
ns  
ns  
ns  
T3-noclk  
Data Prop. Delay No-Clock  
Mode  
50  
T3-clk  
T4  
Data Prop. Delay Clock Mode  
Receive Data High  
470  
244  
ns  
ns  
ns  
ns  
ns  
50% TXCLK Duty Cycle  
0dB Cable Loss  
15pF Load  
219  
269  
40  
T5  
RX Data Prop. Delay  
Receive Rise Time  
T6  
40  
15pF Load  
T7  
Receive Rise Time  
40  
15pF Load  
Note:  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature . . . . . . . . . . . . -65°C to +150°C  
Operating Temperature . . . . . . . . . . -40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V  
ESD Protection . . . . . . . . . . . . . . . . . . >1000V (HBM)  
Rev. 1.10  
7
XRT5894  
Dis abling Output Drivers  
Output drivers may be individually disabled (hi-z output) by either of the following methods.  
1. Either connect the transmit data inputs TXPOS  
and TXNEG for the channel to be disabled to a log-  
ic 1 source (VCC), or allow them to float (inputs  
have internal pull--up resistors).  
2. Connect TXCLK for the channel to be disabled to  
logic 0 source (Ground), and also apply data to the  
TXPOS and TXNEG inputs of that channel.  
TRANSFORMER REQUIREMENTS  
Turns Ratio  
Line Impedance  
Turns Ratio  
Line Impedance  
1:2 CT  
75or 120Ω  
1:2  
75or 120Ω  
Table 1. Input Trans former Requirements  
Table 2. Output Trans former Requirements  
Note:  
The same type 1:2 CT ratio device may be used at both receiver input and transmitter output.  
The following transformers have been tested with the  
XRT5894:  
HALO type TG26-1205(package contains two 1 CT:2 CT ratio transformers)  
Pulse type PE-65535 (1:2 CT ratio)  
Transpower Technologies type TTI 7154-R (1:2 CT ratio)  
Magnetic Supplier Information:  
HALO Electronics, Inc.  
P.O. Box 5826  
Redwood City, CA 94063  
Tel. (415) 568-5800  
Fax. (415)568-6161  
Pulse  
Telecom Product Group  
P.O. Box 12235  
San Diego, CA 92112  
Tel. (619) 674-8100  
Fax. (619) 674-8262  
Transpower Technologies, Inc.  
24 Highway 28, Suite 202  
Crystal Bay, NV 89402--0187  
Tel. (702) 831--0140  
Fax. (702) 831--3521  
Rev. 1.10  
8
XRT5894  
TSU THO  
TXPOS (n)  
TSU THO  
TXNEG (n)  
TXCLK (n)  
TXOUT (n)  
T1  
T2  
TR  
TF  
TXPW  
T3  
T3  
VTXOUT  
VTXOUT  
TXPW  
Figure 2. Trans mit Timing Diagram  
RXIN (n)  
T5  
T4  
T6  
T7  
RPOS (n)  
T5  
T6  
T7  
T4  
RXNEG (n)  
Figure 3. Receive Timing Diagram  
Rev. 1.10  
9
XRT5894  
RETURN LOSS SPECIFICATIONS  
The following transmitter and receiver return loss specifications are based on a typical 1:2CT ratio transformer.  
75  
120Ω  
Frequency Range  
51kHz to 102kHz  
Min.  
16  
Typ.  
22  
Min.  
10  
Typ.  
15  
Unit  
dB  
102kHz to 2.048MHz  
2.048MHz to 3.072MHz  
16  
22  
10  
15  
dB  
11  
18  
10  
14  
dB  
Table 3. Transmitter Return Loss Specification  
Transmit Return Loss Notes  
D Output transformer ratio is 1:2 (return loss exceeds  
D For both 75and 120applications, 9.1, 1% re-  
sistors are connected between each end of the  
transformer primary and the XRT5894 TTIP and  
TRING pins.  
ETSI 300 166 with this transformer).  
75Ω  
120Ω  
Frequency Range  
51kHz to 102kHz  
Min.  
16  
Typ.  
28  
Min.  
15  
Typ.  
18  
Unit  
dB  
102kHz to 2.048MHz  
2.048MHz to 3.072MHz  
22  
34  
22  
25  
dB  
18  
26  
20  
30  
dB  
Table 4. Receiver Return Loss Specification  
Receiver Return Loss Notes  
D Input transformer ratio is 1:2 CT.  
D Each half of transformer secondary is terminated  
with 150for 75operation, or 240for 120op-  
eration (resistors are 1% tolerance).  
D Transformer center tap is grounded.  
Rev. 1.10  
10  
XRT5894  
SYSTEM DESCRIPTION  
This device is a four channel E1 transceiver that provides  
an electrical interface for 2.048Mbps applications. Its  
unique architecture includes four receiver circuits that  
convert ITU G.703 compliant bipolar signals to TTL  
compatible logic levels. Each receiver includes a LOS  
(Loss of Signal) detection circuit that may be configured  
for either a fixed or a user-programmable LOS response  
time delay. Similarly, in the transmit direction, four  
transmitters convert TTL compatible logic levels to G.703  
compatible bipolar signals. Each transmitter may be  
operated either with RZ, or NRZ data types. In NRZ mode  
a transmit clock is required as well. The following  
description applies to any of the four receivers or  
transmitters contained in the XRT5894. Therefore, the  
suffix numbers for a particular channel are deleted for  
simplicity. i.e. RTIP” applies to RTIP1 through RTIP4.  
specified in the ITU G.775. This is done by providing a  
user-supplied clock to LOSCNT (pin 45). The user  
programmable mode” is provisioned to allow systems  
designers to comply with older versions of LOS  
specifications in legacy systems. It needs to be stressed  
that the delay for declaration and clearing of the LOS  
condition will never be less than the range specified in the  
G.775 specification (10-255 pulse intervals).  
The LOS detection/clearing circuitry of the XRT5894 in  
automatic” mode will detect LOS when the incoming  
signal has no transitions” i.e. when the signal level is less  
than or equal to a signal level A dB below nominal signal  
D
level, for N consecutive pulse intervals, where 10<N<255.  
The value of A  
can vary between 10dB to 32dB  
D
depending on the ones density of the incoming signal  
assuming the received data has minimum permissible  
ones density. Furthermore LOS detect is cleared when  
the incoming signal has transitions,” i.e. when the signal  
Receiver Operation  
level is greater than or equal to a signal level of A dB  
below nominal, for N consecutive pulse intervals, where  
C
A bipolar signal is transformer-coupled to the receiver  
differential inputs (RTIP and RRING). The receiver is able  
to tolerate up to 12dB of line loss measured at 1.024MHz.  
It contains slicing circuitry that automatically samples the  
incoming data at a fixed percentage (50% nominal) of the  
peak signal amplitude. A precision peak detector  
maintains the slicing level accuracy. The TTL compatible  
receiver output data rails appear at the RXPOS and  
RXNEG pins. The pulse width of this data; which is in RZ  
format, is a function of the amount of the cable loss  
present.  
10<N<255. The value of A can vary between 9dB to  
C
31dB depending on the ones density of the incoming  
signal assuming the received data has minimum  
permissible ones density. Each pulse interval is 488ns at  
E1 rates. The absolute value of A is always smaller than  
C
A by at least 1dB.  
D
The LOS detection/clearing criteria described above is  
fully compliant with G.775 LOS specification. In the user  
programmable” mode the user has the option of  
extending the declaration and clearing delay (10<N<255)  
by an amount which is equal to 2048 x T. T is the time  
period of the clock supplied to LOSCNT (pin 45) by the  
user.  
Receiver Los s Of Signal Detection (LOS)  
Absence of signal at any receiver input is detected by the  
loss of signal (LOS) circuit. One LOS detection circuitry is  
provisioned for each receiver. The LOS signal is asserted  
(LOS=1) when a LOS condition is detected and is cleared  
(LOS=0) when a valid input signal is restored.  
Nominal signal level is defined as 2.37V peak measured  
between RTIP or RRING and ground. (This voltage will  
be present in 75applications using a 1:2 CT ratio input  
transformer terminated in 300with the center tap  
grounded with 0dB of cable and a 2.37V peak amplitude  
transmit pulse at the cable input.)  
Two modes of LOS circuit operation are supported.  
These distinct modes are called automatic and  
user-programmable. When LOSSEL (pin 25) is set to  
logic “1, the automatic mode is selected. In this mode the  
LOS condition will be declared and cleared in full  
compliance with ITU G.775 specification. When LOSSEL  
is connected to logic “0, the user-programmable delay  
mode is enabled. In this mode the user has the option of  
extending the delay of LOS declaration and clearing  
Trans mitters  
This device contains four identical ITU G.703 compliant  
transmitters. The output stage of each transmitter is a  
differential voltage driver. External resistors need to be  
connected to the primary of output transformer. This is  
necessary to maintain an accurate source impedance  
Rev. 1.10  
11  
XRT5894  
that ensures compliance to ETSI 300 166 return loss  
requirement.  
present at this pin, the transmitter detects its presence  
and operates in the clocked mode. In this mode, the  
transmit input should be supplied with full-width NRZ  
pulses. If a clock is not present at the TXCLK input (pin is  
left open), the part operates in the clockless mode. In this  
mode, RZ data should be supplied to the device. Each  
transmit channel of XRT5894 has a duty cycle correction  
circuitry. This enables the device to produce output  
bipolar pulses fully compliant with G.703 despite having  
TXCLK signal with 30% to 70% duty cycle.  
TTL compatible dual rail transmit data signals are  
supplied to TXPOS and TXNEG inputs. The transmitter  
differential outputs TTIP and TRING are connected to the  
output transformer primary through series 9.1resistors.  
All the four transmitters can be operated in two distinct  
modes of operation referred to as clocked” or clockless”  
modes. The operational mode is selected automatically  
based on the signal provided to TXCLK input. If a clock is  
269 ns  
(244 + 25)  
Nominal pulse  
20%  
10%  
V = 100%  
194 ns  
(244 -- 50)  
10%  
20%  
50%  
244 ns  
219 ns  
(244 -- 25)  
10%  
0%  
10%  
10%  
10%  
20%  
488 ns  
(244 + 244)  
Note: V corresponds to the nominal peak value  
Figure 4. CCITT G.703 Puls e Template  
Rev. 1.10  
12  
XRT5894  
Trans mitter Output Puls e Meas urement  
Figure 5 shows a typical transmit pulse plotted on the template shown in ITU G.703 Figure 15/G.703. The following  
conditions apply:  
V
CC  
=3.30V  
Transmitter output transformer secondary terminated with 120  
All ones signal  
Receiver output looped backed into transmitter digital input  
Operation without transmitter clock (RZ data)  
Measurement made with a Tektronix TDS640 digital scope set to full bandwidth  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-244  
-122  
0
122  
244  
Time (ns )  
Figure 5. XRT5894 Output Puls e  
Rev. 1.10  
13  
XRT5894  
Transmitter Output Return Loss Measurements  
The following measurements were made with a Wandel  
and Goltermann SNA--2 Network Analyzer equipped with  
an RFZ--1 75Return Loss Bridge. A 75to 120Ω  
impedance matching transformer was used to make the  
120measurement. A network analyzer calibration run  
subtracted out the effects of this transformer.  
This configuration was used for both 75and 120Ω  
measurements. The only change was the termination  
resistance provided by the return loss bridge.  
Test Results:  
Table 5 compares measured output return loss with  
requirements in ETSI FINAL DRAFT prETS 300 166,  
June1993. These resultsshow that measuredreturnloss  
is mainly determined by the characteristics of the output  
transformer. This is particularly evident for the 120load  
where the measured result is better than the calculated  
value.  
Test Conditions:  
D Output transformer ratio was 1:2.  
D Transmitter series resistors (R3 and R4 in Figure 1)  
were 9.1.  
D Device was powered from a 3.3V source, transmitter  
was enabled, and no output data was present.  
Specified  
Frequency  
Frequency  
(KHz)  
ETSI Spec.  
(Min. dB)  
Meas. Value (dB)  
Meas. Value (dB)  
75Load  
120Load  
0.025 fb  
0.05 fb  
1.5 fb  
51.2  
102.4  
3072  
6
8
8
22.6  
22.6  
18.0  
15.4  
15.7  
14.6  
Table 5. Transmitter Output Return Loss Measurements  
Notes:  
fb = 2048KHz  
This data shows that the XRT5894 is fully compliant with the ETSI Output Return Loss Specification for E1 operation with either  
75or 120loads.  
Rev. 1.10  
14  
XRT5894  
The following pictures show typical results of measurements that made over a 50 KHz to 3.5MHz frequency range.  
Figure 6. 75Return Los s Meas urement  
Figure 6 shows a return loss better than 20dB at low frequencies that decreases to about 12dB at 3.5MHz. Since the  
source and load resistances are well--matched, the return loss degradation is due to the transformer.  
Figure 7. 120Return Los s Meas urement  
Figure 7 shows that for the 120case, transformer characteristics improve return loss at lower frequencies. At 3.5 MHz,  
return loss is close to the calculated 13.8dB for a 75source terminated with 120.  
Rev. 1.10  
15  
XRT5894  
Output Trans former Selection  
A 1:2 ratio transformer is recommended for both 75and 120operation because the transmitter, when equipped with  
this device, meets both the ITU G.703 output pulse amplitude requirement and, the ETSI return loss specification.  
Although a center--tapped output transformer is not required, choosing a part with a center-tapped secondary allows the  
use of the same type of unit at the receiver input.  
A theoretical justification for the 1:2 ratio transformer follows:  
RS  
TTIP  
R3  
pos  
1:n  
VS  
VS  
pos  
neg  
V
O
R
L
TRING  
RS  
R4  
neg  
Figure 8. Trans mitter Line Driver Model  
Where:  
Vs  
Rs  
= Vs  
= Rs  
= 1.25V typical (Differential line driver peak output voltage swing)  
pos  
pos  
neg  
= 0.8typical (Differential line driver internal source resistance)  
neg  
R3 = R4 = 9.1(Differential line driver external source resistance from Figure 1)  
R = 75or 120(Transmitter load resistance)  
L
n = 2 (Transformer turns ratio)  
Vo = Transmitter peak output voltage (Measured across R = 75or R = 120)  
L
L
Figure 9 may be converted to a single--ended model:  
RS  
RS  
ext  
int  
1:n  
V
S
V
O
R
L
Figure 9. Single-ended Line Driver Model  
Where:  
VS = Vs + Vs  
pos  
neg  
neg  
RS = RS  
+ Rs  
pos  
int  
RS = R3 + R4  
ext  
Rev. 1.10  
16  
XRT5894  
This may be further simplified:  
R
I
T
V
s
V
eq  
Figure 10. Equivalent Circuit  
Where:  
R = RS + Rs  
T
int  
ext  
R
n2  
L
R
=
eq  
Therefore:  
Vs  
I =  
R
+ Req  
T
V
eq  
= I R  
eq  
V = n V  
o
eq  
And:  
R + R  
T
eq  
Return Loss = 20 log  
R -- R  
T
eq  
Table 5 contains the results of calculations made with these equations. The numbers show that output pulse amplitude  
is within millivolts of the nominal values of 2.37V and 3.00V specified by ITU G.703 for 75and 120operation. Also,  
the 1:2 ratio transformer provides an almost-perfect match for 75operation, and return loss is well within the ETSI  
specification for the 120load.  
Load Res is tance  
Puls e Amplitude  
Vo (Volts Peak)  
Output  
Return Los s (dB)  
RL ()  
75  
2.43  
3.01  
31.3  
13.8  
120  
Table 5. Calculated Trans mitter Puls e Amplitude and Return Los s  
Rev. 1.10  
17  
XRT5894  
64 LEAD THIN QUAD FLAT PACK  
(10 x 10 x 1.4 mm, TQFP)  
Rev. 2.00  
D
48  
33  
49  
32  
D
64  
17  
1
16  
B
A
2
C
A
α
Seating Plane  
A
1
L
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.055  
0.002  
0.053  
0.005  
0.004  
0.465  
0.390  
0.063  
0.006  
0.057  
0.009  
0.008  
0.480  
0.398  
1.40  
0.05  
1.35  
0.13  
0.09  
11.80  
9.90  
1.60  
0.15  
A
1
A
2
1.45  
B
C
D
D
e
0.23  
0.20  
12.20  
10.10  
0.50 BSC  
0.75  
1
0.020 BSC  
L
0.018  
0°  
0.030  
0.45  
α
7°  
0°  
7°  
Note: The control dimension is the millimeter column  
Rev. 1.10  
18  
XRT5894  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary  
depending upon a users specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 2000 EXAR Corporation  
Datasheet March 2000  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 1.10  
19  

相关型号:

XRT5894IV

Four-Channel E1 Line Interface (3.3V or 5.0V)
EXAR

XRT5897

Seven-Channel E1 Line Interface
EXAR

XRT5897IV

Seven-Channel E1 Line Interface
EXAR

XRT5997

Seven-Channel E1 Line Interface Unit
EXAR

XRT5997IV

Seven-Channel E1 Line Interface Unit
EXAR

XRT5997IV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100
EXAR

XRT59L91

Single-Chip E1 Line Interface Unit
EXAR

XRT59L91ID

Single-Chip E1 Line Interface Unit
EXAR

XRT59L921

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT59L921IB

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT6164

Digital Line Interface Transceiver
EXAR

XRT6164A

Digital Line Interface Transceiver
EXAR