EM5301AGE [EXCELLIANCE]

5V/12V Synchronous Buck PWM Controller;
EM5301AGE
型号: EM5301AGE
厂家: Excelliance MOS    Excelliance MOS
描述:

5V/12V Synchronous Buck PWM Controller

文件: 总13页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM5301  
5V/12V Synchronous Buck PWM Controller  
General Description  
Applications  
EM5301 is a synchronous rectified PWM  
controller operating with 5V or 12V supply voltage.  
This device operates at 200/300/500 kHz and  
provides an optimal level of integration to reduce  
size and cost of the power supply.  
Notebook & Netbook  
Graphic Cards & MB  
Low Voltage Logic Supplies  
This part includes internal soft start, over  
current protection, under voltage protection, over  
voltage protection, and shutdown function. This  
part is available in PSOP-8 package.  
Pin Configuration  
Ordering Information  
Reference  
Part Number Package Frequency  
Voltage  
EM5301GE  
PSOP-8  
200kHz  
300kHz  
500kHz  
200kHz  
300kHz  
500kHz  
0.8V  
0.8V  
0.8V  
0.6V  
0.6V  
0.6V  
EM5301AGE PSOP-8  
EM5301BGE PSOP-8  
EM5301CGE PSOP-8  
EM5301DGE PSOP-8  
Typical Application Circuit  
EM5301EGE  
PSOP-8  
Features  
Operate from 5V to 12V Voltage Supply  
0.8V or 0.6V VREF with 1.0% Accuracy  
Voltage Mode PWM Control  
200kHz or 300kHz or 500kHz Fixed  
Frequency Oscillator  
0% to 80% Duty Cycle  
Internal Soft Start  
Over Current Protection  
Integrated Bootstrap Diode  
Adaptive Non-Overlapping Gate Driver  
Under Voltage Protection  
Over Voltage Protection  
2013/04/22  
Rev.A.5  
1
EM5301  
Pin Assignment  
Pin Name Pin No.  
Pin Function  
Bootstrap Supply for the floating upper gate driver. Connect the bootstrap  
capacitor C BOOT between BOOT pin and the PHASE pin to form a bootstrap circuit.  
The bootstrap capacitor provides the charge to turn on the upper MOSFET. Typical  
values for C BOOT range from 0.1uF to 0.47uF. Ensure that C BOOT is placed near the  
IC.  
BOOT  
1
Upper Gate Driver Output. Connect this pin to the gate of upper MOSFET. This pin  
is monitored by the adaptive shoot-through protection circuitry to determine when  
the upper MOSFET has turned off.  
UGATE  
GND  
2
3
4
Signal and Power Ground for the IC. All voltages levels are measured with respect  
to this pin. Tie this pin to the ground island/plane through the lowest impedance  
connection available.  
Lower Gate Driver Output. Connect this pin to the gate of lower MOSFET. This pin  
is monitored by the adaptive shoot-through protection circuitry to determine when  
the lower MOSFET has turn off.  
LGATE  
Supply Voltage. This pin provides the bias supply for the EM5301 and the lower  
gate driver. The supply voltage is internally regulated to 5VDD for internal control  
circuit. Connect a well-decoupled 4.5V to 13.2V supply voltage to this pin. Ensure  
that a decoupling capacitor is placed near the IC.  
VCC  
FB  
5
6
Feedback Voltage. This pin is the inverting input to the error amplifier. A resistor  
divider from the output to GND is used to set the regulation voltage.  
Error Amplifier Output. This pin is the output of error amplifier and the  
non-inverting input of the PWM comparator. Use this pin in combination with the  
FB pin to compensate the voltage control feedback loop of the converter. Pulling  
this pin lower than 0.2V disables the controller and causes the oscillator to stop,  
the UGATE and LGATE outputs to be held low.  
COMP/  
SD  
7
8
PHASE Switch Node. Connect this pin to the source of the upper MOSFET and the  
drain of the lower MOSFET. This pin is used as the sink for the UGATE driver, and to  
monitor the voltage drop across the lower MOSFET for over current protection.  
This pin is also monitored by the adaptive shoot-through protection circuitry to  
determine when the upper MOSFET has turned off. A Schottky diode between this  
pin and ground is recommended to reduce negative transient voltage which is  
common in a power supply system.  
PHASE  
2013/04/22  
Rev.A.5  
2
EM5301  
Function Block Diagram  
VCC  
5
Internal  
regulator  
1
BOOT  
Soft Start  
POR  
2
8
UGATE  
PHASE  
OTP  
-
Gate  
control  
logic  
PWM  
-
6
FB  
EA  
VOCP  
+
Ramp  
V
VCC  
Vref  
VCC  
17V  
Oscillator  
4
3
LGATE  
G(D  
75% Vref  
FB  
COMP/SD  
7
Enable  
0.2V  
FB  
130% Vref  
2013/04/22  
Rev.A.5  
3
EM5301  
Absolute Maximum Ratings (Note 1)  
Supply voltage, VCC----------------------------------------------------------  
-0.3V to 16V  
PHASE to GND  
DC-------------------------------------------------------------------------------  
<200nS-------------------------------------------------------------------------  
-5V to 16V  
-10V to 32V  
BOOT to PHASE---------------------------------------------------------------  
16V  
BOOT to GND  
DC-------------------------------------------------------------------------------  
<200nS-------------------------------------------------------------------------  
-0.3V to PHASE+16V  
-0.3V to 42V  
UGATE  
DC -----------------------------------------------------------------------------  
VPHASE -0.3V to VBOOT + 0.3V  
<200ns------------------------------------------------------------------------- VPHASE -5V to VBOOT +5V  
LGATE  
DC-------------------------------------------------------------------------------  
-0.3V to VCC + 0.3V  
-5V to VCC+5V  
<200ns-------------------------------------------------------------------------  
COMP/SD & FB----------------------------------------------------------------  
Power Dissipation, PD @ TA = 25°C, PSOP-8 --------------------------  
Package Thermal Resistance, ΘJA, PSOP-8 (Note 2)-------------------  
Junction Temperature--------------------------------------------------------  
Lead Temperature (Soldering, 10 sec.)-----------------------------------  
Storage Temperature Range------------------------------------------------  
-0.3V to 6V  
1.33W  
75°C/W  
150°C  
260°C  
-65°C to 150°C  
ESD susceptibility (Note3)  
HBM (Human Body Mode)-------------------------------------------------  
MM (Machine Mode)-------------------------------------------------------  
2KV  
200V  
Recommended Operating Conditions (Note4)  
Supply Voltage, VCC ---------------------------------------------------------- 4.5V to 13.2V  
Junction Temperature ------------------------------------------------------ -40°C to 125°C  
Ambient Temperature ------------------------------------------------------ -40°C to 85°C  
Electrical Characteristics  
VCC=12V, TA=25, unless otherwise specified  
Parameter  
Symbol  
Test Conditions  
Min. Typ. Max. Units  
Supply Input Section  
Supply Voltage  
Supply Current  
VCC  
ICC  
ICCQ  
4.5  
3.8  
13.2  
4.3  
V
mA  
mA  
V
LGATE, UGATE open, Switching.  
No Switching.  
2.5  
2
Quiescent Supply Current  
Power on Reset Threshold  
Power on Reset Hysteresis  
VCCRTH  
VCCHYS  
4
0.4  
V
Internal Oscillator  
EM5301/C  
170 200 230  
255 300 345  
425 500 575  
1.5  
kHz  
kHz  
kHz  
Vp-p  
Free Running Frequency  
Ramp Amplitude  
fOSC  
EM5301A/D  
EM5301B/E  
VOSC  
2013/04/22  
Rev.A.5  
4
EM5301  
Error Amplifier  
Open Loop DC Gain  
Gain-Bandwidth Product  
Maximum Duty  
AO  
88  
15  
80  
75  
dB  
MHz  
%
GBW  
DMAX  
EM5301/A/C/D  
EM5301B/E  
%
PWM Controller Gate Drivers  
VBOOT - VPHASE = 12V,  
VBOOT - VUGATE = 6V  
VBOOT - VPHASE = 12V,  
VUGATE – VPHASE = 6V  
VBOOT - VPHASE = 12V,  
Upper Gate Sourcing Current  
IUG_SRC  
IUG_SNK  
RUG_SNK  
-1.2  
1.5  
2
A
A
Upper Gate Sinking Current  
Upper Gate RDS(ON) Sinking  
4
Ω
VUGATE – VPHASE = 0.1V  
Lower Gate Sourcing Current  
Lower Gate Sinking Current  
Lower Gate RDS(ON) Sinking  
PHASE Falling to LGATE Rising  
Delay  
ILG_SRC  
ILG_SNK  
RLG_SNK  
VCC – VLGATE = 6V  
VLGATE = 6V  
-1.2  
1.5  
1
A
A
Ω
VLGATE = 0.1V  
2
VCC = 12V; (VUGATE - VPHASE)< 1.2V to  
VLGATE > 1.2V  
30  
30  
90  
ns  
ns  
LGATE Falling to UGATE Rising  
Delay  
VCC = 12V; VLGATE < 1.2V to (VUGATE  
VPHASE) > 1.2V  
-
90  
Reference Voltage  
EM5301/A/B  
0.792 0.8 0.808  
0.592 0.6 0.608  
V
V
Nominal Feedback Voltage  
VFB  
EM5301C/D/E  
Protection section  
FB Under Voltage Protection  
FB Over Voltage Protection  
LGATE OC Setting Current  
Over Current Threshold1  
VFB_UVP FB falling  
VFB_OVP FB rising  
IOCSET  
68  
75  
82  
%
%
120 130 145  
22  
25  
-400  
3.6  
28  
uA  
mV  
ms  
ms  
V
VPHA_OC1 RLGATE=8Kohm  
EM5301/B/C/E  
Soft-Start Interval  
TSS  
EM5301A/D  
2.4  
COMP Enable Threshold  
Temperature Shutdown  
VCOMP/EN  
TSD  
0.2  
165  
Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. θJA PSOP-8 packages is 52°C /W on JEDEC 51-7 (4 layers,2S2P) thermal test board with 50mm2 copper area.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
2013/04/22  
Rev.A.5  
5
EM5301  
Typical Operating Characteristics  
Power On from VIN  
Power Off from VIN  
VOUT  
VOUT  
VIN  
VIN  
VCC  
VCC  
UGATE  
UGATE  
VIN=12VVCC=12VNo Load.  
VIN=12VVCC=12VNo Load.  
Power On from COMP/SD  
Power Off from COMP/SD  
VOUT  
VOUT  
COMP/SD  
COMP/SD  
LGATE  
UGATE  
LGATE  
UGATE  
VIN=12VVCC=12VNo Load.  
VIN=12VVCC=12VNo Load.  
Load Transient Response  
Load Transient Response  
VOUT  
VOUT  
UGATE  
Iout  
UGATE  
Iout  
VIN=12VVCC=12VCOUT=1360uFL=1.2uH  
IOUT=0A to 15A.  
VIN=12VVCC=12VCOUT=1360uFL=1.2uH  
IOUT=15A to 0A.  
2013/04/22  
Rev.A.5  
6
EM5301  
Over Voltage Protection  
Over Current Protection  
VFB  
VOUT  
VOUT  
UGATE  
LGATE  
IOUT  
UGATE  
LGATE  
VIN=12VVCC=12VIOCSET=20A.  
VIN=12VVCC=12VNo Load.  
Over Current Protection  
Frequency vs. Junction Temperature  
VOUT  
IOUT  
UGATE  
LGATE  
VIN=12VVCC=12VIOCSET=20A.  
Turn On to Short Circuit  
Junction Temperature ()  
Reference Voltage vs. Junction Temperature  
Output Voltage vs. Load Current  
Output current (A)  
Junction Temperature ()  
Efficiency vs. Load Current  
2013/04/22  
Rev.A.5  
7
EM5301  
Load Current (A)  
2013/04/22  
Rev.A.5  
8
EM5301  
UVP, Under Voltage Protection  
Functional Description  
The FB voltage is monitored for under voltage  
protection. The UVP threshold is typical 0.6V.  
When UVP is triggered, EM5301 will shut down the  
converter and cycles the soft start function in a  
hiccup mode.  
EM5301 is a voltage mode synchronous buck PWM  
controller. This device provides complete  
protection function such as over current protection,  
under voltage protection and over voltage  
protection.  
OVP, Over Voltage Protection  
Supply Voltage  
The FB voltage is monitored for over voltage  
protection. The OVP threshold is typical 1.04V.  
When OVP is triggered, EM5301 will turn off upper  
MOSFET and turn on lower MOSFET.  
The VCC pin provides the bias supply of EM5301  
control circuit, as well as lower MOSFET’s gate and  
the BOOT voltage for the upper MOSFET’s gate. A  
minimum 0.1uF ceramic capacitor is recommended  
to bypass the supply voltage.  
Feedback Compensation  
Fig.1 shows the voltage mode control loop for a  
Power ON Reset  
synchronous-rectified  
buck  
converter.  
The  
To let EM5301 start to operation, VCC voltage must  
be higher than its POR voltage even when REFIN  
voltage is pulled higher than enable high voltage.  
Typical POR voltage is 4.0V.  
compensation network consists of the error  
amplifier and the impedance networks ZIN and ZFB.  
The goal of the compensation network is to  
provide a closed loop transfer function with  
adequate phase margin.  
Shutdown  
The COMP/SD pin can be used to enable or disable  
EM5301. Pull down COMP/SD pin below 0.2V can  
disable the controller.  
VIN  
DRIVER  
OSC  
PWM  
COMPARATOR  
Lo  
VOUT  
PHASE  
VOSC  
Soft Start  
Co  
EM5301 provides soft start function internally. The  
FB voltage will track the internal soft start signal,  
which ramps up from zero during soft start period.  
ESR  
DRIVER  
ZFB  
ZI(  
OCP, Over Current Protection  
ERROR  
REFERENCE  
AMP  
The over current function protects the converter  
from a shorted output by using lower MOSFET’s  
on-resistance to monitor the current. The OCP level  
can be calculated as the following equation:  
ZFB  
C2  
ZIN  
VOUT  
C1  
R2  
C3  
R3  
VOCP  
COMP  
IOCP = −  
R1  
RDS(ON)  
FB  
REFERENCE  
When OCP is triggered, EM5301 will shut down the  
converter and cycles the soft start function in a  
hiccup mode. If over current condition still exist  
after 3 times of hiccup, EM5301 will shut down the  
controller and latch.  
Fig.1 Compensation for Voltage Mode Buck Converter  
2013/04/22  
Rev.A.5  
9
EM5301  
V VOUT  
VOUT  
IN  
ΔIL =  
The equations below relate the compensation  
network’s poles and zeros to the components (R1,  
R2, R3, C1, C2 and C3).  
L
V *F  
IN  
SW  
Output Capacitor Selection  
1
1
An output capacitor is required to filter the output  
and supply the load transient. The selection of  
output capacitor depends on the output ripple  
voltage. The output ripple voltage is approximately  
bounded by the following equation:  
F =  
F =  
P1  
Z1  
C1 *C2  
2π *R2 *C1  
2π *R2 *(  
)
C1 + C2  
1
1
F =  
F =  
Z1  
P2  
2π *(R1 + R3)*C3  
2π *R3 *C3  
1
ΔVOUT = ΔIL *(ESR +  
)
8*FSW * COUT  
Fig.2 shows the Bode plot for the control loop. The  
compensation gain uses external impedance  
networks ZIN and ZFB to provide a stable loop. A  
stable control loop has a gain crossing with  
-20db/decade slope and phase margin greater than  
45 degrees.  
Input Capacitor Selection  
Use a mix of input bypass capacitors to control the  
voltage overshoot across the MOSFET. Use small  
ceramic capacitors for high frequency decoupling  
and bulk capacitors to supply the current needed  
each time the upper MOSFET turn on. Place the  
small ceramic capacitors physically close to the  
MOSFETs and between the drain of the upper  
MOSFET and the source of the lower MOSFET. The  
important parameters of the input capacitor are  
the voltage rating and the RMS current rating.  
The capacitor voltage rating should be at least 1.25  
times greater than the maximum input voltage and  
a voltage rating of 1.5 times is a conservative  
guideline. The RMS current rating requirement can  
be expressed as the following equation:  
100  
80  
60  
40  
Error Amp Open  
Loop Gain  
FZ2  
FZ1  
Compensation  
FP1 FP2  
Gain  
20  
0
20Log(R2/R1)  
20Log(VIN/ VOSC  
)
Modulator Gain  
FLC  
-20  
-40  
-60  
Close Loop Gain  
IRMS = IOUT D(1- D)  
FESR  
For a through hole design, several electrolytic  
capacitors may be needed. For surface mount  
designs, solid tantalum capacitors can also be used  
but caution must be exercised with regard to the  
capacitor surge current rating. These capacitors  
must be capable of handling the surge current at  
power-up. Some capacitor series available from  
reputable manufacturers are surge current tested.  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY(Hz)  
Fig.2 Bode Plot of Voltage Mode Buck Converter  
Output Inductor Selection  
The output inductor is selected to meet the output  
voltage ripple requirements and minimize the  
response time to the load transient. The inductor  
value determines the current ripple and voltage  
ripple. The ripple current is approximately the  
following equation:  
2013/04/22  
Rev.A.5  
10  
EM5301  
Power MOSFET Selection  
The EM5301 requires two N-Channel power  
MOSFETs. These should be selected based upon  
on-resistance, breakdown voltage, gate supply  
requirement,  
requirements.  
and  
thermal  
management  
In high current applications, the MOSFET power  
dissipation, package selection and heat sink are the  
dominate design factor. The power dissipation  
includes two loss components: conduction loss and  
switching loss. The conduction losses are the  
largest component of power dissipation for both  
the upper and lower MOSFETs. These losses are  
distributed between the two MOSFETs according  
to duty factor.  
The power dissipations in the two MOSFETs are  
approximately the following equation:  
PDUPPER = I2OUT *RDS(ON) *D + 0.5*IOUT *V *F *tSW  
IN  
SW  
PDLOWER = I2OUT *RDS(ON) *(1 - D)  
Where D is the duty cycle, tSW is the combined  
switch ON and OFF time.  
2013/04/22  
Rev.A.5  
11  
EM5301  
Ordering & Marking Information  
Device Name: EM5301GE/EM5301AGE/EM5301BGE for PSOP-8  
EM  
5301  
EM5301GE Device Name  
ABCDEFG: Date Code  
ABCDEFG  
EM  
5301A  
EM5301AGE Device Name  
ABCDEFG: Date Code  
ABCDEFG  
EM  
5301B  
EM5301BGE Device Name  
ABCDEFG: Date Code  
ABCDEFG  
EM  
5301C  
EM5301CGE Device Name  
ABCDEFG: Date Code  
ABCDEFG  
EM  
5301D  
EM5301DGE Device Name  
ABCDEFG: Date Code  
ABCDEFG  
EM  
5301E  
EM5301EGE Device Name  
ABCDEFG: Date Code  
ABCDEFG  
2013/04/22  
Rev.A.5  
12  
EM5301  
Outline Drawing  
J
F
I
I
K
G
H
D
E
M
N
B
C
A
Dimension in mm  
Dimension  
Min.  
A
B
C
D
E
F
G
H
I
J
K
M
N
4.70 3.70 5.80 0.33  
1.20 0.02 0.40 0.19 0.25 01.94 1.94  
Typ.  
1.27  
Max.  
5.10 4.10 6.20 0.51  
1.62 0.15 0.83 0.26 0.50 82.49 2.49  
2013/04/22  
Rev.A.5  
13  

相关型号:

EM5301BGE

5V/12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301CGE

5V/12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301DGE

5V/12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301EGE

5V/12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301F

12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301FG

12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301FGE

12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301GE

5V/12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5301GGE

12V Synchronous Buck PWM Controller
EXCELLIANCE

EM5302

5V/12V Synchronous Buck PWM Controller with Reference Input
EXCELLIANCE

EM5302A

5V/12V Synchronous Buck PWM Controller with Reference Input
EXCELLIANCE

EM5302AGE

5V/12V Synchronous Buck PWM Controller with Reference Input
EXCELLIANCE