XRT82D20IW [EXAR]

SINGLE CHANNEL E1 LINE INTERFACE UNIT; 单路E1线路接口单元
XRT82D20IW
型号: XRT82D20IW
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

SINGLE CHANNEL E1 LINE INTERFACE UNIT
单路E1线路接口单元

文件: 总27页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
áç  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
APRIL 2001  
REV. 1.0.7  
Clock Recovery and Selectable Crystal-less Jitter  
attenuator  
GENERAL DESCRIPTION  
The XRT82D20 is a fully integrated, single channel,  
Line Interface Unit (Transceiver) for 75 or 120 E1  
(2.048 Mbps) applications. The LIU consists of a  
receiver with adaptive data slicer for accurate data  
and clock recovery and a transmitter which accepts  
either single or dual-rail digital inputs for signal  
transmission to the line using a low- impedance  
differential line driver. The LIU also includes a crystal-  
less jitter attenuator for clock and data smoothing  
which, depending on system requirements, can be  
selected in either the transmit or receive path.  
Compliant with ETS300166 Return Loss  
Compliant with the ITU-T G.823 Jitter Tolerance  
Requirements  
Remote, Local and Digital Loop backs  
Declares and Clears LOS per ITU-T G.775  
Logic Inputs accept either 3.3V or 5.0V levels  
- 400C to 850C Temperature Range  
Low Power Dissipation; 145mW with 120 or  
160mW with 75 typical  
Coupling the XRT82D20 to the line requires trans-  
formers on both the Receiver and Transmitter sides,  
and supports both 120 balanced and 75 unbal-  
anced interfaces. The receiver can be capacitive  
coupled to for cost reduction  
+3.3V or +5V Supply Operation  
Pin Compatible with the XRT7288  
APPLICATIONS  
PDH Multiplexers  
FEATURES  
SDH Multiplexers  
Complete E1 (CEPT) line interface unit  
Digital Cross-Connect Systems  
Generates transmit output pulses that are compli-  
ant with the ITU-T G.703 Pulse Template for  
2.048Mbps (E1) rates  
DECT (Digital European Cordless Telephone) Base  
Stations  
CSU/DSU Equipment  
Test Equipment  
On-Chip Pulse Shaping for both 75 and 120 Ω  
Line Drivers  
FIGURE 1. BLOCK DIAGRAM OF THE XRT82D20  
TTIP  
TClk  
TPOS  
TNEG  
HDB3  
Encoder  
Tx Pulse  
Shaper  
Line  
Driver  
MUX  
TRing  
Jitter Attenuator  
Local  
Loopback  
Digital  
Remote  
Loopback  
Loopback  
LOS  
RLOS  
Detect  
Data &  
Timing  
Recovery  
RClk  
RPOS  
RNEG  
HDB3  
Decoder  
Data  
Peak  
RTIP  
MUX  
Slicer  
Detector  
RRing  
Timing  
Generator  
MClk  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
 
 
 
 
áç  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
FIGURE 2. PINOUT OF THE XRT82D20  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RTIP  
RLOS  
ClkLOS  
TNEG/CODE  
RNEG/LCV  
RClk  
RRing  
MuteRx  
AGND  
AVDD  
TxLEV  
TTIP  
3
4
5
6
RPOS/RData  
TClk  
7
TVDD  
TRing  
TGND  
JAEN  
DIGI  
8
TPOS/TData  
LLoop  
9
10  
11  
12  
13  
14  
RLoop  
DLoop  
ATM  
JATx/Rx  
MClk  
RAOS  
TAOS  
ORDERING INFORMATION  
PART #  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40oC to + 85oC  
XRT82D20IW  
28 Lead 300 Mil Jedec SOJ  
2
 
 
XRT82D20 SINGLE CHANNEL E1 LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
TABLE OF CONTENTS  
GENERAL DESCRIPTION ................................................................................................. 1  
FEATURES ................................................................................................................................................ 1  
APPLICATIONS ......................................................................................................................................... 1  
Figure 1. Block Diagram of the XRT82D20 .................................................................................................. 1  
Figure 2. Pinout of the XRT82D20 ................................................................................................................ 2  
ORDERING INFORMATION .............................................................................................................................. 2  
PIN DESCRIPTIONS .......................................................................................................... 3  
Figure 3. Interface Timing Diagram in Both Single-Rail and Dual-Rail Mode, with DIGI (Pin 17) = “0” . 5  
Figure 4. Interface Timing Diagram in Dual-Rail Mode only, with DIGI (Pin 17) = “1” ............................. 6  
ELECTRICAL CHARACTERISTICS .................................................................................. 7  
TABLE 1: RECEIVER CHARACTERISTICS .............................................................................................................. 7  
TABLE 2: TRANSMITTER CHARACTERISTICS ........................................................................................................ 7  
TABLE 3: 3.3V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS  
ALL ACTIVE ........................................................................................................................................................ 7  
TABLE 4: 5V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS ALL  
ACTIVE ............................................................................................................................................................... 8  
TABLE 5: AC ELECTRICAL CHARACTERISTICS ................................................................................................... 8  
TABLE 6: DC ELECTRICAL CHARACTERISTICS .................................................................................................... 9  
ABSOLUTE MAXIMUM RATINGS .......................................................................................................... 9  
Figure 5. Receiver Maximum Jitter Tolerance, Test Conditions: Test Pattern 215-1, (-6dB) Cable Loss ..  
10  
Figure 6. Receiver Jitter Transfer Function (Jitter Attenuator Disabled), Test Conditions: Test Pattern  
215-1, Input Jitter 0.5UIp-p ............................................................................................................................ 11  
Figure 7. Receiver Jitter Transfer Function (Jitter Attenuator enabled) Test Conditions: Test Pattern 215-  
1, Input Jitter 75% of Maximum Jitter Tolerance ........................................................................................ 11  
SYSTEM DESCRIPTION .................................................................................................. 12  
1.0 THE Receive Section ........................................................................................................................ 12  
1.1 JITTER ATTENUATOR .................................................................................................................................. 12  
1.2 THE TRANSMIT SECTION ............................................................................................................................ 12  
Figure 8. Illustration on how the XRT82D20 Samples the data on the TPOS and TNEG input pins .... 12  
1.3 THE PULSE SHAPING CIRCUIT ........................................................................................................................... 12  
Figure 9. Illustration of the ITU-T G.703 Pulse Template for E1 Application .......................................... 13  
1.4 INTERFACING THE TRANSMIT SECTION OF THE XRT82D20 TO THE LINE ............................................................. 14  
Figure 10. Illustration of how to interface the XRT82D20 to the Line for 75 Applications and 3.3V op-  
eration only .................................................................................................................................................... 14  
Figure 11. Illustration of how to interface the XRT82D20 to the Line for 120 Applications and 3.3V op-  
eration only .................................................................................................................................................... 15  
1.5 INTERFACING THE RECEIVE SECTION TO THE LINE ............................................................................................. 15  
Figure 12. Recommended Schematic for Transformer-Coupling the XRT82D20 to the Line for 75 Ap-  
plications and 5 V operation only ................................................................................................................ 16  
Figure 13. Recommended Schematic for Transformer-Coupling the XRT82D20 to the Line for 120 Ap-  
plications and 5 V operation only ................................................................................................................ 17  
1.6 CAPACITIVELY-COUPLING THE RECEIVE SECTION(S) OF THE XRT82D20 TO THE LINE ......................................... 18  
Figure 14. Capacitively-coupling the Receive Section for 75 Application and 3.3V supply ............. 18  
Figure 15. Capacitively-coupling the Receive Section for 120 Application and 3.3V supply ........... 19  
Figure 16. Capacitively-coupling the Receive Section for 75 Application and 5V supply ................ 20  
Figure 17. Capacitively-coupling the Receive Section for 120 Application and 5V supply .............. 21  
2.0 Diagnostic Features ......................................................................................................................... 22  
2.1 THE LOCAL LOOP-BACK MODE ......................................................................................................................... 22  
Figure 18. Illustration of the Analog Local Loop-Back within the XRT82D20 ........................................ 22  
2.2 THE REMOTE LOOP BACK MODE ....................................................................................................................... 23  
Figure 19. Illustration of the Remote Loop-Back path, within the XRT82D20 ........................................ 23  
I
áç  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
PACKAGE OUTLINE DRAWING ...................................................................................... 24  
REVISION HISTORY ..................................................................................................................................... 25  
II  
XRT82D20 SINGLE CHANNEL E1 LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
PIN DESCRIPTIONS  
PIN #  
SYMBOL  
TYPE  
DESCRIPTION  
1
Receiver Loss of Signal: This pin toggles Low to indicate the loss of  
signal at the receive inputs.  
RLOS  
O
Receiver Loss of Clock: With MuteRx=1, this pin will toggle low to indi-  
cate a loss of clock has occurred when the receive signal is lost  
(RLOS=0). When RLOS=0, no transitions occur on RClk, RPOS/RData  
and RNEG outputs.  
2
3
ClkLOS  
O
I
Transmitter Negative Data Input/Coding Select: With Jitter Attenuator  
enabled (pin 18=1), input activity on this pin determines whether the  
device is configured to operate in single-rail or dual-rail mode. With n-rail  
transmit data applied to this pin, the device is automatically configured to  
operate in dual-rail mode for both transmit input and receive output.  
If this pin is tied high for more than 16 clock cycles, the device is config-  
ured to operate in single-rail mode with HDB3 encoding and decoding  
functions enabled.  
TNEG/CODE  
If this pin is tied low for more than 16 clock cycles, the device is config-  
ured to operate in single-rail mode with AMI encoding and decoding  
functions enabled. (internal pull-down).  
Receive Negative Data/Line Code Violation Output:  
If the device is configured in Dual-rail mode with n-rail data applied to pin  
3, then the receive negative data will be output through this pin.  
If the device is configured in Single-rail mode and operate with HDB3  
coding enabled, HDB3 code violation will be detected and cause this pin  
to go high.  
4
RNEG/LCV  
O
If the device is configured in Single-rail mode and with AMI coding  
selected, every bipolar violation will be reported at this pin.  
Receive Clock:  
Output receive clock signal to the terminal equipment.  
5
6
RClk  
O
O
Receive Positive/ Data Output:  
RPOS/RData  
In Dual-rail mode, this signal is the p-rail receive output data. In Single-  
rail mode, this signal is the receive output data.  
Transmitter Clock Input:  
Input clock signal (2.048 MHz ± 50ppm)  
7
8
TClk  
I
I
Transmit Positive / Data Input:  
TPOS/TData  
In Dual-rail mode, this signal is the p-rail transmit input data. In Single-rail  
mode, this signal is the transmit input data.  
Local Loop back enable (active low):  
9
LLoop  
I
Tie this pin low to enable analog Local Loop-back.In local loop-back  
mode, transmit output data is looped back to the input of the  
receiver.Input signal at RTIP and RRing are ignored. Local Loop-back  
has priority over Remote and Digital Loop-back mode. See Section 2.2  
for more details. (internal pull-down).  
Remote Loop Back Enable (active low):  
10  
11  
RLoop  
DLoop  
I
I
Connect this pin to ground to enable Remote Loop-back. In Remote  
Loop-back mode, transmit data at TPOS/TData and TNEG are ignored.  
See Section 2.2 for more details. (internal pull-down).  
Digital Loop Back enable (active low):  
Connect this pin to ground to enable Digital Local Loop-back.In Digital  
loop-back mode, transmit input data after the encoder is looped back to  
the jitter attenuator (if selected) and to the receive decoder. Input data at  
RTIP and RRing are ignored in this mode. (internal pull-up). In this  
mode, the XRT82D20 can operate only as a jitter attenuator.  
3
áç  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
PIN #  
SYMBOL  
TYPE  
DESCRIPTION  
Alarm Test Mode (Active-Low):  
12  
ATM  
I
Connect this pin to ground to force ClkLOS, RLOS = 0 and LCV = 1 for  
testing without affecting data transmission. (internal pull-up)  
Receive All Ones:  
13  
RAOS  
I
With this pin tied to High, an all “1’s” signal is inserted to the receiver out-  
put at RPOS and RNEG/RData using MCLK as timing reference. This  
control has priority over Digital Loop-back if both are enabled. (internal  
pull-down).  
Transmit All Ones:  
14  
15  
TAOS  
MClk  
I
I
With this pin tied High, an AMI encoded all “1’s” signal is sent to the  
transmit output using MCLK as timing reference. This control has priority  
over Remote Loop-back if both are enabled. (internal pull-down).  
Master Clock Input:  
This signal is an independent 2.048 MHz clock with accuracy better than  
+ 50 ppM and duty cycle within 40% to 60%. The function of MClk is to  
provide timing source for the PLL clock recovery circuit, reference clock  
to insert all “1’s” data in the transmit as well as receive paths. This signal  
must be available for the device to operate.  
Jitter Attenuator Path Select:  
16  
JATx/Rx  
(DR/SR)  
I
With the jitter attenuator enabled, (pin 18 =”1”), tie this pin “High” to  
select the jitter attenuator in the transmit path and tie it “Low” to select in  
the receive path. Data input/output format is then controlled automati-  
cally by the status of the TNEG input. If TNEG data is present the device  
operates in Dual-rail data mode.  
Dual-Rail/Single-Rail Select:  
With the jitter attenuator disabled, (pin 18 =”0”), tie this pin “High” to  
select Dual-Rail data format and tie it “Low” to select Single-Rail data for-  
mat. (internal pull-down)  
Digital Interface:  
17  
DIGI  
I
With this pin tied Low, input data at TPOS/TData and TNEG/CODE is  
active-high and will be sampled by TClk on the falling edge, while active-  
high RPOS/RData and RNEG output data are updated on the falling  
edge of RClk. See Figure 3 and 4 for details.  
With his pin tied high and in Dual-rail mode, transmit input accepts  
active-low TPOS/TData and TNEG/CODE data and will be sampled by  
TClk on the falling edge, while RPOS/RData and RNEG/LCV are active-  
low, data is updated on the rising edge of RClk. (internal pull-down).  
Jitter Attenuator Enable (active high):  
18  
JAEN  
I
Connect this pin high to enable the jitter attenuation function. Jitter Atten-  
uator Path select is determined by the pin 16 setting. (internal pull-down)  
Transmitter Supply Ground  
19  
20  
TGND  
TRing  
-
Transmitter Ring Output:  
Negative bipolar data output to the line.  
O
Transmit Positive Supply:  
5.0 V + 5% or 3.3 V + 5%  
21  
22  
23  
TVDD  
TTIP  
-
O
I
Transmitter TIP Output:  
Positive bipolar data output to the line.  
Transmit Level:  
TxLEV  
Tie this pin high for 120 twisted pair cable operation and tie it low for 75  
coaxial cable operation (internal pull-down). This pin is only active for  
5.0V operation.  
4
XRT82D20 SINGLE CHANNEL E1 LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
PIN #  
SYMBOL  
TYPE  
DESCRIPTION  
Analog Positive Supply  
5.0 V + 5% or 3.3 V+ 5%  
24  
AVDD  
-
Analog Supply Ground  
25  
26  
AGND  
-
I
Mute Receive Output:  
MuteRx  
With this pin tied high, a loss of receive input signal (RLOS=0) will cause  
ClkLOS to go low and generate the following.  
Dual-rail mode operation:  
With DIGI = 0, RClk = 1, RPOS and RNEG/RData = 0  
fWith DIGI = 1, RClk =0, RPOS and RNEG/RData = 1  
Single-rail mode:  
RClk = 1 and RData=0  
(internal pull-down)  
Receive Bipolar Negative Input:  
Bipolar line signal input to the receiver.  
27  
28  
RRing  
RTIP  
I
I
Receiver Bipolar Positive Input:  
Bipolar line signal input to the receiver.  
FIGURE 3. INTERFACE TIMING DIAGRAM IN BOTH SINGLE-RAIL AND DUAL-RAIL MODE, WITH DIGI (PIN 17) = “0”  
TClk  
tr  
tf  
TClk  
TPOS/TData  
or  
Active High  
TNEG/CODE  
tTSU  
tTHO  
tRCD  
tr  
tf  
RClk  
tRSU  
RPOS/RData  
or  
Active High  
RNEG/LCV  
tRHO  
5
áç  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
FIGURE 4. INTERFACE TIMING DIAGRAM IN DUAL-RAIL MODE ONLY, WITH DIGI (PIN 17) = “1”  
TClk  
tr  
tf  
TClk  
TPOS/TData  
Active Low  
tTSU  
tTHO  
tRCD  
tr  
tf  
RClk  
tRSU  
RPOS/RData  
Active Low  
tRHO  
6
XRT82D20 SINGLE CHANNEL E1 LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
ELECTRICAL CHARACTERISTICS  
TABLE 1: RECEIVER CHARACTERISTICS  
TA = 25°C, VDD = 3.3V± 5% or 5V± 5% Unless otherwise specified  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
Receiver Sensitivity  
0.7  
-18  
0.9  
4.2  
Vp  
dB  
kΩ  
Interference Margin with -6db Cable Loss  
-14  
2.0  
-
-
Input Impedance measured between RTIP or RRing to ground  
Recovered Clock Jitter Transfer Corner Frequency  
Peaking Amplitude  
-
-
18  
0.1  
36  
0.5  
kHz  
dB  
Jitter Attenuator Corner Frequency (-3dB curve)  
-
20  
40  
Hz  
Return Loss  
51kHz-102kHz  
102kHz-2048kHz  
2048kHz-3072kHz  
12  
18  
14  
25  
35  
25  
-
-
-
dB  
dB  
dB  
TABLE 2: TRANSMITTER CHARACTERISTICS  
TA = 25°C, VDD = 3.3V± 5% or 5V± 5% Unless otherwise specified  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
AMI Output Pulse Amplitude  
75 Application  
120 Application  
2.14  
2.70  
2.37  
3.00  
2.60  
3.30  
V
V
Output Pulse Width  
224  
0.9  
-
244  
1.0  
264  
1.1  
ns  
Output Pulse Amplitude Ratio  
Jitter Added by the Transmitter Output  
0.025  
0.050  
UIpp  
Output Return Loss:  
51kHz -102kHz  
102kHz-2048kHz  
2048kHz-3072kHz  
-
-
-
20  
25  
20  
-
-
-
dB  
dB  
dB  
TABLE 3: 3.3V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS  
ALL ACTIVE  
TA = -40° to 85°C, VDD = 3.3V± 5% Unless otherwise specified  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
CONDITIONS  
PC  
PC  
PC  
PC  
Power Consumption  
Power Consumption  
Power Consumption  
Power Consumption  
-
-
-
-
100  
92  
140  
130  
190  
160  
mW  
mW  
mW  
mW  
75load, operating at 50% Mark Density  
120load, operating at 50% Mark Density  
75load, operating at 100% Mark Density  
120load, operating at 100% Mark Density  
150  
125  
7
áç  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
TABLE 4: 5V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS ALL  
ACTIVE  
(TA = -40° to 85°C, VDD = 5V ± 5% Unless otherwise specified)  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
CONDITIONS  
PC  
PC  
PC  
PC  
Power Consumption  
Power Consumption  
Power Consumption  
Power Consumption  
-
-
-
-
160  
145  
200  
180  
210  
195  
260  
240  
mW  
mW  
mW  
mW  
75load, operating at 50% Mark Density  
120load, operating at 50% Mark Density  
75load, operating at 100% Mark Density  
120load, operating at 100% Mark Density  
TABLE 5: AC ELECTRICAL CHARACTERISTICS  
TA = -40 to +85 °C, VDD = 3.3V± 5% or 5V ± 5% Unless otherwise specified  
PARAMETER  
SYMBOL  
MIN.  
TYP  
MAX  
UNITS  
Clock Frequency  
MClk  
MClk  
TClk  
-50 ppm  
2.048  
50  
+50ppm MHz  
Clock Duty Cycle  
Clock Period  
40  
-
60  
-
%
ns  
%
ns  
244  
50  
TClk Duty Cycle  
TCDU  
tTSU  
30  
40  
70  
-
Transmit Data Setup Time  
-
Transmit Data Hold Time  
TClk Rise Time (10% /90%)  
TClk Fall Time (90% / 10%)  
RClk Duty Cycle  
tTHO  
tr  
40  
-
-
-
-
ns  
ns  
ns  
%
40  
40  
55  
-
tf  
-
-
RCDU  
tRSU  
45  
150  
50  
244  
Receive Data Setup Time  
ns  
-
Receive Data Hold Time  
RClk to Data Delay  
tRHO  
tRCD  
tr  
150  
244  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
40  
40  
40  
RClk Rise Time (10%/90%)  
RClk Fall Time (90%/10%)  
tf  
8
XRT82D20 SINGLE CHANNEL E1 LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
TABLE 6: DC ELECTRICAL CHARACTERISTICS  
Ta = 25°C, Vdd=3.3V ± 5% or 5V ± 5% unless otherwise specified  
PARAMETER  
SYMBOL  
VIH  
MIN  
2.0  
0.5  
TYP  
MAX  
5.5  
UNIT  
Input High Voltage  
Input Low Voltage  
3.3 or 5.0  
V
V
V
VIL  
0
-
0.8  
Output High Voltage @IOH=5mA (See Note)  
VDD=3.3V  
VDD=5.0v  
VOH  
2.4  
2.4  
VDD  
VDD  
Output Low Voltage @ IOL=5mA (See Note)  
-
V
VDD=3.3V  
VDD=5.0v  
VOL  
IL  
0
0
0.4  
0.4  
Input Leakage Current (except input pins with pull-up  
resistors)  
-
0
10  
uA  
Input Capacitance  
CI  
-
-
5
-
20  
20  
pF  
pF  
Output Load Capacitance  
CO  
NOTE: All Digital output pins except pin 1 and pin 2, which  
typically source 20µA at VOH and sink -4mA at VOL  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Operating Temperature  
Supply Voltage  
-65 to 150°C  
-40 to 85°C  
-0.5V to +5.5V  
9
áç  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
FIGURE 5. RECEIVER MAXIMUM JITTER TOLERANCE, TEST CONDITIONS: TEST PATTERN 215-1, (-6dB) CABLE LOSS  
103  
JAT Disabled  
102  
JAT Enabled  
101  
ITU-T G.823 M ask  
100  
10−1  
100  
101  
102  
103  
104  
105  
(Freq.(MHz))  
10  
XRT82D20 SINGLE CHANNEL E1 LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
FIGURE 6. RECEIVER JITTER TRANSFER FUNCTION (JITTER ATTENUATOR DISABLED), TEST CONDITIONS: TEST PAT-  
TERN 215-1, INPUT JITTER 0.5UIP-P  
2
G.735-G739 Specification  
0
−2  
−4  
T82D20 Perform ance  
−6  
−8  
−10  
−12  
−14  
102  
103  
104  
105  
(Freq.(MHz))  
FIGURE 7. RECEIVER JITTER TRANSFER FUNCTION (JITTER ATTENUATOR ENABLED) TEST CONDITIONS: TEST PAT-  
TERN 215-1, INPUT JITTER 75% OF MAXIMUM JITTER TOLERANCE  
10  
ITU.G.736 M ask  
0
−10  
−20  
−30  
T82D20 Performance  
−40  
−50  
−60  
100  
101  
102  
103  
104  
105  
(Freq.(MHz))  
11  
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
coming line signal) to the Receive Terminal Equip-  
ment via the RPOS and RNEG output pins.  
SYSTEM DESCRIPTION  
The XRT82D20 is a single channel E1 transceiver  
that provides an electrical interface for 2.048Mbps ap-  
plications. XRT82D20 includes a receive circuit that  
converts an ITU-T G.703 compliant bipolar signal into  
a TTL compatible logic levels. The receiver also in-  
cludes an LOS (Loss of Signal) detection circuit.  
Similarly, in the Transmit Direction, the Transmitter  
converts TTL compatible logic levels into a G.703  
compatible bipolar signal.  
If the Receive Section of the XRT82D20 has received  
a Positive-Polarity pulse, via the RTIP and  
RRing input pins, then the Receive Output Interface  
will output a pulse at the RPOS output pin.  
Similarly, if the Receive Section of the XRT82D20 has  
received a Negative-Polarity pulse, via the RTIP and  
RRing input pins, then the Receive Output Interface  
will output a pulse at the RNEG output pin.  
The XRT82D20 consists of both a Receive Section,  
Jitter Attenuator and Transmit Section; each of these  
sections will be discussed below.  
1.1 JITTER ATTENUATOR  
To reduce frequency jitter in the transmit clock or re-  
ceive clock, a crystal-less jitter attenuator is provided.  
The jitter attenuator can be selected either in the  
transmit or receive path or it can be disabled.  
1.0 THE RECEIVE SECTION  
At the receiver input, cable attenuated AMI signal can  
be coupled to the receiver using a capacitor or trans-  
former. The receive data first goes through the peak  
detector and data slicer for accurate data recov-  
ery.The digital representation of the AMI signals go to  
the clock recovery circuit for timing recovery and sub-  
sequently to the decoder (if selected) for HDB3 de-  
coding before being output to the RPOS/RData and  
RNEG/LCV pins. The digital data output can be in  
NRZ or RZ format depending the mode of operation  
selected and with the option to be in dual-rail or single  
rail mode. Clock timing recovery of the line interface  
is accomplished by means of a digital PLL scheme  
which has high input jitter tolerance.  
1.2 THE TRANSMIT SECTION  
In general, the purpose of the Transmit Section (with-  
in the XRT82D20) is to accept TTL/CMOS level digital  
data (from the Terminal Equipment), and to encode it  
into a format such that it can:  
1. Be efficiently transmitted over coaxial- or twisted  
pair cable at the E1 data rate; and  
2. Be reliably received by the Remote Terminal  
Equipment at the other end of the E1 data link.  
3. Comply with the ITU-T G.703 pulse template  
requirements, for E1 applications  
A 2.048 MHz clock is applied to the TClk input pin  
and NRZ data at the TPOS and TNEG input pins.  
The Transmit Input Interface circuit will sample the  
data, at the TPOS and TNEG input pins, upon the fall-  
ing edge of TClk, as illustrated in Figure 8 below.  
The purpose of the Receive Output Interface block is  
to interface directly with the Receiving Terminal  
Equipment. The Receive Output Interface block out-  
puts the data (which has been recovered from the in-  
FIGURE 8. ILLUSTRATION ON HOW THE XRT82D20 SAMPLES THE DATA ON THE TPOS AND TNEG INPUT PINS  
tHO  
tSU  
TPOS  
TNEG  
TClk  
In general, if the XRT82D20 samples a “1” on the  
TPOS input pin, then the Transmit Section will ulti-  
mately generate a positive polarity pulse via the TTIP  
and TRing output pins (across a 1:2 transformer).  
Conversely, if the XRT82D20 samples a “1” on the  
TNEG input pin, then the Transmit Section of the de-  
vice will ultimately generate a negative polarity pulse  
via the TTIP and TRing output pins (across a 1:2  
transformer).  
1.3 THE PULSE SHAPING CIRCUIT  
The purpose of the Transmit Pulse Shaping circuit is  
to generate Transmit Output pulses that comply with  
12  
 
XRT82D20 SINGLE CHANNEL LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
the ITU-T G.703 Pulse Template Requirements for E1  
Applications.  
Transmit Input Interface block, and will generate a  
pulse that complies with the pulse template, present-  
ed in Figure 9 (when measured on the secondary  
side of the Transmit Output Transformer).  
An illustration of the ITU-T G.703 Pulse Template Re-  
quirements is presented below in Figure 9.  
With input signal as described above, the XRT82D20  
will take each mark (which is provided to it via the  
FIGURE 9. ILLUSTRATION OF THE ITU-T G.703 PULSE TEMPLATE FOR E1 APPLICATION  
269 ns  
(244 + 25)  
V = 100%  
194 ns  
(244 – 50)  
Nominal pulse  
50%  
244 ns  
219 ns  
(244 – 25)  
0%  
488 ns  
(244 + 244)  
Note  
– V corresponds to the nominal peak value.  
13  
 
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
1.4 INTERFACING THE TRANSMIT SECTION OF THE  
XRT82D20 TO THE LINE  
ITU-T G.703 specifies that the E1 line signal can be  
transmitted over coaxial cable and terminated with  
75or transmitted over twisted-pair and terminated  
with 120.  
In both applications (e.g., 75or 120, the user is ad-  
vised to interface the Transmitter to the Line, in the  
manner as depicted in Figure 10 and Figure 11, re-  
spectively.  
FIGURE 10. ILLUSTRATION OF HOW TO INTERFACE THE XRT82D20 TO THE LINE FOR 75 APPLICATIONS AND 3.3V  
OPERATION ONLY  
75 Coax  
RPOS/RData  
1 : 2  
RTIP  
RNEG/LCV  
270 Ω  
270 Ω  
RClk  
75 Ω  
Signal  
Source  
Rxx Input  
TVDD  
AVDD  
+3.3 V  
RRING  
10µF  
0.1 µF  
TxLEV  
TGND  
AGND  
75 Coax  
2 : 1  
TTIP  
9.1 Ω  
R Load  
75 Ω  
Tx Output  
TNEG/CODE  
TPOS/TData  
TClk  
9.1 Ω  
TRING  
14  
 
XRT82D20 SINGLE CHANNEL LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
FIGURE 11. ILLUSTRATION OF HOW TO INTERFACE THE XRT82D20 TO THE LINE FOR 120 APPLICATIONS AND  
3.3V OPERATION ONLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
1 : 2  
RTIP  
866  
866  
120  
Rx Input  
RRING  
Signal  
Source  
TVDD  
AVDD  
+3.3 V  
µ
µ
F
10  
F
0.1  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
2 : 1  
TTIP  
9.1  
R Load  
Tx Output  
TRING  
120  
TNEG/CODE  
TPOS/TData  
TClk  
9.1  
NOTES:  
1.5 INTERFACING THE RECEIVE SECTION TO THE LINE  
The design of the XRT82D20 permits the user to  
transformer-couple the Receive Section to the line.  
As mentioned earlier, the specifications for E1 require  
75termination loads, when transmitting over coaxial  
cable, and 120loads, when transmitting over twist-  
ed-pair. Figure 12 and Figure 13 present the various  
methods that the user can employ to interface the Re-  
ceiver of the XRT82D20 to the line.  
1. Figure 10 and Figure 11indicate that for 3.3 V oper-  
ation, both 75 and 120 applications, the user  
should connect a 9.1resistor in series between  
the TTIP/TRing outputs and the transformer.  
2. Figure 10 and Figure 11indicate that the user  
should use a 2 : 1 STEP-UP Transformer.  
15  
 
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
FIGURE 12. RECOMMENDED SCHEMATIC FOR TRANSFORMER-COUPLING THE XRT82D20 TO THE LINE FOR 75 Ω  
APPLICATIONS AND 5 V OPERATION ONLY  
75 Coax  
RPOS/RData  
RNEG/LCV  
RClk  
1 : 2  
RTIP  
270 Ω  
270 Ω  
75 Ω  
Signal  
Source  
Rx Input  
TVDD  
AVDD  
+5 V  
RRING  
10 µF  
0.11 µF  
TxLEV  
TGND  
AGND  
75 Coax  
1.36 : 1  
TTIP  
15.4 Ω  
R Load  
75 Ω  
Tx Output  
TRING  
TNEG/CODE  
TPOS/TData  
TClk  
15.4 Ω  
16  
 
XRT82D20 SINGLE CHANNEL LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
FIGURE 13. RECOMMENDED SCHEMATIC FOR TRANSFORMER-COUPLING THE XRT82D20 TO THE LINE FOR 120 Ω  
APPLICATIONS AND 5 V OPERATION ONLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
1 : 2  
RTIP  
866  
Signal  
Source  
120  
Rx Input  
RRING  
866  
TVDD  
AVDD  
+5 V  
µ
F
µ
F
10  
0.1  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
1.36 : 1  
TTIP  
26.1  
26.1  
R Load  
120  
Tx Output  
TNEG/CODE  
TPOS/TData  
TClk  
TRING  
NOTE: Figure 12 and Figure 13indicate that the user should  
use a 1.36 :1 STEP-UP transformer, when interfacing the  
receiver to the line.  
17  
 
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
1.6 CAPACITIVELY-COUPLING THE RECEIVE SEC-  
TION(S) OF THE XRT82D20 TO THE LINE  
Applications that are not sensitive to these issues can  
benefit from the lower cost approach of using capaci-  
tor coupling on the receive input.  
Capacitive coupling provides a lower cost interface to  
the line. It must be noted that the line isolation is lim-  
ited to the breakdown voltage of the capactior versus  
the typical transformer isolation of 1,500 to 3,000  
volts. With a capacitor there is also no DC isolation to  
ground as there is with with a transformer.  
See Figure 14, Figure 15, Figure 16 and Figure 17 for  
the recommended schematics for capacitively cou-  
pling the receiver to the line.  
FIGURE 14. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 75 APPLICATION AND 3.3V SUPPLY  
75 Coax  
RPOS/RData  
RTIP  
RNEG/LCV  
37.4 Ω  
0.1 µF  
RClk  
75 Ω  
Signal  
Source  
Rx Input  
37.4 Ω  
TVDD  
0.1 µF  
AVDD  
RRING  
+3.3 V  
10µF  
0.1µF  
TxLEV  
75 Coax  
2:1  
TGND  
AGND  
TTIP  
9.1 Ω  
Tx Output  
R Load  
75 Ω  
TNEG/CODE  
TPOS/TData  
TClk  
9.1 Ω  
TRING  
NOTE: Resistive divider attenuates the input signal by one-  
half for both 75 and 120 applications.  
18  
 
XRT82D20 SINGLE CHANNEL LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
FIGURE 15. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 120 APPLICATION AND 3.3V SUPPLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
RTIP  
30.1  
µ
µ
0.1  
0.1  
F
F
Rx Input  
120  
60.4  
Signal  
Source  
TVDD  
AVDD  
30.1  
+3.3 V  
RRING  
µ
F
µ
0.1 F  
10  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
2:1  
TTIP  
9.1  
9.1  
Tx Output  
R Load  
120  
TNEG/CODE  
TPOS/TData  
TClk  
TRING  
NOTE: Resistive divider attenuates the input signal by one-  
half for both 75 and 120 applications.  
19  
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
FIGURE 16. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 75 APPLICATION AND 5V SUPPLY  
75 Coax  
RPOS/RData  
RNEG/LCV  
RClk  
RTIP  
µ
µ
0.1  
0.1  
F
F
75  
Rx Input  
Signal  
Source  
37.4  
TVDD  
AVDD  
+5 V  
RRING  
µ
µ
F
10  
F
0.1  
TxLEV  
TGND  
AGND  
75 Coax  
1.36:1  
TTIP  
15.4  
15.4  
Tx Output  
R Load  
75  
TNEG/CODE  
TPOS/TData  
TClk  
TRING  
NOTE: Resistive divider attenuates the input signal by one-  
half for both 75 and 120 applications.  
20  
XRT82D20 SINGLE CHANNEL LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
FIGURE 17. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 120 APPLICATION AND 5V SUPPLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
RTIP  
30.1  
µ
µ
0.1  
0.1  
F
F
Rx Input  
120  
60.4  
Signal  
Source  
TVDD  
AVDD  
30.1  
+5 V  
RRING  
µ
µ
F
10  
F
0.1  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
1.36:1  
TTIP  
26.1  
Tx Output  
R Load  
120  
TNEG/CODE  
TPOS/TData  
TClk  
26.1  
TRING  
NOTE: Resistive divider attenuates the input signal by one-  
half for both 75 and 120 applications.  
21  
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
2.0 DIAGNOSTIC FEATURES  
Shaping circuit. Finally, this data will be output to the  
line via the TTIP and TRing output pins. Additionally,  
this data (which is being output via the TTIP and  
TRing output pins) will be looped back into the Re-  
ceiver block. As a consequence, this data will also be  
processed through the entire Receive Section of the  
XRT82D20. After this post-loop-back data has been  
processed through the Receive Section it will output,  
to the Near-End Receiving Terminal Equipment via  
the RPOS and RNEG output pins.  
In order to support diagnostic operations, the  
XRT82D20 supports the following loop-back modes:  
Local Loopback  
Remote Loopback  
Digital Loopback  
Each of these loop-back modes will be discussed be-  
low.  
2.1 THE LOCAL LOOP-BACK MODE  
Figure 18, illustrates the path that the data takes  
(within the XRT82D20), when the chip is configured  
to operate in the Local Loop-Back Mode.  
When the XRT82D20 is configured to operate in the  
Local Loop-Back Mode, the XRT82D20 will ignore  
any signals that are input to the RTIP and RRing input  
pins. The Transmitting Terminal Equipment will trans-  
mit data into the XRT82D20 via the TPOS, TNEG and  
TClk input pins. This data will be processed through  
the Transmit Terminal Input Interface and the Pulse  
The user can configure the XRT82D20 to operate in  
the Local Loop-Back Mode, by pulling the LLoop input  
pin (pin 9) to GND.  
FIGURE 18. ILLUSTRATION OF THE ANALOG LOCAL LOOP-BACK WITHIN THE XRT82D20  
TTIP  
TClk  
TPOS  
TNEG  
HDB3  
Encoder  
Tx Pulse  
Shaper  
Line  
Driver  
MUX  
TRing  
Jitter Attenuator  
Local  
Loopback  
LOS  
Detect  
RLOS  
Data &  
Timing  
Recovery  
RClk  
RPOS  
RNEG  
HDB3  
Decoder  
Data  
Peak  
RTIP  
MUX  
Slicer  
Detector  
RRing  
Timing  
Generator  
MClk  
22  
 
XRT82D20 SINGLE CHANNEL LINE INTERFACE UNIT  
áç  
REV. 1.0.7  
2.2 THE REMOTE LOOP BACK MODE  
block within the Transmit Section. At this point, this  
data will be routed through the remainder of the  
Transmit Section of the XRT82D20 and will be trans-  
mitted out onto the line via the TTIP and TRing output  
pins.  
When the XRT82D20 is configured to operate in the  
Remote Loop-Back Mode, the XRT82D20 will ignore  
any signals that are input to the TPOS and TNEG in-  
put pins. The XRT82D20 will receive the incoming  
line signals, via the RTIP and RRing input pins. This  
data will be processed through the entire Receive  
Section (within the XRT82D20) and will output to the  
Receive Terminal Equipment via the RPOS and  
RNEG output pins. Additionally, this data will also be  
internally looped back to the Transmit Input Interface  
Figure 19, illustrates the path that the data takes  
(within the XRT82D20) when the chip is configured to  
operate in the Remote Loop-Back Mode.  
FIGURE 19. ILLUSTRATION OF THE REMOTE LOOP-BACK PATH, WITHIN THE XRT82D20  
TTIP  
TClk  
TPOS  
TNEG  
HDB3  
Encoder  
Tx Pulse  
Shaper  
Line  
Driver  
MUX  
TRing  
Jitter Attenuator  
Remote  
Loopback  
LOS  
RLOS  
Detect  
Data &  
Timing  
Recovery  
RClk  
RPOS  
RNEG  
HDB3  
Decoder  
Data  
Slicer  
Peak  
Detector  
RTIP  
RRing  
MUX  
Timing  
Generator  
MClk  
NOTE: During Remote Loop-Back operation, any data  
which is input via the RTIP and RRING input pins, will also  
be output to the Terminal Equipment, via the RPOS and  
RNEG output pins.  
23  
 
áç  
SINGLE CHANNEL LINE INTERFACE UNIT  
XRT82D20  
REV. 1.0.7  
PACKAGE OUTLINE DRAWING  
24  
áç  
XRT82D20  
SINGLE CHANNEL LINE INTERFACE UNIT  
REV. 1.0.7  
REVISION HISTORY  
Rev. 1.0.6 corrections to figures, remove values from pull-up/down resistors, correct formating of ±.  
Rev. 1.0.7 Minor edits of figures and text. Added 4 new figures 14, 15, 16 and 17, showing capacitive cou-  
pling of the receiver to the line.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order  
to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of  
any circuits described herein, conveys no license under any patent or other right, and makes no represen-  
tation that the circuits are free of patent infringement. Charts and schedules contained here in are only for  
illustration purposes and may vary depending upon a user’s specific application. While the information in  
this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where  
the failure or malfunction of the product can reasonably be expected to cause failure of the life support sys-  
tem or to significantly affect its safety or effectiveness. Products are not authorized for use in such applica-  
tions unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury  
or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corpo-  
ration is adequately protected under the circumstances.  
Copyright 2001 EXAR Corporation  
Datasheet April 2001  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
25  

相关型号:

XRT82D20IW-F

PCM Transceiver, 1-Func, PDSO28, 0.300 INCH, LEAD FREE, SOJ-28
EXAR

XRT82D20_06

SINGLE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT82L24

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24A

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24AIV

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24AIV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP100, 14 X 14 MM, 1.4 MM HEIGHT, GREEN, TQFP-100
EXAR

XRT82L24IV

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L34IV

Interface IC
ETC

XRT82L38IV

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, THERMALLY ENHANCED, TQFP-144
EXAR

XRT83D10

SINGLE CHANNEL DS1/CEPT LINE INTERFACE UNIT
EXAR

XRT83D10IW

SINGLE CHANNEL DS1/CEPT LINE INTERFACE UNIT
EXAR

XRT83L30

SINGLE-CHANNEL T1/E1/J1 LH/SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR